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Recycling Intermediate Steps to Improve
Hamiltonian Monte Carlo

Akihiko Nishimura∗ and David Dunson∗

Abstract. Hamiltonian Monte Carlo (HMC) and related algorithms have become
routinely used in Bayesian computation. In this article, we present a simple and
provably accurate method to improve the efficiency of HMC and related algo-
rithms with essentially no extra computational cost. This is achieved by recycling
the intermediate states along simulated trajectories of Hamiltonian dynamics.
Standard algorithms use only the end points of trajectories, wastefully discarding
all the intermediate states. Compared to the alternative methods for utilizing the
intermediate states, our algorithm is simpler to apply in practice and requires
little programming effort beyond the usual implementations of HMC and related
algorithms. Our algorithm applies straightforwardly to the no-U-turn sampler,
arguably the most popular variant of HMC. Through a variety of experiments,
we demonstrate that our recycling algorithm yields substantial computational ef-
ficiency gains.

Keywords: Bayesian inference, Hamiltonian Monte Carlo, Markov chain Monte
Carlo, multi-proposal, Rao-Blackwellization.

1 Introduction

Markov chain Monte Carlo is routinely used to generate samples from posterior distri-
butions. While specialized algorithms exist for restricted model classes, general-purpose
algorithms are often inefficient and scale poorly in the number of parameters. Originally
proposed by Duane et al. (1987) and popularized in the statistics community through
the works of Neal (1996, 2010), Hamiltonian Monte Carlo promises a better scalability
(Neal, 2010; Beskos et al., 2013) and has enjoyed wide-ranging successes as one of the
most reliable approaches in general settings (Gelman et al., 2013; Kruschke, 2014; Mon-
nahan et al., 2016). Stan and PyMC software packages take advantage of this generality
and performance (Stan Development Team, 2015; Salvatier et al., 2016).

Given a parameter θ ∼ πθ(·) of interest, HMC introduces an auxiliary momentum
variable p and defines a distribution π(·) = πθ(·) × N (0,M) on the augmented pa-
rameter space (θ,p) with a mass matrix M . A proposal is generated by simulating
trajectories of Hamiltonian dynamics where the evolution of the state (θ,p) is governed
by a differential equation:

dθ

dt
= M−1p,

dp

dt
= ∇ log πθ(θ). (1.1)
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Proposals generated by this mechanism can be far away from the current state and yet
accepted with high probability. In case M = I and θ ∈ R

2, the solution trajectory
of (1.1) coincides with the motion of a frictionless puck sliding over a surface of height
− log π(θ) (Neal, 2010). The puck feels “push” in the direction of the gradient∇ log π(θ),
pointing toward higher values of log π(θ). The momentum evolves accordingly but also
gives the puck tendency to keep moving in the same direction, helping HMC proposals
explore the parameter space in an informed manner.

In practice, the analytical solution to (1.1) is rarely available and a trajectory
(θ(t),p(t)) for 0 ≤ t ≤ τ is approximated by taking K ≈ τ/ε steps of a leap-frog
scheme with stepsize ε, where each step Fε : (θ0,p0) → (θ1,p1) is defined via the
relations

p1/2 − p0 =
ε

2
∇ log πθ(θ0)

θ1 − θ0 = εM−1p1/2

p1 − p1/2 =
ε

2
∇ log πθ(θ1).

(1.2)

The approximate solution FK
ε (θ0,p0) ≈ (θ(τ),p(τ)) no longer has the distribution π(·),

but can be used as a Metropolis proposal (Metropolis et al., 1953). Efficiency of HMC
depends critically on a choice of ε, τ , and M , but well-established approaches exist
for tuning these parameters (Andrieu and Thoms, 2008; Neal, 2010; Wang et al., 2013;
Hoffman and Gelman, 2014; Stan Development Team, 2015).

Current practice uses the last state FK
ε (θ0,p0) as a proposal and discards all the

intermediate values F k
ε (θ0,p0) for k < K. As we will show, this is wasteful since the

intermediate values can be recycled to generate additional samples from posterior dis-
tributions. Figure 1, to be explained in detail later, illustrates the benefit of recycling.
The recycling algorithm only requires quantities that have already been sampled or
computed, so there is essentially no extra computational cost. Our proposed recycling
approach can also be applied directly to a wide variety of modified HMC algorithms
(Neal, 2010; Girolami and Calderhead, 2011; Pakman and Paninski, 2013, 2014; Lan
et al., 2014; Shahbaba et al., 2014; Fang et al., 2014; Zhang et al., 2016; Lu et al., 2016).
Extensions to more complex variants are also possible, including the No-U-Turn-Sampler
(NUTS) (Hoffman and Gelman, 2014; Stan Development Team, 2015).

