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The distance standard deviation, which arises in distance correlation
analysis of multivariate data, is studied as a measure of spread. The asymp-
totic distribution of the empirical distance standard deviation is derived under
the assumption of finite second moments. Applications are provided to hy-
pothesis testing on a data set from materials science and to multivariate sta-
tistical quality control. The distance standard deviation is compared to clas-
sical scale measures for inference on the spread of heavy-tailed distributions.
Inequalities for the distance variance are derived, proving that the distance
standard deviation is bounded above by the classical standard deviation and
by Gini’s mean difference. New expressions for the distance standard devi-
ation are obtained in terms of Gini’s mean difference and the moments of
spacings of order statistics. It is also shown that the distance standard devia-
tion satisfies the axiomatic properties of a measure of spread.

1. Introduction. In recent years, the topic of distance correlation has been prominent
in statistical analyses of dependence between multivariate data sets. The concept of distance
correlation was defined by Székely, Rizzo and Bakirov [39] and Székely and Rizzo [36], and
they applied distance correlation methods to testing independence and measuring association
between collections of random vectors.

Since the appearance of the papers [36, 39], enormous interest in the theory and appli-
cations of distance correlation has arisen. We refer to the articles [31, 37, 38] on statistical
inference, [14, 15, 22, 44] on time series, [8–10] on affinely invariant distance correlation and
connections with singular integrals, [24] on metric spaces and [32] on machine learning. Dis-
tance correlation methods have also been applied to assessing associations between familial
relationships, lifestyle factors, diseases and mortality [23], and to detecting associations in
large astrophysical databases [25, 30].

For z ∈ C, denote by |z| the modulus of z. For a positive integer p and s, x ∈R
p , denote by

〈s, x〉 the Euclidean inner product on R
p and by ‖s‖ = 〈s, s〉1/2 the corresponding Euclidean

norm. We also define the constant

cp = π(p+1)/2

�((p + 1)/2)
.

For random vectors X ∈R
p and Y ∈ R

q , let

fX,Y (s, t) = E exp
(√−1

(〈s,X〉 + 〈t, Y 〉)),
where s ∈R

p , t ∈R
q , be the joint characteristic function of (X,Y ) and let fX(s) = fX,Y (s,0)

and fY (t) = fX,Y (0, t) be the corresponding marginal characteristic functions. The distance
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covariance between X and Y is defined as the nonnegative square root of

(1.1) V2(X,Y ) = 1

cpcq

∫
Rp+q

∣∣fX,Y (s, t) − fX(s)fY (t)
∣∣2 ds dt

‖s‖p+1‖t‖q+1 ,

the distance variance is defined as

V2(X) = V2(X,X) = 1

c2
p

∫
R2p

∣∣fX(s + t) − fX(s)fX(t)
∣∣2 ds dt

‖s‖p+1‖t‖p+1 ,(1.2)

and the distance standard deviation, V(X), is defined as the nonnegative square root of
V2(X). (We note that this terminology differs from that of Székely et al. [36, 39], who refer
to V(X) as the distance variance; we will refer to V(X) instead as the distance standard
deviation, which is justified by the fact that V(X) satisfies an equivariance property that is
given below in (1.4).) Also, the distance correlation coefficient is defined as

(1.3) R(X,Y ) = V(X,Y )√
V(X)V(Y )

as long as V(X),V(Y ) �= 0, and zero otherwise. We remark that the weighted L2-norm in
(1.1) was studied in the univariate setting by Feuerverger [13].

The distance correlation coefficient, unlike the Pearson correlation coefficient, character-
izes independence: R(X,Y ) = 0 if and only if X and Y are mutually independent. Moreover,
0 ≤ R(X,Y ) ≤ 1 and, for one-dimensional random variables X,Y ∈ R, we have R(X,Y ) = 1
if and only if Y is a linear function of X, almost surely. The empirical distance correlation
possesses a remarkably simple expression ([39], Theorem 1), and efficient algorithms for
computing it are now available [21].

We note that R(X,Y ) is one of several coefficients characterizing independence that are
applicable to hypothesis testing. Other concepts of dependence are, for example, the Hilbert–
Schmidt Independence Criterion (HSIC) [19], ball covariance [27] and mutual information
[3]. Each of these concepts satisfy numerous desirable properties, and the comparison of their
properties and finite-sample performance is an active area of research [29, 32, 34].

An interesting property of the distance covariance is that its square is translation-invariant
and scale-equivariant, which implies that the distance standard deviation satisfies

(1.4) V(a + bX) = |b|V(X)

for all a, b ∈R ([39], Theorem 4). Moreover, V(X) is defined for all random variables X with
finite first moments, whereas the classical standard deviation requires the existence of finite
second moments. These properties suggest that the distance standard deviation is a potentially
interesting measure of scale for heavy-tailed distributions. As the term V(X)V(Y ) appears in
the denominator of R(X,Y ), a study of properties of the distance standard deviation may
lead to a better understanding of the distance correlation.

In this paper, we study the distance standard deviation V(X) and provide applications to
hypothesis testing and multivariate statistical quality control. We apply the distance standard
deviation to a data set, originating from materials science, on a physical model for describing
a crystal undergoing a structural phase transition when subjected to several cooling–heating
cycles. In a different direction, we further show how V(X) can be applied in the statistical
quality control of multivariate production processes.

We will also compare V(X) to other measures of spread. Indeed, suppose that E(‖X‖2) <

∞, and let X, X′, and X′′ be independent and identically distributed (i.i.d.); then, by Székely
et al. [39], Remark 3,

(1.5) V2(X) = E
(∥∥X − X′∥∥2) + (

E
∥∥X − X′∥∥)2 − 2E

(∥∥X − X′∥∥ · ∥∥X − X′′∥∥)
.
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The second term on the right-hand side of (1.5) is reminiscent of Gini’s mean difference [17,
43], which is defined for real-valued random variables Y as

(1.6) �(Y) = E
∣∣Y − Y ′∣∣,

where Y and Y ′ are i.i.d. Furthermore, if X ∈ R then one-half the first summand in (1.5)
equals σ 2(X) = E(X2) − E(X)2, the variance of X.

We provide a detailed comparison of V(X), �(X), and σ(X). We demonstrate that when
the distributions of interest are heavy-tailed, V(X) provides estimators of scale that are
asymptotically more efficient than estimators based on �(X) or σ(X). Moreover, several
inequalities between V(X), �(X), and σ(X) are derived.

We further show that the distance standard deviation is an axiomatic measure of spread in
the sense of Bickel and Lehmann [5]. According to [5], a measure of spread is a functional
τ(X) satisfying the axioms:

(C1) τ(X) ≥ 0,
(C2) τ(a + bX) = |b|τ(X) for all a, b ∈ R, and
(C3) τ(X) ≤ τ(Y ) if for all 0 < α ≤ β < 1,

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α),

where F and G are the cumulative distribution functions of X and Y , respectively, and F−1

and G−1 are the corresponding right-continuous inverses.

The distance covariance obviously satisfies (C1) and (C2). We will show that V(X) also
satisfies (C3), hence proving that V(X) is a measure of spread in the above sense. However,
we will also establish some clear differences between V(X), on the one hand, and �(X) and
σ(X), on the other hand.

The paper is organized as follows. In Section 2, the asymptotic distribution of the empir-
ical distance standard deviation under the existence of the second moment of X is derived.
The asymptotic relative efficiency (ARE) of the empirical distance standard deviation with
respect to competing estimators of spread is evaluated for various distributions. In Section 3,
we apply the empirical distance standard deviation to perform two-sample hypothesis testing
for a data set from materials science and we also show the applicability of the empirical dis-
tance standard deviation in multivariate statistical quality control. Further, we demonstrate
the superior performance of tests based on the distance standard deviation when the underly-
ing distributions are heavy-tailed. In Section 4, we derive inequalities between the summands
in the distance variance representation (1.5). We will prove in the case of scalar random vari-
ables that V(X) is bounded above by �(X) and by σ(X). In Section 5, we show that the
representation (1.5) can be simplified further, revealing relationships between V(X) and the
moments of spacings of order statistics. Using novel representations, we show that V(X) is
a measure of spread in the sense of [5]; moreover, we identify crucial differences between
V(X), �(X) and σ(X). We conclude the paper in Section 6 with a discussion of the given
results. All proofs are provided in the Supplementary Material [12].

