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MODEL SELECTION AND LOCAL GEOMETRY

BY ROBIN J. EVANS

Department of Statistics, University of Oxford, evans@stats.ox.ac.uk

We consider problems in model selection caused by the geometry of
models close to their points of intersection. In some cases—including com-
mon classes of causal or graphical models, as well as time series models—
distinct models may nevertheless have identical tangent spaces. This has two
immediate consequences: first, in order to obtain constant power to reject one
model in favour of another we need local alternative hypotheses that decrease
to the null at a slower rate than the usual parametric n−1/2 (typically we will
require n−1/4 or slower); in other words, to distinguish between the models
we need large effect sizes or very large sample sizes. Second, we show that
under even weaker conditions on their tangent cones, models in these classes
cannot be made simultaneously convex by a reparameterization.

This shows that Bayesian network models, amongst others, cannot be
learned directly with a convex method similar to the graphical lasso. How-
ever, we are able to use our results to suggest methods for model selection
that learn the tangent space directly, rather than the model itself. In particular,
we give a generic algorithm for learning Bayesian network models.

1. Introduction. Consider a class of probabilistic models Mi indexed by elements of
some set i ∈ I , and suppose that we have data from some distribution P ; model selection is
the task of deducing, from the data, which Mi contains P . Typically, there will be multiple
such models, in which case one may appeal to parsimony or—if the model class is closed
under intersection—select the smallest such model by inclusion.

There have been dramatic advancements in certain kinds of statistical model selection, in-
cluding methods for working with large datasets and very high-dimensional problems (see,
e.g., Bühlmann and van de Geer (2011)). However, model selection in some settings is more
difficult; for example, selecting an optimal Bayesian network for discrete data is known
to be a NP-complete problem (Chickering (1996)). In this paper, we consider why some
model classes are so much harder to learn with than others. Taking a geometric approach, we
find that some classes contain models which are distinct but—in a sense that will be made
precise—are locally very similar to one another. The task of distinguishing between them
using data is therefore fundamentally more difficult, both statistically and computationally.

EXAMPLE 1.1. To illustrate the main idea in simple terms, consider a model space
smoothly described by a two-dimensional parameter θ = (θ1, θ2)

T ∈ R
2, and with four sub-

models of interest:

M∅ : θ1 = θ2 = 0, M1 : θ2 = 0,

M2 : θ1 = 0, M12 : unrestricted.

In a setting with independent data, we would expect to have statistical power sufficient to
distinguish between M12 and M2 (i.e., to determine whether or not θ1 = 0) provided that the
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FIG. 1. Illustration of model selection close to points of intersection. On the left, the models M1 and M2 (in
blue and red, resp.) have different tangent spaces, so the distance between them increases linearly as one moves
away from the intersection. On the right, the models M1 (in blue) and M′

2 (in red) have the same tangent space
at the intersection, so they diverge only quadratically with distance from the intersection.

magnitude of θ1 is large compared to n−1/2, where n is the number of independent samples
available. We might also expect to be able to distinguish between M1 and M2 at the same
asymptotic rate; this is the picture in Figure 1(a), in which the distance between the two
models is proportional to distance from their intersection M∅ = M1 ∩M2 (the constant of
proportionality being determined by the angle between the two models).

Suppose now that we define a model M′
2 : ψ1 = 0, where ψ1 ≡ θ2

1 − θ2, and have to select
between M∅,M1,M′

2,M12 (note that we still have M∅ = M1 ∩ M′
2), as illustrated in

Figure 1(b). Superficially, the task of choosing between these four models seems no different
to our first scenario, but in fact the models M1 and M′

2 are locally linearly identical at the
point of intersection ψ1 = θ2 = 0; that is, the tangent spaces of the two models at this point
are the same, so up to a linear approximation they are indistinguishable.

Models that overlap linearly in the manner above lead to two major consequences relating
to statistical power and computational efficiency. First, as illustrated in Figure 1(b), if M1 is
correct the distance1 between the true parameter value (θ1,0) and the closest point on M′

2
grows quadratically rather than linearly in θ1. Hence, while |θ1| = �(n−1/2) is sufficient to
gain power against M∅, one needs |θ1| = �(n−1/4) to ensure power2 against M′

2. This is
potentially a very stringent condition indeed; if the effect size is halved, then we will need 16
times the sample size to maintain power against the alternative model.

Second, if two models have the same tangent space then we cannot choose a parameteri-
zation under which both models are convex sets. Note that in Figure 1(a) all four models are
convex, but in Figure 1(b) the model M′

2 is not. If we reparameterize to make M′
2 convex,

then M1 will not be.3 This prevents penalized methods such as the lasso being used in a
computationally efficient way.

EXAMPLE 1.2 (Directed Gaussian graphical models). A common class of models in
which the phenomenon described above occurs is Gaussian Bayesian networks. Consider the
two graphs shown in Figure 2, each representing certain multivariate Gaussian distributions
over variables X,Y,Z with joint correlation matrix �. The graph in Figure 2(a) corresponds
to the marginal independence model X ⊥⊥ Y , so that there is a zero in the corresponding entry

1Typically, this would be approximated by the Mahalanobis distance using the Fisher information. For regular
statistical models, this is locally equivalent to the Hellinger distance or the square-root of the KL-divergence.

2Recall that for positive functions f,g we have f (x) = �(g(x)) if and only if g(x) = O(f (x)), and f (x) =
ω(g(x)) if and only if g(x) = o(f (x)).

3By ‘reparameterize’, we mean under a twice differentiable bijection with an invertible Jacobian. So we do not
allow the map (θ1, θ2) �→ (ψ1, θ2) used in the earlier example.
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FIG. 2. Two Bayesian networks in which, for Gaussian random variables, the tangent spaces of the models are
identical at some points of intersection.

in �: ρxy = 0. Figure 2(b), on the other hand, corresponds to the conditional independence
model X ⊥⊥ Y | Z, that is, to a zero in the X,Y entry of �−1, or equivalently to ρxy −ρxzρzy =
0.

The two models intersect along two further submodels: for example, if ρxz = 0 (so that
X ⊥⊥ Z), then ρxy = 0 if and only if ρxy − ρxzρzy = 0. The same thing happens if ρyz = 0
(i.e., Y ⊥⊥ Z). When we are at the intersection between all these submodels—so ρxy = ρxz =
ρyz = 0 and all variables are jointly independent—we find that the tangent spaces of the two
original models are the same, giving rise to the phenomenon described above. Indeed, we
will see that this arises whenever two models intersect along two or more such—suitably
distinct—further submodels (Theorem 3.1).

1.1. Background and prior work. Crudely speaking, there are two flavours of statistical
model, and consequently two main reasons for wishing to select one. The first, called sub-
stantive or explanatory, emphasizes the use of models to explain underlying phenomena, and
such models are sometimes viewed as approximations to an unknown scientific ‘ground truth’
(Cox (1990), Skrondal and Rabe-Hesketh (2004)). The second kind, referred to as empirical
or predictive, is mainly concerned with predicting outcomes from future observations, gen-
erally assuming that such observations will arise from the same population as previous data
(Breiman (2001)). A discussion of these two camps, together with some finer distinctions can
be found in Cox (1990).

Our focus will primarily be on substantive models, in which case different models may lead
to rather different practical conclusions, even if the probability distributions associated with
them are ‘close’ in the sense observed above. The case of causal models such as the graphs in
Figure 2 is particularly stark: the reversal of an arrow will significantly affect our understand-
ing of how a system will behave under an intervention. For interpolative prediction—that is,
with new data from the same population as the data used to learn the model—such concerns
are generally lessened; if two probability distributions are similar, then they should give sim-
ilar conclusions. However, the computational concerns we raise will affect model selection
performed for any reason whatsoever.

For Bayesian network (BN) models specifically, there has been a great deal of work deal-
ing with the problem of accurate learning from data. Chickering (1996) showed that the
problem of finding the BN which maximizes a penalized likelihood criterion is NP-complete
in the case of discrete data with several common penalties. Uhler et al. (2013) give geometric
proofs that directed Gaussian graphical models are, in a global sense, very hard to learn using
sequential independence tests; this is because the volume of ‘unfaithful’ points that will mis-
lead at least one hypothesis test for a given sample size is very large, and in settings where the
number of parameters is larger than the number of observations will overwhelm the model.
Our approach is considerably simpler and is applicable to arbitrary model classes and model
selection procedures, but cannot make global statements about the model.

Shojaie and Michailidis (2010) provide a penalized method for learning sparse high-
dimensional graphs, but they assume a known topological ordering for the variables in the
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graph, that is, the direction of each possible edge is known. Ni, Stingo and Baladandayutha-
pani (2015) develop a Bayesian approach that is similar in spirit, and apply it to gene regula-
tory networks. Fu and Zhou (2013), Gu, Fu and Zhou (2019) and Aragam and Zhou (2015)
all use penalization to learn BNs without a pre-specified topological order, in the former pa-
per even allowing for interventional data; however in each case the resulting optimization
problem is nonconvex. Other approaches based on assumptions such as non-Gaussianity or
nonlinearity are also available (Shimizu et al. (2006), Bühlmann, Peters and Ernest (2014)).

1.2. Contribution. In this paper, we develop the notion of using local geometry as a
heuristic for how closely related two models are, and how rich a class of models is. In several
classes of models for which model selection is known to be difficult, we find that they contain
distinct models that are linearly equivalent at certain points in the parameter space. This
makes it statistically difficult to tell which model is correct.

Under even weaker conditions, we find that distinct models may have directions that can be
approximately obtained in both models, but not in their intersection. This means the models
cannot be simultaneously convex, and prevents efficient algorithms from being used to learn
which model is correct; this makes it computationally hard to pick the best model. To our
knowledge, these are both completely new contributions to the literature.

The remainder of the paper is organized as follows. In Section 2, we formalize the intu-
ition given above by carefully defining local similarity between models, and then proving
results relating to local asymptotic power and convex parameterizations. In Section 3, we
give sufficient conditions for this situation to occur, including the intersection of two models
along multiple distinct submodels. In Section 4, we apply these results to show that the lasso
cannot be used directly to learn Bayesian networks. Section 5 provides further examples of
how the result can be applied, while Section 6 considers related phenomena such as double
robustness. Section 7 suggests methods to exploit model classes in which the tangent spaces
are distinct but in which we cannot make the models simultaneously convex, and Section 8
contains a discussion.

2. Models. Consider a class of finite-dimensional probability distributions {Pθ : θ ∈ �},
where � is an open subset of R

k ; each Pθ has density pθ with respect to a measure μ.
We assume throughout that the parameter θ describes a smooth (twice differentiable with
full rank Jacobian) bijective map between the set of distributions and �. Consequently, we
will refer interchangeably to a subset of parameters and the corresponding set of probability
distributions as a model.

Suppose we have models corresponding to subsets Mi ⊆ �, i = 1,2, . . .. We take our
models to be either differentiable manifolds or semialgebraic sets,4 that is, a finite union of
sets defined by a finite set of polynomial equalities and inequalities. Semialgebraic sets in-
clude a wide range of models of interest; see Drton and Sullivant (2007) for further examples.
Our formal discussion of the similarity of these models is based on their tangent cones and
tangent spaces at points of intersection.