Our algorithm is distinguished by its simplicity and generality compared to alterna-
tive algorithms for utilizing the intermediate values of HMC (Neal, 1994; Calderhead,
2014; Bernton et al., 2015). Under our framework, one can typically implement an HMC
variant as usual and simply add several lines of code to recycle the intermediate val-
ues using the familiar acceptance and rejection probabilities. On the other hand, the
algorithm of Calderhead (2014) and its Rao-Blackwellization by Bernton et al. (2015)
require a trajectory to be simulated forward and backward in a symmetric manner
to satisfy the super-detailed balance condition (Frenkel, 2004; Tjelmeland, 2004). The
proposal must then be followed by the acceptance-rejection step using the generalized
Metropolis-Hastings algorithm (Calderhead, 2014) or assignment of appropriate weights
to the intermediate values (Bernton et al., 2015). Importantly, these algorithms do not
apply to NUTS, arguably the most popular variant of HMC. This is because NUTS
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yields a variable number of intermediate states and does not constitute a multi-proposal
scheme necessary for using their algorithms.

The underlying idea behind our algorithm is most similar to Neal (1994) who realized
that, in the variant of HMC that uses a collection of states in computing the accep-
tance probability, those states can be re-used when computing the posterior summaries
through conditional expectation. Our theory is more general, however, and translates
into methods to improve a variety of multi-proposal algorithms (Section 3).

2 Recycled Hamiltonian Monte Carlo

The following non-standard HMC algorithm accepts or rejects each of the intermediate
values, enabling recycling of these samples.

Algorithm 1 (Recycled HMC). Generate random variables {(θ(i)
k ,p

(i)
k ), k = 0, 1, . . . ,

K}i≥1 so that the sequence {(θ(i)
0 ,p

(i)
0 )}i≥1 forms a Markov chain with transition rule

(θ
(i)
0 ,p

(i)
0 ) → (θ

(i+1)
0 ,p

(i+1)
0 ) as follows:

1. Set θ0 = θ
(i)
0 and draw a random momentum p0 ∼ N (0,M).

2. Simulate a trajectory via the leapfrog steps as in (1.2) and set (θ∗
k,p

∗
k) = F k

ε (θ0,p0)
for k = 1, . . . ,K.

3. Accept or reject each state along the trajectory; for k = 1, . . . ,K, set (θ
(i+1)
k ,

p
(i+1)
k ) = (θ∗

k,p
∗
k) with probability

min

{
1,

π
(
θ∗
k,p

∗
k

)
π
(
θ0,p0

)} (2.1)

and (θ
(i+1)
k ,p

(i+1)
k ) = (θ0,p0) otherwise.

4. Update the starting point of the next HMC iteration: (θ
(i+1)
0 ,p

(i+1)
0 ) = (θ

(i)
K ,p

(i)
K ).

The transition rule (θ
(i)
0 ,p

(i)
0 ) → (θ

(i+1)
0 ,p

(i+1)
0 ) above coincides with that of the

standard HMC algorithm. The empirical measure N−1
∑N

i=1 δ(θ(i)
0 ,p

(i)
0 )

(·) thus converges
weakly to the target distribution. The following theorem, which is a consequence of a
more general theory given in the next section, shows that the intermediate samples can
actually be recycled as valid draws from the target distribution. The index k runs from

1 to K as (θ
(i+1)
0 ,p

(i+1)
0 ) = (θ

(i)
K ,p

(i)
K ) and k = 0 is redundant.

Theorem 1. If (θ
(i)
k ,p

(i)
k ) for k = 1, . . . ,K are generated as in Algorithm 1, then

1

NK

N∑
i=1

K∑
k=1

δ
(θ

(i)
k ,p

(i)
k )

(·) w→ π(·) as N → ∞, (2.2)

where
w→ denotes the weak convergence of a measure.
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Figure 1: Visual demonstration of the recycling algorithm applied during one iteration of
HMC on a 2-D banana-shaped target distribution. The numbers k = 0, 1, . . . , 20 indicate
the location (θk,pk) of a simulated trajectory after k leapfrog steps. Red color at k = 5
and k = 18 indicates rejection of the intermediate states. Green color indicates the
successfully recycled (i.e. accepted) intermediate states. Most of the intermediate states
have high acceptance rates as expected from the property of Hamiltonian dynamics.

Fig. 1 illustrates the recycling procedure. The Metropolis type acceptance-rejection

of (2.1) is applied to each intermediate state F k
ε (θ

(i)
0 ,p

(i)
0 ). Calculating these acceptance

probabilities typically takes little additional computational time; the unnormalized tar-
get densities at the intermediate values are either already computed in common variants
of HMC (Neal, 2010; Hoffman and Gelman, 2014) or can be obtained cheaply as a by-
product of computing the gradients ∇ log πθ.

