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The conditional particle filter (CPF) is a promising algorithm for general
hidden Markov model smoothing. Empirical evidence suggests that the vari-
ant of CPF with backward sampling (CBPF) performs well even with long
time series. Previous theoretical results have not been able to demonstrate
the improvement brought by backward sampling, whereas we provide rates
showing that CBPF can remain effective with a fixed number of particles
independent of the time horizon. Our result is based on analysis of a new
coupling of two CBPFs, the coupled conditional backward sampling parti-
cle filter (CCBPF). We show that CCBPF has good stability properties in the
sense that with fixed number of particles, the coupling time in terms of itera-
tions increases only linearly with respect to the time horizon under a general
(strong mixing) condition. The CCBPF is useful not only as a theoretical tool,
but also as a practical method that allows for unbiased estimation of smooth-
ing expectations, following the recent developments by Jacob, Lindsten and
Schon (2020). Unbiased estimation has many advantages, such as enabling
the construction of asymptotically exact confidence intervals and straightfor-
ward parallelisation.

1. Introduction. The conditional particle filter (CPF) introduced by Andrieu, Doucet
and Holenstein (2010) is a Markov Chain Monte Carlo method that produces asymptotically
unbiased samples from the posterior distribution of the states of a hidden Markov model.
The CPF can be made significantly more efficient by the inclusion of backward sampling
(Whiteley (2010)), or equivalently ancestor sampling (Lindsten, Jordan and Schon (2014)),
steps: we refer to the resulting algorithm as the conditional backward sampling particle filter
(CBPF). While there are many empirical studies reporting on the effectiveness of the CBPF
for Bayesian inference and on its superiority over the CPF (see, e.g., Fearnhead and Kiinsch
(2018), Section 7.2.2), quantitative theoretical guarantees for the CBPF are still missing. In
contrast, the theoretical properties of the CPF are much better understood (Chopin and Singh
(2015), Lindsten, Douc and Moulines (2015), Andrieu, Lee and Vihola (2018)).

Chopin and Singh (2015) introduced a coupling construction, called the coupled CPF
(CCPF), to prove the uniform ergodicity of the CPF. Recently, Jacob, Lindsten and Schon
(2020) identified the potential use of the CCPF to produce unbiased estimators by exploiting
a de-biasing technique due to Glynn and Rhee (2014) (see also Jacob, O’Leary and Atchadé
(2020)). This is an important algorithmic advancement to particle filtering methodology since
unbiased estimation is useful for estimating confidence intervals, allows straightforward par-
allelisation, and when used within a stochastic approximation context, such as the stochastic
approximation expectation maximisation (SAEM) scheme (Delyon, Lavielle and Moulines
(1999)), unbiased estimators ensure martingale noise, which has good supporting theory.

The methodological contribution of this paper is a relatively simple yet important algorith-
mic modification to the CCPF by extending the CCPF to include backward sampling steps
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through an index-coupled version of Whiteley’s (2010) backward sampling CPFE. This ap-
proach, which we call the coupled conditional backward sampling particle filter (CCBPF),
gives theoretical insight to the behaviour of the CBPF. It can also be used practically to facil-
itate unbiased estimation. The CCBPF appears to be far more stable than the CCPF (Chopin
and Singh (2015)) (and the variant of Jacob, Lindsten and Schon (2020) that uses coupled an-
cestor sampling within the CCPF). Under a general (but strong) mixing condition, we prove
(Theorem 6) that the coupling time of CCBPF grows at most linearly with length of the data
record when a fixed number of particles are used, provided this fixed number is sufficiently
large. From a computational perspective, this makes the CCBPF algorithm more appropriate
than alternative coupled CPFs when the length of the data record is very large, as one only
needs to have memory linear in the length of the data record.

As an important corollary of our analysis of the CCBPF, we obtain new convergence guar-
antees for the CBPF (Theorem 4) that verifies its superiority over the CPF. More specifically,
this result differs from existing time-uniform guarantees for the CPF (Andrieu, Lee and Vi-
hola (2018), Lindsten, Douc and Moulines (2015)) which require (super)linear growth of the
number of particles N with the length of the data record T. Our result confirms the long held
view, stemming from numerous empirical studies, that the CBPF remains an effective sam-
pler with a fixed N even as T increases. An important consequence of a fixed NV is that the
space complexity (the amount of memory required) of the algorithm is linear, as opposed to
quadratic, in 7', making it feasible to run on long data records without exhausting the memory
available on a computer. We remark that a variant of the the CPF that is stable with a fixed
N is the blocked version of the CPF introduced by Singh, Lindsten and Moulines (2017), but
that algorithm and its analysis are substantially different.

We also complement the empirical findings of Jacob, Lindsten and Schon (2020) by show-
ing quantitative bounds on the ‘one-shot’ coupling probability of CCPF, that is, probability
of coupling after a single iteration of the algorithm. These results are noteworthy as CCPF is
applicable in some scenarios where CCBPF is not, for instance when the transition density is
intractable. With the minimal assumption of bounded potentials, we prove (Theorem 8) that
the coupling probability of CCPF is at least I — O(N "), similar to what is shown for the
CPF (Andrieu, Lee and Vihola (2018), Lindsten, Douc and Moulines (2015)). However, the
constants involved grow very rapidly with 7. Under strong mixing conditions, we are able to
give a more precise rate of convergence as T increases (Theorem 9), which still requires N
to increase exponentially with T (see Andrieu, Lee and Vihola (2018), Lindsten, Douc and
Moulines (2015) for the CPF’s rate of convergence under similar strong mixing assumptions).
Our rates for the CCPF may be very conservative as empirical evidence (Jacob, Lindsten and
Schon (2020)) suggests increasing N linearly with 7 may be sufficient for some models,
although there is also evidence that N should grow superlinearly with T for other models.

2. Notation and preliminaries. Throughout the paper, we assume a general state space
X, which is typically R¢ equipped with the Lebesgue measure. However, our results hold
for any measure space X equipped with a o-finite dominating measure, which is denoted
as ‘dx’. Product spaces are equipped with the related product measures. We use the no-

tation a:b = a, ..., b for any integers a < b, and use similar notation in indexing x,., =
(Xgs .-, xp) and x@D) = (x@ _ x®)) We also use combined indexing, such that for in-
stance xﬁlT’T) = (xf”), ey x(T’T)). We adopt the usual conventions concerning empty products

and sums, namely ]—[Ia’(-) =1 and ZZ(~) =0 when a > b. We denote x A y := min{x, y},
x VvV y:=max{x, y} and (x)4 :=x VO.

We use standard notation for the k-step transition probability of a Markov kernel P
by P*(x,A) := [ P(x,dy)P*"1(y,A) and P°(x, A) := I{x € A}. If v is a probability
measure and f is a real-valued function, then (vP)(A) := [v(dx)P(x, A), (Pf)(x) =
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[ P(x,dy) f(y) and v(f) := [v(dx) f (x), whenever well defined. The total variation metric
between two probability measures w, v is defined as ||i — vl 1= SUp| f|<i lw(f) —v()l,
and || f|lo := sup, | f(x)|. If two random variables X and Y share a common law, we write

X £ Y. We denote the categorical distribution by Categ(w'!*N)) for unnormalised probabili-
ties 0@, that is, 1 ~ Categ(@ ") if P(I = i) =@/ Y1, 0.

We are interested in computing expectations of smoothing functionals, with respect to the
probability density w7 (x1.7) := yr(x1.7)/cT On a space XT with the following unnormalised
density (cf. Del Moral (2004)):

T
(1) yr(xr.7) =M1 (x1)G1(x1) ]_[ M (xe—1, %) Gr(X—1, Xt),
1=2

where M) is a probability density, M; are Markov transition densities, G : X — [0, 00)
and G, : X? = [0, oo) for t € {2:T} are ‘potential functions’, and c7 := [ yr(x1.7)dxi.7 €
(0, 00) is an unknown normalising constant. The probability density in (1) also encompasses
the posterior density of a hidden Markov model (HMM) when the pair (G;, M;) is defined
appropriately. For example, let the HMM be defined by a Markov state process having initial
density f1(x1) and transition densities f;(x; | x;—1), and an observed process having densities
g:+(yr | x¢). Given the sequence of observations yi.r, the potentials can be taken to be of the
form

Gixy) = g1y 1 x1) f1(x1) and G, (x_1.x,) = 8t (Ve | xe) fr (xp | Xe—1)
Mi(x1) M (xe—1, xt)
in which case w7 (x1.7) corresponds to the smoothing distribution of the HMM, that is, the
conditional density of the latent Markov states given the observations. In the fairly com-
mon case where M| = f] and M;(x;—1,x:) = f(x; | x,—1) for t > 1, we write G;(x;) :=
Gi(x:—1,x:) = g: ()t | x¢) to emphasise that G, is a function only of x;.
We will consider two different conditions for the model. Assumption 1 is generally re-
garded as nonrestrictive in the particle filtering literature and essentially equivalent with the
uniform ergodicity of CPF (Andrieu, Lee and Vihola (2018)).