2. The empirical distance standard deviation. In order to develop an empirical version
of V2(X), Székely et al. [36, 39] derived an alternative representation of V2(X); they showed
that if the random vector X ∈ R

p satisfies E‖X‖2 < ∞ and if X, X′, and X′′ are i.i.d. then

(2.1) V2(X) = T1(X) + T2(X) − 2T3(X),

where

(2.2)
T1(X) = E

(∥∥X − X′∥∥2)
,

T2(X) = (
E

∥∥X − X′∥∥)2
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and

T3(X) = E
(∥∥X − X′∥∥ · ∥∥X − X′′∥∥)

.(2.3)

For an i.i.d. sample X = (X1, . . . ,Xn) drawn from X, the empirical version of V2(X) was
given in [39] as

(2.4) V2
n(X) = T1,n(X) + T2,n(X) − 2T3,n(X),

where

(2.5)

T1,n(X) = 1

n2

n∑
i=1

n∑
j=1

‖Xi − Xj‖2,

T2,n(X) =
(

1

n2

n∑
i=1

n∑
j=1

‖Xi − Xj‖
)2

and

T3,n(X) = 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi − Xj‖ · ‖Xi − Xk‖.(2.6)

The version (2.4) is not unbiased; an unbiased estimator for V2(X) was derived in [21],
namely,

(2.7)

V̂2
n(X) = n

n − 3
T1,n(X) + n3

(n − 1)(n − 2)(n − 3)
T2,n(X)

− 2n2

(n − 2)(n − 3)
T3,n(X).

By [21], V̂2
n(X) is a U-statistic of order four with kernel function

(2.8)

h(X1,X2,X3,X4) = 1

4

∑
1≤i,j≤4

i �=j

‖Xi − Xj‖2 − 1

4

4∑
i=1

( 4∑
j=1
j �=i

‖Xi − Xj‖
)2

+ 1

24

( ∑
1≤i,j≤4

i �=j

‖Xi − Xj‖
)2

.

In the sequel, we derive the asymptotic distribution of V̂2
n(X) and V2

n(X); further, we do
so under conditions weaker than known previously. Hitherto, the asymptotic normality of
V̂2

n(X) was proved only under the assumption that the fourth moment of X is finite; see
[20], Lemma 4.8 and Theorem 4.11. Here, we derive the asymptotic normality under the
broader assumption that the second moment of X is finite. The following lemma provides an
alternative representation for the kernel function h(·) in (2.8).

LEMMA 2.1. The kernel function h in (2.8) can be written as

h(X1,X2,X3,X4) = 1

12

4∑
1≤i,j≤4

i �=j

‖Xi − Xj‖2 − 1

12

∑
1≤i,j,k≤4

i,j,k all different

‖Xi − Xj‖‖Xi − Xk‖

+ 1

24

∑
1≤i,j,k,l≤4

i,j,k,l all different

‖Xi − Xj‖‖Xk − Xl‖.
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In applying Lemma 2.1 to establish the asymptotic normality of V2
n(X) under the assump-

tion of finite second moments of X, let

h1(x) = E
[
h(x,X2,X3,X4)

] − V2(X)

be the linear part in the Hoeffding decomposition ([41], Section 11.4) of the kernel h and let

(2.9) γ = 16E
[
h2

1(X)
]
.

We remark that an expansion of h1(X) in our setting is given in [20], equation (B.6).
Denote by X−k the sample X with the kth observation deleted. Assuming that

E[h2(X1,X2,X3,X4)] < ∞ (which is a consequence of E(‖X‖2) < ∞; cf. the proof of
Theorem 2.2), it follows from Arvesen [2], Theorem 9, that the jackknife estimator

(2.10) γ̂ (X) = (n − 1)

n∑
i=1

(
V̂2

n−1(X−i ) − 1

n

n∑
j=1

V̂2
n−1(X−j )

)2

is a weakly consistent estimator of γ .

THEOREM 2.2. Suppose that E(‖X‖2) < ∞. As n → ∞,

√
n
(
V̂2

n(X) − V2(X)
) d−→ N(0, γ )(2.11)

and √
n(V̂2

n(X) − V2(X))√
γ̂ (X)

d−→ N(0,1),(2.12)

and the same result holds for V2
n(X).

The asymptotic distribution of Vn(X), the empirical distance standard deviation, now fol-
lows from Theorem 2.2 by the delta method. A weakly consistent estimator for the variance
of the asymptotic distribution of

√
n(V̂n(X) − V(X)) is obtained analogously from Arvesen

[2], Theorem 9, and is given by

(2.13) ξ̂ (X) = (n − 1)

n∑
i=1

(
V̂n−1(X−i) − 1

n

n∑
j=1

V̂n−1(X−j )

)2

.

COROLLARY 2.3. Suppose that E(‖X‖2) < ∞ and V(X) > 0. Then

√
n
(
V̂n(X) − V(X)

) d−→ N
(
0, γ /4V2(X)

)
and √

n(V̂n(X) − V(X))√
ξ̂ (X)

d−→ N(0,1),

and the same result holds for Vn(X).

We now consider the problem of estimating scale in a location-scale family of the form

X
d= μ + λZ, with μ ∈ R and E|Z|2 < ∞, where d= denotes equality in distribution. In this

location-scale setting, Corollary 2.3 enables the comparison of the efficiency of the distance
standard deviation to other estimators of spread. For any

√
n-consistent and asymptotically

normal estimator sn(X), we define the asymptotic variance ASV(sn(X);F) at the distribution
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F to be the variance of the limiting distribution of
√

n(sn(X)−s(X)) as n → ∞, where sn(X)

is evaluated at an i.i.d. sequence drawn from X ∼ F and s(X) denotes the corresponding
population value of sn(X). While two scale estimators (i.e., estimators satisfying property
(C2) in Section 1) s

(1)
n (X) and s

(2)
n (X) may converge to different population values s1(X)

and s2(X), respectively, s
(2)
n (X) can be made consistent for s1(X) within the considered

location-scale family by multiplying it with the factor s1(Z)/s2(Z) = s1(X)/s2(X). Thus we
define the asymptotic relative efficiency for scale estimators ([4], equation (2.1)) s

(1)
n (X) with

respect to s
(2)
n (X) at the population distribution F as

(2.14) ARE
(
s(1)
n (X), s(2)

n (X);F ) = ASV(s
(2)
n (X);F)/(s2(X))2

ASV(s
(1)
n (X);F)/(s1(X))2

.

We consider as alternatives to Vn(X) the empirical standard deviation,

(2.15) σ̂n(X) =
[

1

n − 1

n∑
i=1

(Xi − Xn)
2

]1/2

,

where Xn denotes the sample mean of X, the empirical mean deviation

(2.16) d̂n(X) = 1

n

n∑
i=1

∣∣Xi − mn(X)
∣∣,

where mn(X) denotes the sample median of X, and Gini’s mean difference,

(2.17) �̂n(X) = 2

n(n − 1)

∑
1≤i<j≤n

|Xi − Xj |.

We remark that(n−1
n

)1/2σ̂n(X) is the maximum likelihood estimator of scale in the location-
scale family generated by the normal distribution N(0,1). Also, d̂n(X) is the analogous esti-
mator of scale for the Laplace distribution L(0,1).