Algorithm 1 uses the fixed path length K, but it is often desirable to randomize
the number of steps to avoid periodic behavior in the trajectories of (1.1) (Neal, 2010).
Recycling is justified under this setting as well:

Theorem 2. Consider a modified version of Algorithm 1 in which at the i-iteration 1)
the trajectory is simulated for a random path length L(i) ∼ πL(·) with L(i) ≤ K and 2)

the starting point for the next HMC iteration is set as (θ
(i+1)
0 ,p

(i+1)
0 ) = (θ

(i)

L(i) ,p
(i)

L(i)).
Then we have

1∑N
i=1 L

(i)

N∑
i=1

L(i)∑
k=1

δ
(θ

(i)
k ,p

(i)
k )

(·) w→ π(·) as N → ∞. (2.3)

3 Theory behind recycling algorithm

The validity of recycled HMC as in Theorem 1 and 2 follows from a more general
principle below.
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Theorem 3. Let Pk(· | ·) for k = 0, . . . ,K be transition kernels with a common station-
ary measure π(·) and suppose P0(· | ·) is uniquely ergodic.1 Consider a Markov chain
{z(i)}i≥1 on a product space z = (z0, . . . , zK) whose transition probability z → z∗ only
depends on the coordinate z0 i.e.

P (z∗
0 , . . . , z

∗
K | z0, . . . , zK) = P (z∗

0 , . . . , z
∗
K | z0) (3.1)

and has the marginal densities∫
P (z∗

0 , . . . , z
∗
K | z0) dz∗

−k = Pk(z
∗
k | z0) (3.2)

where z∗
−k = (z∗

0 , . . . , z
∗
k−1, z

∗
k+1, . . . , z

∗
K) for k = 0, . . . ,K. Then the following result

holds:

1

NK

N∑
i=1

K∑
k=1

δ
z
(i)
k

(·) w→ π(·) as N → ∞. (3.3)

Additionally, the Markov chain {z(i)}i≥1 is geometrically (or uniformly) ergodic if
P0(· | ·) is geometrically (or uniformly) ergodic.

Proof. It is easy to verify that the Markov chain z(1), z(2), . . . has a stationary distri-
bution

π∗(·) =
∫

P ( · | z0)π(z0) dz0. (3.4)

By the assumption (3.2), the marginal π∗(zk) coincides with π(zk) for all k = 0, . . . ,K.
Once we establish the unique ergodicity of the chain {z(i)}i≥1, therefore, the conclu-
sion (3.3) follows by averaging the coordinates z1, . . . , zk of the empirical measure

N−1
∑N

i=1 δz(i) .

To see that π∗(·) is the unique stationary measure, suppose π̃∗(·) is another station-
ary measure of P (· | ·). This means that, by the assumption (3.1),

π̃∗(·) =
∫

P ( · | z0)π̃∗(z0) dz0. (3.5)

In particular, the marginal π̃∗(z∗
0) satisfies π̃∗(z∗

0) =
∫
P0(z

∗
0 | z0)π̃∗(z0) dz0 by the

assumption (3.2). The unique ergodicity of P0(· | ·) then implies π̃∗(z0) = π(z0). Substi-
tuting this equality into (3.5) establishes π̃∗(·) = π∗(·) and hence the unique ergodicity
of the chain {z(i)}i≥1.

We turn to the proof of a convergence rate (geometric or uniform ergodicity) of
the chain {z(i)}i≥1 under the corresponding assumption on P0(· | ·). For the conditional
distribution of z(n) | z(0)

0 , we have∣∣∣P(z(n) ∈ A | z(0)
0 )− π∗(A)

∣∣∣ = ∣∣∣∣∫ P (A | z′
0)

(
Pn
0 (z

′
0 | z

(n)
0 )− π(z′

0)
)
dz′

0

∣∣∣∣ . (3.6)

1A transition kernel (or a Markov chain) with a unique stationary measure is called uniquely er-
godic. The uniqueness of a stationary measure implies ergodicity by the ergodic decomposition theorem
(Kallenberg, 2002).
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It follows that ∥∥∥P(z(n) ∈ · | z(0)
0 )− π∗(·)

∥∥∥
tv

≤
∥∥∥Pn

0 ( · | z
(0)
0 )− π(·)

∥∥∥
tv

where ‖ · ‖tv denotes a total variation norm. Hence the chain {z(i)}i≥1 inherits the
convergence rate of P0(· | ·).

Theorem 3 has a subtle but important difference from “composition sampling,” in

which one would first generate a Markov chain {z(i)
0 }i≥0 and then sample (z

(i+1)
1 , . . . ,

z
(i+1)
K ) from a conditional distribution π∗( · | z(i)

0 ). For a Markov chain generated as in

Theorem 3, the conditional distribution z
(i+1)
1 , . . . , z

(i+1)
K | z(i)

0 may have dependency

on z
(i+1)
0 . This additional flexibility is critical for the recycling algorithms presented in

this article. In particular, Theorem 3 reduces to Theorem 1 when the transition kernel
Pk(· | ·) is constructed as one iteration of HMC with k leapfrog steps for k ≥ 1 and
P0(· | ·) as that with K steps.

