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Function-Specific Mixing Times and
Concentration Away from Equilibrium

Maxim Rabinovich∗, Aaditya Ramdas†, Michael I. Jordan‡,
and Martin J. Wainwright§

Abstract. Slow mixing is the central hurdle is applications of Markov chains,
especially those used for Monte Carlo approximations (MCMC). In the setting of
Bayesian inference, it is often only of interest to estimate the stationary expecta-
tions of a small set of functions, and so the usual definition of mixing based on
total variation convergence may be too conservative. Accordingly, we introduce
function-specific analogs of mixing times and spectral gaps, and use them to prove
Hoeffding-like function-specific concentration inequalities. These results show that
it is possible for empirical expectations of functions to concentrate long before the
underlying chain has mixed in the classical sense, and we show that the concentra-
tion rates we achieve are optimal up to constants. We use our techniques to derive
confidence intervals that are sharper than those implied by both classical Markov-
chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT)
bounds. For applications that require testing, rather than point estimation, we
show similar improvements over recent sequential testing results for MCMC. We
conclude by applying our framework to real-data examples of MCMC, providing
evidence that our theory is both accurate and relevant to practice.

MSC 2010 subject classifications: Primary 60J10; secondary 62M05, 62M02.
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1 Introduction

Methods based on Markov chains play a critical role in statistical inference, where
they form the basis of Markov chain Monte Carlo (MCMC) procedures for estimating
intractable expectations (see, e.g., Gelman et al., 2013; Robert and Casella, 2005). In
MCMC procedures, it is the stationary distribution of the Markov chain that typically
encodes the information of interest. Thus, MCMC estimates are asymptotically exact,
but their accuracy at finite times is limited by the convergence rate of the chain.

The usual measures of convergence rates of Markov chains—namely, the total vari-
ation mixing time or the absolute spectral gap of the transition matrix (Levin et al.,
2008)—correspond to very strong notions of convergence and depend on global proper-
ties of the chain. Indeed, convergence of a Markov chain in total variation corresponds
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to uniform convergence of the expectations of all unit-bounded function to their equi-
librium values. The resulting uniform bounds on the accuracy of expectations (Chung
et al., 2012; Gillman, 1998; Joulin et al., 2010; Kontorovich et al., 2014; Léon and Perron,
2004; Lezaud, 2001; Paulin, 2012; Samson et al., 2000) may be overly pessimistic—not
indicative of the mixing times of specific expectations such as means and variances that
are likely to be of interest in an inferential setting. Meanwhile, the few function-specific
bounds available (Hayashi and Watanabe, 2016; Watanabe and Hayashi, 2017) are dif-
ficult to interpret, apply, and compute, and may not be optimal in finite samples and
at finite precisions.

Given that the goal of MCMC is often to estimate specific expectations, as opposed
to obtaining the stationary distribution, in the current paper we develop a function-
specific notion of convergence with application to problems in Bayesian inference. We
define a notion of “function-specific mixing time,” and we develop function-specific
concentration bounds for Markov chains, as well as spectrum-based bounds on function-
specific mixing times. We demonstrate the utility of both our overall framework and our
particular concentration bounds by applying them to examples of MCMC-based data
analysis from the literature and by using them to derive sharper confidence intervals
and faster sequential testing procedures for MCMC.

1.1 Preliminaries

We focus on discrete time Markov chains on d states given by a d× d transition matrix
P that satisfies the conditions of irreducibility, aperiodicity, and reversibility. These
conditions guarantee the existence of a unique stationary distribution π. The issue is
then to understand how quickly empirical averages of functions of the Markov chain, of
the form f : [d] → [0, 1], approach the stationary average, denoted by

μ : = EX∼π[f(X)].

The classical analysis of mixing defines convergence rate in terms of the total vari-
ation distance:

dTV

(
p, q
)
= sup

f : Ω→[0, 1]

∣∣∣EX∼p

[
f(X)

]
− EY∼q

[
f(Y )

]∣∣∣, (1)

where the supremum ranges over all unit-bounded functions. The mixing time is then
defined as the number of steps required to ensure that the chain is within total-variation
distance δ of the stationary distribution—that is

T (δ) : = min
{
n ∈ N | max

i∈[d]
dTV

(
π(i)
n , π

)
≤ δ
}
, (2)

where N = {1, 2, . . .} denotes the natural numbers, and π
(i)
n is the distribution of the

chain state Xn given the starting state X0 = i.

Since we assume reversibility, the matrix S = diag (π)P is symmetric and has a spec-

tral decomposition. Writing P = diag (π)
−1

S then gives a corresponding decomposition
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of P , which we denote by

P = 1πT +

d∑
j=2

λjhjq
T
j . (3)

Here, in accordance with the decomposition at the top eigenvalue (λ1 = 1), we should
think of the hj as functions, a view we revisit when they come into play below.

Total variation is a worst-case measure of distance, and the resulting notion of
mixing time can therefore be overly conservative when the Markov chain is being used
to approximate the expectation of a fixed function, or expectations over some relatively
limited class of functions. Accordingly, it is of interest to consider the following function-
specific discrepancy measure:

Definition 1 (f -discrepancy). For a given function f , the f -discrepancy is

df
(
p, q
)
=
∣∣EX∼p

[
f
(
X
)]

− EY∼q

[
f
(
Y
)]∣∣. (4)

The f -discrepancy leads naturally to a function-specific notion of mixing time:

Definition 2 (f -mixing time). For a given function f , the f -mixing time is

Tf

(
δ
)
= min

{
n ∈ N | max

i∈[d]
df
(
π(i)
n , π

)
≤ δ
}
. (5)

We sometimes use Tf without an argument either when the argument is obvious from
context, or when we want to refer to the quantity generically rather than its evaluation
at a specific δ. In the sequel, we also define function-specific notions of the spectral
gap of a Markov chain, which can be used to bound the f -mixing time and to obtain
function-specific concentration inequalities.

We also use some asymptotic notation, which we now clarify. If g1, g2 are two
nonnegative functions of some variable x, we define the notations

g1 ≈ g2 ⇐⇒ ∃c, c′ > 0, cg1 ≤ g2 ≤ c′g1,

g1 	 g2 ⇐⇒ g1 ≈ g2,

g1 � g2 ⇐⇒ ∃c > 0, g1 ≤ cg2,

g1 
 g2 ⇐⇒ g1 � g2.

1.2 Related work

Mixing times are a classical topic of study in Markov chain theory, and there is a
large collection of techniques for their analysis (see, e.g., Aldous and Diaconis, 1986;
Diaconis and Fill, 1990; Levin et al., 2008; Meyn and Tweedie, 2012; Ollivier, 2009;
Sinclair, 1992). These tools and the results based on them, however, generally apply
only to worst-case mixing times. Outside of specific examples (Conger and Viswanath,
2006; Diaconis and Hough, 2015), mixing with respect to individual functions or limited
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classes of functions has received relatively little attention, and almost none at all in the
statistics literature.

