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Joint Modeling of Longitudinal Relational Data
and Exogenous Variables

Rajarshi Guhaniyogi∗ and Abel Rodriguez†

Abstract. This article proposes a framework based on shared, time varying
stochastic latent factor models for modeling relational data in which network and
node-attributes co-evolve over time. Our proposed framework is flexible enough
to handle both categorical and continuous attributes, allows us to estimate the
dimension of the latent social space, and automatically yields Bayesian hypothesis
tests for the association between network structure and nodal attributes. Addi-
tionally, the model is easy to compute and readily yields inference and prediction
for missing link between nodes. We employ our model framework to study co-
evolution of international relations between 22 countries and the country specific
indicators over a period of 11 years.

Keywords: latent factor model, nodal attribute, social network, spike and slab
prior, systemic dimensions.

1 Introduction

Understanding the coevolution of relational and nodal attributes is a common problem
in fields as diverse as public health (Christakis and Fowler, 2007; Fowler and Christakis,
2008), finance (Kalyagin et al., 2014) and genomics (Butland et al., 2005). In these types
of applications, data consists of two parts: a time series of dyadic relationships among
a common set of n actors, which is encoded in the sociomatrix Y (t) = {yi,j(t) : i, j =
1, . . . n; t ∈ N}, and a collection of p time series of attributes associated with each of the
actors, which is encoded by the matrix Z(t) = {zi,k(t) : i = 1, . . . , n; k = 1, . . . , p}.

Broadly speaking, the literature approaches the study of the association between
nodal and network attributes through two different approaches. One of these approaches
focuses on modeling the structure of the network conditional of the nodal attributes.
The goal in that case is to understand how social relationships are formed based on the
attributes of individuals, a process known as “selection”. The other approach consists
of models of the nodal attributes and their association conditional on the network
structure. Those models are used to understand how relationships affect attributes of
the individuals in a network, a process referred to as “influence” or “contagion”.

Models of selection are typically built by regressing yij(t) on node- or dyad-specific
regressors using Exponential Random Graph Models (ERGMs) (Holland and Leinhardt,
1981; Robins et al., 2007) or mixed-effects generalized linear models (Wasserman and
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Anderson, 1987; Holland et al., 1983; Hoff et al., 2002; Hoff, 2005). ERGMs, also known
as p∗ models, assume that the conditional distribution of the network given the covari-
ates follows an exponential family model in which the sufficient statistics are functions
of a few summary metrics of the network and nodal attributes (such as the number
of edges or the number of triangles in the networks). Temporal Exponential Random
Graph Models (TERGMs) are extensions of ERGMs that build dependencies between
graphs over time by incorporating summary statistics that involve counts of the num-
ber links among groups of nodes at various points in time (Robins and Pattison, 2001;
Hanneke and Xing, 2007; Hanneke et al., 2010). Uncertainty in TERGMs is usually
assessed using resampling techniques such as the bootstrap (Desmarais and Cranmer,
2010, 2012). In a similar spirit, stochastic actor oriented models (SOAMs) (Snijders
et al., 2010; Brandes et al., 2012; Snijders, 2013) have been recently proposed to model
the evolution of dynamic networks. SOAMs use network-specific rules or network ef-
fects such as reciprocity, triadic closure, or homophily and identify network effects to
explain the observed evolution of the networks. Though naturally appealing, the per-
formance of ERGMs and SOAMs heavily depends on the choice of sufficient statistics
or networks-specific rules that are incorporated into the formulation. ERGMs in par-
ticular can be weak at capturing local features of the network, often resulting in less
than satisfactory performance in many real world problems (Snijders, 2002; Handcock
et al., 2003). Alternatively, latent variable models regress the dyadic responses on co-
variates and/or unobserved latent variables. These models are computationally efficient
and useful in modeling transitivity and homophily. On the other hand, models of conta-
gion are usually constructed by regressing nodal attributes against those of other nodes
in their network (for example, see Christakis and Fowler, 2007; Fowler and Christakis,
2008; Shoham et al., 2015 and references therein). Common methodological approaches
include simultaneous autoregressive (SAR) models (e.g., see Lin, 2010) and threshold
models (e.g., see Watts and Dodds, 2009).

Determining whether selection or contagion are at play (i.e., the direction of the
causal relationship) is typically a difficult problem (Doreian, 2001). Instead, we fo-
cus here on jointly modeling the co-evolution of network and nodal attributes through
shared latent variables. The goal of our model is twofold. First, we are interested in de-
veloping tests of association between structural features of the network and individual
nodal attributes. In particular, although our approach does not allow us to distinguish
between contagion and selection, it does allow us to carry out tests of independence
between the network and the nodal attributes. Second, we are interested in developing
predictive models that can be used to jointly predict both future links and future nodal
attributes. Joint models of network and nodal attributes have started to receive increas-
ing attention over the last few years. In a static setting, Fosdick and Hoff (2015) recently
proposed an extension of the bilinear model of Hoff (2005) in which the nodal attributes
and the latent factors used to explain transitivity in the network are jointly modeled
using a multivariate normal distribution. In their model, testing for association between
the network and nodal attributes reduces to testing whether the cross-covariance ma-
trix between latent factors and the nodal attributes is the null matrix using a likelihood
ratio test. On the other hand, Durante and Dunson (2017) proposes joint modeling of a
binary/categorical response and a network using latent variable tensor factorization of
the joint probability model. This framework finds its application in clustering networks
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into multiple groups and thus has a different focus than ours. In a dynamic setting,
De la Haye et al. (2010) proposed time varying joint models for network and attributes
when the attributes are binary or categorical, while Niezink et al. (2017) extend the
framework to accommodate continuous nodal attributes. These models rely on exten-
sions of the ERGM and TERGM approaches described above, and therefore inherit the
same drawbacks.

In this paper we propose a fully Bayesian approach to inference, testing and pre-
diction for co-evolving networks and nodal attributes. The development of this model
is motivated by the study of the relationship between international relationships and
country-specific economic performance. Our approach is related to, but distinct from,
the one presented in Fosdick and Hoff (2015). In addition to accommodating both dis-
crete and continuous attributes and considering the more general case of time series
data, our approach uses a common set of latent factors to explain network transitivity
and covariation among attributes and network structure, and provides a fully Bayesian
test of association that can be used to study individual nodal attributes. When the
nodal attributes are assumed to follow conditional Gaussian distribution, our model
can be interpreted as a dynamic version of the model presented in Fosdick and Hoff
(2015), but with a structured (and potentially more parsimonious) prior on the covari-
ance matrix between the latent traits and the nodal attributes. When the attributes are
non-Gaussian, modeling through shared latent traits allows us to include them in the
model in a straightforward fashion, something that the formulation in Fosdick and Hoff
(2015) does not permit. Shared latent factors have been recently employed, among oth-
ers, by Rodŕıguez and Moser (2015) to jointly model voting outcomes and abstentions in
roll-call data in the U.S. Congress, and by Durante et al. (2017) to generate multilayer
extension to the bilinear model. Our approach captures the dynamics of the system us-
ing autoregressive priors for the shared latent parameters, in an approach reminiscent to
Sarkar and Moore (2006), Durante and Dunson (2014) and Sewell and Chen (2015). We
refer to our proposed joint modeling framework as Joint Latent Factor Model (JLAFAC).

The remainder of the article flows as follows. Section 2 describes the joint model-
ing framework with latent factors and highlights some features of the proposed joint
model. This section details our prior distribution on the model parameters and latent
factors. Section 3 explains posterior computation and explains how MCMC samples are
used for link and attribute prediction and assessments of association between structural
features of the network and individual nodal attributes. Sections 4 and 5 demonstrate
performance of the proposed framework along with the competing models in simulation
studies and in a international relationships network data respectively. Finally, Section 6
concludes the article. Details of MCMC updates are described in the online supplement
(Guhaniyogi and Rodriguez, 2019).

