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We study the problem of variable selection for linear models under the
high-dimensional asymptotic setting, where the number of observations n

grows at the same rate as the number of predictors p. We consider two-stage
variable selection techniques (TVS) in which the first stage uses bridge esti-
mators to obtain an estimate of the regression coefficients, and the second
stage simply thresholds this estimate to select the “important” predictors.
The asymptotic false discovery proportion (AFDP) and true positive propor-
tion (ATPP) of these TVS are evaluated. We prove that for a fixed ATPP,
in order to obtain a smaller AFDP, one should pick a bridge estimator with
smaller asymptotic mean square error in the first stage of TVS. Based on
such principled discovery, we present a sharp comparison of different TVS,
via an in-depth investigation of the estimation properties of bridge estima-
tors. Rather than “orderwise” error bounds with loose constants, our analysis
focuses on precise error characterization. Various interesting signal-to-noise
ratio and sparsity settings are studied. Our results offer new and thorough in-
sights into high-dimensional variable selection. For instance, we prove that
a TVS with Ridge in its first stage outperforms TVS with other bridge esti-
mators in large noise settings; two-stage LASSO becomes inferior when the
signal is rare and weak. As a by-product, we show that two-stage methods
outperform some standard variable selection techniques, such as LASSO and
Sure Independence Screening, under certain conditions.

1. Introduction.

1.1. Motivation and problem statement. Although linear models can be traced back to
two hundred years ago, they keep shining in the modern statistical research. A problem of
major interest in this literature is variable selection. Consider the linear regression model

y = Xβ + w,

with y ∈ R
n, X ∈ R

n×p , β ∈ R
p and w ∈R

n. Suppose only a few elements of β are nonzero.
The problem of variable selection is to find these nonzero locations of β . Motivated by the
concerns about the instability and high computational cost of classical variable selection tech-
niques, such as best subset selection and stepwise selection, Tibshirani proposed LASSO [47]
to perform parameter estimation and variable selection simultaneously. The LASSO estimate
is given by

(1.1) β̂(1, λ) := argmin
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1,

where λ ∈ (0,∞) is the tuning parameter, and ‖ · ‖1 is the �1 norm. The regularization term
‖β‖1 stabilizes the variable selection process while the convex formulation of (1.1) reduces
the computational cost.

Received March 2019.
MSC2020 subject classifications. 62J05, 62J07.
Key words and phrases. Variable selection, high dimension, bridge regression, two-stage methods, false dis-

covery proportion, true positive proportion, rare signal, large noise, large sample, debiasing.

2791

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/19-AOS1906
http://www.imstat.org
mailto:sw2853@columbia.edu
mailto:arian@stat.columbia.edu
mailto:wenghaol@msu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2792 S. WANG, H. WENG AND A. MALEKI

Compared to LASSO, other convex regularizers such as ‖β‖2
2 imposes larger penalty to

large components of β . Hence, their estimates might be more stable than LASSO. Even
though the solutions of many of these regularizers are not sparse (and thus not automati-
cally perform variable selection), we may threshold their estimates to select variables. This
observation leads us to the following questions: can such two-stage methods with other reg-
ularizers outperform LASSO in variable selection? If so, which regularizer should be used in
the first stage? The goal of this paper is to address these questions. In particular, we study the
performances of the two-stage variable selection (TVS) techniques mentioned above, with
the first stage based on the class of bridge estimators [23]:

(1.2) β̂(q, λ) := argmin
β

1

2
‖y − Xβ‖2

2 + λ‖β‖q
q,

where ‖β‖q
q = ∑

i |βi |q with q ≥ 1. Our variable selection technique takes β̂(q, λ) and returns
the sparse estimate β̄(q, λ, s) defined as follows:

β̄(q, λ, s) = η0
(
β̂(q, λ); s2/2

)
,

where η0(u;χ) = u1{|u|≥√
2χ} denotes the hard threshold function and it operates on a vec-

tor in a componentwise manner. The nonzero elements of β̄(q, λ, s) are used as selected
variables. In this paper, we give a thorough investigation of such TVS techniques under the
asymptotic setting n/p → δ ∈ (0,∞). Specifically, the following fundamental questions are
addressed:

Which value of q offers the best variable selection performance? Does LASSO outperform the two-
stage methods based on other bridge estimators? What is the impact of the signal-to-noise ratio
(SNR) and the sparisty level on the optimal choice of q?