One important exception is the recent work by Hayashi and Watanabe (2016)
and Watanabe and Hayashi (2017), who provide asymptotically sharp tail bounds on
empirical averages of functions using methods from information geometry. These bounds
are of the form

P

(
1

N

N∑
n=1

f(Xn) ≥ μ+ ε

)
≤ exp

(
NC(ε) +D(ε)

)
,

where D(ε) is a constant defined explicitly (Watanabe and Hayashi, 2017) that tends
to 0 as ε → 0, and C(ε) is the large-deviation rate, which is to say

C(ε) = (μ+ ε)φ
′−1(μ+ ε)− φ

(
φ

′−1(μ+ ε)
)

= lim
N→∞

1

N
logP

(
1

N

N∑
n=1

f(Xn) ≥ μ+ ε

)
,

where φ(t) denotes the largest eigenvalue of the matrix P (t) defined by (P (t))i,j =
P · etf(i) for 1 ≤ i, j ≤ d. (The largest eigenvalue is a nonnegative real number by the
Perron-Frobenius Theorem.) Watanabe and Hayashi (2017) also provide lower bounds
that are closely matching these upper bounds. Together these are used to derive clas-
sical results in probability theory (large deviations, moderate deviations, and CLT) for
Markov chains.

While we do not claim that the inequalities in this paper are sharper than these
results, they are stated in terms of f -mixing times which are much more intuitive and
easier to use in practice than the large deviation rates. We provide several results based
on spectral methods and coupling arguments that allow us to bound the f -mixing
times, and illustrate the quality of our predictions in simulations, a task that appears
to be more intensive computationally and algorithmically for the information-geometry
bounds.

Other existing bounds are generally uniform over functions, and the rates that are
reported include a factor that encodes the global mixing properties of the chain and
does not adapt to the function (Chung et al., 2012; Gillman, 1998; Joulin et al., 2010;
Kontorovich et al., 2014; Léon and Perron, 2004; Lezaud, 2001; Paulin, 2012; Samson
et al., 2000). (A degree of adaptation is possible in that the asymptotic variance of
the function f can be accounted for in Bernstein-type bounds, but the key factor does
not adapt—see for instance Lezaud (1998); Paulin (2012).) These factors, which do not
appear in classic bounds for independent random variables,1 are generally either some
variant of the spectral gap γ of the transition matrix, or else a mixing time of the chain
T
(
δ0
)
for some absolute constant δ0 > 0. For example, the main theorem from Léon

1Technically, since independent random variables form a Markov chain with spectral gap 1, the
spectral gap does appear, but it appears in a trivial way as a factor of unity.
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and Perron (2004) shows that for a function f : [d] → [0, 1] and a sample X0 ∼ π from
the stationary distribution, we have

P
(∣∣ 1
N

N∑
n=1

f
(
Xn

)
− μ
∣∣ ≥ ε

)
≤ 2 exp

{
− γ0

2
(
2− γ0

) · ε2N}, (6)

where the eigenvalues of P are given in decreasing order as 1 > λ2(P ) ≥ · · · ≥ λd(P ),
and we denote the spectral gap of P by

γ0 : = min
{
1− λ2(P ), 1

}
.

The requirement that the chain start in equilibrium can be relaxed by adding a correc-
tion for the burn-in time (Paulin, 2012). Extensions of this and related bounds, including
bounded-differences-type inequalities and generalizations to continuous Markov chains
and non-Markov mixing processes have also appeared in the literature (e.g., Kontorovich
et al. (2014); Samson et al. (2000)).

The concentration result has an alternative formulation in terms of the mixing time
instead of the spectral gap (Chung et al., 2012). This version and its variants are weaker,
since the mixing time can be lower bounded as

T
(
δ
)
≥
( 1
γ∗

− 1
)
log
( 1
2δ

)
≥
( 1
γ0

− 1
)
log
( 1
2δ

)
, (7)

where we denote the absolute spectral gap (Levin et al., 2008) by

γ∗ : = min
(
1− λ2, 1−

∣∣λd

∣∣) ≤ γ0.

In terms of the minimum probability πmin : = mini πi, the corresponding upper
bound is an extra factor of log

(
1

πmin

)
larger, which potentially leads to a significant gap

between 1
γ0

and T
(
δ0
)
, even for a moderate constant such as δ0 = 1

8 . Similar distinctions
arise in our analysis, and we elaborate on them at the appropriate junctures.

We note that there remains a gap between theoretical work on the convergence of
Markov chains, of the kind developed here, and practical applications of the theory to
MCMC. Indeed, most current applications of MCMC do not use rigorous bounds of
the Hoeffding type; rather, they build variance-based confidence intervals, either via
CLT approximations or, more recently, via Chebyshev’s inequality (Gyori and Paulin,
2012; Flegal et al., 2008). Such bounds are simple to compute and have good asymptotic
theoretical properties, but they are not valid in a non-asymptotic setting; indeed, they
may be over-optimistic and anti-conservative in finite samples. In contrast, Hoeffding-
type bounds, including our own, sit at the other end of the spectrum; they come with
finite-sample validity built in, but may be difficult to compute due to the dependence
on the mixing time, either function-specific or uniform. There is a recent line of work
aimed at estimating mixing times from individual sample trajectories (Hsu et al., 2015,
2017) that has begun to bridge the gap between the strong theory underlying Hoeffding
bounds and their target applications, but this research direction is still nascent. We note
that one other promising direction is the connection to analysis of specific statistically-
relevant Markov chains (e.g., Choi and Hobert, 2013; Román and Hobert, 2015), which
has the potential of yielding numerical bounds on mixing times (Jones and Hobert,
2001).
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1.3 Organization of the paper

In the remainder of the paper, we develop a formal framework for bounding function-
specific mixing times and we apply the framework to the analysis of MCMC algorithms.
In Section 2, we state some concentration guarantees based on function-specific mixing
times, as well as some spectrum-based bounds on f -mixing times, and the spectrum-
based Hoeffding bounds they imply. Section 3 is devoted to further development of these
results in the context of several statistical models. More specifically, in Section 3.1, we
show how our concentration guarantees can be used to derive confidence intervals that
are superior to those based on uniform Hoeffding bounds and CLT-type bounds. (For
reasons of space, we defer an analysis of sequential testing to Appendix E (Rabinovich
et al., 2019).) In Section 4, we show that our mixing time and concentration bounds
improve over the non-adaptive bounds in real examples of MCMC from the literature.
Finally, the bulk of our proofs are given in Appendix A (Rabinovich et al., 2019),
with some more technical aspects of the arguments deferred to Appendices B, D, and
F (Rabinovich et al., 2019).

2 Main results

We now present our main technical contributions, starting with a set of “master” Ho-
effding bounds with exponents given in terms of f -mixing times. As we explain in Sec-
tion 2.3, these mixing time bounds can be converted to spectral quantities that bound
the f -mixing time in terms of the spectrum. (We give some techniques for the latter in
Section 2.2.)

Recall that we use μ : = Eπ[f ] to denote the mean. Moreover, we follow standard
conventions in setting

λ∗ : = max
{
λ2(P ),

∣∣λd(P )
∣∣}, and λ0 : = max

{
λ2(P ), 0

}
,

so that the absolute spectral gap and the (truncated) spectral gap introduced earlier
are given by γ∗ : = 1 − λ∗, and γ0 : = 1 − λ0. In Section 2.2, we define and analyze
corresponding function-specific quantities, which we introduce as necessary.