2 Model Formulation

2.1 A Joint Model for Nodal Attributes and Networks

Assume that a group of n actors is followed over time, and let Y (t) = [yi,j(t)] denote
the n × n binary matrix capturing dyadic interactions between these actors at time
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t, and Z(t) = [zi,k(t)] be the n × p matrix of continuous or discrete attributes for
these actors at time t. Although we concentrate here in binary directed relationships
between actors, the model can be easily extended to continuous and other categorical
relationships, as well as to undirected relationships (please see Section 6). The network
and actor attributes are observed at a finite number of time points t1 < t2 < · · · < tT
resulting in realizations Y (t1), . . . ,Y (tT ) of the stochastic network process Y (t), and
Z(t1), . . . ,Z(tT ) of the stochastic attributes Z(t).

We propose conditionally random effect models for Y (t) and Z(t) with shared la-
tent factors to accommodate co-evolution. To be more precise, for the entries of the
sociomatrix Y (t) we consider a bilinear model,

yi,j(t) ∼ Ber (θi,j(t)) , θi,j(t) = G

(
μ(t) +

R∑
r=1

λrui,r(t)vj,r(t)

)
, (2.1)

where ui(t) = (ui,1(t), . . . , ui,R(t))
′ and vj(t) = (vj,1(t), . . . , vj,R(t))

′ are both time-
varying, R-dimensional latent variables, and G is an appropriate link function. In the
sequel we focus our discussion on the probit link where G(·) corresponds to the cumu-
lative distribution function of the standard normal distribution, but more general links
such as the logistic can be easily accommodated with relatively minor changes to our
computational approach.

Equation (2.1) corresponds to the bilinear model proposed in Hoff (2009). The time
varying latent vectors u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) capture transitivity and reci-
procity in the dyadic relationship (Hoff, 2009). The eigenvalues λ1, . . . , λR play a crucial
role in determining the specific form of that relationship, in the sense that similar values
ui,r(t), uj,r(t) and vi,r(t), vj,r(t) contribute positively or negatively to the relationships
i → j and j → i, depending on whether λr > 0 or λr < 0. Furthermore, note that if
λr = 0 then the r-th dimension of the latent variables has no impact on the network
structure.

The time varying attributes attached to each node can either be continuous, binary
or categorical. To model them, we propose to use a set of conditionally independent
generalized linear models E {zi,k(t)} = δi,k(t) where

δi,k(t) = Hk

(
ηk(t) +

R∑
r=1

ψk,rαk,r(t)ui,r(t) +

R∑
r=1

ξk,rβk,r(t)vi,r(t)

)
, (2.2)

αk(t) = (αk,1(t), . . . , αk,R(t))
′ and βk(t) = (βk,1(t), . . . , βk,R(t))

′ are R× 1 vectors, and
Hk(·) is an appropriate link function for the kth outcome of interest. For example, when
zi,k(t) corresponds to a continuous attribute we might set

zi,k(t) = ηk(t) +

R∑
r=1

ψk,rαk,r(t)ui,r(t) +

R∑
r=1

ξk,rβk,r(t)vi,r(t) + ζi,k(t), (2.3)

where ζi,k(t) corresponds to realizations from a white-noise process with variance φ−1
k .
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Note that the latent factors u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) we introduced in
(2.1) reappear as predictors in (2.2). The static coefficients ψk,r and ξk,r capture the
“average” effect of the rth component of the latent factors on the corresponding nodal
attribute, and the time varying coefficients αk,r(t) and βk,r(t) control how those baseline
effects vary over time. Hence, u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) not only determine
the structure of the network but also control the level of association between nodal
attributes, as well as the co-evolution between the network and the nodal attributes.
Furthermore, just like in the case of λr, note that setting ψk,r = 0 and ξk,r = 0
simultaneously implies that the rth dimension of the latent factors has no effect in
the evolution of zi,k(t).

To motivate the shared latent factor formulation discussed above it is convenient
to think of the vectors ui and vi as describing the position of actor i in a latent
“social” space (e.g., see Hoff et al., 2002; Hoff, 2005). From that point of view, our model
makes the intuitively appealing assumption that the relative position of the nodes in
social space determines both the likelihood of a link between nodes (i.e., the network
structure) and the behavior of the attributes. The shared latent factor formulation can
also be motivated as a generalization of the model introduced in Fosdick and Hoff (2015),
which we discuss in more detail in Section 2.4. Alternatively, ui and vi can be viewed
as ith node-specific scores with respect to a set of R latent features/attributes. These
features regulate latent similarities among nodes (via the joint models (2.1) and (2.2))
and the evolution of the associated external covariates.

Although the previous formulation does not incorporate known covariates that might
impact the evolution structure of the network or the nodal attributes, extending it in
this direction is trivial by including additional regression terms in (2.1) and (2.2).

2.2 Modeling the Evolution of the Nodal Attributes and Networks

In order to borrow information across time, we propose to model the stochastic processes
{μk(t) : t ∈ T ⊆ R+}, {ui,r(t) : t ∈ T ⊆ R+}, {vi,r(t) : t ∈ T ⊆ R+}, {ηk(t) :
t ∈ T ⊆ R+}, {αk,r(t) : t ∈ T ⊆ R+} and {βk,r(t) : t ∈ T ⊆ R+} for i, j =
1, . . . , n, k = 1, . . . , p and r = 1, . . . , R using independent Gaussian process priors.
Within the general class of Gaussian processes, we find it particularly convenient to
work with stationary Ornstein-Uhlenbeck (OU) processes. The OU process is a Gaussian
process with an exponentially damping covariance kernel over time. A key feature of the
OU process is that its discretization leads to the well known first order autoregressive
process, for which fast computational algorithms exist (see discussion below). Another
key advantage of this specification is that this prior has “full support,” in the sense
that it has positive probability of generating joint functions {(Θ(t),Δ(t)) : t ∈ T }
arbitrarily close to any true joint function {(Θ0(t),Δ0(t)) : t ∈ T } generating the data,
where Θ(t) = ((θi,j(t)))

n
i,j=1 and Δ(t) = ((δi,k(t)))

n,p
i,k=1. Details of theoretical results

on full support, including the proofs, are given in the supplementary material Section
0.2.

For ease of presentation we assume that the times t1, t2, . . . , tT at which the data
is observed are equally spaced, in which case an Euler discretization of these Ornstein-
Uhlenbeck processes leads to first-order autoregressive priors as described in the next
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few paragraphs. This discretization can be easily modified in the case of irregularly
spaced observations to provide a time-consistent model.

Let ui,r(tl)=ui,r,l and vi,r(tl)= vi,r,l for all l=1, . . . , T . Assuming that t1, t2, . . . , tT
are equally spaced, the Ornstein-Uhlenbeck prior implies that

ui,r,l = ρuui,r,l−1 + εui,r,l, εui,r,l ∼ N
(
0, σ2

u

)
,

vi,r,l = ρvvi,r,l−1 + εvi,r,l, εvi,r,l ∼ N
(
0, σ2

v

)
,

where |ρu| < 1 and |ρv| < 1 are autocorrelation coefficients. The initial states ui,r,0

and vi,r,0 are assigned the respective stationary distribution, ui,r,0 ∼ N
(
0,

σ2
u

1−ρ2
u

)
and

vi,r,0 ∼ N
(
0,

σ2
v

1−ρ2
v

)
, which implies that the marginal prior distributions for ui,r,l and

vi,r,l have zero means and the constant variances. Furthermore, setting ρu = ρv = 0
leads to independent priors at every point in time.