Theorem 2 is justified by an extension of Theorem 3, which shows that a recycling
algorithm applies even when the number of states generated by a multi-proposal scheme
varies from one iteration to another. Since in Theorem 2 the number of recyclable
samples varies according to the random path length L(i)’s, the general theory behind
Theorem 2 relies on the framework of a Markov chain in a trans-dimensional parameter
space (Hastie and Green, 2012). The precise statement is given as Theorem 4 along with
a proof in Appendix A (Nishimura and Dunson, 2019).

The general formulation of the recycling algorithm as in Theorem 3 and 4 is of
practical value for any Markov chain Monte Carlo (MCMC) algorithm that simulta-
neously yields multiple valid transition kernels Pk(· | ·)’s. Indeed, in many variants of
HMC (Neal, 2010; Girolami and Calderhead, 2011; Shahbaba et al., 2014; Fang et al.,
2014), a proposal is generated by computing a long trajectory whose intermediate steps
constitute valid proposal states that can be all recycled by simply adding acceptance-
rejection steps as in Algorithm 1. Our theory also provides an alternate and simpler
justification of the algorithms by Calderhead (2014) and Bernton et al. (2015) as shown
in Appendix B. Our recycling algorithm can also be applied to more complex proposal
generation mechanisms as we illustrate in the next section.

4 Recycled no-U-turn-sampler

No-U-turn sampler (NUTS) of Hoffman and Gelman (2014) automates choice of path
lengths by simulating each trajectory of Hamiltonian dynamics until it starts moving
back towards the starting point, a criteria they termed the U-turn condition. The length
of a trajectory is recursively doubled forward or backward in a randomly chosen direc-
tion. This generates a trajectory of length 2d endowed with a binary tree structure,
where d denotes the depth at which the U-turn condition occurs.

Unlike the simpler trajectory simulation procedure behind HMC, the trajectory dou-
bling procedure of NUTS does not yield a sequence of valid intermediate proposals. In
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particular, the empirical distribution does not converge to the correct target distribution
if we naively recycle all the intermediate states of NUTS as in Algorithm 1. A simple
recycling algorithm for NUTS can nonetheless be devised by taking advantage of the
fact below. Instead of the Metropolis acceptance-rejection procedure, NUTS determines
acceptable states along a simulated trajectory using a slice sampling approach via an
auxiliary slicing variable u.

Fact 1. The following transition rule (θ0,p0) → (θ∗,p∗) preserves the target dis-
tribution π(·). Let T = T (θ0,p0) denote a collection of 2d states generated by one
NUTS iteration from the initial state (θ0,p0), including (θ0,p0) itself. Generate u ∼
Unif ([0, π(θ0,p0)]) and sample (θ∗,p∗) uniformly from the collection of acceptable states

A = A (T , u) = {(θ,p) ∈ T |π(θ,p) > u} . (4.1)

The algorithmic details behind construction of the set A are complex. Since it is not
essential for understanding our recycling approach, we refer the readers to Hoffman and
Gelman (2014). The discussions there also justify the above transition rule.

Fact 1 motivates the following algorithm for utilizing the intermediate states gener-
ated during each iteration of NUTS.

Algorithm 2 (Simple Recycled NUTS). Run NUTS to generate a sequence of random

variables {(θ(i)
0 ,p

(i)
0 )}i≥1. Additionally at each iteration of NUTS, generate {(θ(i)

k ,p
(i)
k ),

k = 1, . . . ,K} by sampling K variables without replacement from the acceptable states

A
(
T (θ

(i−1)
0 ,p

(i−1)
0 )

)
as in (4.1).

Fact 1 tells us that the transition (θ
(i)
0 ,p

(i)
0 ) → (θ

(i)
k ,p

(i)
k ) preserves the target distri-

bution π(·) for each k = 1, . . . ,K. Algorithm 2 is thus justified with a straightforward
application of Theorem 3.

Algorithm 2 captures the main idea behind our recycling algorithm; however, it is ac-

tually more statistically efficient to sample (θ
(i)
1 ,p

(i)
1 ), . . . , (θ

(i)
K ,p

(i)
K ) from A

(
T (θ

(i−1)
0 ,

p
(i−1)
0 )

)
so that they are evenly spread along a NUTS trajectory. Such a sampling scheme

can be implemented in a simple and memory efficient manner — without storing all the
intermediate states in memory — by taking advantage of the binary tree structure of a
NUTS trajectory. This is described in Appendix C.

When we are not constrained by memory, the following Rao-Blackwellized version
of recycled NUTS allows us to simply collect and use all the acceptable states of each
NUTS iteration by assigning appropriate weights.