Let NM(λ, ε) denote the normal scale mixture distribution that is defined as

NM(λ, ε) = (1 − ε)N(0,1) + εN
(
0, λ2)

, 0 ≤ ε ≤ 1, λ ≥ 1,

and is also known as the contaminated normal distribution [40].
In Table 1, we compare the asymptotic efficiencies of the distance standard deviation with

the three alternative measures of spread at the Laplace distribution, normal distribution, the
normal scale mixture distribution NM(3,0.1) and the tν -distributions with ν = 3 and ν = 5.

TABLE 1
The asymptotic relative efficiencies (2.14) with respect to the respective

maximum likelihood estimators of the distance standard deviation Vn, the
standard deviation σ̂n, the mean deviation d̂n and Gini’s mean difference �̂n

at the Laplace distribution, the normal distribution, the normal scale mixture
distribution NM(3,0.1) and the tν -distributions with ν = 3 and ν = 5

Distribution, F ARE(Vn;F) ARE(σ̂n;F) ARE(d̂n;F) ARE(�̂n;F)

L(0,1) 0.952 0.8 1 0.964
N(0,1) 0.784 1 0.876 0.978
NM(3,0.1) 0.887 0.398 0.757 0.641
t3 0.965 0 0.681 0.524
t5 0.992 0.4 0.941 0.859
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TABLE 2
Simulated finite-sample values of the bias and the variance of the estimators Vn(X) and V̂n(X) for

n = 5,10,50,500 compared to asymptotic values (last column); 10,000 replications

Sample size

Distribution 5 10 50 500 ∞
L(0,1)

√
n(E(Vn) − V) 0.282 0.313 0.191 0.067 0√
n(E(V̂n) − V) −0.270 −0.136 −0.057 −0.022 0

nVar(Vn) 0.953 0.834 0.668 0.605 0.613
nVar(V̂n) 0.899 0.723 0.642 0.604 0.613

N(0,1)
√

n(E(Vn) − V) 0.067 0.085 0.049 0.022 0√
n(E(V̂n) − V) −0.197 −0.082 −0.022 0.022 0

nVar(Vn) 0.299 0.280 0.256 0.253 0.256
nVar(V̂n) 0.488 0.336 0.265 0.253 0.256

NM(3,0.1)
√

n(E(Vn) − V) 0.244 0.307 0.198 0.067 0√
n(E(V̂n) − V) −0.246 −0.114 −0.049 −0.022 0

nVar(Vn) 0.905 0.807 0.514 0.440 0.426
nVar(V̂n) 0.673 0.523 0.455 0.434 0.426

t3
√

n(E(Vn) − V) 0.409 0.471 0.368 0.157 0√
n(E(V̂n) − V) −0.304 −0.158 −0.049 0.000 0

nVar(Vn) 4.231 2.027 1.123 0.746 0.680
nVar(V̂n) 0.991 0.800 0.711 0.676 0.680

t5
√

n(E(Vn) − V) 0.212 0.234 0.148 0.045 0√
n(E(V̂n) − V) −0.235 −0.114 −0.042 −0.022 0

nVar(Vn) 0.772 0.638 0.472 0.427 0.424
nVar(V̂n) 0.708 0.517 0.435 0.418 0.424

The asymptotic relative efficiencies of these estimators with respect to the respective max-
imum likelihood estimator at each of the distributions are given in Table 1. Details on the
calculations of the values in Table 1 are given in Appendix B in the Supplementary Material
[12].

While the distance standard deviation has moderate efficiency at normality, it turns out to
be asymptotically very efficient in the case of heavier-tailed populations. For the normal scale
mixture, the t3- and the t5-distributions, the distance standard deviation outperforms its three
competitors.

In Table 2, we complement our asymptotic analysis with finite-sample simulations. For
sample sizes n = 5,10,50,500 and the same population distributions as above, the simulated
biases and variances (based on 10,000 replications) of the empirical versions of distance stan-
dard deviation Vn(X) and V̂n(X) are given along with their respective asymptotic values. The
corresponding values for the competing estimators σ̂n(X), d̂n(X) and �̂n(X) are provided
by Gerstenberger and Vogel [17], Tables 7, 8.

The values presented in Table 2 indicate that V̂n(X) is preferable to Vn(X) as an estimator
of V(X). We note that both estimators are biased and that V̂2

n is a U-statistic whereas V̂n is
not; however, V̂n shows considerably smaller bias than Vn at the heavier-tailed distributions.
In light of the efficiency comparison with the other standard scale estimators, it emerges that
heavy-tailed distributions represent the most promising area for applications of the distance
standard deviation.

Although the definition of the empirical distance standard deviation V̂n does not make
apparent its superior performance under heavy tails, an intuitive explanation for its superiority
in that context is obtained in Section 5, where the scale estimators are expressed in terms of
the spacings between data points; it is seen there that the distance standard deviation provides
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comparably little weight to the extreme spacings at either end of the data range, and it is this
property that leads to the superior performance of V̂n with heavy-tailed data.

In concluding this section, we note that the main argument in the proof of Theorem 2.2,
namely that E(‖X‖2) < ∞ implies E[h2(X1,X2,X3,X4)] < ∞, leads to a proof of the cen-
tral limit theorem (CLT) for the squared distance covariance given in [20], Theorem 4.11,
under weaker conditions than known previously. The intrinsic idea in our proof of this CLT
is that the square of the corresponding U-statistic,

(2.18)

�̂n(X,Y ) = 1

n(n − 3)

[
n∑

i,j=1

‖Xi − Xj‖‖Yi − Yj‖

+ 1

(n − 1)(n − 2)

n∑
i,j=1

‖Xi − Xj‖ ·
n∑

i,j=1

‖Yi − Yj‖

− 2

(n − 2)

n∑
i,j,k=1

‖Xi − Xj‖‖Yi − Yk‖
]
,

is bounded above by V̂2
n(X)V̂2

n(Y ), where Y = (Y1, . . . , Yn) denotes an i.i.d. sample drawn
from some random variable Y ∈R

q . The complete statement of this limit theorem is given in
Section C of the Supplementary Material [12].

3. Applications of the distance variance. We consider two applications in detail: hy-
pothesis testing and quality control charts. For other interesting applications of the distance
standard deviation, we refer to Fiedler [14] who defined the distance variogram and gave a
natural generalization of the usual variogram for α-stable distributions.

3.1. Hypothesis testing. For ease of exposition, we focus on two-sample hypothesis test-
ing in the univariate case. One-sample tests and results for the multivariate setting can be
derived analogously.

Let Xn = (X1, . . . ,Xn) and Ym = (Y1, . . . , Ym) be two i.i.d., mutually independent ran-
dom samples drawn from random variables X,Y ∈ R with finite second moments. We wish
to test the null hypothesis H0 : V(X) = V(Y ). For this purpose, we propose the test statistic

(3.1) T̂V =
√

nm

n + m

V̂n(Xn) − V̂m(Ym)√
ξ̂p(Xn,Ym)

,

where ξ̂p(Xn,Ym) is a pooled estimator of the form

ξ̂p(Xn,Ym) = nξ̂(Xn) + mξ̂(Ym)

n + m

and ξ̂ (·) is defined in equation (2.13). By Theorem 3.1, T̂V and |T̂V | can be directly applied
to test H0 against one-sided and two-sided alternatives, respectively. In stating this theorem,
we denote by ξX and ξY the asymptotic variances of the distributions of

√
n(V̂n(Xn)−V(X))

and
√

m(V̂m(Ym) − V(Y )), respectively (see Corollary 2.3 for details).

THEOREM 3.1. Let E|X|2 < ∞ and E|Y |2 < ∞. Then, for n,m → ∞, such that
n/m → r > 0, it holds:

(i) If V(X) = V(Y ), then T̂V
d−→ N(0, (ξX + rξY )/(rξX + ξY )). In particular, if addi-

tionally X + μ
d= Y where μ ∈ R, or n/m → 1, then T̂V

d−→ N(0,1).
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(ii) If V(X) < V(Y ), then T̂V
P−→ −∞.