We use a similar argument for each of the other four sets of dynamic parameters in
our model. More specifically, letting αk,r(tl) = αk,r,l, βk,r(tl) = βk,r,l, μ(tl) = μl and
ηk(tl) = ηk,l, we have

αk,r,l = ρααk,r,l−1 + εαk,r,l, εαk,r,l ∼ N(0, σ2
α),

βk,r,l = ρββk,r,l−1 + εβk,r,l, εβk,r,l ∼ N(0, σ2
β),

ηk,l = ρηηk,l−1 + εηk,l, εηk,l ∼ N(0, σ2
η),

μl = ρμμl−1 + εμl , εμl ∼ N(0, σ2
μ),

where, as before, the processes are assumed to start at their respective stationary

distribution, αk,r,0 ∼ N
(
0,

σ2
α

1−ρ2
α

)
, βk,r,0 ∼ N

(
0,

σ2
β

1−ρ2
β

)
, ηk,0 ∼ N

(
0,

σ2
η

1−ρ2
η

)
and μ0 ∼

N
(
0,

σ2
μ

1−ρ2
μ

)
. As before, ρα, ρβ , ρη, ρμ are autocorrelation coefficients with |ρα| < 1, |ρβ | <

1, |ρη| < 1 and |ρμ| < 1 to ensure stationarity.

To help address identifiability issues, the parameters σ2
u, σ2

v , σ2
α and σ2

β all are

fixed at 1 (please see Section 3.1). Additionally, σ2
μ and σ2

η are also kept fixed at 1

without loss of generality. The rest of the variance parameters φ−1
k , k = 1, . . . , p follow

proper inverse gamma distributions with infinite means, IGam(1, 2). Finally, since lag
parameters ρu, ρv, ρα, ρβ , ρη, ρμ lie in [−1, 1] interval, we assign the standard normal
prior distributions on transformed ρu, ρv, ρα, ρβ , ρη, ρμ’s with full range in R. This choice
of priors for ρu, . . . , ρμ is meant to facilitate the use of elliptical slice sampling algorithms
Nishihara et al. (2014) in order to improve the mixing of the algorithm (see Section 3).

2.3 Dimension Selection and Association Testing

As mentioned in Section 2.1, the coefficients λ1, . . . , λR can potentially be used to deter-
mine which components of the latent factor vector affect the structure of the network.
To exploit this property of the model we propose to use independent Gaussian mixture
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priors,

λr | γr ∼

⎧⎨
⎩
N
(
0, 1

τr

)
γr = 1

N
(
0, 1

v0τr

)
γr = 0

, (2.4)

where γr | πλ ∼ Ber(πλ), πλ ∼ Beta(aλ, bλ), and τr ∼ Gam
(
q3(r−1), q2(r−1)

)
, q > 1.

This prior specification on τr ensures fast decay of the variance parameter 1
τr
, so as

to safeguard the implied prior on the θi,j(t)s from degenerating as R becomes large.

In particular,
∑R

r=1 E {1/τr} =
∑R

r=1 q
2(r−1)/

{
q3(r−1) − 1

}
, so that

∑R
r=1 E{1/τr}

converges as R → ∞, which implies that the prior variance of θi,j also converges as
R → ∞. In our experiments we work with q = 1.5. On the other hand, allowing
the prior inclusion probability πλ to be random allows us to automatically adjust for
multiple comparisons (Scott et al., 2010).

Note that, as v0 → ∞, the mixture component associated with γr = 0 converges
to a Dirac delta function at 0, δ0. Though using a degenerate measure at zero as one
component of mixture distribution is suitable for selecting unimportant dimensions, we
instead use a mixture of two normal distributions with large value of v0 in (2.4) to mimic
the effect of δ0. This is a very common practice in the variable selection literature to
enhance better mixing of the parameters, see (George and McCulloch, 1993; Ishwaran
et al., 2005). Sensitivity of the procedure to the choice of v0 is explored and discussion
is offered in Section 4.

We use a similar approach to identify components of the latent factors that do not
affect the different nodal attributes. In particular, we let

ψk,r | ωk,r ∼
{
N
(
0, 1

νk,r

)
ωk,r = 1

N
(
0, 1

v0νk,r

)
ωk,r = 0

, ξk,r | ςk,r ∼
{
N
(
0, 1

κk,r

)
ςk,r = 1

N
(
0, 1

v0κk,r

)
ςk,r = 0

, (2.5)

where

ωk,r | πψ,k ∼ Ber(πψ,k), πψ,k ∼ Beta(aψ, bψ), νk,r ∼ Gam
(
q3(r−1), q2(r−1)

)
,

ςk,r | πξ,k ∼ Ber(πξ,k), πξ,k ∼ Beta(aξ, bξ), κk,r ∼ Gam
(
q3(r−1), q2(r−1)

)
.

The indicator variables γ1, . . . , γR, ω1,1, . . . , ωp,R and ς1,1, . . . , ςp,R can be used to
investigate the pattern of association between the network structure and the nodal
attributes, as well as to estimate the effective dimension of the latent space (see Section
3.3 for more details, as well as for a discussion on the elicitation of the parameters aλ,
bλ, aψ, bψ, aξ and bξ).

2.4 Relationship with Other Models in the Literature

Fosdick and Hoff (2015), which focuses in situations in which the network and nodal
attributes are observed only once, builds a joint model through a prior of the form⎛

⎝ui

vi

zi

⎞
⎠ ∼ N

⎛
⎝
⎛
⎝0
0
η

⎞
⎠ ,

⎛
⎝ I 0 Ωu,z

0 I Ωv,z

Ω′
u,z Ω′

v,z Ωz,z

⎞
⎠
⎞
⎠ ,
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i.e., they assume independence between the latent factors but allow for general cross-
covariance matrices Ωu,z, Ωu,z between latent factors and attributes, as well as for an
unrestricted covariance structure Ωz,z for the nodal attributes. The authors are then
careful to enforce constraints on Ωu,z, Ωu,z and Ωz,z so that the full covariance matrix
is well defined. In this formulation, the nodal attributes and the network structure are
independent if and only if both Ωu,z = 0 and Ωv,z = 0, which the authors check using
a likelihood ratio test.

Contrast this structure with that induced by our model in the simplified case in which
the data is static (i.e., T = 1) and the attributes are conditionally Gaussian. For our
model, the joint distribution for (u′

i,v
′
i, z

′
i)

′ is also normal and the covariance structure
has a very similar structure. In particular, the latent factors are all independent, and we

have cov(ui,r, zi,k) = ψk,rαk,r
σ2
u

1−ρ2
u
and cov(vi,r, zi,k) = ξk,rβk,r

σ2
v

1−ρ2
v
. Hence, our model

allows for cross-covariance matrices Ωu,z and Ωv,z that are as general as those induced
by the model discussed in Fosdick and Hoff (2015). However, in our case

Ωzz =
σ2
u

1− ρ2u
AA′ +

σ2
v

1− ρ2v
BB′ +Φ−1,

where [A]k,r = ψk,rαk,r, [B]k,r = ξk,rβk,r and Φ−1 is a diagonal matrix with entries
φ1, . . . , φp (recall Section 2.1). Therefore, when R � p, our model induces a sparse, “low
rank + diagonal” decomposition for the marginal covariance matrix for the attributes
Ωzz, while for R ≥ p the model allows for a general (unrestricted) covariance matrix.

This discussion shows that the model discussed in Fosdick and Hoff (2015) can
be recovered as a special case of our shared latent factor model, and also makes the
advantages of the more general specification clear. First, if the attributes where being
modeled independently, it would be natural to assume some sort of sparse structure
for the matrix Ωzz. Our latent factor formulation yields that for free. Secondly, the
formulation automatically leads to a well-defined joint covariance matrix without any
need for a careful prior specification for the cross-covariance matrices. Thirdly, the
latent factor formulation can easily accommodate categorical attributes with minimal
modifications. Finally, the latent factor formulation allows for an easy extension to the
time-varying case that is the focus of this paper.