1.2. Our contribution. Different from most of the previous works, our study adopts a
high-dimensional regime in which variable selection consistency is unattainable. Under our
asymptotic framework, we are able to obtain a sharp characterization of the variable selection
“error” (we will clarify our definition of this error in Section 2). The asymptotically exact ex-
pressions we derive for the error open a new way for comparing the aforementioned variable
selection techniques accurately.

It turns out that the variable selection performance of TVS is closely connected with the
estimation quality of the bridge estimator in the first stage; a bridge estimator with a smaller
asymptotic mean square error (AMSE) in the first stage offers a better variable selection
performance in the TVS. This novel observation enables us to connect and translate the study
of TVS to the comparison of the estimation accuracy of different bridge estimators.

Due to the nature of different �q regularizers, each bridge estimator has its own strength
under different model settings. To clarify the strength and weakness of different bridge esti-
mators, we study and compare their AMSE under the following important scenarios: (i) rare
signal scenario; (ii) large noise scenario; (iii) large sample scenario. For the first two, new
phenomena are discovered: the Ridge estimator is optimal among all the bridge estimators
in large noise settings; in the setting of rare signals, LASSO achieves the best performance
when the signal strength exceeds a certain level. However, for signals below that level, other
bridge estimators may outperform LASSO. In the large sample scenario, we connect our
analyses with the fruits of the classical low-dimensional asymptotic studies. We will provide
new comparison results not available in classical asymptotic analyses of bridge estimators.

In summary, our studies reveal the intricate impact of the combination of SNR and spar-
sity level on the estimation of the coefficients. New insights into high-dimensional variable
selection are discovered. We present our contributions more formally in Section 3.
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1.3. Related work. The literature on variable selection is very rich. Hence, the related
works we choose to discuss can only be illustrative rather than exhaustive.

Traditional methods of variable selection include best subset selection and stepwise pro-
cedures. Best subset selection suffers from high computational complexity and high vari-
ance. The greedy nature of stepwise procedures reduces the computational complexity, but
limits the number of models that are checked by such procedures; see [37] for a compre-
hensive treatment of classical subset selection. To overcome these limitations, [47] proposed
the LASSO that aims to perform variable selection and parameter estimation simultaneously.
Both the variable selection and estimation performance of LASSO have been studied exten-
sively in the past decade. It has been justified in the works of [35, 57, 59] that a type of
“irrepresentable condition” is almost sufficient and necessary to guarantee sign consistency
for the LASSO. Later [48] established sharp conditions under which LASSO can perform
a consistent variable selection. One implication of [48] that is relevant to our paper is that,
consistent variable selection is impossible under the linear asymptotic regime1 that we con-
sider in this paper. This result is consistent with that of [44] and our paper. Hence, we should
expect that both the true positive proportion (TPP) and false discovery proportion (FDP) play
a major role in our analyses and comparisons. It is worth mentioning that the rate of conver-
gence for variable selection under Hamming loss has been studied in a sequel of works [7,
24, 29, 30].

Since LASSO requires strong conditions for variable selection consistency, several au-
thors have considered a few variants, such as adaptive LASSO [62] and thresholded LASSO
[36]. Thresholded LASSO is an instance of two-stage variable selection schemes we study
in this paper. Meinshausen and Yu [36] proved that thresholded LASSO offers a variable se-
lection consistency under weaker conditions than the irrepresentable condition required by
LASSO. As we will see later, even the thresholded LASSO does not obtain variable selec-
tion consistency under the asymptotic framework of this paper. However, we will show that
it outperforms the LASSO in variable selection. Other authors have also studied two-step or
even multistep variable selection schemes in the hope of weakening the required conditions
[33, 54, 58, 61]. Note that none of these methods provide consistent variable selection under
the linear asymptotic setting we consider in this paper. Study and comparison of these other
schemes under our asymptotic setting is an interesting open problem for future research.