DEFINITION 2.1. The tangent cone Cθ (M) of a model M ⊆ � at θ ∈ M is defined as
the set of limits of sequences αn(θn − θ), such that αn > 0, θn ∈M and θn → θ .

The tangent space of M at θ is the vector space Tθ (M) spanned by elements of the
tangent cone.

4Note that these guarantee Chernoff regularity (Drton (2009a), Lemma 3.3 and Remark 3.4).
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Clearly, the tangent space contains the tangent cone; the model is said to be regular at θ if
the two are equal; in particular this means that M looks like a differentiable manifold (em-
bedded in �) at θ , and regular parametric asymptotics apply: in other words, the maximum
likelihood estimator is asymptotically normal with covariance given by the inverse Fisher
information (van der Vaart (1998)). Most of the models we will initially consider are regular
everywhere, though their intersections may not be.

2.1. c-Equivalence. Our next definition considers the classification of models based on
their local similarity. We work with a local version of the Hausdorff distance between sets;
this is the furthest distance from any point on one set to the nearest point on the other. Denote
this by

D(A,B) ≡ max
{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}
.

DEFINITION 2.2. We say that M1,M2 are c-equivalent at θ ∈ M1 ∩ M2 if the Haus-
dorff distance between the sets in a ball of radius ε is o(εc). Formally,

lim
ε↓0

ε−cD
(
M1 ∩ Nε(θ), M2 ∩ Nε(θ)

)= 0,

where Nε(θ) is an ε-ball around θ . In other words, within an ε-ball of θ , the maximum
distance between the two models is o(εc).

If the limit above is bounded but not necessarily zero—that is, the distance is O(εc)—we
will say that M1 and M2 are c-near-equivalent at θ .

The definition of c-equivalence is given by Ferrarotti, Fortuna and Wilson (2002), who
also derive some of its elementary properties. If θ ∈ M1 ∩ M2, then 1-near-equivalence is
trivial, while 1-equivalence means that to a linear approximation around θ the models are the
same (formally they have the same tangent cone at θ ); this is illustrated by the two surfaces
in Figure 3(a). Similar considerations can be applied to higher orders: 2-equivalence means
that the quadratic surface best approximating one model is the same as that approximating
the other. For Dk-models5 with l ≤ k − 1, we have that (l − 1)-equivalence for l ∈ N implies
l-near-equivalence.

PROPOSITION 2.3 (Ferrarotti, Fortuna and Wilson (2002), Proposition 1.3). Two semi-
algebraic models M1,M2 are 1-equivalent at θ ∈ M1 ∩ M2 if and only if Cθ (M1) =
Cθ (M2).

EXAMPLE 2.4. Consider the two graphical models in Figure 2, defined respectively by
the independence constraints X ⊥⊥ Y and X ⊥⊥ Y | Z. If we take the set of trivariate Gaussian
distributions satisfying these two restrictions, then as discussed in Section 1, the two models
are 2-near-equivalent at all diagonal covariance matrices.

For finite discrete variables, however, these two models are not 1-equivalent. Suppose
X,Y,Z take nX,nY ,nZ levels, respectively. The models are defined by the equations

X ⊥⊥ Y : p(x, y) − p(x) · p(y) = 0 ∀x, y,

X ⊥⊥ Y | Z : p(x, y, z) · p(z) − p(x, z) · p(y, z) = 0 ∀x, y, z,

where, for example, p(x, z) = P(X = x,Z = z). In particular, the marginal independence
model is subject to (nX − 1)(nY − 1) restrictions, but the conditional independence model
is subject to that many restrictions for each level of Z. One can use this to show that the
dimension of the conditional independence model is smaller than the marginal independence
model, and so they cannot both be approximated by the same linear space.

5that is, k-times differentiable
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2.2. Overlap. In spite of the differing dimensions in the example above, we will show
that the issue—noted in the Introduction—of the models not being simultaneously convex
still arises. This motivates a slightly weaker definition for models meeting in an intuitively
‘irregular’ manner, which we term overlap.

DEFINITION 2.5. Suppose we have two models M1,M2 with a common point θ ∈
M1 ∩ M2. We say that M1 and M2 overlap if there exist points h ∈ Cθ (M1) ∩ Cθ (M2)

but h /∈ Cθ (M1 ∩M2).

In other words, there are tangent vectors that can be obtained in either model, but not in
their intersection. Note that necessarily we have Cθ (M1 ∩ M2) ⊆ Cθ (M1) ∩ Cθ (M2), so
the definition asks that this is a strict inclusion. For distinct, regular algebraic models, overlap
is implied by 1-equivalence.

LEMMA 2.6. Let M1 and M2 be algebraic models that are 1-equivalent and regular at
θ , but not equal in a neighbourhood of θ . Then M1 and M2 overlap at θ .

PROOF. Suppose that, at θ , the models do not overlap and are 1-equivalent. We will show
that they are equal in a neighbourhood of θ .

Since M1 is regular at θ , we can assume that it is an irreducible model, else replace it
with its unique irreducible component containing θ (similarly for M2). The condition that
the models are 1-equivalent implies Cθ (M1) = Cθ (M2), and no overlap means Cθ (M1 ∩
M2) = Cθ (M1) ∩ Cθ (M2) = Cθ (M1).

On the other hand, M1 ∩ M2 is an algebraic submodel of M1, so it is either equal to
M1 or has strictly lower dimension. If the latter, then Cθ (M1 ∩M2) would be of this same
lower dimension (Cox, Little and O’Shea (2007), Theorem 9.7.8), and hence is a strict subset.
Since we have already seen that M1 ∩M2 has the same tangent cone as M1, it must be that
the former possibility holds, that is, M1 ∩M2 = M1, in a neighbourhood of θ . Clearly, the
same is true for M2, which proves the result. �

The same result could be applied to analytic models, defined by the zeroes of analytic
functions, since these functions are (by definition) arbitrarily well approximated by their
Taylor series.

REMARK 2.7. Without assuming that models are analytic, one can construct examples
that are ‘regular’ in most of the usual statistical senses, but for which the previous result fails.
As an example of how things can go wrong, consider the function f (x) = e−1/x2

sin(1/x2)

(taking f (0) = 0); this is a C∞ function, but is not analytic at x = 0 (all its derivatives being
zero at this point).

Now let M1 = {(x,0) : x ∈ R} and M2 = {(x, f (x)) : x ∈ R}. These models are c-
equivalent for every c ∈N, but are not equal. However, in contrast to the result of Lemma 2.6
they do not overlap. Both sets have tangent cone equal to M1, and since f has infinitely
many roots in any neighbourhood of 0, the tangent cone of M1 ∩M2 is also M1.

A canonical example of sets that overlap but are not 1-equivalent is given by the subsets
of R3 shown in Figure 3(c); M1 = {(x, y, z) : y = z = 0} (in blue) and M2 = {(x, y, z) : z =
−x2} (in red) have M1 ∩M2 = {0}. The tangent cone of M2 is the plane z = 0, while M1
is its own tangent cone and, therefore, C0(M1) ⊆ C0(M2) and C0(M1) ∩ C0(M2) = M1.
However, C0(M1∩M2) = {0}, so the inclusion is strict. In words, we can approach the origin
along a line that becomes tangent to the x-axis in either model, but not in the intersection.
The blue model has smaller dimension than the red so they are clearly not 1-equivalent.
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FIG. 3. Illustration of two models that (a), (b) are 1-equivalent; (c) overlap. In (a) and (b), the two surfaces have
the same tangent space, but meet in this way for different reasons.

Typically, it is hard to show that two models are not 1-equivalent (or do not overlap)
anywhere in the parameter space: indeed the difficulty of verifying such global conditions
is one of our motivations for considering these local criteria instead. However, for algebraic
models we can often show that such points are at most a set of zero measure within a large
class of ‘interesting’ submodels. To be more precise, if two models are not 1-equivalent at
some model of total independence (say θ0), then they are also 1-equivalent almost nowhere
within any algebraic model that contains θ0.

2.3. Statistical power. We will assume that all the models we consider satisfy standard
parametric regularity conditions, in particular differentiability in quadratic mean (DQM),
which yields the familiar asymptotic expansion of the log-likelihood �(θ) (see, e.g., van der
Vaart (1998)):

�(θ + hn) − �(θ) = hT

√
n
�̇(θ) − 1

2
hT I (θ)h + op(1),(1)

where �̇(θ) is the data dependent score, I (θ) the Fisher information for one observation
and n1/2hn → h. For the purpose of distinguishing between models from data, we need the
difference between the log-likelihoods at points close to the MLE not to vanish as sample
size n → ∞. The expansion above shows that this requires h �= 0 for the right-hand side to
contain a stable term. Hence the distance between the two parameter values needs to shrink
no faster than n−1/2, the standard parametric rate of statistical convergence.

We consider settings in which hn, h̃n → 0 with n1/2(hn − h̃n) → k, so that we may com-
pare alternatives in two different models. For this reason, we impose the stronger condition
that the model is doubly differentiable in quadratic mean (DDQM) in some neighbourhood of
θ . This is closely related to existence and continuity of the Fisher information and will hold,
for example, on the interior of the parameter space of any regular exponential family model.

DEFINITION 2.8. Say that pθ is doubly differentiable in quadratic mean (DDQM) at
θ ∈ � if for any sequences h, h̃ → 0, we have

∫ (√
pθ+h −√p

θ+h̃
− 1

2
(h − h̃)T �̇(θ + h̃)

√
p

θ+h̃

)2
dμ = o

(‖h − h̃‖2).
Note that DDQM reduces to DQM in the special case h̃ = 0, and that (by symmetry) we

could replace �̇(θ + h̃)
√

p
θ+h̃

by �̇(θ + h)
√

pθ+h. On the other hand, it is strictly stronger
than DQM at θ (see Example A.2 in the Appendix). See Appendix A.1 for more details.
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THEOREM 2.9. Let � be a model that is DDQM at some θ , and further let hn, h̃n → 0
be sequences such that k = limn n1/2(hn − h̃n). Then

�(θ + hn) − �(θ + h̃n) = kT

√
n
�̇(θ + h̃n) − 1

2
kT I (θ)k + op(1)

−→d N

(
−1

2
kT I (θ)k, kT I (θ)k

)
.

The proof is given in Appendix A.1. The theorem shows that it is not possible to distinguish
between the two models as n grows if k = 0, that is, if the difference in the alternatives shrinks
at a rate faster than n−1/2. The geometry of the model determines the relationship between
the rate at which hn, h̃n shrink and the size of h̃n − hn; in general, ‖h̃n − hn‖ may be of
smaller order than both ‖hn‖ and ‖h̃n‖.

This leads to our first main result about c-equivalence, which is a direct application of its
definition.

THEOREM 2.10. Suppose S1, S2 are c-equivalent sets at x, and consider hn = O(n− 1
2c )

with x + hn ∈ S1. There exists h̃n with x + h̃n ∈ S2 such that
√

n(hn − h̃n) → 0.