2.1 Master Hoeffding bound

In this section, we present a master Hoeffding bound that provides concentration rates
that depend on the mixing properties of the chain only through the f -mixing time Tf .
The only hypotheses on burn-in time needed for the bounds to hold are that the chain
has been run for at least N ≥ Tf (ε/2) steps—basically, so that thinning is possible—
and that the chain was started from a distribution π0 whose f -discrepancy distance
from π is small—so that the expectation of each f

(
Xn

)
iterate is close to μ—even if its

total-variation discrepancy from π is large. Note that the latter requirement imposes
only a very mild restriction, since it can always be satisfied by first running the chain
for a burn-in period of Tf steps and then beginning to record samples. In fact, as we
discuss below, it is not really necessary to explicitly discard the first Tf samples, so
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knowing the (function-specific) mixing time is not actually necessary, as long as N is
larger than Tf . The tacit assumption in this theorem and all our concentration results
is that f is bounded in [0, 1].

Theorem 1. Given any fixed ε > 0 such that df
(
π0, π

)
≤ ε

2 and N ≥ Tf

(
ε
2

)
, we have

P
[ 1
N

N∑
n=1

f
(
Xn

)
≥ μ+ ε

]
≤ exp

{
−ε2

8
·
⌊

N

Tf

(
ε
2

)⌋} (8)

≤ exp

{
− ε2N

16Tf

(
ε
2

)} .

Compared to the bounds in earlier work (e.g., Léon and Perron, 2004), the bound (8)
has several distinguishing features. The primary difference is that the “effective” sample
size, that is, the number of samples that would give an equivalent level of concentration
if all the samples were i.i.d. from π,

Neff : =
⌊ N

Tf (ε/2)

⌋
, (9a)

is a function of f , which can lead to significantly sharper bounds on the deviations of
empirical means than the earlier uniform bounds can deliver. Further, the result applies
when the chain has equilibrated only approximately, and only with respect to f .

The reader might note that if one actually has access to a distribution π0 that is
ε/2-close to π in f -discrepancy, then an estimator of μ with tail bounds similar to
those guaranteed by Theorem 1 can be obtained as follows: first, draw N i.i.d. samples
from π0, and second, apply the usual Hoeffding inequality for i.i.d. variables. However,
it is essential to realize that Theorem 1 does not require that such a π0 be available
to the practitioner. Instead, the theorem statement is meant to apply in the following
way: suppose that—starting from any initial distribution—we run an algorithm for
N ≥ Tf (ε/2) steps, and then use the last of N − Tf (ε/2) samples to form an empirical
average. Our concentration result then holds with an effective sample size of

Nburnin
eff : =

⌊N − Tf (ε/2)

Tf (ε/2)

⌋
=
⌊ N

Tf (ε/2)

⌋
− 1. (9b)

In other words, the result can be applied with an arbitrary initial π0, and accounting
for burn-in merely reduces the effective sample size by one. One can take this reasoning
further to determine that, as mentioned above, it is not even necessary to explicitly
use a burn-in period. Indeed, in order for Theorem 1 to be meaningful, it must be that

N
Tf (ε/2)

� 1
ε2 , so that, up to constants, the burn-in period is at most an ε2 fraction of

the total number of samples. It follows that directly averaging the function values along
the trajectory provides a good approximation of the average over the last N − Tf (ε/2)
samples, up to an accuracy on the order of ε2 
 ε.

The appearance of the function-specific mixing time Tf in the bounds comes with
both advantages and disadvantages. A notable disadvantage, shared with the mixing
time versions of the uniform bounds, is that spectrum-based bounds on the mixing time
(including our f -specific ones) introduce a log

(
1

πmin

)
term that can be a significant
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source of looseness. On the other hand, obtaining rates in terms of mixing times comes
with the advantage that any bound on the mixing time translates directly into a version
of the concentration bound (with the mixing time replaced by its upper bound). More-
over, since the π−1

min term is likely to be an artifact of the spectrum-based approach, and
possibly even just of the proof method, it may be possible to turn the Tf -based bound
into a stronger spectrum-based bound with a more sophisticated analysis. We go part
of the way toward doing this, albeit without completely removing the π−1

min term.

An analysis based on mixing time also has the virtue of better capturing the non-
asymptotic behavior of the rate. Indeed, as a consequence of the link (7) between mixing
and spectral graphs (as well as matching upper bounds (Levin et al., 2008)), for any
fixed function f , there exists a function-specific spectral gap γf > 0 such that

Tf

( ε
2

)
≈ 1

γf
log
(1
ε

)
+O

(
1
)
, for ε 
 1. (9c)

These asymptotics can be used to turn our aforementioned theorem into a variant of
the results of Léon and Perron (2004), in which γ0 is replaced by a value γf that (under
mild conditions) is at least as large as γ0. However, as we explore in Section 4, such an
asymptotic spectrum-based view loses a great deal of information needed to deal with
practical cases, where often γf = γ0 and yet Tf (δ) 
 T (δ) even for very small values
of δ > 0. For this reason, part of our work is devoted to deriving more fine-grained
concentration inequalities that capture this non-asymptotic behavior.

On the other hand, it is important to note that our bounds do not provide optimal
rates in the asymptotic setting. Indeed, our results only imply convergence of the sample
mean to the true mean at a rate of logN√

N
, due to the logarithmic dependence of Tf

on the error ε. Our lower bound, Proposition 1, shows that the Tf factor cannot be
removed in general, so that optimal asymptotic convergence rates do not seem attainable
in general with a function-specific analysis. Nonetheless, by interpolating between the
function-specific and global bounds, one can obtain the best of both worlds, so we do
not believe the asymptotic sub-optimality to be a major concern. This point of view is
supported by our experiments, which suggest that at the precisions one typically targets
in practice, the seemingly extraneous logN factor is overcome by the gains of having
a larger function-specific spectral gap, and the function-specific bounds end up being
superior.

By combining our definition (9a) of the effective sample size Neff with the asymptotic
expansion (9c), we arrive at an intuitive interpretation of Theorem 1: it dictates that

the effective sample size scales as Neff ≈ γfN
log(1/ε) in terms of the function-specific gap

γf and tolerance ε. This interpretation is backed by the Hoeffding bound derived in
Corollary 1 and it is useful as a simple mental model of these bounds. On the other
hand, interpreting the theorem this way effectively plugs in the asymptotic behavior of
Tf and does not account for the non-asymptotic properties of the mixing time; the latter
may actually be more favorable and lead to substantially smaller effective sample sizes
than the naive asymptotic interpretation predicts. From this perspective, the master
bound has the advantage that any bound on Tf that takes advantage of favorable
non-asymptotics translates directly into a stronger version of the Hoeffding bound. We
investigate these issues empirically in Section 4.
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Based on the worst-case Markov Hoeffding bound (6), we might hope that the Tf (
ε
2 )

term in Theorem 1 is spurious and removable using improved techniques. Unfortunately,
it is fundamental. This conclusion becomes less surprising if one notes that even if we
start the chain in its stationary distribution and run it for N < Tf (ε) steps, it may still
be the case that there is a large set Ω0 such that for i ∈ Ω0 and 1 ≤ n ≤ N ,

|f(Xn)− μ| 
 ε a.s. if X0 = i. (10)

This behavior is made possible by the fact that large positive and negative deviations
associated with different values in Ω0 can cancel out to ensure that E [f (Xn)] = μ
marginally. However, the lower bound (10) guarantees that

P

(
1

N

N∑
n=1

f (Xn) ≥ μ+ ε

)
≥
∑
i∈Ω0

πi · P
(

1

N

N∑
n=1

f (Xn) ≥ μ+ ε | X0 = i

)

≥ π (Ω0) ,

so that if π (Ω0) 
 0, we have no hope of controlling the large-deviation probability
unless N � Tf (ε).