ASSUMPTION 1 (Bounded potentials). There exists G* < oo such that G,(-) < G* for
allt =1:T.

Assumption 2, which subsumes Assumption 1, is a much stronger assumption introduced
to prove time-uniform error bounds of particle filtering estimates (Del Moral and Guionnet
(2001)). It is typically verified for models where X is compact with (i) transitions that allow
movement between any two regions of the space and (ii) potentials that are lower and upper
bounded away from O and oco. Theoretical results using Assumption 2 are often indicative of
performance in models where it does not quite hold. The assumption has been replaced by
weaker but fairly involved assumptions by Whiteley (2013) in the context of time-uniform
error bounds, who also briefly surveys the use of Assumption 2. Another brief survey can
be found in Douc et al. (2011). At present, many theoretical papers on particle filters use
Assumption 2 as weaker alternatives are very difficult to manipulate theoretically and also to
verify.

ASSUMPTION 2 (Strong mixing). G.(1) := infrexGi(x) > 0 and G*(1) :=
sup,ex G1(x) < o0, and for all t =2:T":

(i) M. (1) :=infy yex M;(x,y) > 0 and M*(t) :=sup, yex M;(x,y) < 00,

(ii) G«(t) :=infy yex G¢(x,y) > 0and G*(¢) := SUP, yex Gi(x,y) < oo.

G ()
G*(1)

G+ (DM ()G« (t+1)
G*(OM*(1)G*(1+1)

Denote § :=min;—.7 and € :=min,—;.7_]
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REMARK 3. Note that § > € > 0. The expression of constant € may be simplified (and
improved) in two special cases, as follows:

(1) If M;(x,y) = M;(y) for all t = 2:T, then M, (t)/ M*(t) may be omitted.
(i) If Gi(x,y) = G,(y) fort =2:T, then G,(t + 1)/ G*(t + 1) may be omitted.

In particular, if both hold, then € = §. When results are stated in the asymptotic regime where
T — oo, Assumption 2 should be interpreted as holding for all 7 > 1 with a uniform lower
bound € > 0.

3. Convergence of the conditional backward sampling particle filter. Before going
to the construction of the coupled conditional particle filters, we consider the conditional
particle filter (CPF) (Andrieu, Doucet and Holenstein (2010)) and the conditional backward
sampling particle filter (CBPF) (Whiteley (2010)) (in short CXPF where X is a place holder),
given in Algorithm 1. Both CPF and CBPF define a reversible Markov transition with respect
to 77 (Chopin and Singh (2015)), with any choice of the parameter N > 2 (number of parti-
cles). The important distinction is that in the CPF, X gj}T) is obtained by tracing the ancestral

line of X (TJT), whereas in the CBPF ancestors are selected randomly according to the Markov
transition densities and potential functions. The CPF and the CBPF have the same time com-
plexity and space complexity, O (T N). The CBPF takes a constant factor more time due to
the additional computations required to sample random ancestors: if the transition densities
are not expensive, this factor will typically be less than 2.

We focus first on the important implication of our result for the convergence time of the
CBPF, which applies also to the ancestor sampling implementation of Lindsten, Jordan and
Schon (2014) as it is probabilistically equivalent to the CBPF.

THEOREM 4. Suppose Assumption 2 (strong mixing) holds, and denote by Pr n the
Markov transition probability of CBPF with N particles (Algorithm 1). For any p > 0, there

Algorithm 1 CXPF(X].;, N)
I Xjy < X
XY~ My () fori € (2:N).
o) < G1(x\") fori e (1:N}.
for t =2:T do
It(i) ~ Categ(a)t(l_:iv)) fori € {2:N}.

. (i)
6 XD ~mx"), ) forie(2:N).

0 « Gt(Xfﬁ(l)), XD fori e {1:N}.
8: end for
9: Jr~ Categ(w(Tl:N))
10: fort = (T — 1):1 do
11: if CBPF do

12 b o M X0, XD G (D, X )
1 Ji ~ Categ(b"™)

14: if CPF do

15: J <~ It(fl“) where It(l) =1

16: end for

17: output ngj}:r)
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exists No = No(e, p) < oo such that for all N > Ny,

2 li PP, ) — = 0.
@) Am sup| Pl o) =z,

More precisely, for any a, B € (1, 00) there exists No = No(e€, o, B) € N such that for all
N > Nop:

(i) sup,ex [I1Pf y(x, ) =77l <@ B~ forallk > 1 and all T > 1.
(i) For any p > loga/log B, (2) holds.

PROOF. The upper bound (i) follows from Theorem 6 and Lemma 30, and (ii) follows
directly from (i). The first statement follows because log «/ log 8 can be taken to be arbitrarily
small. [

Theorem 4, indicates that under the strong mixing assumption, the mixing time of CBPF
increases at most linearly in the number of observations 7. We remark that unlike existing
results for the CPF, we do not derive a one-shot coupling bound (Chopin and Singh (2015)),
or a one-step minorisation measure (Andrieu, Lee and Vihola (2018), Lindsten, Douc and
Moulines (2015)), to prove the uniform ergodicity of the CBPF transition probability Pr y.
This is because the enhanced stability of CBPF’s Markov kernel over the Markov kernel of
CPF can only be established by considering the behaviour of the iterated kernel P’T" N of
Theorem 4, which has thus far proven elusive to study. Thus, in addition to the result, the
proof technique is itself novel and of interest. For this reason, we dedicate Section 6 to its
exposition.

REMARK 5. Intuitively, the arguments used to prove Theorem 4 demonstrate that by
increasing Ny, one can take p to be smaller. Hence, the qualitative relationship that increasing
the number of particles gives faster convergence of the CBPF is captured. However, if one
was to pursue quantitative bounds on the dependence between p and Ny, our bounds are
likely to be too conservative to be useful.

4. Coupled conditional particle filters. This section is devoted to the CCPF and
CCBPF algorithms (in short CCXPF where X is a place holder). We start with Algo-
rithm 2, where the CCXPF algorithms are given in pseudo-code. The algorithms differ only in
lines 12-17, highlighting the small, but important, difference: the CCBPF incorporates index
coupled backward sampling, which is central to our results.

Algorithm 3 details the index coupled resampling (Chopin and Singh (2015)), implement-
ing maximal coupling of Categ(w'*M)) and Categ(®'*M). Line 7 of Algorithm 2 accommo-

dates any sampling strategy which satisfies X t(i) ~ M (X t(f(l)), .) and X t(i) ~ M, (X t(f(l)), -)
marginally, but may involve dependence, such as implementation using common random
number generators (Jacob, Lindsten and Schon (2020)).

The CCXPF algorithms define Markov transition probabilities on X’ x X”. The CCXPF al-
gorithm is a Markovian coupling of the corresponding CXPF algorithm, with the same struc-

ture: it is direct to check that CCXPF coincides marginally with CXPF in Algorithm 1, that is,
if (S, S’) < CCXPF(sef, Sref, N) for some N > 2 and syef, Sref € X!, then S 4 CXPF(sref, N)

and S < CXPF(Sref, N). It is also clear that if spef = Sref, then S = S. Because CPF and CBPF
are both mr-reversible (Chopin and Singh (2015)), it is easy to see that CCXPF are mr-
reversible, where 7 7 (ds, ds) = w7 (s)8;(ds) ds. Just as the CPF and CBPF algorithms have
time and space complexity O (T N), so do the CCPF and CCBPF algorithms.
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Algorithm 2 CCXPF(XT.;, X L7 N)
1 1
(X1, X1p) < (Xips Xiop).
X\ X(’) ~ M, (-) fori € {2:N}.
o\ < G (X(’)) o < Gx().
for t = 2 T (~10_
AN [EN)y CRES(a)(l M TV N —1).