Algorithm 3 (Rao-Blackwellized Recycled NUTS). Denote the collection of acceptable

states from the i-th iteration of NUTS by Ai = {(θ(i)
k ,p

(i)
k ), k = 1, . . . , |Ai|}. Return the

samples {(θ(i)
k ,p

(i)
k ), k = 1, . . . , |Ai|} with weight ∝ |Ai|−1 for i = 1, . . . , N as the draws

from the target distribution, yielding an empirical measure:

1

N

N∑
i=1

1

|Ai|

|Ai|∑
k=1

δ
(θ

(i)
k ,p

(i)
k )

(·).
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The validity of Algorithm 3 follows simply by taking an expectation over the sampling

step (θ
(i)
k ,p

(i)
k ) ∼ Uniform(Ai) of Algorithm 2.

5 Numerical results

We demonstrate the benefit of recycling using four test cases: three taken from Hoffman
and Gelman (2014) and one from Girolami and Calderhead (2011). We focus on these
well-established test cases as guaranteeing a rapid convergence and mixing of HMC in
full generality is an active area of research (Livingstone et al., 2016, 2017; Mangoubi
and Smith, 2017). In all our simulations we chose the stepsizes ε such that the corre-
sponding average acceptance rates are approximately 70%, as values between 60% and
80% are typically considered optimal (Neal, 2010; Beskos et al., 2013). The dual aver-
aging algorithm of Hoffman and Gelman (2014) was used to find such stepsizes. The
choice of path lengths τ (i) = εL(i) for HMC is discussed within the individual test cases
below. The identity mass matrix M = I was used in all our simulations except when
investigating the use of recycling in mass matrix tuning (see Section 5.1).

5.1 Metrics for computational and memory efficiency of recycling

Effective sample sizes for mean, variance, and quantile estimators

In comparing the algorithms with and without recycling, we use effective sample sizes
(ESS) as a commonly used measure of computational efficiency of Monte Carlo algo-
rithms (Brooks et al., 2011). ESS for a statistics of interest E[f(θ)] is defined via the
relation

Var
(
N−1 ∑N

i=1 f(θ
(i))

)
= ESS−1Var

(
f(θ(1))

)
, (5.1)

comparing MCMC samples to the equivalent number of i.i.d. samples. The standard
definition above applies only to estimators of the form N−1

∑N
i=1 f(θ

(i)) for a real-
valued function f , so we extend it to a more complex estimator F : {θ(i)}Ni=1 → R of a
quantity E[f(θ)] by defining

ESSF

(
{θ(i)}Ni=1

)
= N

MSE
(
F
({

θ∗(i) i.i.d.∼ π(·)
}))

MSE
(
F ({θ(i)})

) (5.2)

where MSE(·) denotes the mean squared error of an estimator. The definition (5.2)

agrees with the standard one when F
(
{θ(i)}Ni=1

)
= N−1

∑N
i=1 f(θ

(i)).

In each of our examples, we compute the ratios of ESS with and without recycling
for the mean, variance, and 97.5% quantile estimator along each model parameter. The
ESS ratio is obtained from the ratio of MSE using the relation (5.2). The MSE of
the Monte Carlo estimates are estimated by running 400 chains independently for 3,200
iterations starting from stationarity.2 The number of iterations here is chosen to roughly

2To obtain stationary samples, we use the last sample of the long ground-truth NUTS chain as the
starting point and run an additional 100 iterations to ensure that the starting points of the 400 chains
are independent. We assessed sampling efficiency of NUTS via ESS to ensure that 100 iterations are
more than enough to yield an independent sample.
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agree with the typical use cases of HMC — for example, Stan’s default setting generates
1,000 NUTS samples after 1,000 warm-up iterations (Stan Development Team, 2015).
We find in many cases, however, that the magnitudes of ESS gains from recycling are
independent of the chain lengths (Appendix D). In computing the MSE of a Monte Carlo
estimate, we need to have a precise value for the estimated quantity. Since the analytical
expressions are unavailable in our test cases (except for the first synthetic one), we run
a long NUTS chain of 107 iterations (after 103 burn-ins) to obtain the “ground truths”
that are orders of magnitudes more accurate than the individual Monte Carlo estimates
from the chains of length 3,200.

Benefits of recycling in estimating covariance structures

We also assess whether recycling helps estimate the covariance structure of the target
distribution. To this end, we compute the top eigenvalue and eigenvector of the empirical
covariance matrix for each chain. We then calculate the angle between the empirical
eigenvector and the plane spanned by the � true leading principal components. This
angle should be close to 0 when the eigenvector is estimated well. To ensure identifiability
of the direction, we choose � = min{j : σ2

j < σ2
1/2} in all our simulations where σ2

j

denotes the jth largest eigenvalue of the true covariance matrix.

As an alternate and more holistic evaluation of covariance estimation with a practi-
cal application, we further investigate the utility of recycling during the tuning phase of
HMC/NUTS. Often, initial iterations of HMC/NUTS are used to estimate the covari-
ance matrix of the targetΣ = Var(θ), which can then be used to accelerate HMC/NUTS

by setting the mass matrixM = Σ̂−1 (Neal, 2010; Stan Development Team, 2015). If re-

cycling improves the covariance estimator Σ̂ during the tuning phase, later HMC/NUTS
iterations will be faster and mix better.