To make this intuitive idea precise, the basic idea is to start with an arbitrary
candidate function ρ : (0, 1) → (0, 1), such that Tf

(
ε
2

)
in the denominator of the

function-specific Hoeffding bound (8) can putatively be replaced by Tf (ρ (ε)). We then
show that if ρ (ε) ≥ ε, the replacement is not actually possible. That means that, up to
a possible constant factor improvement in the argument to Tf , the dependence of the
exponent in Theorem 1 on Tf (ε/2) cannot be eliminated—surprising in light of the fact
that uniform Hoeffding bounds do not exhibit this behavior in their dependence on the
mixing or relaxation times. In this sense, the rate we attain is improvable only in the
constants in the exponent of the bound, as claimed above.

We prove Proposition 1 by constructing a Markov chain (which is independent of
ε) and a function (which depends on both ε and ρ) such that the Hoeffding bound
is violated for the Markov chain-function pair for some value of N (which in general
depends on the chain and ε). We defer the proof to Appendix A.3 (Rabinovich et al.,
2019).

Proposition 1. Fix a function ρ : (0, 1) → (0, 1) with ρ
(
ε
)
> ε. For every constant

c1 > 0 and ε ∈ (0, 1), there exists a Markov chain Pc1 , a number of steps N = N(c1, ε)
and a function f = fε such that

Pπ

(∣∣∣∣∣ 1N
N∑

n=1

f(Xn)−
1

2

∣∣∣∣∣ ≥ ε

)
> 2 · exp

(
− c1Nε2

Tf (ρ(ε))

)
. (11)

2.2 Bounds on f-mixing times

We generally do not have direct access either to the mixing time T
(
δ
)
or the f -mixing

time Tf

(
δ
)
. Fortunately, any bound on Tf translates directly into a variant of the tail

bound (8). Accordingly, this section is devoted to methods for bounding these quantities.
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Since mixing time bounds are equivalent to bounds on dTV and df , we frame the results
in terms of distances rather than times. These results can then be inverted in order to
obtain mixing-time bounds in applications.

The simplest bound is simply a uniform bound on total variation distance, which
also yields a bound on the f -discrepancy. In particular, if the chain is started with
distribution π0, then we have

dTV

(
πn, π

)
≤ 1√

πmin
· λn

∗ · dTV

(
π0, π

)
. (12)

In order to improve upon this bound, we need to develop function-specific notions of
spectrum and spectral gaps. The simplest way to do this is simply to consider the (left)
eigenvectors to which the function is not orthogonal and define a spectral gap restricted
only to the corresponding eigenvectors.

Definition 3 (f -eigenvalues and spectral gaps). For a function f : [d] → R, we define

Jf : =
{
j ∈ [d] | λj �= 1 and qTj f �= 0

}
, (13a)

where qj denotes a left eigenvector associated with λj . Similarly, we define

λf = max
j∈Jf

∣∣λj

∣∣, and γf = 1− λf . (13b)

Using this notation, it is straightforward to show that if the chain is started with
the distribution π0, then

df
(
πn, π

)
≤

√
Eπ

[
f2
]

πmin
· λn

f · df
(
π0, π

)
. (14)

This bound, though useful in many cases, is also rather brittle: it requires f to be exactly
orthogonal to the eigenfunctions of the transition matrix. For example, a function f0
with a good value of λf can be perturbed by an arbitrarily small amount in a way that
makes the resulting perturbed function f1 have λf = λ∗. More broadly, the bound is of
little value for functions with a small but nonzero inner product with the eigenfunctions
corresponding to large eigenvalues (which is likely to occur in practice; cf. Section 4), or
in scenarios where f lacks symmetry (cf. the random function example in Section 2.4).

In order to address these issues, we now derive a more fine-grained bound on df . The
basic idea is to split the lower f -spectrum Jf into a “bad” piece J , whose eigenvalues are
close to 1 but whose eigenvectors are approximately orthogonal to f , and a “good” piece
Jf \ J , whose eigenvalues are far from 1 and which therefore do not require control on
the inner products of their eigenvectors with f . More precisely, for a given set J ⊂ Jf ,
let us define

Δ∗
J : = 2

∣∣J∣∣×max
j∈J

‖hj‖∞ ×max
j∈J

∣∣qTj f ∣∣, λJ : = max
{∣∣λj

∣∣ | j ∈ J
}
, and

λ−J : = max
{∣∣λj

∣∣ | j ∈ Jf \ J
}
.
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Here the hj are the functions defined in the decomposition of P in (3). We obtain the
following bound, expressed in terms of λ−J and λJ , which we generally expect to obey
the relation 1− λ−J 
 1− λJ .

Lemma 1 (Sharper f -discrepancy bound). Given f : [d] → [0, 1] and a subset J ⊂ Jf ,
we have

df
(
πn, π

)
≤ Δ∗

J λn
J · dTV(π0, π) +

√
Eπ

[
f2
]

πmin
· λn

−J df (π0, π). (15)

The above bound, while easy to apply and comparatively easy to estimate, can be
loose when the first term is a poor estimate of the part of the discrepancy that comes
from the J part of the spectrum. We can get a still sharper estimate by instead making
use of the following vector quantity that more precisely summarizes the interactions
between f and J :

hJ

(
n
)
: =
∑
j∈J

(
qTj f · λn

j

)
hj .

This quantity leads to what we refer to as an oracle-adaptive bound, because it uses the
exact value of the part of the discrepancy coming from the J eigenspaces, while using
the same bound as above for the part of the discrepancy coming from Jf \ J .
Lemma 2 (Oracle f -discrepancy bound). Given f : [d] → [0, 1] and a subset J ⊂ Jf ,
we have

df
(
πn, π

)
≤
∣∣(π0 − π

)T
hJ

(
n
)∣∣+

√
Eπ

[
f2
]

πmin
· λn

−J · df
(
π0, π

)
. (16)

We emphasize that, although Lemma 2 is stated in terms of the initial distribution
π0, when we apply the bound in the real examples we consider, we replace all quan-
tities that depend on π0 by their worst-cases values, in order to avoid dependence on
initialization; this results in a ‖hJ

(
n
)
‖∞ term instead of the dot product in the lemma.

2.3 Concentration bounds

The mixing time bounds from Section 2.2 allow us to translate the master Hoeffding
bound into a weaker but more interpretable—and in some instances, more directly
applicable—concentration bound. The first result we prove along these lines applies
meaningfully only to functions f whose absolute f -spectral gap γf is larger than the
absolute spectral gap γ∗. It is a direct consequence of the master Hoeffding bound and
the simple spectral mixing bound (14), and it delivers the asymptotics in N and ε
promised in Section 2.1.

Corollary 1. Given any ε > 0 such that df
(
π0, π

)
≤ ε

2 and N ≥ Tf

(
ε
2

)
, we have

P

[
1

N

N∑
n=1

f(Xn) ≥ μ+ ε

]
≤

⎧⎪⎪⎨
⎪⎪⎩
exp

(
− ε2

16
γfN

log
(

2
ε
√

πmin

)) if ε ≤ 2λf√
πmin

,

exp
(
− ε2N

16

)
otherwise.
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Deriving a Hoeffding bound using the sharper f -mixing bound given in Lemma 1
requires more care, both because of the added complexity of managing two terms in the
bound and because one of those terms does not decay, meaning that the bound only
holds for sufficiently large deviations ε > 0.

