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I would like to commend Johannes Schmidt-Hieber for a very interesting and timely paper
which studies nonparametric regression using deep neural networks. In recent years, the area
of deep learning has seen an explosive growth within machine learning, leading to impressive
leaps in performance across a wide range of important applications. However, our theoretical
understanding of deep learning systems is still very limited, with many unresolved questions
about their computational tractability and statistical performance. I believe that the statistics
community can play a crucial role in tackling these challenging questions and hope that
Schmidt-Hieber’s paper will spur additional research. Being a computer scientist rather than
a statistician, I am happy for the opportunity to provide an “outsider’s” viewpoint on this
paper (of course, any opinions expressed are solely my own).

Curse of dimensionality, or curse of sparsity? The paper studies a nonparametric re-
gression model of the form

Yi = f0(Xi ) + εi, i = 1, . . . , n,

where εi are i.i.d. standard normal, {Xi ,Yi}ni=1 are i.i.d. observations and f0 is a function with
Hölder smoothness properties. Without additional assumptions, this problem suffers from
the well-known “curse of dimensionality,” with the sample size n required to approximate
f0 scaling exponentially with the dimension d . As a result, such error rates are meaningful
only in low-dimensional settings and cannot explain the success of high-dimensional methods
such as deep neural networks. To tackle this, Schmidt-Hieber imposes an additional structural
constraint on f0, namely, that it can be written as a composition of smooth vector-valued
functions

f0 = gq ◦ gq−1 ◦ · · · ◦ g1 ◦ g0,

where each gi : Rdi → R
di+1 is generally sparse and depends on only ti ≤ di input variables.

The main result in the paper is that the convergence rate of this method (using deep neural
networks as estimators) is governed by the quantity

(1) φn := max
i=0,...,q

n
− 2β∗

i
2β∗

i
+ti ,

where β∗
i quantifies the smoothness of each gi . Crucially, the rate is no longer explicitly

dependent on the input dimension, as the networks are able to adapt to the internal sparsity
in f0. In contrast, the paper shows that a standard nonparametric estimator, namely wavelet
estimators with uniform design, cannot take advantage of this structure. Even for the special
case of nonparametric additive models (f0(x) = h(x1 + · · · + xd) for a smooth univariate h),
the convergence rate of this estimator is no better than

(2) n− 2α
2α+d ,

Received July 2019; revised September 2019.

1911

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/19-AOS1915
https://doi.org/10.1214/19-AOS1875
http://www.imstat.org
mailto:ohad.shamir@weizmann.ac.il


1912 O. SHAMIR

where α quantifies the Hölder smoothness of h. Comparing Equation (1) and Equation (2) and
assuming α and β∗

i are similar, we see that the rate of neural network estimators is superior to
wavelet estimators whenever maxi ti � d . As a result, we avoid the curse of dimensionality
when the target function is sufficiently sparse.

Although this is an insightful result, I believe that the extent to which it explains the sta-
tistical performance of deep neural networks is open to debate. Rewriting Equation (1) and
Equation (2) in terms of the sample size required attaining a fixed error level ε, and, assuming
α = β∗

i and t = ti for all i, we get that neural network estimators require (1/ε)1+t/(2α) obser-
vations, whereas wavelet estimators require (1/ε)1+d/(2α) observations. Clearly, the sample
size with neural networks is much smaller when t � d , but the dependence on t is still expo-
nential which means that only extremely sparse models can be accounted for. Essentially, we
have replaced a “curse of dimensionality” effect with a “curse of sparsity.” To give a quanti-
tative example, suppose1 α = 4, and we wish to attain ε = 0.05. Under these assumptions a
sample complexity bound of (1/ε)1+t/α is less than a billion (109) only for sparsity t ≤ 23.
Since having a billion examples is often too optimistic even for modern large-scale applica-
tions, this means that we can only realistically estimate models whose sparsity is up to 23.
It is not clear that such extremely sparse models can capture the complex real-world tasks
on which neural networks are successfully trained (e.g., object recognition in images where
state-of-the-art methods generally depend on more than 23 input pixels in a typical image).