To quantify the benefit of recycling in this setting, we estimate the covariance with
and without recycling during the tuning phase, and then run two independent chains
with the two covariance estimators to compare their ESSs. Recycling is only applied
during the tuning phase for covariance estimation. In carrying out this experiment, we
follow the default settings of Stan for tuning the stepsize and mass matrix. First, 50
iterations of the dual-averaging algorithm are run to tune the stepsize with the identity
mass matrix, followed byNadap iterations with a fixed stepsize to estimate the covariance
matrix, and finally another 75 iterations of dual-averaging to re-adjust the stepsize with
the tuned mass matrix. After the covariance estimation phase with Nadap iterations, we

set M−1 = Σ̂ where

Σ̂ =
Nadap

5 +Nadap
Σ̂emp +

5

5 +Nadap
10−3 · I, (5.3)

with Σ̂emp the empirical covariance matrix and I the identity matrix. After the tuning
phase, we run NUTS until the total number of gradient evaluations reaches 104. This
procedure is repeated 400 times and the ESS for each statistic is averaged across the
repetitions. This experiment is not run for the models of Section 5.4 and 5.5 as the
high-dimensionality of the parameter spaces make covariance estimation impractical.
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Memory and statistical efficiency trade-off

We also study the relationship between the number of recycled samples and statistical
efficiency. In particular, we demonstrate that it is not necessary to recycle all the in-
termediate steps to reap the benefit of recycling. This is relevant in a high dimensional
parameter space where the amount of memory required to store the extra samples be-
comes substantial.3 For long trajectories, there is substantial correlation among the
intermediate states and we can expect that recycling a subset of the intermediate states
may provide almost as much statistical efficiency as recycling all.

To quantify this, we first run the algorithm recycling all the intermediate states. We
then repeatedly reduce K, the number of samples per iteration (recycled intermediate
states plus the final state), by a factor of 2. In comparing the algorithms with and
without recycling, we use the smallest K for which the ESS averaged across all the
estimators is within 5% of that when recycling all the intermediate states. Section 5.6
investigates in more detail the relationship between the statistical efficiency and the
number of recycled samples.

5.2 Multivariate Gaussian

The first test case is sampling from a 250-dimensional multivariate Gaussian N (0,Σ),
where Σ is drawn from a Wishart distribution with 250 degrees of freedom and mean
equal to the identity matrix. A covariance matrix drawn from this distribution exhibits
strong correlations, and in our case the ratio between the largest and smallest eigenvalue
of Σ was approximately 9.5×104. Since HMC and NUTS with the identity mass matrix
are invariant under rotations, we take Σ to be diagonal with Σi,i = σ2

i , where σ2
i

corresponds to the ith smallest eigenvalue of the original covariance matrix. For the
path length of HMC, we first found the smallest value of τ for which the samples in the
leading principal component direction are roughly independent. The typical practice
would be then to jitter τ (i)’s within the range [0.9 τ, 1.1 τ] to avoid periodicity (Neal,
2010), but this still resulted in near perfect periodicity and hence poor mixing for some
parameters. After some experiments, we found jittering τ (i) in the range [τ/2, τ ] to
provide decent mixing along all the coordinates.

Fig. 2a shows log2 of the ratios between ESS of HMC with and without recycling.
To facilitate the comparison of algorithms with and without recycling, the parameters
are sorted in increasing order of the ESS ratios in mean estimation. Values above zero
indicate superior performance of our recycling algorithm. The use of recycling improves,
uniformly and substantially, estimation of the variances and quantiles: about 100%
increase in ESS on average. Not all the mean estimators are improved by recycling,
but the ones with worst ESS are significantly improved (Fig. 2b). Out of 251 recyclable
samples generated on average from each iteration of HMC, we recycled 251/8 ≈ 31
samples.

3In the stochastic volatility model of Section 5.4, for example, it requires 4 GB of memory to store
100 extra samples per iteration from a Markov chain of length 3,200 in a 3000-dimensional parameter
space.
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Figure 2: Performance comparison between HMC with and without recycling in esti-
mating mean, variance, and quantiles for the Gaussian example.

The ratios of ESS in estimating the angle as well as the eigenvalues are shown in
Fig. 3. We plot the ratios against the lengths of Markov chains. The direction of the
principal component cannot be well estimated by shorter chains of lengths ∼ 200 even
with recycling, but recycling conveys a substantial advantage as the chains are run
longer. While here the ESS ratios vary substantially as a function of chain lengths, this
dependence seems to be unique to this particular summary statistics — we show in
Appendix D that, for the other statistics, the magnitudes of ESS gains from recycling
are independent of the chain lengths.