(iii) If V(X) > V(Y ), then T̂V
P−→ ∞.

A weakly consistent estimator of the asymptotic variance in Theorem 3.1(i) is[̂
ξ(Xn) + (n/m)̂ξ(Ym)

]
/
[
(n/m)̂ξ(Xn) + ξ̂ (Ym)

]
,

and this estimator can be used to construct a Studentized statistic for testing H0 : V(X) =
V(Y ). For cases in which n/m → 1 or if X and Y belong to a common location-scale family,
the resulting asymptotic variance equals 1, identically, and hence no estimation is needed.

When the distributions of X and Y belong to the same location-scale family, that is,

λX + μ
d= Y with μ ∈ R, the null hypothesis can be expressed as H0 : λ = 1. Within this

location-scale setting, we can compare the distance standard deviation based two-sample test
to analogously constructed tests based on the standard deviation and Gini’s mean difference.
For scale measures s1 and s2, we denote by s

(1)
n (·) and s

(2)
n (·) the respective empirical ver-

sions of these measures. Moreover, we assume for i.i.d. samples Xn drawn from random
variables X ∼ F and for j = 1,2 that:

(A1) If yi = bxi +a for a, b ∈ R, i ∈ {1, . . . , n}, n ∈ N, then s
(j)
n (yn) = |b|s(j)

n (xn), where
xn = (x1, . . . , xn) and yn = (y1, . . . , yn).

(A2) For n → ∞,
√

n(s
(j)
n (Xn) − sj (X))

d−→ N (0, ξj ) with ξj > 0 and ξ̂j (Xn) is a con-
sistent estimator for ξj .

(A3) The estimator of the asymptotic standard deviation
√

ξ̂j satisfies (A1) (with s
(j)
n

replaced by
√

ξ̂j ).

Test statistics analogous to (3.1) can then be constructed as

(3.2) T̂j (Xn,Ym) =
√

nm

n + m

s
(j)
n (Xn) − s

(j)
n (Ym)√

ξ̂p,j (Xn,Ym)
,

where

ξ̂p,j (Xn,Ym) = n

n + m
ξ̂j (Xn) + m

n + m
ξ̂j (Ym).

Theorem 3.2 provides a comparison of the efficiency of two scale tests of the form (3.2) under
local alternatives. Let λn,m be an array of real numbers satisfying√

nm

n + m
(λn,m − 1) → �

for some � ∈ R as n,m → ∞ such that n/m → r > 0. For m,n ∈ N, denote by Xn =
(X1, . . . ,Xn), Zm = (Z1, . . . ,Zm) two mutually independent, i.i.d. samples drawn from ran-
dom variables X and Z following the same distribution F . Moreover, for k ≤ m, define

(3.3) Y
(n,m)
k = (λn,mZ1 + μ, . . . , λn,mZk + μ),

with μ ∈ R. In the following theorem, [t] will denote the integer part of t ∈ R and �−1(·) is
the inverse of �, the standard normal distribution function.

THEOREM 3.2. Let ρ = ξ2s
2
1(X)/(ξ1s

2
2(X)) denote the asymptotic relative efficiency of

s
(1)
n with respect to s

(2)
n at F (cf. (2.14)), where we assume without loss of generality that

ρ ≤ 1. Then, under Assumptions (A1), (A2) and (A3), T̂1(Xn,Y
(n,m)
m ) and T̂2(X[ρn],Y (n,m)

[ρm] )

both converge in distribution to N(−s1(X)�/
√

ξ1,1) as n,m → ∞, such that n/m → r > 0.
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Consequently, for the ratio of the power of two-sided tests with asymptotic size α,

lim
n,m→∞
n/m→r

P (|T̂1(Xn,Y
(n,m)
m )| > �−1(1 − α/2))

P (|T̂2(X[ρn],Y (n,m)
[ρm] )| > �−1(1 − α/2))

= 1.

Two benefits of Theorem 3.2 are that it enables explicit calculation of the asymptotic power
for alternatives of the form (3.3), and it establishes a direct link between the asymptotic rel-
ative efficiencies of the scale estimators studied in Section 2 and the efficiencies of corre-
sponding two-sample tests.

Let T̂σ and T̂� denote test statistics according to (3.2) based on σ̂n and �̂n, respec-
tively, where the asymptotic variance of each estimator is estimated by the jackknife method;
cf. (2.13).

Tables 3 and 4 contain rejection frequencies (based on 10,000 replications) at the 5% level
for two-sided asymptotic tests based on |T̂V |, |T̂σ | and |T̂�|. The F -test is also included for
the sake of completeness and to serve as a benchmark in the normal case. The sensitivity of
the F -test with respect to the assumption of normality is well known and is confirmed by
the tables. We consider the Laplace distribution, normal distribution, normal scale mixture
distribution NM(3,0.1), and the tν -distributions with ν = 3 and ν = 5. The sample sizes
n,m range from n + m = 30 to n + m = 2000. Table 3 (test size) contains results for the
null hypothesis λ = 1 and Table 4 (test power) gives results for the sample-size-dependent

TABLE 3
Test size. Empirical rejection frequencies (%) under the null hypothesis λ = 1 of asymptotic two-sample scale
tests (based on the distance standard deviation V̂n, the standard deviation σ̂n, Gini’s mean difference �̂n, and

the F -test) at the 5% significance level. Results are based on 10,000 replications

n: 15 50 120 250 600 1000 ∞
m: 15 50 40 250 200 1000 ∞

Distribution Test Rejection frequencies (%)

L(0,1) V̂n 4.4 4.6 5.0 4.8 5.2 4.7 5.0
σ̂n 3.3 4.1 4.4 4.6 4.9 5.0 5.0
�̂n 5.9 5.1 4.9 4.8 5.3 4.9 5.0
F -test 17.5 20.0 19.5 21.6 20.8 20.6

N(0,1) V̂n 4.5 5.1 5.1 5.3 5.1 5.2 5.0
σ̂n 4.4 5.0 5.0 5.4 5.1 5.1 5.0
�̂n 5.8 5.3 5.3 5.4 5.3 5.0 5.0
F -test 5.4 5.3 4.9 5.3 5.2 5.1 5.0

NM(3,0.1) V̂n 4.0 4.2 4.3 4.9 4.8 5.0 5.0
σ̂n 2.6 3.3 4.3 4.4 4.8 4.9 5.0
�̂n 4.7 5.2 4.8 4.8 5.0 5.0 5.0
F -test 21.0 27.3 27.9 30.6 31.3 31.1

t3 V̂n 4.3 4.5 4.9 4.6 4.8 5.2 5.0
σ̂n 3.0 2.7 4.1 3.3 4.3 3.5
�̂n 5.4 4.6 5.0 4.7 4.7 4.7 5.0
F -test 25.8 35.8 38.0 49.9 51.2 59.3

t5 V̂n 4.4 4.8 4.7 4.7 4.8 5.2 5.0
σ̂n 3.6 4.0 4.4 4.4 4.9 4.4 5.0
�̂n 5.6 5.2 5.0 5.0 5.0 5.1 5.0
F -test 14.5 19.4 18.2 24.2 24.5 26.7
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TABLE 4
Test power. Empirical rejection frequencies (%) under the alternative λn,m = 1 + 3

√
(n + m)/n/m of

asymptotic two-sample scale tests (tests based on the distance standard deviation V̂n, the standard deviation σ̂n,
Gini’s mean difference �̂n and the F -test) at the 5% significance level. Results are based on 10,000 replications

n: 15 50 120 250 600 1000 ∞
m: 15 50 40 250 200 1000 ∞

Distribution Test Rejection frequencies (%)