3 Posterior Inference

Under a Bayesian framework, parameter estimation can be achieved via Markov chain
Monte Carlo (MCMC) algorithms, in which posterior distributions for the unknown
quantities are approximated with empirical distributions of samples from a Markov
chain. To streamline computation, we follow Albert and Chib (1993) and introduce
latent variables wi,j,l for the network data such that wi,j,l > 0 if yi,j(tl) = 1 and
wi,j,l < 0 otherwise. Equation (2.1) can now be written in terms of wi,j,l as

wi,j,l = μl +

R∑
r=1

λrui,r,lvj,r,l + εi,j,l, εi,j,l ∼ N(0, 1). (3.1)
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For binary or ordinal nodal attributes we follow a similar latent variable augmen-
tation, while for attributes that follow Gaussian distributions no data augmentation
is required. This data augmentations lead to updates that mostly use Gibbs sampling
steps (see supplementary material Section 0.1 for details). One exception is the correla-
tion coefficients ρu, . . . , ρμ, for which we employ elliptical slice samplers Nishihara et al.
(2014) in order to improve the mixing of the MCMC algorithm, particularly for large
values of p and T (see Section 4 for an illustrations).

3.1 Identifiability of Parameters

One important issue related to the proposed model is the identifiability of the unknown
parameters ui,l =(ui,1,l, . . . , ui,R,l)

′, vi,l =(vi,1,l, . . . , vi,R,l)
′, αk,l =(αk,1,l, . . . , αk,R,l)

′,
βk,l =(βk,1,l, . . . , βk,R,l)

′, λ1, . . . , λR, ψk,1, . . . , ψk,R and ξk,1, . . . , ξk,R. Note that the
parameters in the proposed model could have potentially faced following identifiability
issue.

Scale indeterminacy: For any constant c,
∑R

r=1 λrui,r,lvj,r,l =
∑R

r=1
λr

c2 (cui,r,l)(cvj,r,l),∑R
r=1 ψk,rαk,r,lui,r,l =

∑R
r=1

ψk,r

c2 (cαk,r,l)(cui,r,l), and
∑R

r=1 ξk,rβk,r,lvi,r,l =∑R
r=1

ξk,r

c2 (cβk,r,l)(cvi,r,l).

Orthogonal indeterminacy: If all λr = ξk,r = ψk,r, then for any orthogonal ma-
trix A, u′

i,lvj,l = (Aui,l)
′(Avj,l), u′

i,lαk,l = (Aui,l)
′(Aαk,l) and v′

i,lβk,l =
(Avi,l)

′(Aβk,l).

Permutation indeterminacy: Again, if all λ1 = · · · = λR, then for any permutation P
of {1, . . . , R},

∑R
r=1 λrui,r,lvj,r,l =

∑R
r=1 λrui,P (r),lvj,P (r),l. Similar identifiability

issue can be faced for
∑R

r=1 ψk,rαk,r,lui,r,l and
∑R

r=1 ξk,rβk,r,lvi,r,l if all ψk,r’s and
all ξk,r’s are equal respectively.

Note that λr’s, ξk,r’s and ψk,r’s are assigned normal prior distributions which imposes
increasing shrinkage towards zero as R increases, so that both orthogonal and permuta-
tion indeterminacies are ameliorated. Moreover, σ2

u = σ2
v = σ2

α = σ2
β = 1 partially solves

the scale indeterminacy issue, namely λr’s, ξk,r’s and ψk,r’s are identifiable up to sign.

3.2 Link and Nodal Attribute Prediction

We can approximate the posterior probability of a directed dyad from node k1 to node
k2 at time tl as an average of M post burn-in, suitably thinned, MCMC samples as

P (yk1,k2(tl) = 1 | data) ≈ 1

M

M∑
s=1

G

(
μ
(s)
l +

R∑
r=1

λ(s)
r u

(s)
k1,r,l

v
(s)
k2,r,l

)
,

where the superscript (s) denotes the s-th post burn-in MCMC sample for a parameter
after suitable thinning. Note that this estimated link probability can be used to infer
missing links within observed networks (under the additional assumption of ignorable
missingness), or to predict the structure of the network at a future time. To decide
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whether a directed dyad between nodes k1 and k2 is present, one can choose a cut-off
c ∈ (0, 1) so that θk1,k2(tl) > c implies a directed link. By varying c we can construct a
receiver characteristic curve for our network prediction algorithm.

A similar approach can be used to predict the value of nodal attributes. For example,
for the purpose of point prediction,

E {zi,k(tl) | data} ≈ 1

M

M∑
s=1

Hk

(
η
(s)
k,l +

R∑
r=1

ψ
(s)
k,rα

(s)
k,r,lu

(s)
i,r,l +

R∑
r=1

ξ
(s)
k,rβ

(s)
k,r,lv

(s)
i,r,l

)
.

3.3 Patterns of Association Between Network and Nodal Attributes

The latent space provides us understanding of the association between network and
nodal attributes. The R dimensions of the latent space can be divided into four groups:
systemic dimensions, which influence both the network structure and at least one of the
nodal attributes, two groups of idiosyncratic dimensions, one group that is associated
only with the network structure, and a second group that solely impacts the association
between nodal attributes, and a set of inactive dimensions that have no effect on either of
the outcomes of interest. More specifically, a given dimension r is systemic if and only if
it significantly affects the structure of the network (i.e., γr = 1) and it also affects at least
one of the nodal attributes (i.e., if there is at least one k for which ωk,r = 1 or ςk,r = 1,
or both). Hence, qS , the number of systemic dimensions in the latent space is given by

qS =

R∑
r=1

γr

{
1−

p∏
k=1

(1− ωk,r) (1− ςk,r)

}
.

It is argued in the supplementary material Section 0.3 that qS is an identifiable quantity.
Furthermore, qS = 0 if and only if the sequence of networks and the time series of nodal
attributes are mutually independent. Hence,

P (qS = 0 | data) ≈ 1

M

M∑
s=1

I
(
q
(s)
S = 0

)
,

where I(·) denotes the indicator function. P (qS = 0 | data) provides us with a mecha-
nism to evaluate global association between the network structure and nodal attributes,
with high values of this probability indicating that these are independent. This is a
Bayesian alternative to the likelihood ratio test discussed in Fosdick and Hoff (2015),
one that also takes into account the dynamic nature of our data.

The aforesaid procedure to understand general association between network and
nodal attributes can be slightly modified to investigate whether the network structure
is associated with a particular nodal attribute. For this purpose, define

qS,k =

R∑
r=1

γr {1− (1− ωk,r) (1− ςk,r)} .

Again, an estimate of P (qS,k = 0 | data) can be obtained from the samples generated
by the MCMC algorithm. High values for this probability indicate that the network
structure and the kth nodal attribute are (marginally) independent from each other.
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A similar approach can be used to define the number of idiosyncratic dimensions
associated only with the network structure,

qN =

R∑
r=1

γr

p∏
k=1

(1− ωk,r)(1− ςk,r),

and the number of idiosyncratic dimensions associated with the nodal attributes,

qA =

R∑
r=1

(1− γr)

{
1−

p∏
k=1

(1− ωk,r)(1− ςk,r)

}
.

Note that if qA = 0, then all correlations among the nodal attributes is explained by
some of the same factors that explain the network structure. Furthermore, although
the model allows the dimension of the latent space to be as high as R, the effective
dimensionally of the space is R∗ = qS + qN + qA ≤ R, with the number of inactive
dimensions being qO = R− qS − qN − qA. Supplementary material Section 0.3 show all
of qN , qA and qS and R∗ are identifiable. Hence, a posteriori our model is able to learn
the dimension of the latent space.

Hyperparameter Selection

The prior distribution on the summaries qS , qN and qA depends critically on the hy-
perparmeters aλ, bλ, aψ, bψ, aξ and bξ, which must be carefully chosen. For example,
a priori, qN | ΥN ∼ Bin(R,ΥN ), where ΥN = πλ

∏p
k=1(1− πψ,k)(1− πς,k) is a random

variable with expectation,

E {ΥN} =
aλ

aλ + bλ

(
aψ

aψ + bψ

)p (
aξ

aξ + bξ

)p

.

For even moderate p, the usual choice of aψ = bψ = aξ = bξ = 1 (i.e., using uniform
distributions for the inclusion probabilities) will lead to a prior distribution on qN that is
heavily skewed towards 0. Such prior distribution would typically be unappealing since
it would make it difficult to identify components that are idiosyncratic to the network,
and therefore lead to an overestimation of the number of systemic components.