This result is proved in Appendix A.2. Combining the previous two theorems gives the
following useful corollary.

COROLLARY 2.11. Let � be a model that is DDQM at some θ , and M1,M2 ⊂ � be
submodels. If M1,M2 are c-equivalent (resp., c-near-equivalent) at θ then they cannot be

asymptotically distinguished under local alternatives to θ of order O(n− 1
2c ) (resp., o(n− 1

2c )).

All models that intersect are 1-near-equivalent and, therefore, we recover the usual para-
metric rate; we have power only if hn shrinks at n−1/2 or slower. For 1-equivalent models,
this is not enough; a rate of n−1/2 will be too fast for us to tell whether our parameters are in
M1 or M2. In practice, regular models that are 1-equivalent are also 2-near-equivalent, so
any rate quicker than n−1/4 is also too fast.

2.4. Convexity. A second consequence of having 1-equivalent regular models is that it
is not possible to have a parameterization with respect to which both models are convex;
in fact, this is true even under the weaker assumption of overlap. Some automatic model
selection methods such as the lasso (Tibshirani (1996)) rely on a convex parameterization,
usually constructed by ensuring that interesting submodels correspond to coordinate zeroes
(e.g., θ1 = 0). Such selection methods cannot be directly applied to model classes that contain
overlapping models.

THEOREM 2.12. Suppose M1 and M2 are distinct models that overlap at a point θ on
their relative interiors. Then there is no parameterization with respect to which both these
models are convex in a neighbourhood of θ .

PROOF. This is just a statement about sets under differentiable maps with differentiable
inverses; note that tangent cones and spaces are isomorphically preserved under such trans-
formations. We will prove the contrapositive: if two sets C,D with x ∈ C ∩ D are convex (in
a neighbourhood of x) then they do not overlap at x.

The affine hull of any convex set C is the unique minimal affine space A containing C.
Furthermore, by definition of the relative interior, for every x ∈ Cint there is a neighbourhood
of x in which C and A are identical, that is, C coincides with the affine space A at x.
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FIG. 4. Cartoon illustrating why overlapping models cannot be made locally convex. In (a), the red and blue
models intersect at a nonzero angle and so the parameterization can be smoothly transformed to make the models
locally linear. In (b), there is no angle between the models, and this fact is invariant in any smooth reparameteri-
zation.

Now, suppose two sets C and D are both convex and x ∈ Cint ∩ Dint. Then they coincide
with affine spaces say A,B , and hence are their own tangent spaces at x. This implies that
C ∩ D coincides with the affine space A ∩ B , and hence the tangent cone of C ∩ D is just
A∩B . Hence C and D do not overlap. Since isomorphic maps cannot alter the tangent cones
of these sets, this is true regardless of the parameterization chosen. �

Intuitively, one can reparameterize a regular model such that (at least locally to some point
θ ) the model is convex. However, this cannot be done simultaneously for two overlapping
models. This is illustrated in Figure 4. The result fails if θ is not required to be a point on
the relative interior, a counterexample being models M1 = {θ2 ≥ θ2

1 } and M2 = {θ2 ≤ −θ2
1 }

with θ = (0,0).

REMARK 2.13. Many convex methods, including the lasso, proceed by optimizing a
convex function over a parameter space containing all submodels of interest. In the case of
the lasso, this function has ‘cusps’ on submodels of interest that lead to a nonzero probability
that the optimum lies exactly on the model. Theorem 2.12 shows that such a procedure cannot
be convex if the class contains overlapping models, since the submodels themselves cannot be
made convex. Any submodel that is not convex cannot represent a cusp in a convex function
and, therefore, we cannot obtain a nonzero probability of selecting such a model.

The nature of this impossibility result should perhaps not be surprising, since all versions
of the lasso in the context of ordinary linear models place a restriction on the collinearity
of the different parameters in the form of restricted isometry properties or similar (for an
overview see, e.g., Bühlmann and van de Geer (2011)). In the case of 1-equivalent models, as
we move closer to the point of intersection the angle between the two models shrinks to zero,
so no such property could possibly hold. For models that overlap the problem is similar, but
may only apply as we approach from certain directions. The result implies, in particular, that
an algorithm such as the lasso cannot be used directly to learn Bayesian networks, whether
Gaussian or discrete. We expand upon this in Section 4.

If a class of models is nonconvex when parameterized in a canonical way, it may be pos-
sible to reparameterize so that they are all convex, but only if no two models overlap. For
example, suppose we are interested in Gaussian models of marginal independence, that is,
models defined by the pattern of zeroes in the off-diagonal elements of the covariance ma-
trix. The log-likelihood of a multivariate Gaussian with zero mean and covariance matrix �

is

�(�;S) = n

2

{
log det�−1 − tr

(
S�−1)},
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where S is the sample covariance matrix and n is the sample size. This is a simple function of
the inverse covariance matrix �−1—the canonical parameter for this exponential family—
but a complicated function of the mean parameter �. Indeed, while the log-likelihood is
a convex function of �−1, it is typically not as a function of � (see Zwiernik, Uhler and
Richards (2017) for an overview of related problems).

However, if we are prepared to accept some loss of efficiency, there is nothing to stop us
estimating � via a moment matching approach, such as by solving the convex program:

�̂ = arg min��0

{
‖� − S‖2 + ν

∑
i<j

|σij |
}
;

here, � � 0 denotes that � belongs to the convex set of positive definite symmetric matri-
ces. If the penalty ν is chosen to grow at an appropriate rate (nδ for some 1

2 < δ < 1), then
under some conditions on the Fisher information for �, this will still be consistent for model
selection (see, e.g., Rocha, Wang and Yu (2009), Theorem 5).

3. Submodels, equivalence and overlap. In this section, we consider sufficient condi-
tions for models to be c-equivalent or to overlap. We will see that it is often a consequence
of having models whose intersections are themselves expressible as a union of two or more
distinct models. Let M be an algebraic model that can be written as M = V1 ∪V2 for incom-
parable algebraic submodels V1 and V2; in this case, we say M is reducible, and otherwise
irreducible.

3.1. Identifying c-equivalence. For the example in Figure 2, the 1-equivalence of the two
models M1 = {� : X ⊥⊥ Y } and M2 = {� : X ⊥⊥ Y | Z} was closely related to the fact that if
either X ⊥⊥ Z or Y ⊥⊥ Z holds, then M1 and M2 intersect. This means that their intersection
is a reducible model, as it can be nontrivially expressed as the union of two or more models.
It follows that at any points where both the submodels MX⊥⊥Z and MY⊥⊥Z hold, the two
original models are 1-equivalent. This is because any direction in M1 (or M2) away from
the point of intersection M1 ∩ M2 can be written as a linear combination of (limits of)
vectors that lie in one of MX⊥⊥Z or MY⊥⊥Z ; the partial derivatives of the distance between
M1 and M2 in these directions are zero, and so any directional derivative of this quantity is
also zero. This is illustrated in Figure 3(a), which shows two surfaces intersecting along two
lines: in directions that are diagonal to these lines, the two surfaces separate at a rate that is
at most quadratic.

It is not necessary for models to intersect in this manner in order to be 1-equivalent: for
example, the surfaces z = 0 and z = x2 + y2 intersect only at the point (0,0,0) (see Fig-
ure 3(b)). However, many models that are 1-equivalent do intersect along at least two sub-
models, including most of the substantive examples that we are aware of; the time series
models in Section 5.2 are an exception. If c > 2 submodels are involved in the intersection,
then we will see that the original models are c-near-equivalent; consequently asymptotic rates
for local alternatives will be even slower than n−1/4.

To formalize this, we use the next result. Define the normal space of a D1 surface M to
be the orthogonal complement of its tangent space; i.e. Tθ (M)⊥.
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FIG. 5. (a) and (b) are two graphs that differ only by the arrow heads present at 3. (c) A discriminating path of
length k.

THEOREM 3.1. Suppose M1,M2 and N1, . . . ,Nm are Dm manifolds all containing a
point θ , and such that Ni ∩ M1 = Ni ∩ M2 for i = 1, . . . ,m. Suppose also that Tθ (Ni ∩
Mj ) = Tθ (Ni ) ∩ Tθ (Mj ) for each i = 1, . . . ,m and j = 1,2, and further that the normal
vector spaces Tθ (N1)

⊥, . . . ,Tθ (Nm)⊥ all have linearly independent bases. Then M1 and
M2 are m-near-equivalent at θ .

Note that an algebraic set is always a Dm manifold within a ball around a regular point.
In words, there are m distinct submodels on which M1 and M2 intersect; in order to dis-
tinguish between M1 and M2, we need to ‘move away’ from all the submodels Ni . Linear
independence of the normal spaces ensures that we cannot move directly away from several
submodels at once.

PROOF. See the Appendix, Section A.3. �

Perhaps an easier way to think about the normal vector spaces is in terms of the submodels
being defined by ‘independent constraints’; in particular, by constraints defined on differ-
ent parts of the model. If N1 is defined by the set of points that are zeros of the functions
f1, . . . , fk , then Tθ (N1)

⊥ contains the space spanned by the Jacobian J (f1, . . . , fk). If N2 is
similarly defined by g1, . . . , gl , then the condition is equivalent to saying that the Jacobian of
all k + l functions has full rank k + l at θ .

EXAMPLE 3.2 (Discriminating paths). The graphs in Figures 5(a) and (b) are examples
of ancestral graphs, which will be introduced more fully in Section 4. Both of these graphs
are associated with probabilistic models in which X1 ⊥⊥ X3, but in the case of (a) we also
have X1 ⊥⊥ X4 | X2,X3, whereas (b) implies X1 ⊥⊥ X4 | X2.

In other words, for multivariate Gaussian distributions, both models imply ρ13 = 0, and
(b) gives fb(�) = ρ14 − ρ12ρ24 = 0, whereas (a) has

fa(�) = ρ14 − ρ12ρ24 − ρ13ρ34 + ρ12ρ34ρ23 + ρ13ρ24ρ23 − ρ14ρ
2
23

= ρ14 − ρ12ρ24 + ρ12ρ34ρ23 − ρ14ρ
2
23 = 0.

(Recall that � is the correlation matrix for the model.) Note that fa(�) = fb(�) + O(‖� −
I‖3) when ρ13 = 0, which strongly suggests these models should be 3-near-equivalent at
� = I .

Indeed, if any of the three edges between the pairs (1,2), (2,3) and (3,4) are removed,
then the models do become Markov equivalent, that is, they represent the same conditional
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independences and, therefore, are identical. In the case of multivariate Gaussian distributions,
this corresponds to any of the (partial) correlations ρ12, ρ23 or ρ34·12 being zero. Applying
Theorem 3.1 shows that these models are 3-near-equivalent at points where all variables are
independent.