A more delicate study of the LASSO estimator and more generally the bridge estimators is
necessary for an accurate analysis of two-stage methods under the linear asymptotic regime.
Our analysis relies on the recent results in the study of bridge estimators [4, 5, 15, 16, 34,
44, 55]. These papers use the platform offered by approximate message passing (AMP) to
characterize sharp asymptotic properties. In particular, the most relevant work to our paper is
[44] which studies the solution path of LASSO through the trade-off diagram of the asymp-
totic FDP and TPP. The present paper makes further steps in the analysis of bridge estimator
based two-stage methods under various interesting signal-to-noise ratio settings that have not
been considered in [44].

Another line of two-stage methods is the idea of screening [9, 21, 28, 53]. For instance, in
[21] a preliminary estimate of the j th regression coefficient is obtained by regressing y on
only the j th predictor. Then a hard threshold function is applied to all the estimates to infer
the location of the nonzero coefficients. As we will discuss in Section 4.2, this approach is
a special form of our TVS with a debiasing performed in the first stage, and hence our vari-
able selection technique under appropriate tuning outperforms Sure Independence Screening

1Throughout the paper, the linear asymptotic is referred to the asymptotic setting with (a) and (b) in Defini-
tion 2.1 satisfied. Typically, in this case, we have n, p and the number of nonzero coefficients k go to infinity
proportionally.
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of [21]. Compared to Sure Independence Screening, the work of [53] uses more complicated
estimators in the first stage, which is more aligned to our approach. However, [53] requires
data splitting. While this data splitting achieves certain theoretical improvement, in practice
(especially in high dimensions) this may degrade the performance of a variable selection
technique. In this paper, we avoid data splitting. We should also mention that two-stage or
multistage methods (that have a thresholding step) are also popular for estimation purposes;
see, for instance, [56]. Due to limited space, the current paper will be focused on variable
selection and not discuss the estimation performance of TVS. However, an accurate analysis
of multistage estimation techniques is an interesting problem to study.

Finally, there exists one stream of research with emphasis on the derivation of sufficient
and necessary conditions for variable selection consistency under different types of restric-
tions on the model parameters [1, 10, 22, 39, 41, 49, 52]. These works typically assume that
all the entries of the design matrix X and error vector w are independent zero-mean Gaus-
sian, with which they are able to obtain accurate information theoretical thresholds and phase
transition for exact support recovery of the coefficients β . We refer to [39] for a detailed dis-
cussion of such results. As will be shown shortly in Section 2, we make the same assumption
on the design X, but allow much weaker conditions on the error term w. More importantly,
we push the analysis one step further by analyzing a class of TVS when exact recovery is
impossible information theoretically.

2. Our asymptotic framework and some preliminaries.

2.1. Asymptotic framework. In this section, we review the asymptotic framework un-
der which our studies are performed. We start with the definition of a converging sequence
adapted from [5].

DEFINITION 2.1. The sequence of instances {β(p),w(p),X(p)}p∈N, indexed by p, is
said to be a standard converging sequence if:

(a) n = n(p) such that n
p

→ δ ∈ (0,∞).
(b) The empirical distribution of the entries of β(p) converges weakly to a probability

measure pB on R with finite second moment. Further, 1
p

∑p
i=1 βi(p)2 converges to the second

moment of pB ; and 1
p

∑p
i=1 I(βi(p) = 0) → pB({0}).

(c) The empirical distribution of the entries of w(p) converges weakly to a zero-mean
distribution with variance σ 2. Furthermore, 1

n

∑n
i=1 wi(p)2 → σ 2.

(d) Xij (p)
i.i.d.∼ N(0, 1

n
).