—1 > @1 >
6 XD %O x )

ok N

. . . (It(i))
1 )forze{ZN}wuhXt =X

N (:)
7 x9D XDy~ o x D, &) ))forze{2N}w1thX(I’ £ XU

=1 =1
(i)
8 o) < Gx") xD). 60 < G, &E) D).
9: end for

10: (Jr, Jp) < CRES(a)(l N)’ S0 1y
11: fort = (T —1):1do
12: if CCBPF do

13: b — o M1 (X", Xz(JJr’TI))GtJrl(Xt(i)» Xz(-ﬁl))
14: b — oM, (X7, Xz(-{—tfrl))Gt—l— X, Xr(-ffl))
1s: (Jr. J) < CREs(b{"™ 5" 1)

16: if CCPF do

17: (J;, Jp) < (It(fl“), I,(fl“)) where IV =TV =1,
18: end for

19: output (X(J1 i) X(J1 T))

4.1. Convergence of the CCBPF. In our experiments, the CCBPF had stable behaviour
with a fixed and small number of particles, even for large 7. Our main result for the CCBPF
consolidates our empirical findings. In contrast to most results for the CPF and CCPF, the
statement of the coupling behaviour for CCBPF is not one-shot in nature: instead we show
that the pair of trajectories output by the repeated application of the CCBPF kernel couple
themselves progressively, starting from their time 1 components until eventually coupling all
their components until time 7.

THEOREM 6. §upp0se that Assumptéon 2 holds. Let sef, Sret € XI and let (S, S'o) <~
(Sref, Sref) and (Sk; Sk) <= CCBPF(Sk—1, Sk—1, N) for k > 1. Denote the coupling time t :=
inf{k > 1 : S = Si}. For any p > 0, there exists No = Ny(€, p) < 00 such that for all N >

Algorithm 3 CRES (w"'M) (V) )

: AN L1 ~(L:N) ; (i
- wN ﬁ; N Z% —7 Pe <_2N_1 w@ A )
1:N (:N) A (1:N) 1:N (1:N) (1:N) I:N = (1:N) (1:N)
2. @itV wCDADTED 2“’ cPV) W —pewe 1_‘;;” cpY) W —pewe T ll;cw
3: fori =1:ndo
4: with probability p. do
5: 7O 70 ~ N
6: otherwise
T 10~ O ),
8: end for 3
9: output (71 )y
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No,
3) Tlim P(t > [pT17) =0.

More precisely, for any a, B € (1, 00) there exists No = No(€, o, B) € N such that for all
N = No,

4) P(r>n)<alB™ foralln, T € N.
In particular, for any p > log(a)/log(B), (3) holds.

The proof of the bound (4) is given in Section 6, and the linear coupling time statement
follows by appropriate choice of & and 8. The most striking element of this statement is that
the coupling time t does not exceed p7" with greater surety as 7" increases.

REMARK 7. The comments in Remark 5 also apply here. Regarding tightness of Theo-
rem 6, one may consider whether coupling might occur with high probability after a number
of iterations that is sublinear in 7. The simulation experiments in Section 7 suggest that the
mean coupling time for the CCBPF is indeed linear in 7' for the models considered, sug-
gesting that Theorem 6 is tight, and we suspect that this is the case for many other models.
Similarly, in the more challenging simulation experiment, we found that values of N that
were too small had mean coupling times that were superlinear in 7', suggesting that there is
indeed a model-dependent, minimal Ny for linear-in-time coupling.

4.2. Convergence of the CCPF. 'We seek here to provide quantitative results to strengthen
Theorem 3.1 of Jacob, Lindsten and Schon (2020), which does not quantify the dependence
of the probability of coupling on N or T. Although the results are less encouraging than for
the CCBPEF, the dependence on T is likely to be very conservative for many models. On the
other hand, results for the CCPF are interesting because it is more widely applicable than the
CCBPF, specifically since implementing the CCPF does not require the ability to calculate
densities M;.

In empirical investigations, we have only seen the CCPF couple instantaneously, as op-
posed to the progressive coupling seen for the CCBPF. For that reason, we focus here on
lower bounding the one-shot coupling probability for two arbitrary reference trajectories.

Our first result states that with 7" fixed, the CCPF enjoys similar strong uniform ergodicity
to the CPF, with the same rate as the number of particles N is increased (cf. Andrieu, Lee and
Vihola (2018), Lindsten, Douc and Moulines (2015)).

THEOREM 8. Let Sgef, Sref € X1, and consider (S, S‘) < CCPF(syef, Stef, N) with N > 2.
If Gi(xi—1,x;) = G4(x;) for t > 2 and Assumption 1 holds, then there exists a constant ¢ =
c(G*, T, cr) € (0, 00) such that
c

PS=S)>1- .
N +c

The proof of Theorem 8 is given in Appendix A.

Theorem 8 is stated with a fixed time horizon 7', and shows that one-shot coupling occurs
from any initial state (sgef, Sref) With positive probability for any N > 2. To have a reasonably
large probability of one-shot coupling, it is sufficient to choose a large enough value of N.

Although Theorem 8 holds very generally, it does not provide useful quantitative bounds
on the relationship between N and T'; in particular, c(G*, T, cr) may grow very quickly with
T so that N would need to grow similarly quickly to control the coupling probability. In order
to provide more accurate bounds relating N and 7', we have had to make the strong mixing
assumption.
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THEOREM 9. Under the setting of Theorem 8, but with Assumption 2,
2t

SN TR S [ TR

Theorem 9, which follows from Lemmas 20 and 23 in Appendix B, shows that the proba-
bility of coupling does not diminish when N = O (27 T'). That is, roughly doubling of particle
number with every unit increase in 7' ensures nondiminishing coupling probability. Experi-
ments by Jacob, Lindsten and Schon (2020) and also those in Section 7 suggest that a rate
N = O(T) might be enough for some models, which would be analogous to the results on the
CPF (Andrieu, Lee and Vihola (2018), Lindsten, Douc and Moulines (2015)), but we have
been unable to verify such a rate theoretically. Our empirical results in Section 7 also suggest
that taking N superlinear in 7 may be necessary in other models.

5. Unbiased estimators. Let us then turn to the use of CCXPF together with the scheme
of Glynn and Rhee (2014), to construct unbiased estimators, as suggested in (Jacob, Lindsten
and Schon (2020)). Algorithm 4 aims to unbiasedly estimate the expectation E . [2(X1.7)],
where i : X — R is any integrable function of interest. We remark that the unbiased estima-
tion procedure is not specific to the choice of /. For example, in a HMM one can approximate
smoothing means and covariances by choosing several appropriate 4 functions. Algorithm 4
has two adjustable parameters, a ‘burn-in’ b > 1 and ‘number of particles’ N > 2 which may
be tuned to maximise its efficiency. Algorithm 4 iterates either the coupled conditional par-
ticle filter CCPF or the coupled conditional backward sampling particle filter CCBPF until a
perfect coupling of the trajectories S, and S, is obtained.

The following result records general conditions under which the scheme above produces
unbiased finite variance estimators.

THEOREM 10. Suppose G;(x;—1, x;) = G (x;) and Assumption 1 holds, h : XTI - R s
bounded and measurable. Then Algorithm 4 with CCPF, b > 1 and N > 2 satisfies, denoting
by t the running time (iterations before producing output):

(i) t < oo almost surely.
(i1) E[Z] =Er,[h(X)] and var(Z) < o0.
(iii) With the constant ¢ = ¢(G*, T, ct) € (0, 00) of Theorem 8,

e
= N+ec N )

B 712 N+c)2( ¢ )b/2
var(2) = vare, (00)| < 161712 (“5 ) (55

where h(-) = h(-) — 7 (h).