This example can be expanded to arbitrarily long discriminating paths of the kind shown in
Figure 5(c): these differ only by the edges incident to the vertex k, and this makes them distin-
guishable. However, if any of the edges (i, i + 1) for i = 1, . . . , k are missing, the submodels
are Markov equivalent, and hence the Gaussian graphical models are k-near-equivalent. This
means that the ‘discrimination’ between different models that is theoretically possible may be
quite limited in practice, absent extraordinarily large sample sizes. We provide a simulation
study to illustrate this in Section 4.3.

This example has serious ramifications for the FCI (fast causal inference) algorithm, which
uses discriminating paths to orient edges (Zhang (2008)). It suggests only very strong depen-
dence will allow an unambiguous conclusion to be reached for moderate to long paths.

3.2. Identifying overlap. Overlap between two regular models occurs when their in-
tersection is not itself a regular model, but rather a union of such models. Unlike with
c-equivalence, there is no requirement that normal spaces be linearly independent—
incomparability is enough.

THEOREM 3.3. Let M1 and M2 be algebraic models, regular at some θ ∈ M1 ∩M2,
and suppose that M1 ∩M2 is reducible into two (or more) further models that have incom-
parable tangent cones at θ . Then the models M1 and M2 overlap at θ .

This condition is similar in spirit to Theorem 3.1, but note that here we do not require
the normal vector spaces of the two submodels to be linearly independent at the point of
intersection, only that the tangent spaces of those pieces are incomparable.

PROOF. Let M1 ∩M2 = V1 ∪ V2 be the reduction into submodels. Taking θ ∈ V1 ∩ V2,
note that Cθ (M1 ∩ M2) = Cθ (V1 ∪ V2) = Cθ (V1) ∪ Cθ (V2), the second equality following
from the definition of a tangent cone. Now, since V1,V2 ⊆ M1 and M1 is regular at θ ,
this implies that any vector in Cθ (V1) + Cθ (V2) is contained in Cθ (M1); similarly for M2.
Therefore, the condition for not overlapping,

Cθ (M1 ∩M2) = Cθ (M1) ∩ Cθ (M2),

holds only if Cθ (V1) + Cθ (V2) ⊆ Cθ (V1) ∪ Cθ (V2). This occurs only if one of Cθ (V1) or
Cθ (V2) is a subspace of the other, but this was ruled out by hypothesis. �

EXAMPLE 3.4. As already noted in Examples 1.2 and 2.4, the Gaussian graphical mod-
els defined respectively by the independences M1 : X ⊥⊥ Y and M2 : X ⊥⊥ Y | Z are 1-
equivalent at diagonal covariance matrices, but the corresponding discrete models are not.
This is because—taking X,Y,Z to be binary—the three-way interaction parameter

λXYZ ≡ 1

8

∑
x,y,z∈{0,1}

(−1)|x+y+z| logP(X = x,Y = y,Z = z)

is zero in the conditional independence model,6 but essentially unrestricted in the marginal
independence model. However, the intersection of M1 and M2 for binary X,Y,Z is the set

6This is equivalent to
∏

x+y+z even p(x, y, z) =∏
x+y+z odd p(x, y, z), and so certainly still a polynomial con-

dition.
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of distributions such that either X ⊥⊥ Y,Z or Y ⊥⊥ X,Z, and these correspond respectively to
the submodels

λXY = λXZ = λXYZ = 0 or λXY = λYZ = λXYZ = 0,

also defined by zeros of polynomials in P (see Appendix B for full definitions). These mod-
els satisfy the conditions of Theorem 3.3 at points of total independence ⊥⊥ {X,Y,Z} and,
therefore, M1 and M2 do overlap.

4. Directed and ancestral graph models. In this section, we focus on two classes of
graphical models: Bayesian network models, and the more general ancestral graph models.
A more detailed explanation of the relevant theory can be found in Spirtes, Glymour and
Scheines (2000) and Richardson and Spirtes (2002).

4.1. Ancestral graphs. A maximal ancestral graph (MAG) is a simple, mixed graph with
three kinds of edge, undirected (−), directed (→) and bidirected (↔). Special cases of an-
cestral graphs include directed acyclic graphs, undirected graphs and bidirected graphs, but
not chain graphs. There are some technical restrictions on the structure of the graph which
we omit here for brevity: the key detail is that—under the usual Markov property—the model
implies a conditional independence constraint between each pair of vertices if (and only if)
they are not joined by any sort of edge in the graph (Richardson and Spirtes (2002)). The
set that needs to be conditioned upon to obtain the independence depends on the presence of
colliders in the graph. A collider is a pair of edges that meet with two arrowheads at a vertex
k: for example, i → k ← j or i → k ↔ j . Any other configuration is called a noncollider.
We say the collider or noncollider is unshielded if i and j are not joined by an edge.

The special case of an ancestral graph model in which all edges are directed yields a
Bayesian network (BN) model, widely used in causal inference and in machine learning
(Bishop (2006), Pearl (2009)). The additional undirected and bidirected edges allow MAGs
to represent the set of conditional independence models generated by marginalizing and con-
ditioning a BN model. Ancestral graphs are therefore useful in causal modelling, since they
represent the conditional independence model implied by a causal structure with hidden and
selection variables.

EXAMPLE 4.1. Consider the maximal ancestral graphs in Figure 5(a) and (b). The graph
in (a) is fully directed and represents the model defined by the conditional independences:

X1 ⊥⊥ X3, X1 ⊥⊥ X4 | X2,X3.

The graph in (b), on the other hand, represents

X1 ⊥⊥ X3, X1 ⊥⊥ X4 | X2.

The difference in the conditioning sets above is due to the fact that 2 ← 3 → 4 is a noncollider
in the first graph, but a collider in the second: 2 ↔ 3 ↔ 4.

An independence model, I , is a collection of (conditional) independence statements of the
form Xi ⊥⊥ Xj | XC , for i �= j and possibly empty C. We will say I is simple if it can be
written so that it contains at most one independence statement for each unordered pair {i, j}.
If there is no independence statement between Xi,Xj in a simple independence model, we
say i and j are adjacent.

THEOREM 4.2. Let I1,I2 be simple independence models on the space of p × p Gaus-
sian covariances matrices. Then the two models are 2-near-equivalent if they have the same
adjacencies.

Further, if the two models have different adjacencies then they are 1-equivalent on at most
a null set within any parametric independence model.
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PROOF. Let E denote the set of adjacencies in a simple independence model I . Parame-
terizing using the set of correlation matrices, we will show that the tangent space of I at the
identity matrix I is

TI (I) = ⊕
i<j

{i,j}∈E

Dij ,(2)

where the matrices Dij have zeroes everywhere except in the (i, j) and (j, i)th entries, which
are 1.

If {i, j} ∈ E, it is easy to see that I + λDij is in the model for all λ ∈ (−1,1), since
this means that all conditional independences except those between Xi and Xj hold; hence
Dij ∈ TI (I). Conversely, if i and j are not adjacent, then some independence restriction
Xi ⊥⊥ Xj | XC holds, so

f (�) = �ij − �iC(�CC)−1�Cj = 0.

The derivative of f at � = I is just Dij , so it follows that Dij /∈ TI (I). Hence the tangent
space at I is in the form (2). By Proposition 2.3, the models are 1-equivalent, and since these
constraints are linearly independent at � = I , they are regular and, therefore, also 2-near-
equivalent.

Conversely, suppose that there is some pair i, j subject to the restriction Xi ⊥⊥ Xj | XC

in I1 but not to any such restriction in I2. By the above analysis, these models have distinct
tangent spaces at � = I . Since these are models defined by polynomials in �, the set of points
on which the tangent spaces are identical (say W ) is an algebraic model; its intersection with
any irreducible model V is therefore either equal to V or of strictly smaller dimension than V

(indeed this follows from the usual definition of dimension in such sets; see Bochnak, Coste
and Roy (2013), Section 2.8). However, if the identity matrix is contained in V then clearly
W ∩V ⊂ V , since we have established that the tangent spaces do not intersect at the identity.
Hence W ∩ V has smaller dimension, and is a null subset of V . �

COROLLARY 4.3. Two Gaussian maximal ancestral graph models are 2-near-equivalent
if they have the same adjacencies (when viewed either as an independence model or a graph),
and are otherwise 1-equivalent almost nowhere on any submodel of independence.

PROOF. This follows from the pairwise Markov property of Richardson and Spirtes
(2002). �

We conjecture that, in fact, two ancestral graph models of the form given in Theorem 4.2
will overlap nowhere in the set of positive definite correlation matrices if they do not share
the same adjacencies (rather than almost nowhere). It is not hard to see that this holds for
models of different dimension, since these models are regular and therefore will share this
dimension everywhere. To prove it in general seems challenging; the result above is sufficient
for most practical purposes.

COROLLARY 4.4. Let G,H be chain graphs with the same adjacencies under any of the
interpretations given in Drton (2009b) (not necessarily the same interpretation). Then the
corresponding models are 2-near-equivalent.

Note that Remark 5 of Drton (2009b) makes clear that pairwise independences are suffi-
cient to define Gaussian chain graph models.
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FIG. 6. (a) and (b) two Bayesian networks which do not overlap but are not consistent with a single topological
order. (c) A simple causal model.

4.2. Discrete data. The picture is slightly rosier if we consider discrete data instead. A
well-known result of Chickering (1996) shows that finding an optimal Bayesian network for
discrete data is a NP-hard problem; in other words, it is computationally difficult. However,
we find that from a statistical point of view, it is somewhat easier than in the Gaussian case.

THEOREM 4.5. No two distinct, binary, maximal ancestral graph models are 1-
equivalent at the model of total independence.

PROOF. See the Appendix, Section C. �

Although distinct, discrete MAG models (and, therefore, BN models) are never 1-
equivalent, they do still overlap, as our next result demonstrates.

PROPOSITION 4.6. Let M(G1),M(G2) be two discrete Bayesian network models such
that i → k ← j is an unshielded collider in G1 but an unshielded noncollider in G2. Then, if
Xk is binary, the two models overlap.

PROOF. See the Appendix, Section C. �

REMARK 4.7. The condition that some variables are binary is, in fact, unnecessary; see
Remark C.2 for more details on the general finite discrete case.

Bayesian network models that are consistent with a single topological ordering of the ver-
tices do not overlap, because their intersection is always another BN model. We can therefore
work with a class defined by the subgraphs of a single complete BN in order to avoid the
problems associated with overlap.

This leads to the question of whether any other, perhaps larger, subclasses share this prop-
erty. The previous result shows that any such subclass would be restricted fairly severely,
since any two graphs must never disagree about a specific unshielded collider. Note that the
result does not imply that it is necessary for graphs to be consistent with a single topological
order in order for the corresponding models not to overlap; the graphs in Figure 6(a) and (b)
provide a counterexample to this.

The easiest way to ensure that a class of models does not overlap at the independence
model is to associate each potentially missing edge with a single constraint using a pairwise
Markov property, as with the set of BN models that are consistent with a given topological
order, or the set of undirected graph models.