L(0,1) V̂n 33.0 57.1 63.8 72.6 75.0 78.8 83.3
σ̂n 27.1 51.5 66.1 65.8 71.5 71.7 76.5
�̂n 44.6 62.2 68.7 73.6 76.6 79.3 83.8

N(0,1) V̂n 48.0 78.0 83.2 90.9 91.8 94.0 96.4
σ̂n 56.9 87.3 92.5 96.0 97.0 97.9 98.9
�̂n 68.7 88.1 91.4 95.8 96.3 97.6 98.7
F -test 76.1 90.3 92.0 96.2 96.6 97.9

NM(3,0.1) V̂n 41.5 68.2 73.1 82.7 83.9 87.2 91.1
σ̂n 28.2 40.2 55.0 51.0 56.2 54.7 60.0
�̂n 46.3 60.2 66.0 70.8 73.0 74.8 80.3

t3 V̂n 36.3 58.3 64.4 74.2 75.2 79.0 83.8
σ̂n 23.1 31.9 45.1 31.3 35.8 24.8
�̂n 39.9 49.9 55.6 56.4 58.1 58.1 58.4

t5 V̂n 41.6 69.0 73.9 82.8 85.2 88.4 91.6
σ̂n 36.4 56.5 68.7 64.1 68.2 64.7 56.4
�̂n 53.6 69.2 74.1 78.6 81.4 83.2 87.5

alternative with

λn,m = 1 + 3

√
n + m

nm
.

Theorem 3.2 yields large-sample approximations for the power of the tests, which are pro-
vided in the last column of Table 3 and Table 4. The asymptotic power for the distance
standard deviation test is P(|N(3V/

√
ξ,1)| > �−1(0.975)), and similar expressions hold for

σ̂n and �̂n. Note that σ̂n does not satisfy the conditions of Theorem 3.2 at the t3-distribution.
In Table 3, we observe that the tests |T̂V |, |T̂σ |, and |T̂�| control the nominal level of 5%

well for all distributions under consideration. The actual rejection frequencies for the distance
standard deviation test |T̂V | range between 4.0 and 5.3. The F -test grossly exceeds the nom-
inal level for nonnormal distributions and is therefore omitted from the power considerations
in Table 4 except for the normal case.

In Table 4, we see that except for the small-sample case (n,m) = (15,15), the distance
standard deviation test |T̂V | performs best at the heavier-tailed distributions NM(3,0.1), t3
and t5. At the Laplace L(0,1), |T̂�| performs best and outperforms |T̂V | and |T̂σ | for small
sizes; for large sample sizes |T̂V | and |T̂�| perform almost equally. At the normal distribution
N(0,1), |T̂σ | and |T̂�| dominate |T̂V |.

For small sample sizes, a better performance of the considered two-sample scale tests may
be achieved by using a permutation-based approach for obtaining critical values, which we
investigate in Section D in the Supplementary Material [12]. We note that the permutation test
requires both distributions to share a common location, which is a more restrictive assumption
than is needed for the asymptotic test.

Finally, we remark that, in the univariate case, the distance variance and hence the distance
standard deviation can be computed rapidly. For the asymptotic derivations in Section 2, we
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FIG. 1. Histograms of slip disorder for two values of the thermal driving parameter τ ; n = 2000 observations
each.

used a fourth-order U-statistic representation of V̂2
n , which may suggest the opposite; how-

ever, Huo and Székely [21] devised an O(n logn) algorithm, which shows that the distance
standard deviation has the same computational complexity as Gini’s mean difference. All
calculations for this article have been carried out using computationally efficient implemen-
tations of the distance standard deviation from the R package dcortools [11], available
on https://github.com/edelmand21/dcortools. An alternative O(n logn) implementation for
the distance standard deviation is provided in the R package energy [35], available on the
Comprehensive R Archive Network (CRAN).

Data example. We demonstrate the use of the two-sample distance variance test with
an application to a data example. The data set stems from a physical model, studied by
Perez-Reche et al. [28], for describing a crystal undergoing a structural phase transition be-
tween austensite and martensite phases when subject to several cooling-heating cycles. In
this model, a quantity called the slip disorder, and denoted by h, is of particular interest. The
slip disorder depends on a parameter τ that represents thermal driving and is referred to as
the temperature within the model. The distribution of h for two values of τ is depicted in
Figure 1.

An important issue is whether, and how, the distribution of the slip disorder h is affected
by τ . As a consequence of the theoretical properties of the model, the distribution of h is
symmetric around zero; this symmetry is also suggested by Figure 1. Hence, the main feature
by which h may differ with respect to τ is in its scale. The distribution of observed values
of h is very heavy-tailed and clearly nonnormal, with excess kurtoses exceeding 10 (cf. [28],
Figures 10 and 11). Consequently, a F -test is inappropriate here.

Although arbitrarily large data sets can be obtained by letting the model run sufficiently
long, the simulations are computationally costly. Hence, fast detection of a statistically sig-
nificant difference is desirable. For the data depicted in Figure 1 (with parameter values
τ = −0.294 and τ = −0.338, and sample sizes 2000 each), the two-sided asymptotic test
based on the statistic |T̂V | yields a p-value of 0.0013. Corresponding tests based on the stan-
dard deviation and Gini’s mean difference give p-values of 0.6940 and 0.0327, respectively.
The large p-value of the test based on the classical standard deviation is consistent with the
tendency of the test to underreject the null hypothesis in the presence of heavy tails; see Ta-
ble 4. Moreover, as the standard deviation test remains persistently nonsignificant even for
samples of size 10,000, we find again that the classical standard deviation is an inappropriate
measure of spread for heavy-tailed distributions.

3.2. Multivariate statistical quality control. In statistical quality control [7, 26], the ob-
jective is to monitor quality characteristics in production processes using statistical methods.
Important tools for process monitoring are the Shewhart control charts that are used to survey
whether quality characteristics of the production process are under control.

https://github.com/edelmand21/dcortools


THE DISTANCE STANDARD DEVIATION 3407

A common tool used to monitor the dispersion of multivariate processes is the |S|-chart
[1], which applies the generalized variance, that is, the determinant of the covariance matrix
of the process. In the following, we investigate the potential of a control chart based on V̂n

as an alternative tool for monitoring the dispersion of multivariate processes. The V-chart, as
we will call the corresponding chart, can also be applied in high-dimensional settings, where
the dimension of the production process exceeds the number of samples per subgroup (as for
example in molecular data).

To compare the performance of the |S|-chart with the V-chart, we conduct a simulation
study. For simplicity, we assume throughout the simulation study that the process under con-
sideration is bivariate and that the two components of the production process are independent.
The covariance matrix of the process in control will always be given by

�0 =
(

1 0
0 1

)
.

For the covariance matrix of the process out of control, we will consider the matrices

�1 =
(
δ2 0
0 1

)
, �2 =

(
δ 0
0 δ

)
,

where δ = 1,1.5,2,2.5,3,3.5,4 and the distribution of the components will follow either a
normal, Laplace, t3- or t5-distribution. A Shewhart control chart consists of an upper control
limit (UCL) and a lower control limit (LCL) for the characteristic under consideration. This
characteristic (e.g., the generalized variance) is then computed for consecutive subgroups of
a fixed size k. When the characteristic lies below the LCL or exceeds the UCL, this represents
an out-of-control signal of the process; the corresponding subgroup can then be investigated
and, if necessary, further action can be taken. Formally, this corresponds to consecutive test-
ing of the null hypothesis that the characteristic in a subgroup under consideration equals the
characteristic in-control.