Algorithm 4 UNBIASED(/, b, N)

Run particle filter with (M;, G¢);=1.7 independently to get trajectories S‘O, S_1eXx’
Set (Sp, —) < CCXPF(S_1,S_1, N).
:forn=1,2,...do
(Sn, Sp) < CCXPF(Sy—1, Su—1, N) )
if S, = S, and n > b then output Z :=h(Sp) + >_j_;, [A(Sk) — h(Sp)]
end for

AN A o e
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PROOF. Theorem 8 implies that P(t > k) < (5%)* ! for all k > b, from which

c b—1 N +c
E[r]_];ﬂ"(r>k)§b+];P(f>k)5b+<N+c> ( N )<oo’

and the bound on |var(Z) — vary, (h(X))| follows from Lemma 31. Part (ii) follows from
Theorem 27 and Lemma 29. [

Theorem 10 extends the consistency result of Jacob, Lindsten and Schon (2020), by quan-
tifying the convergence rates. Fix 7T': if N is large, then E[t] ~ b, and if b is large, then
var(Z) ~ vary, (h(X)). As mentioned after Theorem 6, the growth of the constant ¢ with re-
spect to T can be very rapid. In contrast, in case of the CCBPF, the results may be refined as
follows.

THEOREM 11. Suppose Assumption 2 holds, let o, B € (1, 00) and let Ng € N be from
Theorem 6. Then Algorithm 4 with CCBPF and b > 1 satisfies, with p :=loga/log B:

() E[r] <bV [pT]+e! p=0TPTIVD (g — 1)~ )
(i) |var(Z) — vary, (h(X))| < 16a” (1 — B~ 728=0/2||h|12,.
In particular, if b= [pT with any p > 2p, |var(Z) — varg, (h(X))| = 0 as T — oo.

PROOF. The results follow from Theorem 6 and Lemma 31, similarly as in the proof of
Theorem 10. [

Note that the latter term in Theorem 11 (i) is at most (8 — DL, showing that the expected
coupling time is linear in 7. Theorem 11(ii) may be interpreted so that the CCBPF algorithm
is almost equivalent with perfect sampling from 77, when b is increased linearly with respect
toT.

We conclude the section with a number of remarks about Algorithm 4:

(i) We follow Jacob, Lindsten and Schon (2020) and suggest an initialisation based on
a standard particle filter in line 1. However, this initialisation may be changed to any other
scheme, which ensures that Sy and 31 have identical distributions. Our results above do not
depend on the chosen initialisation strategy.

(i) The estimator Z is constructed for a single function 4 : X! — R, but several esti-
mators may be constructed simultaneously for a number of functions k1, ..., hy. In fact, as
Glynn and Rhee (2014) note, if we let 7 := inf{n > b : S, = S,}, we may regard the random
signed measure

fip(-):=8s5,(:)+ Y [85,(-) =85 ()]

k=b+1

as the output, which will satisfy the unbiasedness E[/i5(¢)] = 7 (¢) at least for all bounded
measurable ¢ : X — R.

(i) It is also possible to construct a ‘time-averaged’ estimator that corresponds to a
weighted average of the estimators i, over a range of values for b (Jacob, O’Leary and
Atchadé (2020)).

(iv) We believe that the method is valid also without Assumption 1 but may exhibit poor
performance—similar to the conditional particle filter, which is sub-geometrically ergodic
with unbounded potentials (Andrieu, Lee and Vihola (2018)).
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6. Coupling time of CCBPF. Consider now the Markov chain (Sk, S‘k)kzl defined by
Algorithm 4, with the stopping criterion (line 5) omitted. Define the ‘perfect coupling bound-
ary’ as

Kn =K (Sy, Sn) ‘=max{r >0 : Sn,l:t = Sn,l:t}-

We are interested in upper bounding the stopping time 7 :=inf{n > 1 : §, = S,} = inf{n >
1:x,=T}.

Since the CCBPF is complicated, in our analysis we instead focus on a simplified Markov
chain that considers only the vector of numbers of identical particles at each time ¢t € {1:7T'}.
The boundary associated with this simpler chain grows by i.i.d. increments, which are
stochastically ordered with respect to the increments of the CCBPF boundary increments,
ultimately allowing us to upper bound the stopping time.

We use stochastic ordering X <y Y of two random variables X and Y, which holds if their
distribution functions are ordered P(X < x) > P(Y < x) for all x € R. Two random vectors
X and Y are ordered X <y Y if E[¢p(X)] < E[¢ (Y)] for all functions ¢ : R" — R for which
the expectations exist, and which are increasing, in the sense that ¢ (x) < ¢(y) whenever
x <y, where ‘<’ is the usual partial order x < y if x; < y; for all i € {1:d}. Recall also that
X < Y if and only if there exists a probability space with random variables X and Y) such

that X < X and ¥ £ ¥ and X < ¥ a.s. Shaked and Shanthikumar (2007), Theorem 6.B.1.
Our bound of 7 is based on an independent random variable A, which satisfies «,+1 —
kn >st A A (T — ky,), under Assumption 2.

LEMMA 12. Suppose Assumption 2 holds, and consider the output of Algorithm 2
(CCBPF). The perfect coupling boundaries satisfy

Jir) U S S

K(ng;“j)’ X%:%T)) - K( T:T’ XT:T) Zst A A (T - K( T:T’ T:T))’
where the random variable A is defined through the following procedure:
(1) Let é‘, = N fort <0 and 6‘1 =N — 1, and set s = 1. While és > 0:

5C, )

e Simulate Csy1 ~ Binom(N — 1, 0

o [ets < s+ 1.
(i1) Seté,:Ofort>s,§;=0andt=s—1.WhiletiOorStH:O:

o Simulate & ~ Bernoulli(p;), where

¢
= §+1=0
._ N
Dt = A
P = =1
— A~ A~ t+1 — 1.
! sz + N — C;

o Lett <1t —1.
(iii) Set A < min{i >t : & =0} — 1.
PROOF. Denote in short x = k (X].7, X 1.7)» and the indices of the coupled particles
) - (FOD
Cri={je{l:N}: X"V =x""V forte{l:T).

Then the sizes of C; satisfy the following:
|Ci/|=N, t=1lux,

: 8|Cr—1]
|Ct] | Crii—1 =5t Binom| N — 1

> , , t=@w+1):T,
O|Ci—1|+ N — ICt—1|>
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where the latter follows by Lemma 13(ii). As the function ¢ —~ §c(N — (1 — 8)c)~!is increas-
ing in ¢, and Binom(n, p) >4 Binom(n, p’) for p > p/, it follows that (|Cy|, ..., |CT|) >«
é(l_K);(T_K) Shaked and Shanthikumar (2007), Theorem 6.B.3. This means that we may
construct (by a suitable coupling) ét such that |C;| > ét_K forallr € {1:T}.

By Lemma 13, the backward sampling indices satisfy:

~ 3|Cr|
PUr=JreCr|Cir)> ,
S|Cr|+ N —|Cr|
€|C| ~
Jii1=Ji11€Craq,
€|C;|+N—|Ct| t+1 t+1 t+1

P(J,=J, €C | Crr, Jis17) = C)|
e otherwise,

for t = 1:(T — 1). By definition, § > € and, therefore, 5c+61f/—c > EHfIi,_C > & - This, together

with |C7| > C‘T_K implies that P(Jr = Jr e Cr) > P(é7_, = 1). Similarly, by Shaked and
Shanthikumar (2007), Theorem 6.B.3, we deduce that
({1 =T €Ci},....I{Jr = Jr € Cr}) 25 EQ—i0):(T—1)-

Because the functions ¢, (x1.7) = ]_[;:1 max{0, x, } are increasing, the claim follows. [J

LEMMA 13. Suppose 0 < wy, < 0™ < 00 and 0@, 0D € [w,, w*] fori € {1:N}. Let
£ = % and C:={je{l:N}: 0¥ =5},
Then (1™ [y ~ CRES (0", N n) satisfy the following for all j € {1:n}:
() PUPD =1V =i)> £ foralli = I:N,

. i _~' |C|
(ll) P(I(])—I(J) EC)Z m

PROOF. Note that P(/) = I =) = w® A %@, so the first bound is immediate. For
the second, let C¢ :={1:N} \ C, and observe that
ZjeC o)
Yicc ® + (Cicce o)V (Licce @)
> T~ 20
~ |Clwx + |CCw*

S w Ap) =
jeC

because x — x(x + b)~! is increasing for x > 0 for any b > 0. The last bound equals (ii).
O

Because k11 — kn >st A A (T — kp), we note that T <y 7, where

n
(5) ti=infin>0: > A>T},
k=1
and Ay are independent realisations of A in Lemma 12. The next lemma indicates that if
N is large enough (given 4§, €), the random variables A are well behaved, and ensure good
expectation and tail probability bounds for .