The following result represents one way of articulating the bound implied by Lem-
ma 1; it leads to improvements over the previous two results when the contribution from
the bad part of the spectrum J—that is, the part of the spectrum that brings γf closer
to 1 than we would like—is negligible at the scale of interest. Recall that Lemma 1
expresses the contribution of J via the quantity Δ∗

J .

Corollary 2. Given a triple of positive numbers (Δ,ΔJ ,Δ
∗
J) such that ΔJ ≥ Δ∗

J ,
df (π0, π) ≤ ΔJ +Δ, and N ≥ Tf

(
ΔJ +Δ

)
, we have

P

[
1

N

N∑
n=1

f
(
Xn

)
≥ μ+ 2(ΔJ +Δ)

]
≤

⎧⎪⎪⎨
⎪⎪⎩
exp
(
−
(
ΔJ+Δ

)2
4

(
1−λ−J

)
N

log
(

1
Δ

√
πmin

)) if Δ ≤ λ−J√
πmin

,

exp
(
−
(
ΔJ+Δ

)2
N

4

)
if Δ > λ−J√

πmin
.

(17)

Similar arguments can be applied to combine the master Hoeffding bounds with the
oracle f -mixing bound Lemma 2, but we omit the corresponding result for the sake of
brevity. The proofs for both aforementioned corollaries are in Appendix A.2 (Rabinovich
et al., 2019).

2.4 Example: Lazy random walk on C2d

In order to illustrate the mixing time and Hoeffding bounds from Section 2.2, we analyze
their predictions for various classes of functions on the 2d-cycle C2d, identified with the
integers modulo 2d. In particular, consider the Markov chain corresponding to a lazy
random walk on C2d; it has transition matrix

Puv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if v = u,
1
4 if v = u+ 1 mod 2d,
1
4 if v = u− 1 mod 2d,

0 otherwise.

(18)

It is easy to see that the chain is irreducible, aperiodic, and reversible, and its
stationary distribution is uniform. It can be shown (Levin et al., 2008) that its mixing
time scales proportionally to d2. However, as we now show, several interesting classes
of functions mix much faster, and in fact, a “typical” function, meaning a randomly
chosen one, mixes much faster than the naive mixing bound would predict.

Parity function The epitome of a rapidly mixing function is the parity function:

fparity(u) : =

{
1 if u is odd,

0 otherwise.
(19)
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It is easy to see that no matter what the choice of initial distribution π0 is, we have
E
[
fparity(X1)

]
= 1

2 , and thus fparity mixes in a single step.

Periodic functions A more general class of examples arises from considering the eigen-
functions of P , which are given by gj

(
u
)
= cos

(
πju
d

)
; (see, e.g., Levin et al., 2008). We

define a class of functions of varying regularity by setting

fj =
1 + gj

2
, for each j = 0, 1, . . . , d.

Here we have limited j to 0 ≤ j ≤ d because fj and f2d−j behave analogously. Note
that the parity function fparity corresponds to fd.

Intuitively, one might expect that some of these functions mix well before d2 steps
have elapsed—both because the vectors {fj , j �= 1} are orthogonal to the non-top
eigenvectors with eigenvalues close to 1 and because as j gets larger, the periods of fj
become smaller and smaller, meaning that their global behavior can increasingly be well
determined by looking at local snapshots, which can be seen in few steps.

Our mixing bounds allow us to make this intuition precise, and our Hoeffding bounds
allow us to prove correspondingly improved concentration bounds for the estimation of
μ = Eπ

[
fj
]
= 1/2. Indeed, we have

γfj =
1− cos

(
πj
d

)
2

≥
{

π2j2

24d2 if j ≤ d
2 ,

1
2 if d

2 < j ≤ d.
(20)

Consequently, equation (14) predicts that

Tfj

(
δ
)
≤ T̃fj

(
δ
)
=

{
24
π2

[
1
2 log 2d+ log

(
1
δ

)]
· d2

j2 if j ≤ d
2 ,

log 2d+ 2 log
(
1
δ

)
if d

2 < j ≤ d,
(21)

where we have used the trivial bound Eπ

[
f2
]
≤ 1 to simplify the inequalities. Note that

this yields an improvement over 	 d2 for j � log d. Moreover, the bound (21) can itself
be improved, since each fj is orthogonal to all eigenfunctions other than 1 and gj , so
that the log d factors can all be removed by a more carefully argued form of Lemma 1.
It thus follows directly from the bound (20) that if we draw N + T̃fj

(
ε
2

)
samples, we

obtain the tail bound

P
[ 1

N0

N+Nb∑
n=Nb

fj
(
Xn

)
≥ 1

2
+ ε
]
≤

⎧⎪⎨
⎪⎩
exp
(
− 3d2

2π2j2 · ε2N

log
(
2
√
2d/ε
)) if j ≤ d

2 ,

exp
(
− ε2N

32 log
(
2
√
2d/ε
)) d

2 < j ≤ d,
(22)

where the burn-in time is given by Nb = T̃fj

(
ε/2
)
. Note again that the sharper analysis

mentioned above would allow us to remove the log 2d factors.

Random functions A more interesting example comes from considering a randomly
chosen function f : C2d → [0, 1]. Indeed, suppose that the function values are sampled
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i.i.d. from some distribution ν on [0, 1] whose mean μ∗ is 1/2:

{f(u), u ∈ C2d} i.i.d.∼ ν. (23)

We can then show that for any fixed δ∗ > 0, with high probability over the randomness
of f , have

Tf (δ) �
d log d

[
log d+ log

(
1
δ

)]
δ2

, for all δ ∈ (0, δ∗]. (24)

For δ 
 log d√
d
, this scaling is an improvement over the global mixing time of order

d2 log(1/δ).

The core idea behind the proof of equation (24) is to apply Lemma 1 with

Jδ : =

{
j ∈ N ∩ [1, 2d− 1] | j ≤ 4δ

√
d

log d
or j ≥ 2d− 4δ

√
d

log d

}
. (25)

It can be shown that ‖hj‖∞ = 1 for all 0 ≤ j < 2d and that with high probability over

f , |qTj f | �
√

log d
d simultaneously for all j ∈ Jδ, which suffices to reduce the first part

of the sharper f -discrepancy bound to order δ.

In order to estimate the rate of concentration, we proceed as follows. Taking δ = c0ε
for a suitably chosen universal constant c0 > 0, we show that ΔJ : = ε

4 ≥ Δ∗
J . We

can then set Δ = ε
4 and observe that with high probability over f , the deviation in

Corollary 2 satisfies the bound 2 (ΔJ +Δ) ≤ ε. With δ as above, we have 1 − λ−J ≥
c1ε

2

d log d for another universal constant c1 > 0. Thus, if we are given N +Tf

(
ε/2
)
samples

for some N ≥ Tf

(
ε
2

)
, then we have

P

⎡
⎣ 1

N

N+Tf (ε/2)∑
n=Tf (ε/2)

f(Xn) ≥ μ+ ε

⎤
⎦ ≤ exp

{
− c2ε

4N

d log d
[
log
(
4
ε

)
+ log 2d

]} , (26)

for some c2 > 0. Consequently, it suffices for the sample size to be lower bounded by

N �
d log d

[
log
(
1/ε
)
+ log d

]
ε4

,

in order to achieve an estimation accuracy of ε. Notice that this requirement is an im-

provement over the d2

ε2 from the uniform Hoeffding bound provided that ε 
 ( log
2 d
d )1/2.