To compare the |S|- and V-charts, we pursue a bootstrap approach. First, we simulate
10,000 i.i.d. samples of the process in control, that is, using the covariance matrix �0. In ap-
plication, this is typically given by a phase-I sample of the process, for which it is known that
the production process was in control. From these 10,000 samples, we now take B = 100,000
bootstrap samples of size k = 25, where k coincides with the fixed subgroup size. For each
of the bootstrap samples, the generalized variance and the distance standard deviation are
evaluated. The UCL for the |S|-chart is then given by the 99.75%-quantile of the generalized
variances of the B bootstrap samples, the corresponding LCL is given by the 0.25%-quantile.
The respective UCL and LCL for the V-chart are calculated analogously. Using the respec-
tive alternative distribution (i.e., using �1 or �2), we now generate 250,000 i.i.d. samples
which are partitioned into 10,000 subgroups of size 25. For each subgroup, we evaluate if the
generalized variance (or distance standard deviation respectively) exceeds the bounds given
by the UCL or LCL of the respective chart. The empirical power for the |S|-chart and the V-
chart are then calculated by the fraction of subgroups for which these bounds were exceeded.
The procedure is replicated N = 100 times and the empirical power is averaged over these
runs. The two methods are then compared using the average run length (ARL), which is the
average number of subgroups one needs to test until an out-of-control signal is obtained. In
the case of i.i.d. samples, the ARL is given by the reciprocal value of the empirical power.

Table 5 lists the ARLs of the |S|-chart and the V-chart for each of the covariance matri-
ces �1 and �2, where δ = 1,1.5,2,2.5,3,3.5,4. The V-chart shows substantial advantages
compared to the |S|-chart for heavy-tailed distributions, such as the t3- and t5-distributions.
Moreover, while the |S|-chart shows comparable performances for the different dispersion
settings given by �1 and �2 (which is not surprising since they feature the same generalized
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TABLE 5
Average run lengths for the V-chart and |S|-chart, respectively, for several alternative

distributions representing the out-of-control state

Effect size, δ

Distribution Chart 1 1.5 2 2.5 3 3.5 4

normal (�1) V 198.77 2.72 1.19 1.01 1.00 1.00 1.00
|S| 198.77 3.77 1.30 1.05 1.01 1.00 1.00

normal (�2) V 202.92 6.11 1.70 1.15 1.03 1.01 1.00
|S| 200.48 3.79 1.31 1.05 1.01 1.00 1.00

Laplace (�1) V 196.23 5.85 1.53 1.10 1.02 1.00 1.00
|S| 190.30 13.16 3.18 1.69 1.27 1.12 1.05

Laplace (�2) V 199.80 14.07 3.38 1.75 1.30 1.13 1.06
|S| 193.27 13.21 3.24 1.69 1.27 1.11 1.05

t5 (�1) V 205.38 4.70 1.32 1.03 1.00 1.00 1.00
|S| 184.20 26.99 5.99 2.55 1.59 1.27 1.15

t5 (�2) V 199.23 11.68 2.69 1.47 1.16 1.05 1.02
|S| 185.77 29.63 6.19 2.62 1.65 1.28 1.14

t3 (�1) V 199.80 12.78 2.20 1.22 1.04 1.01 1.00
|S| 169.00 94.04 40.40 18.41 9.17 5.87 4.51

t3 (�2) V 202.92 34.12 7.01 2.99 1.80 1.37 1.17
|S| 176.37 84.69 33.07 18.00 10.45 6.14 4.41

variance), the distance standard deviation seems to be more powerful against large changes in
one component compared to moderate changes in both components. For a definitive statement
about the potential of the distance standard deviation for multivariate statistical quality con-
trol, more detailed comparisons with the generalized variance are required that go beyond the
scope of this paper. Yet, our results indicate that the V-chart is a promising alternative to the
generalized variance for multivariate statistical quality control in the presence of heavy-tailed
distributions.

4. Inequalities between the distance variance, the variance and Gini’s mean differ-
ence. In the following, we will study inequalities between the summands appearing in (2.1)
and (2.4). In the one-dimensional case, these inequalities will lead to crucial results concern-
ing the relationships between V(X), �(X) and σ(X).

LEMMA 4.1. Let T1,n(X), T2,n(X), T3,n(X) be defined as in (2.5) and (2.6). Then there
hold the algebraic inequalities

(4.1) T2,n(X) ≤ T3,n(X) ≤ T1,n(X), T1,n(X) ≤ 2T3,n(X).

Further, if X ∈ R
p is a random vector such that E‖X‖2 < ∞, and if T1(X), T2(X), T3(X)

are defined as in (2.2) and (2.3), then

(4.2) T2(X) ≤ T3(X) ≤ T1(X), T1(X) ≤ 2T3(X).

Using the inequalities in Lemma 4.1, we can derive upper bounds for the distance variance.
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THEOREM 4.2. Let X ∈ R
p be a random vector with E‖X‖ < ∞ and let X =

(X1, . . . ,Xn) denote an i.i.d. sample drawn from X. Then

V2
n(X) ≤ 1

n4

(
n∑

i=1

n∑
j=1

‖Xi − Xj‖
)2

.

Moreover, denoting by X′ an independent copy of X, we obtain V2(X) ≤ (E‖X − X′‖)2.
Further, if E‖X‖2 < ∞ then V2(X) ≤ trace(�X), where �X is the covariance matrix of X.

In the one-dimensional case, Theorem 4.2 implies that the distance variance is bounded
above by the variance and the squared Gini mean difference.

COROLLARY 4.3. Let X be a scalar random variable with E(|X|) < ∞. Then, V2(X) ≤
�2(X). Moreover, if E(|X|2) < ∞ then V2(X) ≤ σ 2(X).

We also note that for continuous variables X ∈ R, the inequality T2(X) ≤ T1(X) can be
sharpened.

PROPOSITION 4.4. Let X be a real-valued continuous random variable with E(|X|2) <

∞. Then T2(X) ≤ 2
3T1(X).

Interestingly, Gini’s mean difference and the distance standard deviation coincide for dis-
tributions whose mass is concentrated on two points.

THEOREM 4.5. Let X be Bernoulli distributed with parameter p. Then

V2(X) = �2(X) = 4p2(1 − p)2.

Conversely, if X is a nontrivial random variable for which V2(X) = �2(X) then the distri-
bution of X is concentrated on two points.

For the Bernoulli distribution with p = 1
2 , Theorem 4.5 implies immediately that V2(X),

σ 2(X) and �2(X) attain the same value, namely, 1
4 . Hence, applying Corollary 4.3 and the

dilation property V(bX) = |b|V(X) in (C2), we obtain

COROLLARY 4.6. Let X denote the set of all real-valued random variables and let
c > 0. Then

max
X∈X

{
V2(X) : σ 2(X) = c

} = max
X∈X

{
V2(X) : �2(X) = c

} = c,

and both maxima are attained by Z = 2c1/2Y , where Y is Bernoulli distributed with param-
eter p = 1

2 .

This result answers a question raised by Gábor Székely (private communication, Novem-
ber 23, 2015).

We remark that the second implication of Theorem 4.2 and Theorem 4.5 also follow from
a result for the generalized distance variance in [24], Proposition 2.3. However, our presenta-
tion provides a more direct approach to these findings.

Since distance standard deviation terms appear in the denominator of the distance correla-
tion coefficient, the inequalities derived in this section lead to new properties for the distance
correlation. As an example, we now state a result, on the behavior of the empirical distance
correlation in high dimensions that can be derived using Theorem 4.2 (see Appendix A in
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the Supplementary Material [12] for full details). In [37], Appendix A.1, it is shown under
certain assumptions that V2

n(X,Y ) converges to 1 almost surely when the dimensions of X

and Y tend to infinity, while the sample size n is fixed. We now show that a similar property
can be derived when only the dimension of X tends to infinity.

Before stating the result, we note (see [39], p. 2776, equation (2.18)) that the squared
standard empirical distance covariance V2

n(X,Y ) is expressible as

(4.3)

V2
n(X,Y ) = 1

n2

n∑
i,j=1

‖Xi − Xj‖‖Yi − Yj‖

+ 1

n4

n∑
i,j=1

‖Xi − Xj‖
n∑

i,j=1

‖Yi − Yj‖

− 2

n3

n∑
i,j,k=1

‖Xi − Xj‖‖Yi − Yk‖.