Note that Proposition 4.6 and Theorem 2.12 combine to show that the impossibility result
discussed in Remark 2.13 applies to binary Bayesian networks, and we will never be able to
use a lasso-like method to consistently select from this class under standard conditions.
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FIG. 7. Ability to discriminate between Gk and G′
k for various k and s. A sample of 2500 data sets were drawn

from the Gaussian graphical model according to the scheme described in the text, with effect sizes ρs = 0.4×2−s ;
the sample size was fixed at ninit ×22ks for some ninit. The y-axis gives the proportion of times Gk correctly gave a
lower deviance than G′

k . Each solid line corresponds to a value of k ∈ {2,3,4,5} and a corresponding sample size
ninit ∈ {32,250,800,5000} (dashed lines correspond to an initial sample size of 4ninit). The flattening out each
line shows agreement with the prediction of Corollary 2.11. Note that the vertical ordering of the different lines is
merely a function of the choice of ninit. Larger values of k and s were excluded because the relevant sample sizes
grew too quickly (k = s = 5 corresponds to n = 5.6 × 1018 for the solid line).

4.3. Discriminating paths. Example 3.2 introduced the notion of a discriminating path,
which allows the identification of colliders in an ancestral graph. Formally, define the an-
cestral graphs Gk and G′

k as having vertices 1, . . . , k + 1, with a path 1 ↔ 2 ↔ ·· · ↔ k and
directed edges from each of 2, . . . , k − 1 to k + 1. In addition, Gk has the edges k ↔ k + 1,
while G′

k has k → k + 1; the graphs are shown in Figure 5(c), with only the final edge left
ambiguous. The path from 1 to k + 1 is known as a discriminating path, and its structure
allows us to determine whether there is a collider at k (as in Gk) or not (as in G′

k).
As noted already, if any of the edges i ↔ i + 1 for i = 1, . . . , k − 1 are missing (i.e.,

if Xi ⊥⊥ Xi+1), then the two models coincide. In addition, if the final edge between k and
k + 1 is missing (so Xk+1 ⊥⊥ Xk | X1, . . . ,Xk−1), the two models coincide. We consider the
Gaussian graphical models associated with these graphs and, by application of Theorem 3.1,
the two ancestral graph models for Gk and G′

k are k-near-equivalent at points where these
additional independences hold.

We now perform a small simulation to show that, in order to maintain power as the effect
sizes shrink, the sample sizes need to grow at the rates claimed in Corollary 2.11. To do
this, we take the structural equation model parameterization from Richardson and Spirtes
(2002), Section 8; for Gk we set the weight of each edge on the discriminating path to be
ρs = 0.4 × 2−s , and of the other edges to be 0.5. We take a sample size of ninit × 22ks

for some ninit, so that this grows at the rate suggested by Corollary 2.11 to keep the power
constant in s. The plot in Figure 7 shows that the simulations agree with the predictions of
that result, since the power stays roughly constant as s grows.

Table 1 lists some of the colossal sample sizes that are needed to keep power constant in
longer discriminating paths as effect sizes shrink. In the k = 3 case, we have approximately
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TABLE 1
Table giving effect sizes ρs and sample sizes used in each of the graphs Gk for k = 2,3,4,5, and corresponding
to the solid lines in Figure 7. For k = 4,5, the sample sizes grow extremely quickly, and some larger entries are
excluded because they led to numerical problems. ‘acc.’ gives the proportion of runs for which the correct graph

was selected

k = 2 k = 3 k = 4 k = 5

s ρs n acc. n acc. n acc. n acc.

0 0.4 32 0.703 250 0.776 800 0.763 5000 0.796
0.5 0.283 128 0.681 2000 0.730 12,800 0.669 160,000 0.704
1 0.2 512 0.679 16,000 0.711 204,800 0.639 5,120,000 0.667
1.5 0.141 2048 0.677 128,000 0.707 3,276,800 0.651 163,840,000 0.666
2 0.1 8192 0.660 1,024,000 0.693 52,428,800 0.652 5.24 × 109 0.655
2.5 0.071 32,768 0.681 8,192,000 0.695 838,860,800 0.645 1.68 × 1011 0.657
3 0.05 131,072 0.654 65,536,000 0.699 1.34 × 1010 0.628 5.37 × 1012 0.650
3.5 0.035 524,288 0.674 524,288,000 0.690 2.15 × 1011 0.650
4 0.025 2,097,152 0.659 4.19 × 109 0.704 3.44 × 1012 0.652
4.5 0.018 8,388,608 0.684 3.36 × 1010 0.682
5 0.012 33,554,432 0.672 2.68 × 1011 0.691

70% accuracy when ρ = 0.2 and n = 16,000, but to maintain this when ρ = 0.1 we need
n = 1,024,000. For k = 4, the respective sample sizes are an increase from n = 2 × 105 to
n = 5×107 (a 256-fold increase), and for k = 5 from n = 5×106 to n = 5×109 (a 1024-fold
increase).

5. Other classes of model.

5.1. Undirected graphs. An undirected graphical model associates a simple undirected
graph with a collection of probability distributions. Under the pairwise Markov property, the
model consists of distributions such that Xi ⊥⊥ Xj | XV \{i,j} whenever i and j are not joined
by an edge in the graph. For Gaussian graphical models, this is equivalent to enforcing a zero
in the (i, j) entry in the inverse covariance matrix. It is a simple matter to see that no two
distinct undirected Gaussian graphical models ever overlap.

This helps to explain why undirected models are fundamentally easier to learn than other
classes, something which has been much exploited in high-dimensional statistics. For ex-
ample, the graphical lasso (Friedman, Hastie and Tibshirani (2008), Witten, Friedman and
Simon (2011)) and neighbourhood selection (Meinshausen and Bühlmann (2006)) methods
allow very fast consistent model selection amongst undirected Gaussian graphical models,
including in high-dimensional settings.

5.2. Time series. The autoregressive moving average process of order (p, q), or
ARMA(p, q) model, is a time series model that assumes

Xt = εt +
p∑

i=1

φiXt−i +
q∑

i=1

θiεt−i , t ∈ Z,

where εt
i.i.d.∼ N(0, σ 2) and the parameters φ = (φi)

p
i=1 and θ = (θi)

q
i=1 are unknown. The

model is stationary and Gaussian and, therefore, parameterized by σ 2 and the autocorrela-
tions, that is, γi ≡ Cor(Xt ,Xt+i) for i = 1,2, . . .. Let the space spanned by γi be Li .

The special cases where p = 0 and q = 0 are respectively the MA(q) and AR(p) models.
These are identifiable, and the unique parameter values that lead to independence of the Xt s
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FIG. 8. Two causal models on five variables, differing in the direction of the L − B edge. The variable U is
assumed to be unobserved.

are (φ, θ) = (0,0). It is not hard to see that the derivative of the joint correlation matrix with
respect to either φi or θi is just Li . Hence the tangent space of an AR(p) or MA(p) model at
this point is of the form

C(0,0)(Mp) =
p⊕

i=1

Li,

and so the two AR(p) and MA(p) models are 1-equivalent at the point of joint indepen-
dence. This suggests it will be hard to distinguish between these two types of process
when correlations are weak—though this may not matter if the aim of an analysis is pre-
dictive.

5.3. Nested Markov models. Richardson et al. (2017) introduce nested Markov models,
which are defined by a generalized form of conditional independence that may hold under a
Bayesian network model with hidden variables. For example, the two causal Bayesian net-
works in Figure 8 differ only in the direction of a single edge (that between L and B). Assum-
ing that the variable U is unobserved, the model (a) implies a single observable conditional
independence constraint: Y ⊥⊥ A | B .

The model in (b) does not imply any conditional independence constraint over the observed
variables, but does impose the restriction that

p
(
y | do(a, b)

)≡∑
l

p(l | a) · p(y | a, l, b)

does not depend on a. This can be interpreted as the statement that A does not causally affect
Y , except through B . Note that, if L ⊥⊥ B | A, then

p
(
y | do(a, b)

)≡∑
l

p(l | a) · p(y | a, l, b)

=∑
l

p(l | a, b) · p(y | a, l, b)

= p(y | a, b),

so the statement that this quantity does not depend upon a is the same as the ordinary inde-
pendence statement Y ⊥⊥ A | B; a similar conclusion can be reached if Y ⊥⊥ L | A,B . Thus
there are two distinct submodels along which the two models in Figure 8 intersect. These
two submodels also have linearly independent normal vector spaces because they correspond
to restrictions on p(a | y, b) and p(l | a, y, b). It follows that the two models are 2-near-
equivalent at points where Y ⊥⊥ A,L | B (where both submodels hold) by Theorem 3.1; note
that unlike for the case of ancestral graph models, this applies even in the case of discrete
variables.

So, even though in principle one can distinguish the two models in Figure 8 and deter-
mine the orientation of the L − B edge, in practice the distinction may be hard to show with
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data. This suggests it will be very difficult to learn the correct model without further infor-
mation, something borne out by the simulations in Shpitser et al. (2013). Interestingly, the
approach in that paper of setting higher-order parameters to zero in order to equalize param-
eter counts between models may actually have made learning significantly harder, since in
some cases this means removing the only directions in the tangent space that differ between
models.

6. Related phenomena.

6.1. Double robustness. The phenomenon of double robustness of estimators has been
exploited to improve estimation in causal models (Scharfstein, Rotnitzky and Robins (1999));
see Kang and Schafer (2007) for an overview. The essential element of double robustness is to
choose an estimating equation with two components, such that the solution is a

√
n-consistent

estimator when one of the two parts is correctly specified, even if the other is misspecified.
For simplicity, we will just consider examples where we assume independence rather than
fitting a model.

Consider the simple causal model depicted in Figure 6(c), and suppose we are interested
in the causal effect of a binary variable X on the expectation of Y , but there is a (poten-
tially continuous) measured confounder Z. The causal distribution for X on Y is given by
p(y|do(x)) =∑

z p(z) · p(y|x, z); this is generally different from the ordinary conditional
p(y|x) =∑

z p(z|x) · p(y|x, z).
What happens if we use the ordinary conditional anyway? One can easily check that

p(y|x) = p(y|do(x)) if either X ⊥⊥ Z or Y ⊥⊥ Z | X, and hence the set of distributions where
our estimate is correct contains the union of points MX⊥⊥Z ∪ MY⊥⊥Z|X . If we apply Theo-
rem 3.1, we find that any error in estimating the causal effect will be quadratic in the distance
from the point where Z ⊥⊥ X,Y .

6.2. Triple robustness. Another phenomenon known as triple robustness7 is observed in
some causal models related to mediation (Tchetgen Tchetgen and Shpitser (2012)). In this
case, an estimator will be consistent provided at least two out of three other quantities are
correctly specified. Here, we introduce another result related to Theorem 3.1.

PROPOSITION 6.1. Let N1, . . . ,Nm be algebraic submodels containing 0, and let f be
a polynomial such that f (x) = 0 for any x ∈ Ni ⊂ � for i = 1, . . . ,m. Suppose also that the
tangent spaces T0(Ni ) jointly span �. Then f (x) = O(‖x‖2).