Figure 3: Performance comparison between HMC with and without recycling in estimat-
ing the direction and magnitude of the leading principal component for the covariance
matrix in the Gaussian example.
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Figure 4: Performance comparison between NUTS with and without recycling for the
Gaussian example.

Similar performance comparisons of NUTS with and without recycling are provided
in Fig. 4. The average trajectory length was 29 = 512, out of which 24−1 = 15 samples
were recycled.

Lastly, the results of our covariance/mass matrix tuning experiment is summarized
in Figure 5. Again, in this experiment recycling is only carried out during the tuning
phase and the difference in ESS comes purely from difference in the accuracy of the
covariance estimators. The benefit of recycling diminishes as Nadap increases as the
covariance matrix can be adequately approximated without recycling and we found no
advantage of recycling when Nadap ≥ 800.

Figure 5: log2 ratios of average ESS based on 104 gradient evaluations when the mass
matrix is tuned with and without recycling for Nadap = 400 in the Gaussian example.
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5.3 Hierarchical Bayesian logistic regression

The second test case is a hierarchical Bayesian logistic regression model applied to
the German credit data set available from the University of California Irvine Machine
Learning Repository. Including two-way interaction terms and an intercept, there are
301 predictors and the regression coefficients β are given a N (0, σ2I) prior. A hyper-
prior is placed on σ2, which makes the posterior inference more challenging through the
strong dependence between σ and β. We made one modification to the corresponding
example in Hoffman and Gelman (2014) by defining our parameters to be (log(σ),β)
instead of (σ2,β) since such a transformation of constrained variables has become stan-
dard (Stan Development Team, 2015). A default flat prior was placed on σ.

Performance comparisons as in the previous example are shown in Fig. 6, 7, and 8.
For some parameters, recycling seems to produce little gains in terms of mean estimation

Figure 6: Performance comparison between HMC with and without recycling for the
hierarchical logistic model.

Figure 7: Performance comparison between NUTS with and without recycling for the
hierarchical logistic model.
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Figure 8: Comparison of average ESS based on 104 gradient evaluations between NUTS
with a mass matrix tuned with and without recycling for Nadap = 500 in the hierarchical
logistic model.

but provides clear benefits in terms of variance and quantile estimation. In the mass

matrix tuning experiment shown in Figure 8, we tried Nadap = 500, 1000, 2000 and

observed substantial improvement in the average ESS from recycling for Nadap ≤ 1000.

For the path lengths for HMC, we first found the value τ to maximize the normal-

ized expected square jumping distance τ−1/2
E‖θ(i+1)(τ) − θ(i)(τ)‖ as in Wang et al.

(2013), then jittered each path length τ (i) in the range [0.9 τ, 1.1 τ ]. The average trajec-

tory length of HMC was 9 and all the intermediate states were recycled. The average

trajectory length of NUTS was 24 = 16, out of which 7 were recycled.

5.4 Stochastic volatility model

The third test case is a stochastic volatility (SV) model fit to a time series y taken from

the closing values of S&P 500 index for 3000 days ending on Dec 31st, 2015. The model

is specified as follows:

log

(
yi

yi−1

)
∼ N (0, s2i ), 100 log

(
si

si−1

)
∼ N (0, τ−1)

with priors s0 ∼ Exp(mean = 1/10) and τ ∼ Gamma (1/2, 1/2). The observed value on

Jan 2nd, 2008 was removed from the original data as this simple SV model could not

fit this observation well. After integrating out τ to accelerate mixing, we are left with a

3000 dimensional parameter space for log s.

Performance comparisons as in the previous examples are shown in Fig. 9 and 10.

The path length for HMC was chosen as in Section 5.3. On average, 44 samples out of

90 per iteration were recycled for HMC and 7 out of 27 = 128 were recycled for NUTS.
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Figure 9: Performance comparison between HMC with and without recycling for the
SV model.

Figure 10: Performance comparison between NUTS with and without recycling for the
SV model.

5.5 Log-Gaussian Cox point-process (Riemann manifold HMC)

The last test case is a log-Gaussian Cox point-process model from Girolami and Calder-
head (2011), where they apply Riemann manifold HMC (RMHMC) to sample from the
latent process x ∈ R

4096 defined on a 64×64 grid. The observation yij for i, j = 1, . . . , 64
is assumed to follow

yij |xij ∼ Poisson(exp(xij)/64
2). (5.4)

The latent process x |μ, σ, � is given a Gaussian process prior with mean μ1 and covari-
ance

cov(xij , xi′j′) = σ2 exp

(
−
√

(i− i′)2 + (j − j′)2

64�

)
. (5.5)



1102 Recycling Intermediate Steps to Improve Hamiltonian Monte Carlo

Figure 11: Performance comparison between RMHMC with and without recycling for
the log-Gaussian Cox model.

Figure 12: Performance comparison between NUTS with and without recycling for the
log-Gaussian Cox model.

Following Girolami and Calderhead (2011), we fix the hyper-parameters at � = 1/33,
σ2 = 1.91, and μ = log(126)− σ2/2 and simulate the data from the generative model.