The squared standard empirical distance correlation (see [39], p. 2774, Definition 5) is defined
as

(4.4) R2
n(X,Y ) = V2

n(X,Y )

Vn(X)Vn(Y )
,

if both Vn(X) and Vn(Y ) are different from 0, and R2
n(X,Y ) = 0 otherwise.

PROPOSITION 4.7. For fixed q , let Y be a q-dimensional random vector. For each
p ∈ N, let X = (X(1), . . . ,X(p))t be a p-dimensional random vector with E‖X‖2 < ∞ and
i.i.d. coordinates X(1), . . . ,X(p). For fixed n ∈ N, let (X,Y ) = ((X1, Y1), . . . , (Xn,Yn)) de-
note a sample of size n drawn from (X,Y ). Then, almost surely,

(4.5) lim
p→∞

V2
n(X,Y )

E‖X − X′‖ = n−3
n∑

i,j=1

‖Yi − Yj‖

and

(4.6) lim
p→∞R2

n(X,Y ) = (n − 1)−1/2 n−2 ∑n
i,j=1 ‖Yi − Yj‖
Vn(Y ,Y )

≥ (n − 1)−1/2.

To demonstrate the relevance of Proposition 4.7, we generate i.i.d. samples (X(k),Y (k)) =
((X

(k)
1 , Y

(k)
1 ), . . . , (X

(k)
n , Y

(k)
n )) of size n = 50 drawn from (X,Y ), where X ∈ R

p with
p = 100, Y ∈ R and (X,Y ) follows a p + 1-dimensional standard normal distribution with
identity covariance matrix. For the average standard distance correlation over K = 10,000
simulation runs, we then obtain K−1 ∑K

k=1 Rn(X
(k),Y (k)) = 0.4823. Considering that we

simulated X and Y to be independent, this reveals a heavy bias of the standard distance cor-
relation in this setting, showing that this coefficient is hard to interpret when p is high. Even
more, we note that the limiting value of R2

n(X,Y ) depends only on the distribution of Y and
not on the dependence between X and Y . Hence, we can expect similar results for random
variables following the same distribution as Y even when they are strongly associated with X.
Indeed, let Z(k) = (Z

(k)
1 , . . . ,Z

(k)
n ), where Z

(k)
i = p−1/21′

pX
(k)
i with 1p = (1, . . . ,1)′ ∈ R

p .

Obviously, Z
(k)
i shows the same variance as Y

(k)
i , but now Z

(k)
i and X

(k)
i are collinear. Yet,

we obtain K−1 ∑K
k=1 Rn(X

(k),Z(k)) = 0.5112, showing only a slight difference to the result
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in the independent case. For an interpretable version of distance correlation when p is high,
we propose using

(4.7) R̂n(X,Y ) = sign
(

�̂n(X,Y )

V̂n(X)V̂n(Y )

)√∣∣∣∣ �̂n(X,Y )

V̂n(X)V̂n(Y )

∣∣∣∣,
where sign(t) denotes the sign of t ∈ R and �̂n(X,Y ) is defined in (2.18).

Since this version is based on the U-statistic estimates of the squared distance covariance
and the distance variance, it may be conjectured that it will generally not show a strong bias.
Notably, K−1 ∑K

k=1 R̂n(X
(k),Y (k)) = −0.00511 and K−1 ∑K

k=1 R̂n(X
(k),Z(k)) = 0.2897;

the population versions can be explicitly calculated using Corollary 3.2 and Corollary 3.3 in
[8] and are given by R(X,Y ) = 0 and R(X,Z) ≈ 0.2987.

Examples in which the dimension of X is 100 or larger and Y is univariate occur in the
analysis of genetic data, where it is often the goal to assess the association of a large number
of molecular markers with some univariate clinical response, such as the development of a
certain disease or response to treatment. One common approach [18] for this kind of data
is to test for the association of the response with interesting sets of markers which may, for
example, be defined via gene pathways or gene ontology (GO) [16] terms. While hypothesis
testing itself gives little information about the effect size, distance correlation offers a way
to quantify the strength of association between sets and univariate responses. Proposition 4.7
and the above considerations yield that the bias-corrected estimate (4.7) is to be preferred
over the standard estimator (4.4) in these situations.

5. Properties of the distance standard deviation in one dimension. The representa-
tion of V2 given in (2.1), although more applicable than the expression given in equation
(1.2), is undefined for random vectors with infinite second moments. This problem can be
circumvented by considering the representation

(5.1) V2(X) = �2(X) + W(X),

where

W(X) = E
[∥∥X − X′∥∥ · (∥∥X − X′∥∥ − 2

∥∥X − X′′∥∥)]
.

Note that since 0 ≤ V2(X) ≤ �2(X) then W(X) ≤ 0 and |W(X)| ≤ �2(X); since �(X)

exists under the assumption of finite first-order moments, then so does W(X).
In the one-dimensional case, (5.1) gives rise to other representations that lead to crucial

results about the distance standard deviation.

THEOREM 5.1. Let X be a real-valued random variable with E|X| < ∞, and let X, X′,
X′′ and X′′′ be i.i.d.

(i) Let X1:4 ≤ X2:4 ≤ X3:4 ≤ X4:4 be the order statistics of the quadruple (X,X′,
X′′,X′′′). Then

(5.2) V2(X) = 2

3
E

[
(X3:4 − X2:4)2]

.

(ii) Let F be the cumulative distribution function of X. Then

(5.3) V2(X) = 8
∫∫

−∞<x<y<∞
F 2(x)

(
1 − F(y)

)2 dx dy.

(iii) Let t+ = max(t,0), t ∈ R. Then

(5.4) V2(X) = �2(X) − 8E
[(

X − X′)
+

(
X′′ − X

)
+

]
.
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(iv) Let X1:3 ≤ X2:3 ≤ X3:3 be the order statistics of the triple (X,X′,X′′). Then

(5.5) V2(X) = �2(X) − 4
3E

[
(X2:3 − X1:3)(X3:3 − X2:3)

]
.

Important properties of V following from equation (5.2) are discussed in Theorem 5.2,
and motivation for the representations provided in (5.3)–(5.5) are given in the Supplementary
Material [12].

THEOREM 5.2. The functional V is an axiomatic measure of spread, that is,

(C1) V(X) ≥ 0,
(C2) V(a + bX) = |b|V(X) for all a, b ∈ R, and
(C3) V(X) ≤ V(Y ) if for all 0 < α ≤ β < 1,

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α),

where F and G are the cumulative distribution functions of X and Y , respectively, and F−1

and G−1 are the corresponding right-continuous inverses.

Applying [33], Theorem 3.B.7, we obtain the following corollary of Theorem 5.2.

COROLLARY 5.3. Let X be a random variable with a log-concave density. Then
V(X + Y) ≥ V(X) for any random variable Y independent of X.

In particular, if X and Y are independently distributed, continuous, random variables with
log-concave densities, then

(5.6) V(X + Y) ≥ max
(
V(X),V(Y )

)
.

It is well known, both for the standard deviation and for Gini’s mean difference, that asser-
tions analogous to (5.6) hold without restrictions on the distributions of X and Y .

We now show, however, that this property does not hold generally for the distance stan-
dard deviation, V , thereby answering a second question raised by Gábor Székely (private
communication, November 23, 2015).

EXAMPLE 5.4. Let X be Bernoulli distributed with parameter p = 1
2 and let Y be uni-

formly distributed on the interval [0,1] and independent of X. Then V(X) > V(X + Y).