PROOF. For any twice differentiable function with f (0) = 0, whichever direction we
move away from 0 in can be written as a linear combination of directions in the tangent
spaces of submodels Ni . It follows that the directional derivative of any such function is
zero, in any direction. Hence f (x) = O(‖x‖2). �

In light of this, suppose we have three submodels M1,M2,M3 each defined by con-
straints on linearly independent parts of the full model �, and such that an estimator is con-
sistent on the intersection of any two of them. The condition on the definition of the Mi

means that their normal vector spaces are linearly independent, so any vector is in the tangent
space of at least two such submodels. Their pairwise intersections thus satisfy the conditions
of the theorem, and the error in estimating the relevant parameter is quadratic in the distance
to the joint intersection M1 ∩M2 ∩M3.

7Perhaps misleadingly, since it is strictly weaker than double robustness.
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6.3. Post-double-selection. Belloni, Chernozhukov and Hansen (2014) consider the
problem of estimating a causal effect p(y|do(x)) in the presence of a high-dimensional mea-
sured confounder ZI , I = {1, . . . , p} where p � n. We can try to find a subset S ⊆ I such
that S is much smaller than I , and ZS is sufficient to control for the confounding, that is,
p(y|do(x)) =∑

zS
p(zS)p(y|x, zS). Formally, this will be satisfied if we ignore any Zi such

that Zi ⊥⊥ X | Z−i or Zi ⊥⊥ Y | X,Z−i . However, in finite samples selecting variables cre-
ates an omitted-variable bias, in which the decision boundary of whether to drop a particular
variable leads to a bias of order O(n−1/2) at some points in the parameter space.

If we only exclude components of Zi for which both Zi ⊥⊥ X | Z−i and Zi ⊥⊥ Y | X,Z−i ,
then the order of the bias on our causal estimate is effectively squared and becomes O(n−1);
this is because—for the same reason as in the discussion of double robustness—the bias
induced by a component Zi is at most quadratic in the distance of the true distribution from
the intersection of these two independences. Since this bias is small compared to the sampling
variance, it can effectively be ignored; this idea is referred by Belloni, Chernozhukov and
Hansen (2014) to as post-double-selection, and can be viewed as another consequence of the
local geometry of the model.

7. Algorithms for learning models with overlap. Suppose we have a class of models
Mi that overlap but are not 1-equivalent, that is, the models all have different tangent cones.
We have seen already that overlapping models place restrictions on one class of computa-
tionally efficient methods, because they cannot be made convex. This suggests that a method
which attempts to learn the (linear) tangent cone rather than selecting the model directly may
be computationally advantageous. This can be achieved by learning from a set of ‘surrogate’
models that have the same tangent spaces as the original models, but that do not overlap.

To take a simple example, consider again the graphical models in Figure 2 for binary
variables. Letting

λXY = 1

8

∑
x,y,z∈{0,1}

(−1)|x+y| logP(X = x,Y = y,Z = z),

then the model M2 in (b) consists of the zero parameters: λXY = λXYZ = 0, while (a) in-
volves log-linear parameters over the X,Y -margin M1 : λ′

XY = 0. This apparently makes
model selection tricky because some models involve zeroes of ordinary log-linear parame-
ters, and some of marginal log-linear parameters.

However, one could try replacing M1 with a model that corresponds to the zero of the
ordinary log-linear parameter, for example, M′

1 : λXY = 0. This has the same tangent space
as M1 at the uniform distribution, and so it is ‘close’ to M1 in a precise sense. This suggests
that if we pursued a model selection strategy for ordinary log-linear parameters and learned
λXY = 0 but λXYZ �= 0 (i.e. we chose M′

1), then we could conclude that this is sufficiently
similar to M1 to select this model from the graphical class.

7.1. Model selection. Define �i = 〈ei〉 to be the vector space spanned by the ith coordi-
nate axis. Suppose we have a class of regular algebraic models Mi ⊆ � ⊆R

k such that each
model has a tangent space at θ = 0 defined by a subset of coordinate axes, that is, for each
model there is some set c(Mi ) ⊆ {1, . . . , k} such that

C0(Mi ) = ⊕
j∈c(Mi )

�j .

Suppose further that our class of models is such that c(Mi ) �= c(Mj ) for any i �= j . We have
already seen that, if two models overlap, then it may be computationally difficult to learn the
correct one due to a lack of convexity. We will show that, under certain assumptions about the
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true parameter being sufficiently close to θ = 0, we can learn the tangent space itself, thereby
circumventing the models’ lack of convexity.

Denote the sparsity pattern of a parameter by c(θ) = {i : θi �= 0}; then θ ∈ T0(M) implies
that c(θ) ⊆ c(T0(M)) = c(M). However, note that θ ∈M does not imply this, and in general
the sparsity patterns of parameters in M is arbitrary.

Suppose we have a model selection procedure which returns a set Ŝ estimating S ⊆
{1, . . . , k} such that θS �= 0 and θSc = 0. We will assume that the procedure is consistent, in
the sense that if θn

Sc = o(n−1/2) and |θn
s | = ω(n−1/2) for each s ∈ S, we have P(Ŝ = S) → 1.

These conditions are satisfied by many common model selection methods such as BIC, or an
L1-penalized selection method with appropriate penalty (and with Fisher information matrix
satisfying certain irrepresentability conditions, Nardi and Rinaldo (2012)).

The following result shows that we can adapt a model selection procedure of this kind
to learn models that overlap, by replacing each (possibly nonconvex) model of interest by a
convex surrogate model with the same tangent space.

THEOREM 7.1. Consider a sequence of parameters of the form θn = θ0 + n−γ h +
O(n−2γ ) such that each θn ∈ M; here, 1

4 < γ < 1
2 and hi �= 0 for any i ∈ c(M). Suppose

our model selection procedure provides a sequence of parameter estimates θ̃n.
Then P(c(θ̃n) = c(M)) → 1 as n → ∞.

PROOF. If i /∈ c(M), then θni = O(n−2γ ) = o(n−1/2) since γ > 1
4 , while if i ∈ c(M)

then θni = �(n−γ ) = ω(n−1/2) since γ < 1
2 . By the conditions on our model selection pro-

cedure, then we have the required consistency. �

The condition γ > 1
4 is to ensure that the bias induced by using the surrogate model is too

small to detect at the specific sample size, and that our procedure will set the relevant param-
eters to zero. Slower rates of convergence (i.e., 0 < γ ≤ 1

4 ) could also lead to a satisfactory
model selection procedure if we were simply to subsample our data or otherwise ‘pretend’
that n is smaller than it actually is. If γ > 1

2 , on the other hand, we will not have asymptotic
power to identify the truly nonzero parameters.

Note that P(c(θ̃n) = c(θn)) does not tend to 1, since the sparsity pattern of the true param-
eter is not the same as that of the tangent space of the model: it is merely ‘close’ to having
the correct sparsity.

The assumption that θn tends to 0 at the required rate may seem rather artificial: some
assumption of this form is unavoidable, simply because our results only hold in a neighbour-
hood of points of intersection. The precise rate at which θn → 0 just needs to be such that
‘real’ effects do not disappear faster than we can statistically detect them (i.e., slower than
n−1/2 → 0), and that any other effects shrink fast enough that they are taken to be zero. Any
more realistic framework would require conditions on the global geometry of the models, and
would be extremely challenging to verify.

7.2. Application to Bayesian networks. Suppose that we have a sequence of binary dis-
tributions pn, with ‖pn − p0‖ = O(n−γ ) for 1

4 < γ < 1
2 , where p0 is the uniform distribu-

tion, and such that each pn is Markov with respect to a Bayesian network G; assume also
that λij = ω(n−1/2) if i, j are adjacent, and λijk = ω(n−1/2) if i → k ← j is an unshielded
collider. Then a consistent method to determine G would be as follows:

• select the model for pn using the log-linear lasso with penalty ν = nδ for some 1
2 < δ < 1;

• then find the graph. Asymptotically, the sparsity pattern of the log-linear model is the same
as that of the original graph, so this can be done by simply finding the graph with skeleton
given by i − j when λij �= 0 and orienting unshielded triples as colliders i → k ← j if and
only if λijk �= 0.
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This is far from an optimal approach, but does give an idea of how one might be able
to overcome the nonconvexity inherent to overlapping models. The algorithm could also be
extended to ancestral graphs, via Theorem 4.5.

8. Discussion. We have proposed that the geometry of two models at points of intersec-
tion is a useful measure of how statistically difficult it will be to distinguish between them,
and shown that when models’ tangent spaces are not closed under intersection this restricts
the possibility of using convex methods to perform model selection in the class. We have also
given examples of model classes in which this occurs and noted that in several cases, model
selection is indeed known to be difficult.

We suggest that special consideration should be given in model selection problems to
whether or not the class contains models that overlap or are 1-equivalent and—if it does—
to whether a smaller and simpler model class can be used instead. Alternatively, additional
experiments may need to be performed to help distinguish between models. The results in this
paper provide a point of focus for new model selection methods and also for experimental
design. If we are able to work with a class of models that is less rich and, therefore, easier to
select from, then perhaps we ought to. If we cannot, it is useful to know in advance at what
points in the parameter space it is likely to be difficult to draw clear distinctions between
models, so that we can either power our experiments appropriately, or report that we do not
know which of several models is correct.

APPENDIX A: TECHNICAL RESULTS

A.1. Asymptotics. We start with the definition of differentiability in quadratic mean.

DEFINITION A.1. Let (pθ : θ ∈ �) be a class of densities with respect to a measure μ

indexed by some open � ⊆ R
k . We say that this class is differentiable in quadratic mean

(DQM) at θ if there exists a vector �̇(θ) ∈R
k such that∫ [√

pθ+h − √
pθ − 1

2
hT �̇(θ)

√
pθ

]2
dμ = o

(‖h‖2).
Recall also our definition of a model that is doubly DQM.
Definition 2.8 Say that pθ is doubly differentiable in quadratic mean (DDQM) at θ ∈ M

if for any sequences h, h̃ → 0, we have∫ (√
pθ+h −√p

θ+h̃
− 1

2
(h − h̃)T �̇(θ + h̃)

√
p

θ+h̃

)2
dμ = o

(‖h − h̃‖2).
Recall also that DDQM reduces to DQM in the special case h̃ = 0, and that (by symmetry)

we could replace �̇
θ+h̃

√
p

θ+h̃
by �̇θ+h

√
pθ+h. On the other hand, it is strictly stronger than

DQM at θ .

EXAMPLE A.2. Suppose that (X,Y )T ∼ N(η, I ) where η(θ) = (θ1θ
1/3
2 , θ2). We claim

that pθ is DQM at (0,0) but not DDQM.
Obviously, η(0,0) = (0,0) and pη is DQM at η = (0,0), so∫ (√

pη − √
p0 − ηT �̇(0)

√
p0
)2

dη = o
(‖η‖2).

But now for any θ , we have

pθ

p0
= exp

{
−1

2

[
(x − η1)

2 + (y − η2)
2 − x2 − y2]}
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FIG. 9. Surface plot of the function f (x, y) = xy1/3.