LEMMA 14. Given any N € N, consider the random variable A defined in Lemma 12.
Forany 8 <ocoanda € (1, (1 — €)™ 1), there exists No < 0o such that for all N > Ny,

E[A]>f and E[a?]<p L.
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PROOF. Suppose ¢ : N — R, is decreasing and L € N, then

N

E[p(A) | Cis]= Y Plé—oou =1.&11=0]Cr)e()

t=—00

LAs

< Y PEoor=1.8511=0]Cr)p®) + o(L),

t=—00

and because p,gl) =1 and p,go) = € for u <0, we may write

IP)(é—oo:t = 17 §t+1 =0 | CAﬂl:s)

t—1 0
= {1‘[ pf,”}pﬁ‘”[ [T a —6)}P(S(z+1)v1 =0]Clsy).
u=1

u=t+1
Furthermore, for t € {1:L},
P& =0|Cr.) =PE.z+n=0|Cr)+ Y.  PE&E=0&410+1=b|Cuy)
be{0, 1)L~ h=£0

L L
<J1O=p™)+> (1-p").
u=t

u=t

Lemma 15 implies that for t = 1:L, the terms R; := G, /N — 1 in probability as N — oo, and
consequently also pt(l) — 1 and pt(o) — €. We conclude that whenever Y, _o(1 — €)' ¢ (1) <

oo,

L e8]
limsupE[p(A)] <o)+ > (- ep(t) =o(L)+ ) (1 —€)ep(L —1).
N—o0 t=—00 =0
We get the first bound by and applying the result above with ¢(t) = (L —1) 4, because E[A] >
L —E[(L —A)4], and limsupy_, (E[(L —A)4]<1— €~ !. The second bound follows by
taking ¢ (1) = o', because

limsupE[p(A)] < L+ (1 —e)ea L =aF[1+e(l —(1— €)'
N—oo =0 L]

LEMMA 15. The expectation of ¢, generated in Lemma 12 may be lower bounded as
follows:

C SIIN =1 N—1
E[—t} > N (1 ) where §y == ——3§.
NI71+8' (N =1 N

Therefore, for any t € N and ¢ > 0, there exists No such that for all N > Ny and all u = 1:1,
E[C,/N]>1—¢.

PROOF. Denote R, := C; /N, then for any ¢ > 1, we have
INR:—1

E[R; | R;—1] = .
[R: | Ri—1] I~ (-8R,

Note that for @, b > 0 and A € [0, b), the function x > ax(b — Ax)~! is convex on [0, 1].
Therefore, by Jensen’s inequality,
|: ar Ry
b[ - )"l Rl

] - a;E[R; | R—1]
~ by — ME[R; | Ri—1]
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_ ardyRi—1
bz[l - (1 - S)Rt—l] - )W‘SNRt—l
ar— 1R

C by — M1 Ry

where a;_1 =éyay, by—1 = b; and A, =SyA; + (1 — 8)b,. Starting witha, =1, b, =1 and
A =0, we conclude that

-2 1_81 1
ap =841, by=1 and A =(1-8)> 8= (1—5) —
k=0 N
and consequently,
t—1N— t—1N-—1
B[R] > R o .
~“ b1+ MR 1 T — (1 st yN=L
1+ MRy 1—( I—QN% 1= -0y )7y

because (1 — dy) > (1 — §). This equals the desired bound. [J

REMARK 16. In order to make the bound in Lemma 15 large, we must have 65\,_1 (N —

1) > 1. Because 85\,_1 > (1— t/N)S”l, it is sufficient that we take N > t and log(N) >
¢ +t(—1logd). Usually the latter is dominant, meaning that N of order § ' is necessary.

We simulated the random variables ét, and observed a similar ‘cutoff’—a §~'-fold in-
crease in N caused the ‘boundary’ where ¢, /N starts to drop from zero around one to zero,
to extend by one step further. We believe that Lemma 15 captures the behaviour of C; rather
accurately. However, we believe that C;_, are often rather pessimistic compared with the
actual couplings |C;|.

PROOF OF THEOREM 6. The result follows from the fact that P(z > n) < P(7 > n)
where 7 is given in (5), and a Chernoff bound

n n

Pt >n) < IP’(Z A; < T) < mige”T [[E[e 4] <a” B,
i=1 "= i=1

where the final inequality uses Lemma 14 by choosing u = log &, for some & < « such that

ael,(1—e)~H. O

7. Empirical comparison. We compare the CCBPF with the CCPF, as well as the CCPF
with ancestor sampling proposed by Jacob, Lindsten and Schon (2020) that was found to out-
perform the CCPF in their experiments. Like the CCBPF, the CCPF with ancestor sampling
is a coupling of the CBPF. To emphasize the main difference between the algorithms, we
abbreviate the variants according to the way ancestors are sampled as declared in lines 15
and 17 of Algorithm 2. The CCPF is denoted AT (ancestor tracing), the CCBPF is denoted
BS (backward sampling) and the CCPF with ancestor sampling is denoted AS (ancestor sam-
pling).

The computational cost of Algorithm 4 is the coupling time 7 multiplied by the cost of
each run of the CCXPF, at least when the burn-in b is small. We refer to this as the total cost
of coupling. For AT, AS and BS the cost per iteration is O(NT), and AS and BS are often
around twice the cost of AT. Hence the expected total cost of coupling is E[t]NT, up to
some constant depending on the model, with an additional factor of about 2 for AS and BS.
We investigate below the dependence of 7 and E[t] on N and T for two models:

1. the linear Gaussian model used by Jacob, Lindsten and Schon (2020) with the same
data;



COUPLED CONDITIONAL BACKWARD SAMPLING PARTICLE FILTER 3079

2. asimple homogeneous model where the transitions correspond to a simple random walk
model with standard normal increments, and the potential functions are G, (x;) = 1j—s s (x;)
fort e€{l,..., T}, with either s =5 or s = 10.

To give an idea of computational cost in seconds, the cost of running AT, AS and BS with
(T, N) = (1000, 1024) for the linear Gaussian model is respectively approximately 100 ms,
160 ms and 160 ms on both a Xeon E5-2667v3 CPU and a 2018 Macbook Air.

For fairer comparison, we report results with proposals using common random numbers
to execute line 7 of Algorithm 2, as suggested in (Jacob, Lindsten and Schon (2020)). Our
implementation of AT and AS differs from theirs only by minor modifications that empirically
have no substantive effect on any important characteristics of the algorithm; for instance, they
quantile-couple the residual indices (cf. line 7 of Algorithm 3). In Appendix D, we report
the results of similar experiments run without common random numbers in which both AT
and AS perform considerably worse, while BS is only slightly affected. This suggests that
accurate analysis of AT or AS may require analysis of the effect of common random numbers
which has thus far not been undertaken here or in Jacob, Lindsten and Schon (2020).

In Figures 1 (a)—(c), we plot the mean coupling times from 1000 replications using the lin-
ear Gaussian model, for every combination of 7 € {50, 100, 200, 400, 800, 1600, 3200} and
N € {64,128,256,512,1024}. If at least one replication resulted in a coupling time above
2000, the results for that (7, N) combination are excluded. For AT, we see that N needs to
grow roughly linearly in 7" to maintain the same mean coupling time, and that smaller values
of N do not lead to successful coupling in a reasonable amount of time: for 7 € {1600, 3200},
even N = 1024 was insufficient to have a reasonable mean coupling time. AS and BS exhibit
somewhat similar characteristics, with BS having a smaller mean coupling time for 7' large.
For N € {64, 128}, AS did not have a reasonable mean coupling time for large 7', unlike BS.
We complement Figures 1 (a)—(c) with Table 1 for combinations of (7', N) in which all algo-
rithms are somewhat competitive. The table indicates that in this regime, BS coupling times
have a smaller variance.