Proofs of all these claims can be found in Appendix C (Rabinovich et al., 2019).

3 Statistical applications

We now consider how our results apply to Markov chain Monte Carlo (MCMC) in
various statistical settings. Our investigation proceeds along three connected avenues.
We begin by showing, in Section 3.1, how our concentration bounds can be used to
provide confidence intervals for stationary expectations that avoid the over-optimism
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of pure CLT predictions without incurring the prohibitive penalty of the Berry-Esseen
correction—or the global mixing rate penalty associated with spectral-gap-based confi-
dence intervals. Later, in Section 4, we illustrate the practical significance of function-
specific mixing properties by using our framework to analyze three real-world instances
of MCMC, basing both the models and datasets chosen on real examples from the lit-
erature. In Appendix E (Rabinovich et al., 2019), we show how our results allow us
to improve on recent sequential hypothesis testing methodologies for MCMC, again
replacing the dependence on the spectral gap by a dependence on the f -mixing time.

3.1 Confidence intervals for posterior expectations

In many applications, a point estimate of Eπ

[
f
]
does not suffice; the uncertainty in the

estimate must be quantified, for instance by providing (1 − α) confidence intervals for
some pre-specified constant α. In this section, we discuss how improved concentration
bounds can be used to obtain sharper confidence intervals. In all cases, we assume the
Markov chain is started from some distribution π0 that need not be the stationary
distribution, meaning that the confidence intervals must account for the burn-in time
required to get close to equilibrium.

We first consider a bound that is an immediate consequence of the uniform Hoeffding
bound given by Léon and Perron (2004). As one would expect, it gives contraction at
the usual Hoeffding rate but with an effective sample size of Neff ≈ γ0(N−T0), where T0

is the tuneable burn-in parameter. Note that this means that no matter how small Tf is
compared to the global mixing time T , the effective size incurs the penalty for a global
burn-in and the effective sample size is determined by the global spectral parameter γ0.
In order to make this precise, for a fixed burn-in level α0 ∈ (0, α), define

εN (α, α0) : =
√

2
(
2− γ0

)
·
√

log
(
2/
[
α− α0

])
γ0
[
N − T

(
α0

)] . (27a)

Then the uniform Markov Hoeffding bound (Léon and Perron, 2004, Theorem 1) implies
that the set

IunifN

(
α, α0

)
=

⎡
⎢⎣ 1

N − T
(
α0/2

) N∑
n=T
(
α0/2
)
+1

f
(
Xn

)
± εN

(
α, α0

)⎤⎥⎦ (27b)

is a 1− α confidence interval. Full details of the proof are given in Appendix D.2 (Ra-
binovich et al., 2019).

Moreover, given that we have a family of confidence intervals—one for each choice of
α0 ∈ (0, α)—we can obtain the sharpest confidence interval by computing the infimum
ε∗N
(
α
)
: = inf

0<α0<α
εN
(
α, α0

)
. Equation (27b) then implies that

IunifN

(
α
)
=
[ 1

N − T
(
α0

) N∑
n=T (α0/2)+1

f(Xn)± ε∗N (α)
]

is a 1− α confidence interval for μ.
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We now consider one particular application of our Hoeffding bounds to confidence
intervals, and find that the resulting interval adapts to the function, both in terms
of burn-in time required, which now falls from a global mixing time to an f -specific
mixing time, and in terms of rate, which falls from 1

γ0
to Tf (δ) for an appropriately

chosen δ > 0. We first note that the one-sided tail bound of Theorem 1 can be written
as e−rN (ε)/16, where

rN (ε) : = ε2

[
N

Tf

(
ε
2

) − 1

]
. (28)

If we wish for each tail to have probability mass that is at most α/2, we need to choose
ε > 0 so that rN

(
ε
)
≥ 16 log 2

α , and conversely any such ε corresponds to a valid

two-sided
(
1− α

)
confidence interval. Let us summarize our conclusions:

Theorem 2. For any width εN ∈ r−1
N

([
16 log

(
2/α
)
, ∞

))
, the set

I funcN : =

⎡
⎢⎣ 1

N − Tf

(
ε
2

) N∑
n=Tf

(
ε
2

) f(Xn

)
± εN

⎤
⎥⎦

is a 1− α confidence interval for the mean μ = Eπ

[
f
]
.

In order to make the result more amenable to interpretation, first note that for any
0 < η < 1, we have

rN
(
ε
)
≥ ε2

[
N

Tf

(
η
2

) − 1

]
︸ ︷︷ ︸

rN,η(ε)

valid for all ε ≥ η. (29)

Consequently, whenever rN,η(εN ) ≥ 16 log 2
α and εN ≥ η, we are guaranteed that a

symmetric interval of half-width εN is a valid
(
1−α

)
-confidence interval. Summarizing

more precisely, we have:

Corollary 3. Fix η > 0 and let

εN = r−1
N,η

(
16 log

2

α

)
= 4

√
Tf

(
η
2

)
· log

(
2/α
)

N − Tf

(
η
2

) .

If N ≥ Tf

(
η
2

)
, then I funcN is a 1− α confidence interval for μ = Eπ

[
f
]
.

Often, we do not have direct access to Tf

(
δ
)
, but we can often obtain an upper bound

T̃f

(
δ
)
that is valid for all δ > 0. In Appendix D (Rabinovich et al., 2019), therefore,

which contains the proofs for this section, we prove a strengthened form of Theorem 2
and its corollary in that setting.

A popular alternative strategy for building confidence intervals using MCMC de-
pends on the Markov central limit theorem (e.g., Flegal et al., 2008; Jones and Hobert,
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2001; Glynn and Lim, 2009; Robert and Casella, 2005). If the Markov CLT held exactly,
it would lead to appealingly simple confidence intervals of width

ε̃N = σf,asym

√
log(2/α)

N
,

where σ2
f,asym : = limN→∞

1
NVarX0∼π

[∑N
n=1 f

(
Xn

)]
is the asymptotic variance of f .

Unfortunately, the CLT does not hold exactly, even after the burn-in period. The
amount by which it fails to hold can be quantified using a Berry-Esseen bound for
Markov chains, as we now discuss. Let us adopt the compact notation S̃N =∑N

n=1

[
f
(
Xn

)
− μ
]
. We then have the bound (Lezaud, 2001):

∣∣P( S̃N

σf,asym

√
N

≤ s
)
− Φ
(
s
)∣∣ ≤ e−γ0N

3
√
πmin

+
13

σf,asym
√
πmin

· 1

γ0
√
N

, (30)

where Φ is the standard normal cumulative distribution function (CDF). Note that
this bound accounts for both the non-stationarity error and for non-normality error at
stationarity. The former decays rapidly at the rate e−γ0N , while the latter decays far
more slowly, at the rate 1

γ0

√
N
.