= 1 + xθ1θ
1/3
2 + yθ2 + o

(‖θ‖)
= 1 + yθ2 + o

(‖θ‖),√
pθ

p0
= 1 + 1

2
yθ2 + o

(‖θ‖).
Hence

E0

(√
pθ

p0
− 1 − θ2Y

)2
= o

(‖θ‖2),
and pθ is also DQM at (0,0).

Now let θn = (n−1/6, n−1/2) and θ̃ n = (n−1/6,−n1/2). Then ηn = (n−1/3, n−1/2) and
η̃n = (−n−1/3,−n−1/2). In particular, the sequence ‖ηn − η̃n‖ is of order n−1/3, and hence
we will have power to choose between the two sequences.

This (somewhat pathological) construction has a ‘wrinkle’ in the surface that maps θ to
η; see Figure 9 for an illustration. The wrinkle is too small for DQM to fail at θ = 0, but
pairs of points close to the wrinkle and to each other in θ space may be far apart in η space.
This model therefore fails to satisfy the condition of

√
pθ being continuously differentiable

at θ = (0,0).

LEMMA A.3. Let pθ be DDQM at θ ∈ �. Then the Fisher information I (θ) ≡
E�̇(θ)�̇(θ)T exists and is continuous in a neighbourhood of θ ∈ �.

PROOF. Since pθ is DDQM at θ it is also DQM, and hence I (θ) exists by van der Vaart
(1998), Theorem 7.2. In addition, the symmetry of DDQM shows that
limt→0 hT I (θ + th)h = hT I (θ)h for any h, so this matrix must indeed exist in a neigh-
bourhood of θ .

By the symmetry property noted above,
∫ [(h − t h̃)T �̇(θ + t2h̃)

√
p

θ+t2h̃
]2 dμ = (h −

t h̃)T I (θ + t2h̃)(h − t h̃) and (h − t h̃)T I (θ + th)(h − t h̃) have the same limit, and these are
in turn the same as the respective limits of hT I (θ + t2h̃)h and hT I (θ + th)h. Since h and h̃

are arbitrary, this shows that I (θ) is continuous at θ . �

We now prove Theorem 2.9, closely following the proof of Theorem 7.2 of van der Vaart
(1998).

PROOF OF THEOREM 2.9. Let pn and p̃,n respectively, denote pθ+hn and p
θ+h̃n

. By

DDQM we have that
√

n(
√

p
n
−√p̃n) − 1

2kT �̇(θ + h̃n)
√

p̃n converges in quadratic mean to

0; since the second term is bounded in squared expectation (given by kT I (θ + h̃n)k/4) so is
the first, and hence nγ (

√
p

n
−√p̃n) → 0 in quadratic mean for any γ < 1

2 .
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Let gn = kT �̇(θ + h̃n). Note that DDQM implies that 1
2gn

√
p̃n has the same limit as√

n(
√

p
n
−√p̃n). By continuity of the inner product, we have

lim
n

E
θ+h̃n

gn = lim
n

∫
gnp̃n dμ

= lim
n

∫ 1

2
gn

√
p̃n2

√
p̃n dμ

= lim
n

√
n

∫
(
√

pn −
√

p̃n)(
√

pn +
√

p̃n) dμ

= lim
n

√
n

∫
(pn − p̃n) dμ

= 0,

since
∫
(pn − p̃n) dμ = 1 − 1 = 0 for all densities pn, p̃n.

Let Wni = 2(
√

pn/p̃n(Xi) − 1) where Xi ∼ p̃n. Then

nEWni = 2n

∫ √
pnp̃n dμ − 2n = −n

∫
(
√

pn −
√

p̃n)
2 dμ,

which, by the DDQM condition, has the same limit as

−1

4
kT (

E
θ+h̃n

�̇(θ + h̃n)
T �̇(θ + h̃n)

)
k = −1

4
kT I (θ + h̃n)k.

Then

Var
θ+h̃n

(∑
i

Wni − 1√
n

∑
i

gn(Xi)

)

≤ E
θ+h̃n

(√
nWni − gn(Xi)

)2
=
∫ (√

nWni − gn(Xi)
)2

p̃n dμ

(3)
=
∫ (√

n2(

√
pn/p̃n − 1) − kT �̇(θ + h̃n)

)2
p̃n dμ

=
∫

4
(√

n(
√

pn −
√

p̃n) − 1

2
kT �̇(θ + h̃n)

√
p̃n

)2
dμ

= o(1)

by DDQM. It follows from all this that the sequence of random variables

∑
i

Wni − 1√
n

∑
i

gn(Xi) + 1

4
kT I (θ + h̃n)k

has mean and variance tending to zero, and hence they converge to zero in probability.
Using a Taylor expansion, we obtain

log
n∏

i=1

pθ+hn

p
θ+h̃n

(Xi) = 2
n∑

i=1

log(1 + Wni/2)

=
n∑

i=1

Wni − 1

4

n∑
i=1

W 2
ni + 1

2

n∑
i=1

W 2
niR(Wni)

(4)
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for some function R such that limx→0 R(x) = 0. By the right-hand side of (3), we have
nW 2

ni = gn(Xi)
2 + Ani for some Ani such that E|Ani | → 0, and hence Ān = n−1∑

i Ani

converges in probability to 0. Then∑
i

W 2
ni − n−1

∑
i

gn(Xi)
2 = Ān = op(1).

We also have

P
(
max

i
|Wni | > ε

√
2
)

≤ nP
(|Wni | > ε

√
2
)

≤ nP
(
gn(Xi)

2 > nε2)+ nP
(|Ani | > nε2)

≤ ε−2
Egn(Xi)

2
I{gn(Xi)

2>nε2} + ε−2
E|Ani |.

We already have E|Ani | → 0, and since Egn(Xi)
2 = kT I (θ + h̃n)k is continuous (and

hence bounded) by Lemma A.3, the first term also tends to 0. It follows that maxi |Wni | =
op(1), and thus maxi |R(Wni)| = op(1). Note therefore that the final term is bounded by
max1≤i≤n |R(Wni)| ·∑n

i=1 W 2
ni = op(1)Op(1) which converges to zero in probability.

Putting this back into (4) gives

log
n∏

i=1

pθ+hn

p
θ+h̃n

(Xi) =
n∑

i=1

Wni − 1

4
kT I (θ + h̃n)k + op(1).

We then directly obtain

�(θ + hn) − �(θ + h̃n) = 1√
n

∑
i

gn(Xi) − 1

2
kT I (θ + h̃n)k + op(1)

= 1√
n
kT �̇(θ + h̃n) − 1

2
kT I (θ + h̃n)k + op(1).

Using the fact that I (·) is continuous at θ , then gives the required result. �

Sufficient conditions for DQM are given in Lemma 7.6 of van der Vaart (1998); in fact,
these conditions are also sufficient for DDQM.

LEMMA A.4. Assume that θ �→ sθ (x) := √
pθ(x) is μ-almost everywhere continuously

differentiable, and that the matrix I (θ) := ∫
(ṗθ /pθ )(ṗ

T
θ /pθ )pθ dμ has well-defined contin-

uous entries. Then pθ is DDQM.

PROOF. We follow the same proof method as Lemma 7.6 in van der Vaart (1998). By the
chain rule, pθ is also differentiable with ṗθ = 2sθ ṡθ , and hence ṡθ = 1

2(ṗθ /pθ )
√

pθ .
Since θ �→ sθ (x) is continuously differentiable (assuming for now that x excludes the set

of measure zero on which this fails), we can write
sθ+th − sθ+tg

t
= (h − g)T ṡθ+t (g+u(h−g))

for some u ∈ [0,1] by the mean value theorem.
By Cauchy–Schwarz and Fubini, we have∫ (

sθ+th − sθ+tg

t

)2
dμ ≤

∫ ∫ 1

0

(
(h − g)T ṡθ+t (g+u(h−g))

)2
dudμ

= 1

4

∫ 1

0
(h − g)T I

(
θ + t

(
g + u(h − g)

))
(h − g)du

−→ 1

4
(h − g)T I (θ)(h − g);
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here we have used the continuity of I (·). Continuous differentiability of s(·) shows that
t−1(sθ+th − sθ+tg) − (h − g)T ṡθ+tg → 0 pointwise, and hence its integral converges to zero
by Proposition 2.29 of van der Vaart (1998). �

We remark that Lemmas A.3 and A.4 show a close correspondence between continuity of
the Fisher information and DDQM.

It is a standard result that the conditions of Lemma A.4 are satisfied by an exponential
family provided that θ is in the interior of the natural parameter space.

A.2. Proof of Theorem 2.10.

PROOF. Assume x = 0 without loss of generality. Given hn ∈ S1 with hn → 0, and the
fact that S1 and S2 are c-equivalent at 0, there exists a sequence h̃n = hn + o(‖hn‖c). Now, if

hn = O(n− 1
2c ), then h̃n −hn = o(n−1/2), which gives the required result. A similar argument

holds for c-near-equivalence, giving h̃n − hn = O(n−1/2). �

A.3. Proof of Theorem 3.1.

LEMMA A.5. Let the conditions of Theorem 3.1 be satisfied with m ≥ 2. Then M1 and
M2 have the same dimension and tangent space at θ .

PROOF. We have that Tθ (M1 ∩Ni ) = Tθ (M1) ∩ Tθ (Ni ) for i = 1,2. Since N1 and N2
have disjoint normal spaces, it follows that

Tθ (M1) = Tθ (M1) ∩ (Tθ (N1) + Tθ (N2)
)

= Tθ (M1 ∩N1) + Tθ (M1 ∩N2)

= Tθ (M2 ∩N1) + Tθ (M2 ∩N2)

= Tθ (M2) ∩ (Tθ (N1) + Tθ (N2)
)

= Tθ (M2).

Since M1, M2 are regular at θ , this completes the proof. �

The proof below makes modest use of differential geometry; the basics may be found in
Conlon (2008).

PROOF OF THEOREM 3.1. We choose θ = 0 for convenience. The result is clear for
m = 1, so assume m ≥ 2. By Lemma A.5, M1 and M2 share a common dimension and
tangent space at 0. Since M1,M2 are Dm surfaces at 0, they can each be locally represented
by a Dm parametric function, say φ1, φ2 : U →R

k . Assume that φ1(0) = φ2(0) = 0, and that
these functions share a derivative at 0 with respect to u ∈ U .