® ! @ 64 o 2 -@ 64
£ 100f -@ 128 £ o0l -@ 128
o -@- 256 o -@- 256
2 o -@ 512 2 -@ 512
= -© 1024 3 150t O 1024 P
3 / 3
IS / 3
© O 100+
C / c
£ E e

0 0 o —

50 400 800 1600 3200 50 400 800 1600 3200
T T
(a) Linear Gaussian: AT (b) Linear Gaussian: AS
[O) ) L -@ AS 32
£ £ 1500 -@ AS 64
el e -@ AS 128
2 g @ AT128
= 5 1000F -@ BS 32
3 3 ~© BS 64
o o -@ BS 128
c c
500
3 3 "
S S
oE " " N
500 1000 2000 4000
T
(c) Linear Gaussian: BS (d) Simple homogeneous model

FIG. 1. Mean coupling times associated with ancestor tracing (AT), ancestor sampling (AS) and backward
sampling (BS). For (d), the lines are coloured according to the type of algorithm and the number of particles N .
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TABLE 1
Average of 1000 coupling times (with standard deviations), with different variants of coupled ancestor tracing
(AT), ancestor sampling (AS) and backward sampling (BS)

T 50 100 200 400
N 64 128 128 256 256 512 512 1024

AT 1223 (131.2) 17.3 (17.1) 77.3 (82.0) 12.3 (11.2) 68.2 (67.5) 10.9 (9.6) 81.5 (76.6) 11.7 (9.9)
AS 142 (11.0) 7.2 (5.9) 13.0 (104) 6.3 (45 122 (8.8) 59 (4.1) 125 (82) 59 (3.5)
BS 11.0 (5.2) 69 300 95 (33 63 20 92 (25 64 (1.7) 94 (22) 6.6 (1.6)

In Figure 1(d), we plot the mean coupling times for all of the approaches for the simple
homogeneous model with s = 10. We used all combinations of T € {500, 1000, 2000, 4000}
and N € {16, 32, 64, 128}, with results for a combination excluded if a replication resulted in
a coupling time above 107. This is a homogeneous model, and we see that BS has a mean
coupling time that is roughly linear in 7. In contrast, the mean coupling time appears to grow
superlinearly for AS. We observed also that for large 7', BS did not result in a steady increase
of the coupling boundary for N < 32. This suggests that there is indeed a threshold value of
Np necessary for linear in 7 mixing: it seems one cannot take No = 2 universally in Theo-
rem 6 with an appropriately large p. While this model is relatively simple, it is challenging for
coupled conditional particle filters because the potential functions are not very informative
about the location of a particle in space.

The two examples show quite different behaviour for AS: in the linear Gaussian model
it appears that AS may have linear-in-time convergence for the range of T considered, even
if its performance appears to be worse than that of BS. However, for the simple but chal-
lenging homogeneous model AS appears not to enjoy this property. We suspect that the good
behaviour of AS in the former case is due to the combination of using common random
numbers (cf. Figure 5) and the fact that the potential functions are highly informative about
particle locations. It is not clear that this type of behaviour will extend to more challenging
scenarios, such as when the state space is higher dimensional or the smoothing distribution is
multimodal.

Figure 2 shows coupling boundaries (see Section 6) by iteration of a single run of each
method in the linear Gaussian model, illustrating typical progressive behaviour of the cou-
pling boundary with BS, in contrast with AS which does not clearly display a drift towards
complete coupling, and AT which makes no progress at all. The BS appears viable with much
smaller number of particles, and suggests that the computationally optimal number of parti-
cles with BS may differ significantly from that of AT and AS.

Y070 ) M — ,_'._.'_._|4_.'_._'4_4'_.'_._|4_.'_._'._4'_._'._|_4'_._'._.'_4_'._1_.'_4_'./_'__'_
C / N
C S S [ S Y [ S S [N N A N S NP ]
% 600 |- / 'w’l‘ BS —
° N | i | —-——--AS ]
> r ; ) x’ ]
I C ? ) \ AT .
-; 400 [~ i / L -
2 [ Iy ! ]
2 F ! i LN g ! ]
5 L / Ao TR AT / ]
Q 200 4 4 AN AN _
o Cf I w Ay Yy ]
L WA Pain v e Ak Ty = ]
- , ¥ / AR I \ \ -
L/ I Y ."”‘/ﬁ Y .

0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
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Iteration

FIG. 2.  One realisation of coupling boundaries with T = 800 and N = 64.
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Finally, we compare the total cost of coupling in the simple homogeneous model with
s =35, with N e {28,2°,210 211 212 213} and T € {1000, 2000, 3000, 4000, 5000}. Figure 3
shows normalised cost of coupling, defined as Nt/ T, over 100 replications of both algo-
rithms. The memory consumption limited the highest number of particles to N = 8192 with
T = 5000, which already exceeded 4 gigabytes in our implementation. With the shortest
time horizon 7 = 1000, the AS was competitive with BS, reaching sometimes lower costs
than BS. With increasing 7', the AS failed to couple increasingly often before reaching the
maximum number of iterations |10° /(NT)], chosen so that the maximum time spent on a
replication was approximately 2 minutes. The BS only failed to couple 3 times (out of 100)
before this maximum number of iterations was reached with N = 8192 and T = 5000, and
remained effective with small N. This experiment suggests that AS requires N to increase
with T in order to stay effective, leading to a superlinear memory requirement that may limit
its application with longer time horizons.

To provide finer detail, we report in Figure 4 the results of simulations testing the scaling
properties AT, AS and BS for both the linear Gaussian and simple homogeneous model with
s = 5. For the linear Gaussian model, the mean coupling time for AT appears to be stable
with N proportional to T, while for both AS and BS the mean coupling time grows roughly
linearly with T for N fixed. In contrast, for the simple homogeneous model the mean coupling
time appears to grow superlinearly for AT even with N proportional to T, linearly for AS
with N proportional to T, but linearly for BS with N fixed. This suggests that taking N
proportional to 7" is not sufficient in general to stabilize AT even for relatively simple models.
Similarly, for the homogeneous model, the relative cost of AS over BS grows with 7" and is
already around 8 for 7 = 1600.

Our empirical results suggest that all of AT, AS and BS are competitive when 7 is small,
and one should take N proportional to 7" for AT and sometimes also for AS. Since the space

e (o]
L _— 200 -
GE, 30T @ as " “E’ ~@ AS e
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o 2| @8BS g o150 | @ BS A
£ £ /
S 20 [ s
3 3 100
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€ - o — 0o o S
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T T

(a) Linear Gaussian model. (b) Simple homogeneous model.

FIG. 4. Mean coupling times associated with ancestor tracing (AT), ancestor sampling (AS) and backward
sampling (BS). For the linear Gaussian model, N = 2.56T for AT whereas N = 512 for AS and BS. For the
simple homogeneous model, N = 0.64T for AT and AS, whereas N = 128 for BS.
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complexity of any algorithm when taking N proportional to 7" is quadratic in 7', this approach
does not scale to large values of 7. When it is no longer possible due to memory requirements
to take N proportional to T', BS appears to be the only appropriate algorithm. We are not able
to quantify accurately the minimal number of particles Ny required for BS to exhibit linear-
in-time convergence or the value of N that maximises its computational efficiency, so this
needs to be done empirically.

APPENDIX A: ONE-SHOT COUPLING PROBABILITY OF CCPF

LEMMA 17.  Suppose Y '™ are nonnegative random numbers, Z1") are Z-valued ran-
dom variables, f : Z — [0, b] is measurable and G is a o-algebra. If YD are 0(G, Z(’))
measurable and Z"'™ are conditionally independent given G, then for any G-measurable
A >0,

[ o YO | g} L EY® | 6]
A+ Yo f(ZD) A+b+Z” (ELF(ZD) 61

PROOF. The claim is trivial whenever P(A + Z’;: 1 f(Z (U))=0]G) > 0, so consider the
case A + 27:1 f(Z(j)) > 0. Because x — x ! is convex on (0, 00),

y® y®
b il JE ber: 5 E 0N 6,201 | ‘]

E[r? 4]
= +b+ Y Ef(Z9) 61

whence the result follows. [

LEMMA 18. Consider an augmented state space X = X U {¢}, and define:
° G_,(x) =Gy (x) and G,((b) :=sup, G;(x) forallt =1:T and x € X,
o Mi(x,A)=M;(x,A) forallt =1:T, x € X and measurable A C X,
e Mi(p,{¢d}) =1 fort=2:T.