The asymptotic scaling n/p → δ specified in Condition (a) was proposed by Huber in 1973
[27], and has become one of the most popular asymptotic settings especially for studying
problems with moderately large dimensions [11, 13, 18, 19, 45, 46]. Regarding Condition (b),
suppose the entries of β(p) form a stationary ergodic sequence with marginal distribution
determined by some probability measure pB . According to Birkhoff’s ergodic theorem, it
is clear that Condition (b) will hold almost surely. Thus Condition (b) can be considered
as a weaker notion of this Bayesian set-up. Similar interpretation works for Condition (c).
Regarding Condition (d), as discussed in Section 1.3, many related works assume it as well.
Moreover, we would like to point out that there are a lot of empirical and a few theoretical
studies revealing the universal behavior of i.i.d. Gaussian design matrices over a wider class
of distributions; see [3] and references therein. Hence, the Gaussianity of the design does
not play a critical role in our final results. The numerical studies presented in Section 5.7
confirm this claim. The independence assumption of the design entries is critical for our
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analysis. Given that our analyses for i.i.d. matrices are already complicated, and the obtained
results are highly nontrivial (as will be seen in Section 3), we leave the study of general design
matrices for a future research. However, the numerical studies performed in Section 5.7 imply
that the main conclusions of our paper are valid even when the design matrix is correlated.

In the rest of the paper, we assume the vector of regression coefficients β is sparse. More
specifically, we assume pB = (1 − ε)δ0 + εpG, where δ0 denotes a point mass at 0 and pG

is a probability measure without any point mass at 0. Accordingly, the mixture proportion ε

represents the sparsity level of β(p) in the converging sequence. Throughout the paper, B and
G will be used as random variables with distribution specified by pB and pG, respectively.
Z represents a standard normal random variable. Subscripts like i attached to a vector are
used to denote its ith component. The asymptotic mean square error (AMSE) of the bridge
estimator β̂(q, λ) is defined as the almost sure limit

(2.1) AMSE(q, λ) � lim
p→∞

1

p

∥∥β̂(q, λ) − β
∥∥2

2.

According to [4, 55], AMSE(q, λ) is well defined for q ∈ [1,∞) and λ > 0. In this paper,
one of our focuses will be on bridge estimators with optimal tuning λ∗

q defined as

λ∗
q � argmin

λ>0
AMSE(q, λ).

Further, we denote the thresholded estimators as

β̄(q, λ, s) = η0
(
β̂(q, λ); s2/2

) = β̂(q, λ)1{|β̂(q,λ)|≥s}.

Since under our asymptotic setting the exact recovery of the nonzero locations of β is im-
possible [43, 48], we expect to observe both false positives and false negatives. Hence, for a
given sparse estimator β̂ , we follow [44] and measure its variable selection performance by
the false discovery proportion (FDP) and true positive proportion (TPP), defined as

FDP(β̂) = #{i : β̂i 
= 0, βi = 0}
#{i : β̂i 
= 0} , TPP(β̂) = #{i : β̂i 
= 0, βi 
= 0}

#{i : βi 
= 0} .

In particular, our study will focus on the asymptotic version of FDP and TPP for the LASSO
estimate β̂(1, λ) and thresholded estimators β̄(q, λ, s). We define (the limits are in almost
surely senses)

AFDP(1, λ) = lim
p→∞ FDP

(
β̂(1, λ)

)
, AFDP(q, λ, s) = lim

p→∞ FDP
(
β̄(q, λ, s)

)
.

Similar definitions are used for ATPP(1, λ) and ATPP(q, λ, s). The following result adapted
from [6] characterizes the AFDP and ATPP for LASSO.

LEMMA 2.1. For any given λ > 0, almost surely

AFDP(1, λ) = (1 − ε)P(|Z| > α)

(1 − ε)P(|Z| > α) + εP(|G + τZ| > ατ)
,

ATPP(1, λ) = P
(|G + τZ| > ατ

)
,

(2.2)

where (α, τ ) is the unique solution to the following equations with q = 1:

τ 2 = σ 2 + 1

δ
E

(
ηq

(
B + τZ;ατ 2−q) − B

)2
,(2.3)

λ = ατ 2−q

(
1 − 1

δ
Eη′

q

(
B + τZ;ατ 2−q))

,(2.4)
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with ηq(·; ·) being the proximal operator defined as

ηq(u;χ) = argmin
z

1

2
(u − z)2 + χ |z|q,

and η′
q(·; ·) being the derivative of ηq with respect to its first argument.

The formulas in this lemma have been derived in terms of convergence in probability in
[6]. The extension to almost sure convergence is straightforward and is hence skipped; see
Appendix C.1 of [50] for more information. One of the main goals of this paper is to compare
the performance of two-stage variable selection techniques with LASSO. In the next lemma,
we derive the AFDP and ATPP of the thresholded estimate β̄(q, λ, s).