To address this issue, in our own data analysis we set aλ = bλ = 1, which ensures
that the

∑R
r=1 γr follows a uniform distribution on {0, . . . , R}, and then set the values

of aψ, bψ, aξ and bξ so that aψ = aξ = bψ = bξ and the marginal distributions for qS ,
qN and qA are (approximately) identical. We evaluate the sensitivity to various choices
of aψ, bψ, aλ, bλ in Section 4.4.

4 Simulation Study

We evaluate the performance of our model using five simulated datasets, each generated
under a different scenario. The purpose of this simulation study is fourfold: (a) to assess
predictive performance of JLAFAC in terms of link and nodal attribute predictions, (b)
to investigate the ability of our model to identify dependence and independence rela-
tionships in the data, (c) to assess the impact of hyperparameters (and, in particular,
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of the constant v0, aψ and aλ used in our variable selection prior) on model perfor-
mance, and (d) to evaluate the model performance under a misspecified setting. For
each of datasets 1, 2 and 5 we fitted JLAFAC using R = 5 latent dimensions, JLAFAC
is fitted with R = 3 for dataset 3, while for dataset 4 JLAFAC was fitted with R = 10
latent dimensions. All posterior inferences are based on 4,000 samples from the MCMC
iterations obtained after a burn-in period of 10,000 iterations and thinning the chain
every 10 samples. Convergence is assessed by monitoring the behavior of the likelihood
function and the posterior distributions of qN , qS , qA and R∗. On the other hand, overall
mixing, monitor the effective sample size out of the 4,000 thinned post burn-in sam-
ples for all parameters. Figure 1 presents boxplots of effective sample sizes (ESS) for
ψk,r, ξk,r’s over k = 1, . . . , p; r = 1, . . . , R. Since in each simulation there are only a few
λr’s, r = 1, . . . , R, boxplots for effective sample sizes of λr’s are not presented. In fact,
the average ESS for λr’s for scenario 1-5 are given by 1851, 1650, 2915, 1436, 3203 respec-
tively. These results suggest a good performance of the algorithm in terms of mixing.

In our first simulation scenario the true dimension of the latent space is R∗ = 5, the
number of attributes is p = 5, sample size n = 40 and number of time points T = 10.
The true vector of eigenvalues takes the form λ = (0, 0, 0, λ4, λ5), while the matrices of
selection coefficients take the form

Ψ =

⎛
⎜⎜⎜⎜⎝
ψ1,1 ψ1,2 0 0 0
ψ2,1 ψ2,2 0 0 0
0 0 ψ3,3 ψ3,4 0
0 0 ψ4,3 ψ4,4 0

ψ5,1 ψ5,2 ψ5,3 ψ5,4 ψ5,5

⎞
⎟⎟⎟⎟⎠ , Ξ =

⎛
⎜⎜⎜⎜⎝
ξ1,1 ξ1,2 0 0 0
ξ2,1 ξ2,2 0 0 0
0 0 ξ3,3 ξ3,4 0
0 0 ξ4,3 ξ4,4 0

ξ5,1 ξ5,2 ξ5,3 ξ5,4 ξ5,5

⎞
⎟⎟⎟⎟⎠ .

Note that, in this case, we have qS = 2, qN = 0 and qA = 3. For our second scenario we
again set the true dimension of the latent space to R∗ = 5, the number of attributes is
p = 5, n = 40 and T = 10. However, in this case, the true vector of eigenvalues takes
the form λ = (0, 0, 0, 0, λ5) and the selection matrices are of the form

Ψ =

⎛
⎜⎜⎜⎜⎝
ψ1,1 ψ1,2 0 0 0
ψ2,1 ψ2,2 0 0 0
0 0 ψ3,3 ψ3,4 0
0 ψ4,2 ψ4,3 0 0

ψ5,1 ψ5,2 ψ5,3 ψ5,4 0

⎞
⎟⎟⎟⎟⎠ , Ξ =

⎛
⎜⎜⎜⎜⎝
ξ1,1 ξ1,2 0 0 0
ξ2,1 ξ2,2 0 0 0
0 0 ξ3,3 ξ3,4 0
0 0 ξ4,3 ξ4,4 0

ξ5,1 ξ5,2 ξ5,3 ξ5,4 0

⎞
⎟⎟⎟⎟⎠ .

In this case qS = 0, qN = 1 and qA = 4, i.e., the network and the nodal attributes are
independent in this dataset. Note that the second simulation study allows structural
mismatch in terms of positioning of nonzero entries between Ψ and Ξ. We set up
the third simulation study to allow for a large mismatch between the fitted dimension
R = 10 and the true dimension of latent variables. Specifically, we set the true dimension
of the latent space to R∗ = 3, the number of attributes to p = 5, n = 40 and T = 10.
In this case the true vector of eigenvalues is λ = (λ1, λ2, λ3) and we set

Ψ =

⎛
⎜⎜⎜⎜⎝
0 ψ1,2 ψ1,3

0 ψ2,2 ψ2,3

0 ψ3,2 ψ3,3

0 ψ4,2 ψ4,3

0 ψ5,2 ψ5,3

⎞
⎟⎟⎟⎟⎠ , Ξ =

⎛
⎜⎜⎜⎜⎝
ξ1,1 ξ1,2 0
ξ2,1 ξ2,2 0
ξ3,1 ξ3,2 0
ξ4,1 ξ4,2 0
ξ5,1 ξ5,2 0

⎞
⎟⎟⎟⎟⎠ ,
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ρu σ2
u ρv σ2

v ρα σ2
α ρβ σ2

β ρη σ2
η ρμ σ2

μ

0.4 1.0 0.25 1.0 0.35 1.0 0.7 0.5 0.1 0.25 0.3 0.6

Table 1: True value of the hyperparameters used to generate data for our simulation
study.

so that qS = 3, qN = 0 and qA = 0.

The fourth simulation evaluates the performance of the JLAFAC model when both
the sample size and the number of time points is moderately large. Specifically, both the
true dimension R∗ and the fitted dimension R is set to be 3. The number of attributes
is p = 5, the number of network nodes n = 100 and the number of time points T = 100.
In this case the true vector of eigenvalues is λ = (0, λ2, λ3) and we set

Ψ =

⎛
⎜⎜⎜⎜⎝
ψ1,1 0 0
ψ2,1 0 0
0 ψ3,2 ψ3,3

0 ψ4,2 ψ4,3

ψ5,1 ψ5,2 ψ5,3

⎞
⎟⎟⎟⎟⎠ , Ξ =

⎛
⎜⎜⎜⎜⎝
ξ1,1 0 0
ξ2,1 0 0
0 ξ3,2 0
0 ξ4,2 ξ4,3

ξ5,1 ξ5,2 ξ5,3

⎞
⎟⎟⎟⎟⎠ ,

so that qS = 2, qN = 0 and qA = 1. The fifth and final simulation scenario aims
at addressing performance of the JLAFAC model under a misspecified setting. In this
simulation, the nodal attributes are simulated from (2.3) with the same selection co-
efficient matrices Ψ and Ξ used to simulate dataset 1. However, in this case the net-
works is simulated conditionally on the nodal attributes using a temporal exponential
random graph model (TERGM) that includes two sufficient statistics, S1(Y l,Zl) =∑n

i=1(
∑n

j=1 yi,j,l)zi,1,lzi,2,l and S2(Y l,Zl) =
∑n

i,j=1 yi,j,l with the corresponding coef-
ficients θ1 = l/T, θ2 = 0.5. The network data is thus simulated from a totally misspec-
ified TERGM with complex higher order dependence between the network and nodal
attributes. This simulation sets p = 5, n = 40 and T = 10. We fit the JLAFAC model
with R = 5 in this simulated data. In scenario 1-4 we generate the non-zero entries
of λ, Ψ and Ξ from normal distributions with means 2, 2 and −3 and variances 2,
0.5 and 0.5, respectively. Scenario 5 simulates only Ψ and Ξ from normal distributions
with means 1 and −0.5 and variances 0.5 and 0.5, respectively. On the other hand,
the true value of the random processes {ηk(t)}, {αk,r(t)}, {βk,r(t)}, μ(t), {ui,r(t)} and
{vi,r(t)} are generated using the hyperparameters presented in Table 1. Finally, all the
attribute values are generated from Gaussian distributions according to Equation (2.3),
with variances φ−1

1 , . . . , φ−1
p drawn i.i.d from U(0.1, 0.5).