An alternative approach, which has received much attention in the machine learning com-
munity in recent years, focuses on parametric models where the target function f0 is assumed
to be a neural network or even on distribution-free models where the underlying data dis-
tribution can be arbitrary, and we only attempt to find a predictor whose risk is not much
worse than the best neural network from a given class (see, e.g., Anthony and Bartlett (2009),
Bartlett, Foster and Telgarsky (2017), Dziugaite and Roy (2017), Golowich, Rakhlin and
Shamir (2018), Neyshabur, Tomioka and Srebro (2015)). Such approaches have several mo-
tivations: First, since we are attempting to construct neural network predictors of a given
architecture, it is natural to assume that the target function is approximately contained in that
class (otherwise, it might be better to use a different predictor class to begin with). Second,
the rates are generally of order n−θ for some constant θ ∈ [1

2 ,1], and the bounds can be
meaningful even for very large neural networks, sometimes without explicit dependence on
their sizes or any sparsity constraints. Third, distribution-free bounds depend on the learned
model rather than the target function, and, hence, they can provide a more fine-grained un-
derstanding of what kind of networks lead to good statistical performance. Of course, this
does not mean that nonparametric models are not useful. We are still far from a full under-
standing of the statistical aspects of neural networks, and insights from multiple viewpoints
would probably be helpful. However, the fact that extremely large and dense networks are
successfully learned in practice hint that factors beyond hidden sparsity may be at play.

Computational considerations. In his paper, Schmidt-Hieber mentions heuristic argu-
ments (e.g., Choromanska et al. (2015)), which indicate that, when training neural networks,
local minima in the training objective have a value relatively close to the global minima. It
is then stated that “If the heuristic argument can be made rigorous. . . [t]his would allow us
then to study deep learning without an explicit analysis of the algorithm.” Although it is often
useful to study statistical aspects of a learning problem ignoring computational/algorithmic
aspects, I would like to discuss a few potential pitfalls with such an approach, especially in
the context of deep learning.

1The choice of α = 4 here is rather arbitrary, but it is important to note that its choice affects other constants
multiplying the bound in Equation (2).
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In learning problems which can be reduced to convex optimization problems (such as
learning linear predictors with respect to a convex loss function), there is typically a unique
minimum which is also global. As a result, one can indeed study the statistical properties of
this minimum, ignoring the computational question of how this minimum is found. However,
we know that deep-learning problems are typically nonconvex, with the training objective
having multiple (often infinitely many) global minima, which differ sharply in their statisti-
cal properties. For example, multiple experiments have demonstrated that fitting the weights
of large neural networks (using standard algorithms) often achieve zero error on the training
data and low error on a validation set, even though there exist other weight configurations
for the network with zero training error which strongly overfit (e.g., Zhang et al. (2016)). In
such scenarios, even if we assume that a global minimum can always be found, it is impos-
sible to provide meaningful statistical guarantees, unless we take the optimization algorithm
and the type of global minimum it returns into account. Indeed, several recent works in the
machine learning literature studied the implicit statistical biases which are induced by vari-
ous algorithms (such as Arora et al. (2019), Li, Ma and Zhang (2018), Soudry et al. (2018)
but also going back to, e.g., Schapire et al. (1998) in the context of boosting), whereas other
works (such as Bartlett et al. (2019), Belkin et al. (2019), Hastie et al. (2019)) studied how
certain parametric estimators which interpolate the training data can avoid overfitting, even
in the presence of noise. Of course, purely statistical analyses are still useful, but one needs
to be mindful that they probably cannot fully explain the statistical behavior of deep learning
systems.