While the bound (30) makes it possible to prove a corrected CLT confidence interval,
the resulting bound has two significant drawbacks. The first is that it only holds for

extremely large sample sizes, on the order of 1
πminγ2

0
, compared to the order

log
(
1/πmin

)
γ0

required by the uniform Hoeffding bound. The second, shared by the uniform Hoeffd-
ing bound, is that it is non-adaptive and therefore bottlenecked by the global mixing
properties of the chain. For instance, if the sample size is bounded below as

N ≥ max
( 1
γ0

log
( 2√

πminα

)
,

1

γ2
0

6084

σ2
f,asymπminα2

)
,

then both terms of equation (27b) are bounded by 1/6, and the confidence intervals
take the form

IBE
N =

⎡
⎣ 1

N

N∑
n=1

f
(
Xn

)
± σf,asym

√
2 log

(
6/α
)

N

⎤
⎦ . (31)

See Appendix D.3 (Rabinovich et al., 2019) for the justification of this claim.

It is important to note that the width of this confidence interval involves a hidden
form of mixing penalty. Indeed, defining the variance σ2

f = Varπ
[
f
(
X
)]

and ρf : =
σ2
f

σ2
f,asym

, we can rewrite the width as

εN = σf

√
2 log

(
6/α
)

ρfN
.

Thus, for this bound, the quantity ρf captures the penalty due to non-independence,
playing the role of γ0 and γf in the other bounds. In this sense, the CLT bound adapts
to the function f , but only when it applies, which is at a sample-size scale dictated by
the global mixing properties of the chain (i.e., γ0).
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4 Analyzing mixing in practice

We analyze several examples of MCMC-based Bayesian analysis from our theoretical
perspective. These examples demonstrate that convergence in discrepancy can in prac-
tice occur much faster than suggested by naive mixing time bounds and that our bounds
help narrow the gap between theoretical predictions and observed behavior. Two of these
examples appear in the following sections, while a third is relegated to Appendix G (Ra-
binovich et al., 2019). Figure 1 shows the spectra of the transition matrix for all three
examples.

Figure 1: Spectra for three example chains: (a) Metropolis-Hastings for Bayesian logis-
tic regression (Section 4.1); (b) collapsed Gibbs sampler for missing data imputation
(Appendix G (Rabinovich et al., 2019)); and (c) collapsed Gibbs sampler for a mixture
model (Section 4.2).

4.1 Bayesian logistic regression

Our first example is a Bayesian logistic regression problem introduced by Robert and
Casella (2005). The data consists of 23 observations of temperatures (in Fahrenheit, but
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normalized by dividing by 100) and a corresponding binary outcome—failure (y = 1)
or not (y = 0) of a certain component; the aim is to fit a logistic regressor, with
parameters

(
α, β

)
∈ R2, to the data, incorporating a prior and integrating over the

model uncertainty to obtain future predictions. More explicitly, following the analysis
in Gyori and Paulin (2012), we consider the following model:

p
(
α, β | b

)
=

1

b
· eα exp

(
− eα/b

)
,

p
(
y | α, β, x

)
∝ exp

(
α+ βx

)
,

which corresponds to an exponential prior on eα, an improper uniform prior on β and a
logit link for prediction. As in Gyori and Paulin (2012), we target the posterior by run-
ning a Metropolis-Hastings algorithm with a Gaussian proposal with covariance matrix
Σ =

(
4 0
0 10

)
. Unlike in their paper, however, we discretize the state space to facilitate

exact analysis of the transition matrix and to make our theory directly applicable. The
resulting state space is given by

Ω =
{(

α̂± i ·Δ, β̂ ± j ·Δ
)
| 0 ≤ i, j ≤ 8

}
,

where Δ = 0.1 and (α̂, β̂) is the maximum likelihood estimate (MLE). This space has
d = 172 = 289 elements, resulting in a 289 × 289 transition matrix that can easily be
diagonalized.

Robert and Casella (2005) analyze the probability of failure when the temperature
x is 65◦F; it is specified by the function

f65
(
α, β

)
=

exp
(
α+ 0.65β

)
1 + exp

(
α+ 0.65β

) .
Note that this function fluctuates significantly under the posterior, as shown in Figure 2.

Figure 2: Distribution of f65 values under the posterior. Despite the discretization and
truncation to a square, it generally matches the one displayed in Figure 1.2 in Robert
and Casella (2005).
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We find that this function also happens to exhibit rapid mixing. The discrepancy
df65 , before entering an asymptotic regime in which it decays exponentially at a rate
1−γ∗ ≈ 0.386, first drops from about 0.3 to about 0.01 in just two iterations, compared
to the predicted ten iterations from the naive bound df

(
n
)
≤ dTV

(
n
)
≤ 1√

πmin
·
(
1−γ∗)n.

Figure 3 demonstrates this on a log scale, comparing the naive bound to a version of
the bound in Lemmas 1 and 2. Note that the oracle f -discrepancy bound improves
significantly over the uniform baseline, even though the non-oracle version does not.
In this calculation, we took J =

{
2, . . . , 140

}
to include the top half of the spectrum

excluding 1 and computed ‖hj‖∞ directly from P for j ∈ J and likewise for qTj f65. The
oracle bound is given by Lemma 2. As shown in panel (b) of Figure 3, this decay is also
faster than that of the total variation distance.

Figure 3: (a) Discrepancies (plotted on log-scale) for f65 as a function of iteration
number. The prediction of the naive bound is highly pessimistic; the f -discrepancy
bound goes part of the way toward closing the gap and the oracle version of the f -
discrepancy bound nearly completely closes the gap in the limit and also gets much
closer to the right answer for small iteration numbers. (b) Comparison of the func-
tion discrepancy df65 and the total variation discrepancy dTV. They both decay fairly
quickly due to the large spectral gap, but the function discrepancy still falls much
faster.

An important point is that the quality of the f -discrepancy bound depends signif-
icantly on the choice of J . In the limiting case where J includes the whole spectrum
below the top eigenvalue, the oracle bound becomes exact. Between that and J = ∅,
the oracle bound becomes tighter and tighter, with the rate of tightening depending
on how much power the function has in the higher versus lower eigenspaces. Figure 4
illustrates this for a few settings of J , showing that although for this function and this
chain, a comparatively large J is needed to get a tight bound, the oracle bound is
substantially tighter than the uniform and non-oracle f -discrepancy bounds even for
small J .
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Figure 4: Comparisons of the uniform, non-oracle function-specific, and oracle function-
specific bounds for various choices of J . In each case, J = {2, . . . , Jmax}, with Jmax = 50
in panel (a), Jmax = 100 in panel (b), Jmax = 200 in panel (c), and Jmax = 288 in
panel (d). The oracle bound becomes tight in the limit as Jmax goes to d = 289, but it
offers an improvement over the uniform bound across the board.

4.2 Collapsed Gibbs sampling for mixture models

Due to the ubiquity of clustering problems in applied statistics and machine learning,
Bayesian inference for mixture models (and their generalizations) is a widespread appli-
cation of MCMC (Ghahramani and Griffiths, 2005; Griffiths and Steyvers, 2004; Jain
et al., 2007; Mimno et al., 2012; Neal, 2000). We consider the mixture-of-Gaussians
model, applying it to a subset of the schizophrenic reaction time data analyzed in Belin
and Rubin (1995). The subset of the data we consider consists of 10 measurements,
with 5 coming from healthy subjects and 5 from subjects diagnosed with schizophre-
nia. Since our interest is in contexts where uncertainty is high, we chose the 5 subjects
from the healthy group whose reaction times were greatest and the 5 subjects from the
schizophrenic group whose reaction times were smallest. We considered a mixture with
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K = 2 components:

μb ∼ N
(
0, ρ2

)
, b = 0, 1,

ω ∼ Be
(
α0, α1

)
,

Zi | ω ∼ Bern
(
ω
)
,

Xi | Zi = b, μ ∼ N
(
μb, σ2

)
.