Due to the greater computational cost of simulation in this example, we only run the
100 independent chains for 1,600 iterations. The ground truth statistics are calculated
from a NUTS chain of 106 iterations.4 The path length of RMHMC is uniformly sampled
from the range 1 to 30 as done in Girolami and Calderhead (2011).

Performance comparisons as in the previous examples are shown in Fig. 11 and
12. Recycled RMHMC yields worse ESS for the majority of the mean estimators in
this example, but this is an artifact of the negative auto-correlations in non-recycled
RMHMC causing super-efficiency — MCMC samples yielding smaller Monte Carlo

4NUTS is actually a meta-algorithm that provides a useful trajectory termination criterion for any
MCMC algorithm based on reversible dynamics. In particular, NUTS and our recycled version apply
straightforwardly to most of the HMC variants, including RMHMC.
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errors than the same number of independent samples. HMC, and hence RMHMC, is
known to occasionally exhibit such behavior (Kennedy and Pendleton, 1991; Neal, 2010).
We can see, however, that recycling uniformly and significantly improves ESS for the
variance and quantile estimators. Under NUTS, such super-efficiency artifacts are not
observed and recycling improves ESS for all the estimators. On average, 15 samples
were recycled for RMHMC and 7 out of 24 = 16 for NUTS.

5.6 Number of recycled samples and statistical efficiency

As mentioned earlier, in the simulation results above we recycle enough of the inter-
mediate states to achieve near-optimal efficiency gains. Here we take a closer look at
how the efficiency gain from recycling depends on the number of recycled samples. The
results in particular provide a practical guidance on how one might trade off statistical
efficiency for memory efficiency when the available memory becomes limited.

For our experiments here, we focus on the problem of estimating a quantile; the
dependence of mean and variance estimators on the number of recycled samples was
found to be similar. The number of samples per iteration was repeatedly reduced by
a factor of 2 until the benefit of recycling became almost negligible. The results are
summarized in the log2 ESS ratio plots as presented earlier; Figure 13 for the multi-
variate Gaussian example, Figure 14 for the hierarchical Bayesian logistic regression
example, Figure 15 for the stochastic volatility example, and Figure 16 for the log-
Gaussian Cox example. The green dotted line corresponds to the number of recycled
samples at which the efficiency decrease relative to the optimal one becomes visually
noticeable. The cyan dashed line corresponds to the number of recycled samples below
which the benefit from recycling becomes negligible.

The performance of recycled NUTS is particularly remarkable, not only offering the
near-optimal efficiency gain well-below the maximal recycling size but also demonstrat-
ing over 40% (≈ 20.5) efficiency gain with just one recycled sample. For recycled HMC,

Figure 13: Multivariate Gaussian example: improvement in ESS for 97.5% quantile
estimation with different number of recycled samples.
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Figure 14: Hierarchical logistic example: improvement in ESS for 97.5% quantile esti-
mation with different number of recycled samples.

Figure 15: Stochastic volatility example: improvement in ESS for 97.5% quantile esti-
mation with different number of recycled samples.

the efficiency gains remain substantial well-below the maximal recycling size but start
to diminish much earlier than NUTS. Two design features of NUTS likely explain this
phenomenon. First, NUTS simulates a trajectory in both the forward and backward
direction, which means that some of the intermediate states lie in the direction oppo-
site to the final proposal state relative to the starting point of a trajectory. Secondly,
while HMC simulates a trajectory to construct one high-quality proposal state, NUTS
generates a collection of states — any of which likely constitutes a good proposal state
— and selects one state from the collection as a final proposal. Compared to those of
HMC, therefore, the recyclable states of NUTS probably have smaller correlations with
the final proposal state.

Our experiments here suggest that recycled NUTS may be a particularly practical
alternative to the standard implementation of HMC-type algorithms; it not only elimi-



A. Nishimura and D. Dunson 1105

Figure 16: Log-Gaussian Cox example: improvement in ESS for 97.5% quantile estima-
tion with different number of recycled samples.

nates the need to tune the path length but also provides a significant boost in efficiency
with a rather small increase in memory requirement.

6 Discussion

We have proposed a simple and general algorithm for improving the efficiency of HMC
and variants with essentially no extra computational overhead. Our simulations demon-
strate the substantial gains in computational efficiency without excessive memory use.
In practice, conceptual complexity, ease of implementation, and memory efficiency are
just as important considerations as statistical efficiency. These considerations can ex-
plain why related ideas to improve the efficiency of HMC variants have not gained
traction. Our algorithm provides a more practical and user-friendly alternative that
applies straightforwardly to a wide range of multi-proposal schemes.

Supplementary Material

Supplementary Material for ‘Recycling Intermediate Steps to Improve Hamiltonian
Monte Carlo’ (DOI: 10.1214/19-BA1171SUPP; .pdf).
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