Other common properties of the classical standard deviation and Gini’s mean difference
concern differences and sums of independent random variables. Notably, it is well known that
�(X +Y) = �(X −Y) and σ(X +Y) = σ(X −Y) for any independent random variables X

and Y for which these expressions exist. On the other hand, these properties do not hold in
general for the distance standard deviation.

EXAMPLE 5.5. Let X and Y be independently Bernoulli distributed with parameter
p �= 1

2 . Then V(X + Y) > V(X − Y).

While �(X), σ(X) and V(X) are all measures of spread in the sense of [5], Examples
5.4 and 5.5 and the comparison of the asymptotic relative efficiencies in Section 2 suggest
that there are substantial differences between these coefficients as measures of spread. To
provide further understanding of these differences, we now derive representations that enable
graphical comparisons of these three measures.

For this purpose, we apply equation (5.2) to derive a new empirical version for distance
variance which is distinct from V2

n(X) and V̂2
n(X), as follows. For an i.i.d. sample X1, . . . ,Xn

of real-valued random variables, denote by Di:n = X(i+1):n − Xi:n, i = 1, . . . , n − 1 the ith
spacing of X = (X1, . . . ,Xn).
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PROPOSITION 5.6. Let X be a real-valued random variable with E(|X|) < ∞ and let
X = (X1, . . . ,Xn) be an i.i.d. sample from X. Then a strongly consistent empirical version
for V2(X) is

(5.7) U2
n(X) =

(
n

2

)−2 n−1∑
i,j=1

(
min(i, j)

)2(
n − max(i, j)

)2
Di:nDj :n.

Let D = (D1:n, . . . ,D(n−1):n) denote the vector of spacings, then we can write the
quadratic form in (5.7) as U2

n(X) = DtV D, where the (i, j)th element of the matrix V is

Vi,j =
(
n

2

)−2 (
min(i, j)

)2(
n − max(i, j)

)2
.

Both the squared empirical Gini mean difference and the empirical variance (see equations
(2.15) and (2.17)) can also be expressed as quadratic forms in the spacings vector D; specif-
ically, �̂2

n(X) = DtGD and σ̂ 2
n (X) = DtSD, where the elements of G and S are given by

Gi,j =
(
n

2

)−2

ij (n − i)(n − j)

and

Si,j = 1

2

(
n

2

)−1

min(i, j)
(
n − max(i, j)

)
.

Comparing U2
n , �̂2

n, and σ̂ 2
n clearly is equivalent to comparing the matrices V , G and S. We

use this fact to graphically illustrate differing features of V , �, and σ by plotting the values of
the underlying matrices; see Figure 2. These plots provide a descriptive explanation as to why
V and � are more suitable for heavy-tailed distribution since they place smaller weight than
σ on extreme spacings; in particular, Vn−1,n−1 = Gn−1,n−1 = 4n−2 while Sn−1,n−1 = n−1.

On the other hand, the shape of the plot for V resembles the plot for σ more than the
plot for �. Both V and σ place comparably high weights on the diagonals; specifically, the
highest entries in row i are the diagonal entries Vi,i and Si,i , respectively, and the highest
entry in row i for Gini’s mean difference is Gi,�n/2�. The intrinsic reason for this finding is
that V2 and σ 2 are sums of quadratic differences of the observations, while � is a sum of the
untransformed differences.

Since V and σ place comparably high weights on the diagonals, one may conjecture that
these measures are sensitive to variability in the spacings. Indeed, Yitzthaki [42], p. 291,
points out that “the more equal are the distances between adjacent observations, the lower

FIG. 2. Illustration of, from left to right, the empirical distance variance U2
n , the squared empirical Gini mean

difference �̂2
n, and the empirical variance σ̂ 2

n via their respective quadratic form matrices V , G and S for sample
size n = 1000. The coordinate (i, j) corresponds to the (i, j)th entry of the corresponding matrix, and the size of
the corresponding matrix element is specified via color code.



3414 D. EDELMANN, D. RICHARDS AND D. VOGEL

the variance.” This statement also holds for the distance standard deviations of light-tailed
distributions.

For example, consider a distribution which is concentrated on three points, {0, δ,1} and
attains each value with probability 1

3 , similar to [42], p. 291. For this distribution, � = 4
9 ,

irrespective of the value of δ. On the other hand, V2 = 4(1
3 + δ2 + (1 − δ)2)/27 and σ 2 =

2(1+ δ2 + (1− δ)2)/9. Hence, both measures are maximal for δ ∈ {0,1} and minimal for δ =
1
2 , that is, when the difference between the spacings is maximal and minimal, respectively.

The sensitivity of V to differences between the spacings extends to other light-tailed distri-
butions. For example, the most broadly spread distribution on [0,1] arguably is B(1, 1

2), the
Bernoulli distribution with p = 1

2 . The ratio of the population values between B(1, 1
2) and

the uniform distribution on [0,1] are 3/2 = 1.5 (�),
√

3 ≈ 1.73 (σ ) and
√

45/8 ≈ 2.37 (V);
see Appendix F for the value of V for the uniform distribution.

In the case of σ , Yitzthaki [42], p. 291, states that the sensitivity to differences between
the spacings “is translated to sensitivity to extreme observations.” However, this is not the
case for V as it places lower weights than � on the outer spacings, resulting in less sensitive
behavior to extreme observations. For a demonstrative example, consider the tν -distributions.
Specifically, the ratio of the respective population values between the t3- and t5-distribution
is (54

√
3)/(35

√
5) ≈ 1.20 for � and

√
9/5 ≈ 1.34 for σ ; for V , numerical evaluation yields

that the ratio is approximately 1.12.
To summarize, the distance standard deviation is very sensitive to variability in the central

spacings of an observation but relatively insensitive to changes in the extreme spacings. Con-
sequently, the behavior of V resembles the behavior of σ for light-tailed distributions where
the central spacings are relatively large compared to the extreme spacings. On the other hand,
the low sensitivity of V to extreme observations makes it a very good measure of spread for
heavy-tailed distributions.

6. Discussion. In this work, we have studied the statistical properties of the distance
standard deviation, which arises as a special case of the distance covariance introduced by
Székely et al. [39]. Notably, we have demonstrated that the empirical distance standard devi-
ation has appealing statistical properties: it is less vulnerable to outliers and generally more
appropriate for heavy-tailed distributions, more so than classical alternatives such as the mean
deviation and Gini’s mean difference.

The distance standard deviation, and the distance correlation coefficient, may be seen as
natural statistics for analyzing multivariate distributions, providing an alternative to the clas-
sical second-moment statistics and also being potentially more appropriate in light of their
statistical properties.

For multivariate random variables, the distance standard deviation summarizes the spread
as a single value. While this can be useful for many applications (see, e.g., the example on
multivariate statistical quality control in Section 3), a referee has noted that the covariance
matrix provides richer information, such as the spread of single components and the associa-
tion between different components. To obtain an analogue of the covariance matrix based on
the concept of distance covariance, one can define the distance covariance matrix,

�X = (
V2(Xi,Xj )

)
i,j=1,...,p,

where X1, . . . ,Xp are the components of X; a related concept is that of distance multivari-
ance [6], which allows for testing the mutual independence of more than two sets of random
vectors. It can be shown that �X is positive semidefinite. Investigating properties of the dis-
tance covariance matrix is a promising direction for further research.
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SUPPLEMENTARY MATERIAL

Supplement to “The distance standard deviation” (DOI: 10.1214/19-AOS1935SUPP;
.pdf). The supplementary material consists of six appendices. Appendix A contains various
proofs to results in the main paper. Appendix B contains details on the derivation of Table 1
in the main document. In Appendix C, a limit theorem for the squared distance covariance is
stated, under weaker assumptions than known previously. Simulation results for permutation-
based two-sample scale tests are provided in Appendix D. Appendix E gives additional theo-
retical results for the distance standard deviation in one dimension. Appendix F tabulates the
distance variances for a collection of distributions.
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