Let CCPF and CCPF stand for the CCPF for models X, My.r, G1.7) and (X, M1.T, G1.7),
respectively. Then, for all s,5 e XT,

(i) CCPF(s,5,N) = CCPF(s 5, N).
Let C1.7 stand for the sets generated in by CCPF(s, 5, N) and C ?:T stand for those generated
in CCPFE(s, (¢, ..., 9), N).

(i1) There exists a Coupling such that C; O C,¢ a.s.forallt =1:T.

(i) C? ={i e {2:N}: XD #£ o).

PROOF. The marginal equivalence (i) is straightforward. For the stochastic minorisation
(ii), we consider running CCPF(s, s, N) and CCPF(s, (¢, ..., ¢), N) simultaneously, in a
coupled manner. More specifically, set

X(Z:N) _ X(Z:N) _ X¢(2:N) _ X¢(2:N) ~M;(-).

For ¢t > 2, we proceed 1nduct1vely, assuming that X (’)1 = X (’) Xf’_(il) = )E'f’_(il) forall i €
C? . and that C —1D C? . which obviously hold for t = 2. Note that then

(l) _~(l) _ ¢(1) ¢(z)
W | =W | =W =W 1, leczl’

(l) < a)¢(ll)’ i ¢ Ct_]

t—1° t—1°

@

tl\/a)
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Also, a)f’(’]) < w¢(l) fori ¢ C? ., so we conclude that

1—1°
(i) ~(l) ~¢ (i) ¢ (@) ~¢(l)
> Wy _q . Wy A W1 ie C¢
(J) ~(J) ~o(j) ¢ ~d(j)’ =1
2w Z/ 1 20 Loy o
Consequently, the outputs of CRES satisfy P(I,(i) = ft(i) € Cfb_l) > P(I;’b(i) = f,mi) € Cf’_l),
and we may couple the outputs such that

P(I[(l) I(l) I¢’(l) I¢(l) e C¢ ) P(Ifb(l) — il¢(l) e C?_])v

and consequently we may also couple X, ® , X ,(i), X ?(i), Xf’(i) such that
(@)
xP=x0=xP0=x00 ~m(x"), ), iect. O

PROOF OF THEOREM 8. Consider CCPF(s, (¢,...,¢), N), let C‘t ={i € {2:N} :
X" # ). & =TI 8300, €, = T, $30- then by Lemma 18

£6.(G1) ]

(Jl T) (11 T) 7
P(X X P(JTZJTGCT)ZE[
( )= é&r(Gr)

Note that the latter quantity does not depend on X, @ , but only on the marginal conditional
particle filter X,() with reference (¢, ..., ¢). Setting h(Tl) = h(Tz) := Gr, we may apply
Lemma 17 with Z® = )~(¥+1) and G = Gr_| where G; = a()N(L(f) u<t,i=2:N),

E[s@«m}: [sér(h;“)}

£r(Gr) £r (W)

E[ZN_ZJE XY e CrintP (X0 | Gro 1]}
208 oo + XYL B (XY | Gro1]

%

S¢,_, (GTo1Mrhi))
E[ (V-1 §r—1(Gr-1) ]

) N Er—1(Gro Mrh?)
2”hT ”OO + (N 1) ngl(GTfl)

1)
—EI:SCT 1( )]
- 2
Ero1(h )
where h" = G, M,11h", and h® = G, 2N — D) ED oo + Mi1+1hS3)). We have

hgl) < h§2>, so we may iterate similarly as above to obtain

E[séT(Gﬂ} ; E[sél <h§”>] _hy
£r(Gr) gy 17

by Lemma 17, where hO b h(z) are defined as above, with convention Gg = 1.

Denoting Q; := Gy M;41, Qt,u '=Q;---Qy for t <u and Qz,z = I, we have h(()l) =
MiQ1,7-1(Gr), and

hy 20N = D71 o+ [ M4 o
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We may bound

[0 ] < G* I3 oo (1 420V = D7),

|M1 Q11| oo <2(N = D7HG) |1 o + M1 01h 2 |
and conclude that
B2 <h® fen,

for some ¢; = ¢1(G*, T) € (0, 00). We conclude the claim with ¢ = cl/h(()l). Il

APPENDIX B: ONE-SHOT COUPLING WITH RATE

Our results below hold under the following, slightly more general strong mixing assump-
tion.

ASSUMPTION 19. For any ¢ = 1:T, define Q;(x;:t4+1) := G¢(xs) M41(x¢, Xs41). There
exists a constant ¢, < oo such thatforall 1 <u <t <T

Supy, f Ouxuu+1) -+ Qr—1(x1—1:0) G (x¢) dXyy4-1:¢
infxu_l f My (xu—1:0) QuXuus1) - Qr—1(Xr—1:0) G (X)) dxyr —

LEMMA 20. Suppose Gi(x:—1,x:) = G¢(x;) for all t > 2. Then Assumption 2 implies
Assumption 19 with ¢, =€~ L.

Cx.

PROOF. Suppose Assumption 2 holds. For any nonnegative, bounded test function 4 :
X — R, let m(h) := [h(y)dy < co. Assumption 2 implies that for any x € X and 7 > 2,
My (t)ym(h) < [ M;(x, y)h(y)dy < M*(t)m(h). Let | <u <t, and define

BurtsCier) = [ Quit Guta2) - Qi1 (o) G () sz,
which is nonnegative and bounded both from above and away from zero. We may calculate
sup J GuCo) My (g, Xug 1) Quept Gt tut2) - Qr—1 (1) G () dxu 14
xl’“x;il f M, (xz;—l’ xu) Qu(xu:u—H) ce Qt—l (xt—l:t)Gt(xt) dxy

sup Gu(x, )M*(u + Dm(dy+1,1)
x! x (f Mu(x;_l, X)) G (xy) dxy ) My (u + 1)m(¢u+l,t)

wu—1

G*W)M*(u+1)
< .
T GyWM(u+1) O

Consider CCPF in Algorithm 2, and denote & = Z,N:1 8X(i>, §c, = Yiec, (SX@, & =
t t
Y 85300 6, = Siec, S300» 1 = E6,(G)/E(Gy) and i 1= Ec, (G /E(G)).

LEMMA 21. Let hy > hy > 0 be functions such that h’ := sup, ha(x) < oo, then for
t=1(T — 1),

E[Scm (hl)i| . E[é‘c,(h/l)

E[p:] — 1,
Ee1 () &(h@)]* Lr]

where

By (x) = G (x)(My41h1)(x),
B (x) = G (X)[2(N — D)7 % 4+ (My4172) (0)].
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PROOF. It is direct to check that It(i)l € C; and I;(i)l € C; implies [ @ — [ because

i > i ) t+1 = Lt
either a),(J ) < d)t(J ) for all jeCsor a)t(J ) > cb,(J ) for all J € C;. Therefore, we may write

E[SCM (hl)] = E[Zﬁz MDA I € Cg)]
& 11(h2) h (X)) + XY, haxD)

and apply Lemma 17 with G = G, := {x\!/"), [{\"V) X FENy Sy & — py(x D)) x

1 Iy e, z0 = x B X0 1% 1) and f(x, %,i,1) = ha(x), yielding

E[€C,+. (hl)] - g Eie Bl xI1a® iy ech gt]]

G 170 oms 4 N LB (X)) 161
G; Mr h i ~(
(B T B ) e D) | gt]]
- & (G (Mi41h7))
L 2h§ + (N — 1)4&(0;1 2
Ec, (Gt(Mi11hy))  ~
>E- (N— 1) 5 é?ct(Gj—)l l Pr Pt ]
(Gt (Mi41h2))
27 + (N — 1)51(Cil o)

_ ]E_ &c, (Gt (Mi1h1)) 5 }
L2h%(N — D71&(G)) + & (G (M1 1h2))
rEc, () _ &, (W)

—g| G g pysa ]

L& (h)) £ (h))

from which the claim follows because p; € [0, 1] and h/1 < h’z, so the latter fraction is upper
bounded by one. [

LEMMA 22. Suppose that Assumption 19 holds, then for any t = 1:T — 1,

t—1 2¢4 -1
Elpd = By + D _(Elp] = 1) where By := (1 o 1) :
u=1

PROOF. We may apply Lemma 21 recursively with h(lu) = hé”) =G, where G, ;(x,) 1=
f Qu(xu:u+l)Gu+1,t(xu+l) dxu—H and Gt,t =Gy, leading to