4.1 Link and Attribute Prediction

In order to evaluate the ability of the model to predict links, we carry out an out-
of-sample cross-validation exercise. More specifically, we randomly select 400 dyads to
hold-out as a validation set and then estimate our model treating these dyads as if they
were missing at random. Figure 1 shows the area under the Receiving Operating Char-
acteristics (ROC) curve (AUC) of JLAFAC for the observations in the validation set. In
order to assess the value of jointly modeling nodal attributes and network features, we
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Figure 1: Figures in the first row presents boxplots of Effective Sample Sizes (ESS) for
scenario 1-5 for ψk,r’s and ξk,r’s. The figures have horizontal dashed lines at 4000 to
indicate that the ESS are calculated on 4000 post burn-in thinned MCMC samples.
Second row presents Area Under the ROC Curve (AUC) for our out-of-sample cross-
validation in five different simulation scenarios. Continuous curves correspond to the
results under our JLAFAC model, while the dashed curves come from a marginal model
that does not incorporate the attribute data.

also present the results generated by fitting only the components of the model associated
with the network data, referred to as the marginal model. It is evident that in simulations
in which network and attributes are associated in the true data generation mechanism
(scenarios 1, 3, 4 and 5), joint modeling has clear advantages in terms of predicting
missing links. This can be attributed to the fact that the shared latent factors in such
cases are estimated based on both the relational and nodal attribute data, leading to
more accurate estimation. This is true even in the case in which the true data generating
mechanism is different from our model (scenario 5). On the other hand, the predictive
performance of both models is essentially identical when qS = 0, as would be expected.

In addition to the marginal model as a competitor to JLAFAC, we also implement
logistic regression of yi,j(tl) on the (p + 1)2 covariates obtained by taking the nodal
attributes corresponding to the ith and jth node along with the all possible interactions
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MSE
Scenario 1 2 3 4 5
JLAFAC 1.57 1.17 0.09 0.08 0.66

Dynamic Factor 3.38 1.04 0.13 0.59 0.74

Table 2: Mean squared error (MSE) for the two competitors in simulation cases 1 to 5.
MSE is calculated as the mean absolute squared deviation of predicted and true values
of all the predictors.

between these nodal attributes, [1, zi,l, zj,l, zi,l⊗zj,l], where zi,l = (zi,1(tl), . . . , zi,p(tl))
′

and zj,l = (zj,1(tl), . . . , zj,p(tl))
′. This approach exhibits performance similar to a ran-

dom classifier in all three simulation studies and is thus omitted from the compari-
son.

We also carry out prediction of attribute values based on both JLAFAC and a
dynamic factor model that ignores the relational information. Table 2 presents the
mean squared error (MSE) values obtained under each model and for each scenario.
Again, the results suggest that jointly modeling both sources of information leads to
much improved predictions of nodal attributes in scenarios 1, 3, 4 and 5, and that those
advantages disappear in scenario 2 where the nodal attributes evolve independently
from the relational data.

4.2 Patterns of Association Between Network and Nodal Attributes

Prior and posterior distributions for qS , qN , qA and R∗ = qS + qN + qA under JLAFAC
for each of the three simulation scenarios are recorded in Table 3. In scenario 1 and 4
the model is capable of identifying both the right dimension of the latent space, the
breakdown into systemic and idiosyncratic components, and thereby the lack of in-
dependence between the network and attribute data. In scenario 2 the model also is
able to correctly assess the dimension of dimensions of the latent space, and thereby
the independence of network and attribute data. In scenario 3 the model is able to
estimate qS and qN accurately, although qA (and therefore R∗) is slightly overesti-
mated. In spite of the misspecification in scenario 5, our model is still able to provide
moderate evidence of association between the network structure and the attributes
(P (qS > 0) ≈ 0.65), as well as evidence of residual correlation between the attributes
(P (qA > 0) ≈ 1).

Finally, Figure 2 shows the posterior distributions for qS,1, . . . , qS,p on each of the
three simulation scenarios. Again, the model is capable of correctly identifying the
number of systemic components associated with each attribute for scenarios 1, 2, 3
and 4. The results are also presented for scenario 5, which shows P (qS,1 > 0) ≈ 0.27,
P (qS,2 > 0) ≈ 0.51, P (qS,1 > 0) ≈ 0.15, P (qS,1 > 0) ≈ 0.12, P (qS,1 > 0) ≈ 0.21. Thus
the model correctly identifies the association between attribute 2 and the network and
no association between nodal attributes 3,4,5 with the network. For nodal attribute 1,
the model detects a weak association with the network. Overall, it does a fair job even
under a complex mis-specified setting.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Prior Post Prior Post Prior Post Prior Post Prior Post

qS

0 0.31 0.00 0.31 0.49 0.18 0.00 0.42 0.00 0.31 0.35
1 0.28 0.01 0.28 0.38 0.16 0.00 0.30 0.00 0.28 0.52
2 0.21 0.70 0.21 0.10 0.14 0.00 0.18 0.76 0.21 0.10
3 0.13 0.22 0.13 0.01 0.12 0.79 0.08 0.22 0.13 0.01
4 0.05 0.04 0.05 0.00 0.10 0.18 – – 0.05 0.00
5 0.01 0.00 0.01 0.00 0.08 0.02 – – 0.01 0.00
6 – – – – 0.06 0.00 – – – –
7 – – – – 0.05 0.00 – – – –
8 – – – – 0.03 0.00 – – – –
9 – – – – 0.02 0.00 – – – –
10 – – – – 0.01 0.00 – – – –

qN

0 0.37 1 0.37 0.40 0.32 0.80 0.59 1.00 0.37 0.78
1 0.30 0.00 0.30 0.60 0.21 0.17 0.26 0.00 0.30 0.21
2 0.19 0.00 0.19 0.00 0.15 0.02 0.10 0.00 0.19 0.00
3 0.09 0.00 0.09 0.00 0.10 0.00 0.03 0.00 0.09 0.00
4 0.03 0.00 0.03 0.00 0.07 0.00 – – 0.03 0.00
5 0.00 0.00 0.00 0.00 0.05 0.00 – – 0.00 0.00
6 – – – – 0.03 0.00 – – – –
7 – – – – 0.02 0.00 – – – –
8 – – – – 0.01 0.00 – – – –
9 – – – – 0.00 0.00 – – – –
10 – – – – 0.00 0.00 – – – –

qA

0 0.31 0.00 0.31 0.00 0.18 0.14 0.42 0.22 0.31 0.00
1 0.27 0.04 0.27 0.00 0.16 0.30 0.30 0.77 0.27 0.00
2 0.21 0.22 0.21 0.05 0.14 0.26 0.18 0.00 0.21 0.02
3 0.12 0.70 0.12 0.28 0.12 0.18 0.08 0.00 0.12 0.14
4 0.05 0.01 0.05 0.62 0.10 0.05 – – 0.05 0.70
5 0.01 0.00 0.01 0.04 0.08 0.04 – – 0.01 0.12
6 – – – – 0.07 0.02 – – – –
7 – – – – 0.05 0.00 – – – –
8 – – – – 0.03 0.00 – – – –
9 – – – – 0.02 0.00 – – – –
10 – – – – 0.01 0.00 – – – –