Choose φ1 so that φ1(u) = (u,0) ∈ R
d × R

k−d , by the constant rank theorem (Conlon
(2008), Theorem 2.4.6). Note this means that φ2(u) = (u,O(‖u‖2)) by the definition of the
tangent space and the fact that φ2 is at least D2. Also set φ−1

1 (A) = φ−1
2 (A) for all A ⊆

Mj ∩Ni ; then for each u : φ1(u) ∈M1 ∩Ni we have φ2(u) = (u,0).
By the implicit function theorem, each of the remaining k − d coordinates of φ2 can be

written as a Dm function of the first d . By a further invertible Dm transformation, we can
ensure that φ1(u),φ2(u) ∈ Ni whenever uci−1+1 = · · · = uci

= 0 (where ci − ci−1 is the
codimension of Mj ∩Ni in Mj ).
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Note that this means that not only is ∂φ1(0)
∂ua

= ∂φ2(0)
∂ua

for all a, but indeed ∂m−1φ1(0)
∂ua1 ···∂uam−1

=
∂m−1φ2(0)

∂ua1 ···∂uam−1
for all a1, . . . , am−1, because there could still be some i ∈ {1, . . . ,m} such that

uci−1+1 = · · · = uci
= 0; therefore, we are still (potentially) in at least one of the m submodels,

and φ−1
1 (y) = φ−1

2 (y) holds at this point.
It follows that the Taylor expansions of φ1 and φ2 at 0 to order m− 1 are identical, and the

first term in which there is any difference will be of the form

1

m!ua1 · · ·uam

∂mφj (0)

∂ua1 · · · ∂uam

,

where each ai ∈ {ci−1 + 1, . . . , ci}. As a consequence of the product ua1 · · ·uam , it follows
that ‖φ1(u) − φ2(u)‖ = O(‖u‖m), and hence M1 and M2 are m-near-equivalent. �

APPENDIX B: LOG-LINEAR PARAMETERS

Let V be a finite set, and define the log-linear design matrix as a 2|V | × 2|V | matrix with
rows and columns indexed by subsets of V , such that

MA,B = (−1)|A∩B|.

We denote the Bth column (or equivalently row) of M by MB . Note that

MB =⊙
v∈B

M{v},

where � denotes the Hadamard (or pointwise) product. As an example, here is a log-linear
design matrix for three items.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∅

{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}
For example, the fourth column of M is M{1,2} and is given by the pointwise product of the
second and third columns M{1} and M{2}. Note also that M is involutory—that is, its own
inverse—up to a constant: M−1 = 2−|V |M .

Let XV = (Xv)v∈V be a vector of binary random variables. We abbreviate the event {Xv =
0 for all v ∈ C} to 0C , and similarly {Xv = 1 for all v ∈ C} to 1C . Let ηA = logp(1A,0V \A).
Then we define the log-linear parameters via the identities

η = Mλ, λ = M−1η.

Letting p = (p(xV ) : xV ∈ XV ), assumed to be ordered in the same way as η so that η =
logp, we have

∂λ

∂p
= ∂λ

∂η

∂η

∂p
= M−1(diagp(xV )

)−1
.

Of interest to us is the connection between log-linear parameters within different marginal
distributions, known as marginal log-linear parameters (Bergsma and Rudas (2002)). Denote
the log-linear parameters within a marginal distribution XK by λK ≡ (MK)−1 logp(xK),
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where MK is the appropriate restriction of M to rows and columns indexed by subsets of K .
We continue to denote the ordinary log-linear parameter associated with a particular interac-
tion set A by λA = λV

A .

LEMMA B.1. The derivative of the parameter λK
A (with respect to p) lies in the span of

the derivatives of λV
A, . . . , λV

V if XK ⊥⊥ XV \K . If K = A, then the converse also holds.
Additionally, if p(xV ) is uniform then λK

A and λV
A have the same derivative MA.

PROOF. Let xV = (1B,0V \B). We have

∂λK
A

∂p(xV )
= MA,B

2|K|p(xK)
and

∑
C⊆V \A

αC

∂λV
AC

∂p(xV )
= MA,B

2|V |p(xV )

∑
C⊆V \A

αCMC,B

(5)

since MA∪C,B = MA,B · MC,B . For the derivatives
∂λK

A
∂p to lie in the span of the derivatives

∂λV
AC

∂p we need to find αC to solve

MA,B

2|V |p(xV )

∑
C⊆V \A

αCMC,B = MA,B

2|K|p(xK)

or equivalently ∑
C⊆V \A

αCMC,B = 2|V \K|p(xV \K |xK)(6)

for each xV . If XV \K ⊥⊥ XK , this becomes
∑

C⊆V \K αCMC,B = 2|V \K|p(xV \K), which has
a solution because it amounts to 2|V \K| linearly independent equations in 2|V \A| ≥ 2|V \K|
variables.

In the case that K = A, note that there are precisely as many variables as equations, and
since the coefficients MC,B in the expression on the left of (6) do not vary with xK (since
C ∩ K = ∅), it is necessary for XV \K ⊥⊥ XK in order for a solution to exist. For A ⊂ K , a
similar argument shows that XV \K ⊥⊥ XD | XK\D for some D ⊂ K with |D| ≤ |K \ A| is
sufficient.

If p(xV ) is uniform, then note that the derivative of λK
A does not depend upon K . �

Since the map from λ to p is a smooth one, this yields us the following corollary.

COROLLARY B.2. If ε ≡ ‖p − p0‖ for p0 under which all variables are uniform, then

λK
A = λL

A + O
(
ε2).

B.1. Log-linear models are algebraic. Note that a log-linear model is algebraic, since
λA = c if and only if∏

‖xA‖1 even

p(xA, xV \A) − ec2|V | ∏
‖xA‖1 odd

p(xA, xV \A) = 0.

Hence they are defined by the zeroes of polynomials in p.
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APPENDIX C: ANCESTRAL GRAPHS

PROOF OF THEOREM 4.5. Let G be a graph with vertices V . We can parameterize the
binary probability simplex using log-linear parameters λK for ∅ �= K ⊆ V (see Appendix B
for details). We consider the tangent space of the model at the uniform distribution, that is, at
λK = 0 for every K .

The conditional independence Xa ⊥⊥ Xb | XC is equivalent to λ′
abD = 0 for each D ⊆

C, where λ′
K are the log-linear parameters for the marginal distribution over Xa,Xb,XC

(Rudas, Bergsma and Németh (2010)). However, within δ of the uniform distribution we have
λ′

K = λK + O(δ2) (see Corollary B.2). Hence the constraint to the tangent cone imposed by
λ′

abD = 0 is the same as that imposed by λabD = 0 for each D ⊆ C.
Now, two MAGs are Markov equivalent if and only if they have the same adjacencies,

unshielded colliders and discriminating paths (e.g., Zhang (2008), Proposition 2). If they
differ in adjacencies (say i, j ), then a log-linear parameter λij will appear in the tangent cone
of one model but not the other. If they differ in an unshielded collider i∗→ k ←∗j , then in
the model without a collider λijk = 0 but in the other this direction is not restricted. The same
holds for a discriminating path between i and j for a potential collider k. �

REMARK C.1. Note that this proof also demonstrates that the skeleton of the graph is
determined solely by the two-way interaction parameters, and that the remainder of the model
can be deduced entirely from the three-way interaction parameters. This suggests that it might
be possible to develop a model selection procedure using only this information, something
we have done in Section 7. It also illustrates that in cases with strong three-way interactions
it should be easier to learn the correct model rather than just the correct skeleton. A ‘noisy-
OR’ model would, for example, have the desired property. The well-known ALARM dataset
(Beinlich et al. (1989)) has strong interaction effects and is—at least in part for this reason—
considered to be relatively easy to learn.

PROOF OF PROPOSITION 4.6. We claim that the spaces spanned by λik and λjk are
contained in the tangent cones of both models, but not of their intersection; the first claim
follows from Theorem 4.5. For the second, if Xk is binary then λ′

ij = λij = 0 if and only if
either λik = 0 or λjk = 0 (see Drton, Sturmfels and Sullivant (2009), Example 3.1.7). Clearly
then directions in which they are both nonzero will not appear in the intersection model. �

REMARK C.2. Note that these results can easily be extended to a general finite discrete
case, though the notation becomes rather cumbersome. In particular, suppose that the states-
pace is XV = ∏

v∈V Xv for some finite sets Xv . In this case, λA represents a collection of
parameters of dimension

∏
a∈A(|Xa| − 1); these are redundant whenever some xa is equal

to a suitable reference value (say 0a ∈ Xa), since they can be inferred from the remaining
values.

Then we define

λA(xA) = |XV |−1
∑

yV ∈XV

logp(yV )
∏
v∈A

(|Xv|1{xv=yv} − 1
)
.

Hence λ∅ = |XV |−1∑
yV

logp(yV ) and

λ1(x1) = |XV |−1
∑

yV ∈XV

(|X1|1{x1=y1} − 1
)

logp(yV ),

for example. The results in Section 4 still hold with these parameters at analogous locations.
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FIG. 10. Three chain graphs. When interpreted under the LWF Markov property, all associated models satisfy
X1 ⊥⊥ X4 | X2,X3 and X2 ⊥⊥ X3 | X1,X4; these constraints define the model in (a). The submodel (b) addition-
ally implies that X1 ⊥⊥ X2, whereas (c) implies X1 ⊥⊥ X2 | X3,X4.

Now, in the case of Proposition 4.6, the same result will hold even if Xk is not bi-
nary. Evans (2015), Theorem 3.1, shows that λAk

ij = λA
ij + g(λk|A), where g = 0 whenever

Xk ⊥⊥ Xl | XA\{l} for any l ∈ V . This means that Xk ⊥⊥ Xi | XA\{i} or Xk ⊥⊥ Xj | XA\{j}
are included in the intersections of the two models. Further, one can check that the mod-
els are not identical, since adding ε > 0 to P(XA = xA,Xk = xk) and subtracting it from
P(XA = xA,Xk = x′

k) will not change the fact that Xi ⊥⊥ Xj | XA\{i,j }, but we will no longer
have Xi ⊥⊥ Xj | XA\{i,j},Xk . It follows that the two models overlap by Theorem 3.3.

APPENDIX D: EXAMPLE: DISCRETE LWF CHAIN GRAPHS

EXAMPLE D.1. Consider the graphs shown in Figure 10. Interpreted using the
Lauritzen–Frydenberg–Wermuth (LWF) Markov property (Lauritzen and Wermuth (1989)),
these three graphs all represent distinct models. The graph in (a) satisfies the usual Markov
property for undirected graphs:

X1 ⊥⊥ X4 | X2,X3, X2 ⊥⊥ X3 | X1,X4.

The graphs in (b) and (c) satisfy these independences, as well as the respective independences
X1 ⊥⊥ X2 (in the case of (b)), and X1 ⊥⊥ X2 | X3,X4 for (c). These two additional constraints
are generally distinct, but they coincide if any of the three remaining edges are not present:
that is, if any of the conditional independences

X1 ⊥⊥ X3 | X2,X4, X3 ⊥⊥ X4 | X1,X2, X2 ⊥⊥ X4 | X1,X3,

also hold. Under either model, each of these constraints corresponds to a single zero log-
linear parameter:

λ13 = 0, λ34 = 0, λ24 = 0

[recall that λA := 2−|V |∑
xV

(−1)|xA| logP(XV = xV )]. Taking the models defined by these
three constraints, we can apply Theorem 3.1 and find that the two models in (b) and (c) are
3-near-equivalent at all points in the model of complete independence.

One can extend this example arbitrarily by drawing a graph of the form 1 → 3 − 4 − · · · −
k ← 2 and comparing it to its undirected counterpart. In this case, if the effect corresponding
to any of the k − 1 edges is missing, then the two models intersect. Hence, by Theorem 3.1
these two models are (k − 1)-near-equivalent.
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