We chose relatively uninformative priors, setting α0 = α1 = 1 and ρ = 237. Increasing
the value chosen in the original analysis (Belin and Rubin, 1995), we set σ ≈ 70; we
found that this was necessary to prevent the posterior from being too highly concen-
trated, which would be an unrealistic setting for MCMC. We ran collapsed Gibbs on
the indicator variables Zi by analytically integrating out ω and μ0:1.

As Figure 1 illustrates, the spectral gap for this chain is small—namely, γ∗ ≈
3.83 × 10−4—yet the eigenvalues fall off comparatively quickly after λ2, opening up
the possibility for improvement over the uniform γ∗-based bounds. In more detail, de-
fine

z∗b : =
(
b b b b b 1− b 1− b 1− b 1− b 1− b

)
,

corresponding to the cluster assignments in which the patient and control groups are
perfectly separated (with the control group being assigned label b). We can then define
the indicator for exact recovery of the ground truth by

f(z) = 1
(
z ∈
{
z∗0 , z∗1

})
.

As Figure 5 illustrates, convergence in terms of f -discrepancy occurs much faster
than convergence in total variation, meaning that predictions of required burn-in times
and sample size based on global metrics of convergence drastically overestimate the
computational and statistical effort required to estimate the expectation of f accurately
using the collapsed Gibbs sampler. This behavior can be explained in terms of the
interaction between the function f and the eigenspaces of P . Although the pessimistic
constants in the bounds from the uniform bound (12) and the non-oracle function-
specific bound (Lemma 1) make their predictions overly conservative, the oracle version
of the function-specific bound (Lemma 2) begins to make exact predictions after just
a hundred iterations when applied with J =

{
1, . . . , 25

}
; this corresponds to making

exact predictions of Tf

(
δ
)
for δ ≤ δ0 ≈ 0.01, which is a realistic tolerance for estimation

of μ. Panel (b) of Figure 5 documents this by plotting the f -discrepancy oracle bound
against the actual value of df on a log scale.

The mixture setting also provides a good illustration of how the function-specific Ho-
effding bounds can substantially improve on the uniform Hoeffding bound. In particular,
let us compare the Tf -based Hoeffding bound (Theorem 1) to the uniform Hoeffding
bound established by Léon and Perron (2004). At equilibrium, the penalty for non-
independence in our bounds is (2Tf (ε/2))

−1 compared to roughly γ−1
∗ in the uniform

bound. Importantly, however, our concentration bound applies unchanged even when the
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Figure 5: (a) Comparison of the f -discrepancy df and the total variation discrepancy
dTV over the first 100 iterations of MCMC. Clearly the function mixes much faster than
the overall chain. (b) The predicted value of log df (according to the f -discrepancy
oracle bound—Lemma 2) plotted against the true value. The predictions are close to
sharp throughout and become sharp at around 100 iterations.

Bound type Tf

(
0.01

)
Tf

(
10−6

)
Uniform 31,253 55,312

Function-Specific 25,374 49,434
Function-Specific (Oracle) 98 409

Actual 96 409

Table 1: Comparison of bounds on Tf

(
δ
)
for different values of δ. The uniform bound

corresponds to the bound Tf

(
δ
)
≤ T

(
δ
)
, the latter of which can be bounded by the

total variation bound. The function-specific bounds correspond to Lemmas 1 and 2,
respectively. Whereas the uniform and non-oracle f -discrepancy bounds make highly
conservative predictions, the oracle f -discrepancy bound is nearly sharp even for δ as
large as 0.01.

chain has not equilibrated, provided it has approximately equilibrated with respect to f .
As a consequence, our bound only requires a burn-in of Tf (ε/2), whereas the uniform Ho-
effding bound does not directly apply for any finite burn-in. Table 1 illustrates the size of
these burn-in times in practice. This issue can be addressed using the method of Paulin
(2012), but at the cost of a burn-in dependent penalty dTV(T0) = supπ0

dTV(πn, π):

P
[ 1

N − T0

N∑
n=T0

f(Xn) ≥ μ+ ε
]
≤ dTV

(
T0

)
+ exp

{
− γ0

2
(
1− γ0

) · ε2[N − T0

]}
, (32)

where we have let T0 denote the burn-in time. Note that a matching bound holds for
the lower tail. For our experiments, we computed the tightest version of the bound (32),
optimizing T0 in the range

[
0, 105

]
for each value of the deviation ε. Even given this
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Figure 6: Comparison of the (log) tail probability bounds provided by the uniform
Hoeffding bound due to Léon and Perron (2004) with one version of our function-specific
Hoeffding bound (Theorem 1). Plots are based on N = 106 iterations, and choosing the
optimal burn-in for the uniform bound and a fixed burn-in of 409 ≥ Tf

(
10−6

)
iterations

for the function-specific bound. The function-specific bound improves over the uniform
bound by orders of magnitude.

generosity toward the uniform bound, the function-specific bound still outperforms it
substantially, as Figure 6 shows.

For the function-specific bound, we used the function-specific oracle bound (Lemma 2)
to bound Tf

(
ε
2

)
; this nearly coincides with the true value when ε ≈ 0.01 but deviates

slightly for larger values of ε.

5 Discussion

A significant obstacle to successful application of statistical procedures based on Markov
chains—especially MCMC—is the possibility of slow mixing. Usually mixing means con-
vergence in a distribution-level metric, such as the total variation or Wasserstein dis-
tance. On the other hand, algorithms like MCMC are often used to estimate equilibrium
expectations over a limited class of functions. For such uses, it is desirable to build a
theory of mixing times with respect to these limited classes of functions and to provide
convergence and concentration guarantees analogous to those available in the classical
setting, and our paper has made some steps in this direction.

In particular, we introduced the f -mixing time of a function, and showed that it
can be characterized by the interaction between the function and the eigenspaces of
the transition operator. Using these tools, we proved that the empirical averages of a
function f concentrate around their equilibrium values at a rate characterized by the f -
mixing time; in so doing, we eliminated the worst-case dependence on the spectral gap of
the chain, characteristic of previous results. Our methodology yields sharper confidence
intervals, and better rates for sequential hypothesis tests, and we have provided evidence
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that our theory’s predictions are accurate in some real instances of MCMC and therefore
of potential practical interest.

Our investigation also suggests a several further questions, notably concerning the
continuous and non-reversible cases. Both arise frequently in statistical applications—
for example, when sampling continuous parameters or when performing Gibbs sampling
with systematic scan. As uniform Hoeffding bounds do exist for the continuous case and,
more recently, have been established for the non-reversible case, we believe many of our
conclusions should carry over to these settings.

Furthermore, it would be desirable to have methods for estimating or bounding the
f -mixing time based on samples. Likewise, while we have shown what can be done with
spectral methods, the classical theory provides a much larger arsenal of techniques,
some of which may generalize to yield sharper f -mixing time bounds. We leave these
and other problems to future work.

Supplementary Material

Function-Specific Mixing Times and Concentration Away from Equilibrium (Supple-
mentary Material) (DOI: 10.1214/19-BA1151SUPP; .pdf).
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