LEMMA 2.2. For any given q ∈ [1,∞), λ > 0, s > 0, almost surely

AFDP(q, λ, s) = (1 − ε)P(ηq(|Z|;α) > s
τ
)

(1 − ε)P(ηq(|Z|;α) > s
τ
) + εP(|ηq(G + τZ;ατ 2−q)| > s)

,

ATPP(q, λ, s) = P
(∣∣ηq

(
G + τZ;ατ 2−q)∣∣ > s

)
,

(2.5)

where (α, τ ) is the unique solution of (2.3) and (2.4).

The proof of this lemma is presented in Section C of the Supplementary Material [51].

3. Our main contribution.

3.1. How to compare two variable selection schemes. The main objective of this paper is
to compare the performance of the TVS techniques under the asymptotic setting of Section 2.
A natural way for performing this comparison is to set ATPP to a fixed value ζ ∈ [0,1] for
different variable selection schemes and then compare their AFDPs.

The first challenge we face in such a comparison is that the TVS may have many different
ways for setting ATPP to ζ . If q > 1, Lemma 2.2 shows that for every given value of the
regularization parameter λ, we can set s (the threshold parameter) in a way that it returns the
right level of ATPP. Which of these parameter choices should be used when we compare a
TVS with another variable selection technique, such as LASSO? Despite the fact that differ-
ent choices of (λ, s) achieve the same ATPP level ζ , they may result in different values of
AFDP. Thus for fair comparison we pick the one that minimizes AFDP. The next theorem
explains how this optimal pair can be found.

THEOREM 3.1. Consider q ∈ (1,∞). Given an ATPP level ζ ∈ [0,1], for every value of
λ > 0 there exists s = s(λ, ζ ) such that ATPP(q, λ, s) = ζ . Furthermore, the value of λ that
minimizes AFDP(q, λ, s(λ, ζ )) also minimizes AMSE(q, λ).

The proof of this theorem can be found in Section D.1 of the Supplementary Material [51].
Before discussing the implications of this theorem, we state a similar result for LASSO.

THEOREM 3.2. For any ζ ∈ [0,ATPP(1, λ∗
1)], there exists at least one λ s.t. ATPP(1,

λ) = ζ . Further, there exists a unique s = sζ such that ATPP(1, λ∗
1, s) = ζ . There may also

exist other (λ, s) s.t. ATPP(1, λ, s) = ζ . Among all these estimators, the one that offers the
minimal AFDP is β̄(1, λ∗

1, sζ ), that is, the two-stage LASSO with the optimal tuning value
λ = λ∗

1.

The proof of this theorem is shown in Section D.2 of the Supplementary Material [51].
There are a couple of points we would like to emphasize here:
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FIG. 1. Comparison of AFDP–ATPP curve between LASSO and two-stage LASSO. Here, we pick the setting
δ = 0.8, ε = 0.3, σ ∈ {0.5,0.22,0.15}, pG = δ1. For two-stage LASSO, we use optimal tuning λ∗

1 in the first
stage. All the curves are calculated based on equations (2.2) and (2.5). The gray dotted line is the upper bound of
ATPP that the two-stage LASSO can reach. Notice that even for LASSO, there is an upper bound which it cannot
exceed.

(i) Consider a TVS technique. According to Theorems 3.1 and 3.2, for q ∈ (1,∞), the
optimal choice of λ does not depend on the ATPP level ζ we are interested in. Even for q = 1,
the optimal choice of λ is independent of ζ in a large range of ATPPs. It is the optimal tuning
λ∗

q for AMSE.
(ii) An implication of Theorem 3.2 is that, for a wide range of ζ , a second threshold-

ing step helps with the variable selection of LASSO. Figure 1 compares the AFDP–ATPP
curve of LASSO with that of the two-stage LASSO. As is clear in this figure, when SNR is
higher, the gap between the performance of two-stage LASSO and LASSO becomes larger.
We should emphasize that the ATPP level of the two-stage LASSO (with optimal tuning)
cannot exceed that of β̂(1, λ∗

1). We discuss debiasing to resolve this issue in Section 4.
(iii) Theorems 3.1 and 3.2 do not explain how λ∗

q can be estimated in practice. This issue
will be discussed in Section 5. But in a nutshell, any approach that optimizes λ for minimizing
the out-of-sample prediction error works well.