R∗

0 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
1 0.03 0.00 0.03 0.00 0.00 0.00 0.10 0.00 0.03 0.00
2 0.09 0.00 0.09 0.00 0.01 0.00 0.26 0.01 0.09 0.00
3 0.19 0.00 0.19 0.00 0.02 0.12 0.59 0.98 0.19 0.00
4 0.29 0.00 0.29 0.20 0.03 0.38 – – 0.29 0.04
5 0.37 1.00 0.37 0.79 0.05 0.25 – – 0.37 0.95
6 – – – – 0.07 0.19 – – – –
7 – – – – 0.10 0.05 – – – –
8 – – – – 0.15 0.00 – – – –
9 – – – – 0.21 0.00 – – – –
10 – – – – 0.32 0.00 – – – –

Table 3: Prior and posterior distributions on qS , qN , qA and R∗ = qS + qN + qA under
JLAFAC for the five datasets in our simulation study. Grey backgrounds indicate the
true value under each scenario. Note that Scenario 5 has no ground truth.
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Figure 2: Posterior distribution for qS,1, . . . , qS,p under each of our five simulation scenar-
ios. Filled bullets indicate the true value of the summary. Ak denotes the kth attribute.
For simulation 5, the fitted model is different from the true model. Thus the truth is
not specified.
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n = 40 n = 70 n = 100
T = 10 0.09 0.16 0.34
T = 50 1.28 2.09 2.85
T = 100 5.02 11.58 18.23

Table 4: Computation time in seconds of JLAFAC per iteration. R = 5 is assumed for
model fitting.

4.3 Computational Complexity

The computational complexity of the proposed model is dominated by the complexity of
updating ui,1, . . . ,ui,T , vi,1, . . . ,v

′
i,T , αk,1, . . . ,α

′
k,T and βk,1, . . . ,β

′
k,T for k = 1, . . . , p

and i = 1, . . . , n However, we note that ui and vi, i = 1, . . . , n can be sampled in
parallel over all network nodes. Similarly, αk and βk, k = 1, . . . , p can be updated
in parallel over nodal attributes. Hence, parallelization allows us to support data with
moderately large. Furthermore, the choice of an OU process for modeling the dynamics
of the latent factors allows us to use a forward-filtering, backward-sampling algorithm
to jointly sample parameters over time (e.g., see Frühwirth-Schnatter, 1994). Hence,
the Gibbs sampling algorithm can support inference for a moderately-sized dataset. To
illustrate this, per iteration run times are provided in Table 4 for different choices of n
and T assuming parallelizing computation over multiple servers. In Section 6 we offer
more discussion on several other strategies to ease computation for very large n and T
and for general Gaussian process priors on the latent functions.

4.4 Sensitivity Analysis

All of the results presented above were obtained after fixing v0 = 100. Also as men-
tioned before, we choose aψ and aλ so as to ensure approximately same distribution for
qS , qA, qN , qO a priori. We investigated the sensitivity of the posterior means of qS , qN , qA
by rerunning the model with v0 = 1000, 10000, aψ = bψ = 2, 6, 10 and aλ = bλ = 1, 3, 6.
To save space, we just present in Figure 3 the results for two representative simulations,
Scenario 1 and 2. The figures show that the results are quite robust to the choice of
these hyperparameters.

5 Analysis of Longitudinal International Relationship
Data with Country Specific Indicators of Economic
Performance

In this section we investigate the association between international conflicts and various
economic indicators in a set of 22 countries. The list of countries includes all five perma-
nent members of the United Nations security council (China, France, Russia, USA and
the UK), a few members of the G-20 group (Australia, Germany, India, Japan, South
Korea, Turkey), as well as various countries from the middle East (Egypt, Iran, Iraq,
Israel, Lebanon, Palestine, Sudan), eastern Europe (Ukraine, Georgia) and south Asia
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Figure 3: Posterior means of qS , qN and qA for different choices of aλ, aψ and v0.

(Afghanistan, Pakistan).

Annual networks of interactions among countries between 2004 and 2014 were de-
fined by linking two countries if there was at least one “positive verbal action” during
the first week of the year (Goldstein, 1992). Examples of positive verbal actions include
granting diplomatic recognition and positive verbal support in international forums.
These data on international relations is available from http://www.stat.washington.
edu/people/pdhoff/Code and was previously studied in Hoff (2015). In addition to the
relational data, we consider the evolution of three country-specific economic indicators,
which are modeled using a conditionally Gaussian model: the growth rate of Gross Do-
mestic Product (GDP) Per Capita, the level of National Savings as a percentage of
GDP, and the amount of International Trade as a percentage of GDP. Data on these
indicators are available from the World Development Indicators Database, which is pub-
lished annually by the World Bank. For this dataset we estimate JLAFAC using R = 10
latent dimensions. All inferences presented below are based on 50,000 samples from our
MCMC algorithm obtained after a burn-in period of 10,000 samples and thinning the
chain every 10 iterations.

As in Section 4, we first evaluate the ability of JLAFAC to make out-of-sample
predictions. In this case we hold out 500 randomly-chosen dyads, whose values are
predicted using the rest of the data. Figure 4 presents the ROC curve and the AUC value
under both JLAFAC and a dynamic network model that ignores the attribute data (this
comparison is similar to the one we carried out in Section 4). As in the simulation study,

http://www.stat.washington.edu/people/pdhoff/Code
http://www.stat.washington.edu/people/pdhoff/Code
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Figure 4: Figure in the top presents ROC curves and corresponding AUC values for
JLAFAC and a dynamic network model that ignores information about network at-
tributes in the international relations data. Solid and dashed curves represent ROC
curves for JLAFAC and dynamic network model without network attributes respec-
tively. Figure in the bottom shows posterior distributions for qS,1, qS,2 and qS,3 for the
international relations data.

jointly modeling the relational and nodal attribute data provides some improvement in
the predictions, although the improvement in this case is relatively minor. We also
calculate the Root Mean Squared Error (RMSE) of estimating the predictors which
turns out to be 0.065 as compared to the value of 0.147 for the marginal model.

Next we investigate the pattern of association between the network and country
specific attributes in the data. Table 5 presents the prior and posterior distributions for
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qS qN qA R∗

Prior Posterior Prior Posterior Prior Posterior Prior Posterior
0 0.16 0.01 0.38 0.04 0.16 0.05 0.00 0.00
1 0.14 0.24 0.21 0.22 0.14 0.21 0.00 0.00
2 0.13 0.33 0.14 0.39 0.13 0.30 0.00 0.00
3 0.12 0.25 0.09 0.21 0.12 0.24 0.01 0.00
4 0.10 0.10 0.06 0.08 0.10 0.12 0.02 0.01
5 0.09 0.03 0.04 0.02 0.09 0.04 0.04 0.11
6 0.07 0.00 0.02 0.00 0.07 0.01 0.06 0.25
7 0.06 0.00 0.01 0.00 0.06 0.00 0.09 0.31
8 0.04 0.00 0.00 0.00 0.04 0.00 0.14 0.20
9 0.03 0.00 0.00 0.00 0.03 0.00 0.22 0.07
10 0.01 0.00 0.00 0.00 0.01 0.00 0.38 0.01

Table 5: Prior and posterior distributions for qS , qN , qA and R∗ = qS + qN + qA for the
international relations data. The bolded values are the probabilities of the mode.

qS , qN , qA and R∗ = qS + qN + qA. It is evident from the Table that the data favors
the use of 7 latent dimensions. Furthermore, the model provides strong evidence for the
presence of at least one systemic component (P (qS > 0 | data) ≈ 0.95), suggesting that
the network structure and the nodal attributes are indeed associated. To investigate the
pattern of association in more detail we present in Figure 4 the posterior distributions
for qS,1, qS,2 and qS,3, where subscripts 1, 2, 3 correspond to growth of GDP per capita,
ratio of trade to GDP and ratio of savings to GDP respectively. Note that while there
is strong evidence that the ratio of trade to GDP and GDP growth per capita are
associated with the structure of international relations (P (qS,1 > 0 | data) ≈ 0.65 and
P (qS,2 > 0 | data) ≈ 0.98), the evidence for an association with national savings is
weak (P (qS,3 > 0 | data) ≈ 0.40, respectively). A review of the literature suggests
that our results are consistent with previous findings. Indeed, there is a well established
relationship between international trade and conflict, which was first highlighted in the
classic paper by Polachek (1980) (see also Reuveny and Kang, 1996, Morrow, 1999 and
Reuveny, 2000). Similarly, there is some evidence in the literature for an association
between GDP growth and international conflict (e.g., see Rodrik, 1999, Anderton et al.,
2003, Miguel et al., 2004 and Polachek and Sevastianova, 2012), although the evidence
is highly disputed and the direction of the causal effect often unclear. On the other
hand, as far as we could find, an association between international conflict and the level
aggregate national savings has not been proposed or reported in the literature.