Another more technical issue is the implicit assertion that stochastic gradient descent is
capable at all of finding local minima (hence, if the problem is such that all local minima
are close to global, the algorithm will find a nearly-optimal solution). Although it is not the
focus of this paper, I would like to point out that even this modest assertion is not known to be
true: For the type of nonconvex optimization problems which arise in deep learning, we know
at best that there is convergence to a stationary point suitably defined (see, e.g., Davis et al.
(2020)). Moreover, even when there is convergence to a local minimum, the convergence may
be extremely slow, even for generalized linear models with Gaussian inputs and other simple
setups (see, e.g., Shalev-Shwartz, Shamir and Shammah (2017), Shamir (2018)). Thus, even
if we can show that all local minima have a value close to global ones in deep learning
problems—a result which still seems out of reach—that would still be far from sufficient to
explain why deep learning systems can be successfully trained.

The importance of adaptiveness. The paper shows that, in contrast to neural network
estimators, wavelet estimators based on a uniform random design have a rate deteriorating
exponentially with the input dimension, even when the target function satisfies the struc-
tural assumptions discussed earlier. In what follows, I would like to point out that this bad
dimension dependence also applies to a much larger class of estimators but in a somewhat
different sense. Specifically, consider an estimator based on fitting a linear combination of
random basis functions, f1, . . . , fr , and chosen from some fixed distribution over a function
class F . The wavelet estimators discussed in the paper are a very special case, where each
fi is a wavelet function with a center sampled uniformly at random from [0,1]d . Further-
more, let us ignore all statistical considerations, assume that we know the target function f0
precisely and find the best approximation using any linear combination of f1, . . . , fr . Then,
under mild assumptions and in order to achieve some constant accuracy, either the number
r of basis functions or the magnitude of the weights must be exponential in the dimension
d . Importantly, this holds even for specific f0 as simple as a neural network composed of a
single neuron. This can be formalized as follows:
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THEOREM 1 (Yehudai and Shamir (2019)). There exists a universal constant c > 0 such
that the following holds. Let d > 40, and let F be a family of functions from R

d to R such that
supf ∈F Ex[f (x)2] ≤ exp(d/40). Also, for some r ∈ N, let D be an arbitrary distribution over
tuples (f1, . . . fr) of functions from F . Then, there exists a ReLU neuron function f0(x) =
max{0, 〈w∗,x〉+b∗} (for some w∗, b∗ with ‖w∗‖ = d2, |b∗| ≤ 6d3 +1) such that w.p. at least
1 − r exp(−cd) over sampling f1, . . . , fr from D, if Ex∼N (0,I )[(∑r

i=1 uifi(x) − [〈w∗, x〉 +
b∗]+)2] ≤ 1

50 ; then,

r · max
i

|ui | ≥ 1

48d2 exp(cd).

See also Ghorbani et al. (2019) for related results. Note that in Theorem 1, we crucially
assume that the estimator is “nonadaptive,” in the sense that the distribution D does not
depend on the target function f0, but, otherwise, only minimal assumptions on the function
class F are made. In particular, it encompasses wavelet estimators, kernel density estimators,
algorithms based on random features (e.g., Rahimi and Recht (2008)), kernel methods, etc.
In general, it implies that any kind of estimator based on “reasonable” linear combinations of
nonadaptive features is inadequate to express even the simplest class of neural networks and
even ignoring statistical considerations. Intuitively, the result holds since the class of ReLU
neurons occupies a high-dimensional manifold in L2 function space, and it cannot be well
approximated by any small number of basis functions (at least with subexponential weights).

Of course, this result naturally suggests the use of “adaptive” estimators: for example, it
is known that single neurons are learnable with an estimator composed of a single neuron
(e.g., Mei, Bai and Montanari (2018), Soltanolkotabi (2017)). Thus, it would be interesting
to understand which adaptive estimators have good performance under the model proposed
in Schmidt-Hieber’s paper.

Acknowledgments. I thank Boaz Nadler for very helpful discussions and comments on
a draft of this paper.
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