10 = Guet (02N = 7 sup G () (MG ) ()]

- 2¢y
< Gu_1<x><MuGu,t><x><1 + )

N-—-1
=Gu—1,tﬂ]\_/1»
implying that
ECoir (Gug1) £c, (Gu,r) s
E[“*]ZE[i — } + (Elpu] = 1).
§M+I(Gu+1,t) f‘Eu(Gu,t) Pu ( P ) ]

LEMMA 23. Under Assumption 19,
2Tt
Qe) (N =D+ 1

Elprl=1-2"(1-83) =1
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PROOF. The first inequality follows once we prove inductively that (1 — E[p:]) VvV (1 —
E[p:]) <2'(1 — ,ij), which holds for + = 1 by Lemma 22 (which is symmetric wrt. p; and
p¢). Then

t—1
1-Elp]<1-8y+ Y (1-Elal)
u=1
t—1
<=1+ 2 2) <20~ ).
u=1
and the same bound applies to 1 — E[p;]. The latter bound follows as 1 — ,BK, <T( - Bpn).
O

APPENDIX C: UNBIASED ESTIMATOR BASED ON A COUPLED MARKOV
KERNEL

We formalise here the construction of unbiased estimators of Markov chain equilibrium
expectations due to Glynn and Rhee (2014), and complement the results in Jacob, Lindsten
and Schon (2020).

DEFINITION 24 (Coupling of probability measures). Suppose p and v are two proba-
bility measures on S. The set of couplings I"(u, v) consists of all probability measures A on
S x S with marginals A(- x S)=p and A(S x -) =v.

DEFINITION 25 (Coupled Markov kernel). Suppose P is a Markov kernel on S, and P
is a Markov kernel on S x S. If P(x,x; -) e '(P(x, -), P(x, -)) for all x, x € X, then P is
a coupled kernel corresponding to P.

DEFINITION 26 (Coupling time). The coupling time of the bivariate Markov chain
(Xn, Xn)n>0 1s the random variable 7 :=inf{n > 0 : X} = X} for all kK > n}.

THEOREM 27. Let P be an ergodic Markov kernel on X with invariant distribution
(i.e., forall x € X, | P"(x, ) — 7|ty 272 0), and suppose P is a corresponding coupled
Markov kernel. Let v be any probability distribution on X, and suppose that ». € ' (v P, v).

Consider a Markov chain (X,,, X n)n>0 with initial distribution A and transition probability
P.,and h € L*(x). Let the coupling time t of (Xy, )an)nzo be a.s. finite, sup,,~. E[h2(X,)] <
oo for all n > 0 and a

L
(6) sup E[Z,zn’L] <00 where Zy, | = Z [h(X,) — h(X,)]I{n < 7).
{m,L:L>m} n=m
Then for all b > 0, E[Zp] = n (h) and var(Zp) < 00, where
o0
Zy:=hXp)+ Y [h(Xp) —h(X)]I{n < T}.
n=b+1

PROOF. Note that X, 4 5(,1“ for all n > 0, and so for any m > b,
=m

E[h(xm)]=E[h(Xb>+ 3 [h(xn>—h(5fn)]ﬂ{n<r}}.

n=b+1
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Fix b > 0. By (6), {¢n} is a bounded sequence in L2. The almost sure finiteness of the stop-
ping time ensures Z is well defined and ¢, — Zj; almost surely. Thus Z;, is also square
integrable and ¢,, — Z; in L'. Since vP" converges to 7 in total variation, the assumptions
sup, vP" (h?) < oo and 7 (h?) < oo imply v(P"h) — m(h). Finally, E[Z}] = 7 (h) follows
from E[¢,] = E[A(X;n)] = v(P" 1 h) — 7(h). O

LEMMA 28. Letting h := h — 7 (h), the variance of the estimator satisfies

[var(Zy) — varz (h(XO)| < IR 13 [VP* =7, + 207100 (BZh 11 00) " + EZj 11 oo

PROOF. We may write
var(Zp) = B(A(Xp) + Zps1.00)° = ER>(Xp) + 2E[(Xp) Zps1.00] + EZ}, | oo-
Let X ~ 7, then
|var(Zy) — var(h(X))| < [Ei*(Xp) — ER*(X)| + 22| o Bl Zbt1,00) + EZ} | oo

The first term is upper bounded by ||f_z|| lvPP*! — 7|y, and (E|Zp+1, )2 <EZ? O

b+1,00"
Below, we use || ]|osc := SUPy yex |h(x) —h(y)|, and ||h||cc = SUpP, ex [h ()] > 1A llose/2.
Under the following assumed distribution on the coupling time, not only is the sequence
Z,, 1, defined in (6) uniformly square integrable, the corresponding sequence {{,} is a L?
Cauchy sequence.

LEMMA 29. Suppose that there exist C < 0o and A € [0, 1) such that for all n € N,
P(t > n) < CA", then B[Z}, |1 <2CN"(1 — 1) 2||h||3 forall L=m > 1.

0osc

PROOF. Let Ahy, :=h(X,) — h(f(n), then |Ahy,| < ||k osc, and so

(7) E(Z, = [ > Ah Ahg]l{r>n\/£}:| < |1n]2. Z P(t >n Vo).

n,t=m n,t=m

The latter sum may be upper bounded by

nv{ i+m __ m A 1 )
cngzmx <CZ(21 DA = Co (2(1_/\)2+(1_k).

Simple calculation yields the desired bound. [J

LEMMA 30. Suppose P is a coupled kernel corresponding to a m-ergodic Markov ker-
nel P. Let T, 3 stand for the coupling time of the Markov chain (X, X,)n>0 with transition
probability P and with (X, Xo) = (x, X). Then

|P(x, )=, <2supP(ty 5 > n).

xeX

PROOF. Let 7, stand for the coupling time of (X,,, 5(,,),,20 with Xo = x and Xo ~ . By
the standard coupling inequality, || P (x, -) — 7 ||ty < 2P(7x > n), and

P(ty >n) = /P(fx >n| Xo=%)r(d¥) = /P(‘L’x’g > n)m(dx). N
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LEMMA 31. Let 7, ; be as in Lemma 30, and assume that there exist C € [1, 00) and
A € (0, 1) such that sup; ,x P(ty 5 > n) < CA". Then

16C —
|var(Zp) — vary (h(X))] < mk("“)/zllhllﬁo-

PROOF. Using Lemma 28 together with Lemma 30 and Lemma 29 yields
_, _ Cabt! 3
var(Z3) = vtz (100)| < 2C TR+ 2o 1R )
2C)Lb+1
+ s e
(1—2)?

The claim follows easily, because ||/ ]osc < 2lhlloo. O

APPENDIX D: SUPPLEMENTARY SIMULATION RESULTS

Figure 5 corresponds to Figure 1 but where common random numbers are not used in
Line 7 of Algorithm 2. We observe that AT and AS show much worse performance, whereas
BS is hardly affected.

o0
o 70r @ 64 o 100 || @ 64
£ 60 -@ 128 £ | ’ @ 128
o -@- 256 > \ -@- 256
g 50 -@ 512 c 75'” -@ 512
= -© 1024 3 ‘ | -© 1024
S 40r = \
<) s g 500
S 304 | o
& f g
@ 201 o 251)®
E 109 S /
0
50 400 800 1600 3200 50 400 800 1600 3200
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(a) Linear Gaussian: AT (b) Linear Gaussian: AS
© @ 64 o
500
£ -@ 128 “E’ ~@ AS32
= L -@- 256 = 1500 ~@ AS 64
D 400 -@ 512 = —1-@- As 128
S ~-@- 1024 £ ~ ~@- AT 128
5 300- B 1000k - ~@ BS64
3 3 o ~@ BS 128
2 200 8 ° P
© ) c o - -
Q@ 400l e 3 500 lo /é" - —
S - f;j:,f‘j*"”/ IS yz 40
o= ole—
50 400 800 1600 3200 00 1000 2000 4000
T T
(c) Linear Gaussian: BS (d) Simple homogeneous model

FIG. 5. Mean coupling times associated with ancestor tracing (AT), ancestor sampling (AS) and backward
sampling (BS). For (d), the lines are coloured according to the type of algorithm and the number of particles N .
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