6 Conclusion

This article introduces the idea of jointly modeling of network and associated nodal
attributes over time. Our proposed framework relied on modeling the network and
nodal attributes jointly through latent factor representations, with some latent factors
shared across both models to introduce dependence of directional dyad between nodes on
nodal attributes. Evolution of both network and nodal attributes over time is modeled
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by allowing the latent factors to vary over time, and inference is carried out using a
Bayesian approach.

Because of the application that motivated our work we have assumed that the net-
work process Y (t) is directed and binary. The model can easily be reformulated to
accommodate undirected networks by replacing equations (2.1) and (2.2) with

yi,j(t) ∼ Ber (θi,j(t)) , θi,j(t) = G

(
μ(t) +

R∑
r=1

λrui,r(t)uj,r(t)

)
,

and

E {zi,k(t)} = Hk

(
ηk(t) +

R∑
r=1

ψk,rαk,r(t)ui,r(t)

)
,

respectively. Similarly, situation in which yi,j(t) belong to other members of the ex-
ponential family can be easily accommodated through appropriate generalized linear
factor analysis models.

An important feature of our model is its ability to yield dependence / independence
among network and attributes. While our simulations suggests that these test might be
somewhat robust to model misspecification (recall the results from scenario 5 in our sim-
ulation study), it is important to remember that all of our tests are conditioned on the
specific model structure we have assumed. In particular, while the eigenvalue model for
networks that we employ here is quite flexible, there is a possibility that it might not be
able to capture all structural features of the network that affect the attributes. Similarly,
our model does not incorporate lags of the latent process. While it is important to keep
these issues in mind, we should note the dependence on model assumptions is a common
limitation of most statistical approaches. For example, tests of conditional independence
for Gaussian graphical models are valid only if the data is actually Gaussian.

Although the article presents an simulation study of the proposed approach for mod-
erately large network and time points, one important extension of the proposed model
would be to scale it for larger datasets with millions of individuals connected under
social networking and observed over a large number of time points. Since OU process
is a variant of the Gaussian process and there is an emerging literature on modeling
Gaussian processes for big data, we intend to employ such computationally convenient
models to specify correlations across large number of time points. On the other hand, a
potential issue in extending these models for massive networks would be to estimate a
large number of latent variables. We propose to adapt strategies described in Guhaniyogi
et al. (2017); Guhaniyogi and Banerjee (2018); Heaton et al. (2017) for efficient estima-
tion of large number of correlated latent variables. It is also interesting to extend our
methodology for online social networks. Some of these constitutes our current work.

Supplementary Material

Supplementary Material: Joint Modeling of Longitudinal Relational Data and Exoge-
nous Variables (DOI: 10.1214/19-BA1160SUPP; .pdf). Supplementary material consists

https://doi.org/10.1214/19-BA1160SUPP
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of three sections. Section 1 presents the full conditional posteriors for the MCMC al-
gorithm. Section 2 states and proves theorems related to large support of the prior.
Section 3 argues identifiability of qS , qA, qN and R∗.
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Rodŕıguez, A. and Moser, S. (2015). “Measuring and accounting for strategic abstentions
in the US Senate, 1989–2012.” Journal of the Royal Statistical Society: Series C
(Applied Statistics), 64(5): 779–797. MR3415950. doi: https://doi.org/10.1111/rssc.
12099. 479

Rodrik, D. (1999). “Where did all the growth go? External shocks, social conflict, and
growth collapses.” Journal of economic growth, 4(4): 385–412. 497

Sarkar, P. and Moore, A. W. (2006). “Dynamic social network analysis using latent
space models.” In Advances in Neural Information Processing Systems, 1145–1152.
479

Scott, J. G., Berger, J. O., et al. (2010). “Bayes and empirical-Bayes multiplicity adjust-
ment in the variable-selection problem.” The Annals of Statistics, 38(5): 2587–2619.
MR2722450. doi: https://doi.org/10.1214/10-AOS792. 483

Sewell, D. K. and Chen, Y. (2015). “Latent space models for dynamic networks.”
Journal of the American Statistical Association, 110(512): 1646–1657. MR3449061.
doi: https://doi.org/10.1080/01621459.2014.988214. 479

Shoham, D. A., Hammond, R., Rahmandad, H., Wang, Y., and Hovmand, P. (2015).
“Modeling social norms and social influence in obesity.” Current epidemiology reports,
2(1): 71–79. 478

Snijders, T. A. (2002). “Markov chain Monte Carlo estimation of exponential random
graph models.” Journal of Social Structure, 3(2): 1–40. 478

Snijders, T. A. (2013). “Stochastic actor-oriented models for network change.” In Evo-
lution of social networks, 193–216. Routledge. MR3074604. doi: https://doi.org/10.
1007/978-1-4614-1800-9 129. 478

Snijders, T. A., Van de Bunt, G. G., and Steglich, C. E. (2010). “Introduction to
stochastic actor-based models for network dynamics.” Social networks, 32(1): 44–60.
MR3074604. doi: https://doi.org/10.1007/978-1-4614-1800-9 129. 478

http://www.ams.org/mathscinet-getitem?mr=3415950
https://doi.org/10.1111/rssc.12099
https://doi.org/10.1111/rssc.12099
http://www.ams.org/mathscinet-getitem?mr=2722450
https://doi.org/10.1214/10-AOS792
http://www.ams.org/mathscinet-getitem?mr=3449061
https://doi.org/10.1080/01621459.2014.988214
http://www.ams.org/mathscinet-getitem?mr=3074604
https://doi.org/10.1007/978-1-4614-1800-9_129
https://doi.org/10.1007/978-1-4614-1800-9_129
http://www.ams.org/mathscinet-getitem?mr=3074604
https://doi.org/10.1007/978-1-4614-1800-9_129


R. Guhaniyogi and A. Rodriguez 503

Wasserman, S. and Anderson, C. (1987). “Stochastic a posteriori blockmodels: Con-
struction and assessment.” Social Networks, 9(1): 1–36. MR0885874. doi: https://doi.
org/10.1016/0378-8733(87)90015-3. 477

Watts, D. J. and Dodds, P. (2009). “Threshold models of social influence.” The Oxford
handbook of analytical sociology, 475–497. 478

Acknowledgments

Dr. Guhaniyogi’s research is partially supported by ONR-BAA N000141812741 and NSF/CCF

1740850. Dr. Rodriguez is partially supported by NSF/DMS 1738053.

http://www.ams.org/mathscinet-getitem?mr=0885874
https://doi.org/10.1016/0378-8733(87)90015-3
https://doi.org/10.1016/0378-8733(87)90015-3

	Introduction
	Model Formulation
	A Joint Model for Nodal Attributes and Networks
	Modeling the Evolution of the Nodal Attributes and Networks
	Dimension Selection and Association Testing
	Relationship with Other Models in the Literature

	Posterior Inference
	Identifiability of Parameters
	Link and Nodal Attribute Prediction
	Patterns of Association Between Network and Nodal Attributes
	Hyperparameter Selection


	Simulation Study
	Link and Attribute Prediction
	Patterns of Association Between Network and Nodal Attributes
	Computational Complexity
	Sensitivity Analysis

	Analysis of Longitudinal International Relationship Data with Country Specific Indicators of Economic Performance
	Conclusion
	Supplementary Material
	References