REMARK 3.1. Theorems 3.1 and 3.2 prove that the optimal way to use two-stage variable
selection is to set λ = λ∗

q for the regularization parameter in the first stage. It is important
to point out that λ∗

q minimizes AMSE(q, λ), and thus is the optimal tuning for parameter
estimation. Therefore, the optimal tuning of the regularization parameter in bridge regression
is the same for estimation and variable selection.

In the rest of the paper, we will use the notation s∗
q (ζ ) for the value of threshold that

satisfies ATPP(q, λ∗
q, s

∗
q (ζ )) = ζ .

3.2. The best bridge estimator for variable selection.

3.2.1. Summary. The two theorems we presented in the last section pave our way in ad-
dressing the question we raised in Section 1.1, that is, finding the best bridge estimator based
TVS technique. Consider q1, q2 ∈ [1,∞). We would like to compare AFDP(q1, λ

∗
q1

, s∗
q1

(ζ ))

and AFDP(q2, λ
∗
q2

, s∗
q2

(ζ )). The following corollary of Theorems 3.1 and 3.2 shows the
equivalence of the variable selection and estimation performance of bridge estimators.

COROLLARY 3.1. Let q1, q2 ≥ 1. If AMSE(q1, λ
∗
q1

) < AMSE(q2, λ
∗
q2

), then for every
ζ ∈ [0,1]

AFDP
(
q1, λ

∗
q1

, s∗
q1

(ζ )
) ≤ AFDP

(
q2, λ

∗
q2

, s∗
q2

(ζ )
)
.
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The proof of this result is presented in Section D.3 of the Supplementary Material [51].
According to Corollary 3.1, in order to see which two-stage method is better, we can compare
their AMSE under optimal tuning λ∗

q . Such AMSE is given by (see Theorem B.1 and Lemma
B.1 in the Supplementary Material [51])

AMSE
(
q,λ∗

q

) = E
(
ηq

(
B + τ∗Z;α∗τ 2−q∗

) − B
)2

,

where τ∗ and α∗ satisfy (2.3) and (2.4) with λ = λ∗
q .

The stage is finally set for comparing different two-stage variable selection techniques.
Note that in the calculation of AMSE(q, λ∗

q), the values of α∗ and τ∗ are required and can
only be calculated through the fixed-point equations (2.3) and (2.4). Therefore, we have no
access to an explicit formula for AMSE(q, λ∗

q). Furthermore, AMSE depends on many fac-
tors including δ, σ and pB . This poses an extra challenge to completely evaluate and compare
AMSE for different values of q . To address these issues, we focus on a few regimes that re-
searchers have found useful in applications, and develop techniques to obtain explicit and
accurate expressions for AMSE(q, λ∗

q). These sharp results enable an accurate comparison
among different TVS methods in each setting. The regimes we will consider are the follow-
ing:

(i) Nearly black objects or rare signals: In this regime, ε is assumed to be small. In other
words, there are very few nonzero coefficients that need to be detected. This model is called
nearly black objects [14] or rare signals [12]. Intuitively speaking, it is also equivalent to the
models considered in many other papers in which the sparsity level is assumed to be much
smaller than the number of features; see, for instance, [35, 57, 59] and the references therein.
We will allow the signal strength to vary with respect to ε. It turns out that the rate of signal
strength affects the choice of optimal bridge estimator.

(ii) Low SNR: In this model, σ is considered to be large. This assumption is accurate
in many social and medical studies. For more information, the reader may refer to [25]. To
explain the effect of SNR on the best choice of q , we will also mention a result for high
SNR. Such assumption is also standard in the engineering applications, where the quality
of measurements is carefully controlled. The analysis that is performed under the low noise
setting is often called phase transition analysis, noise sensitivity analysis, or nearly exact
recovery; see, for instance, [16, 17, 40].

(iii) Large sample regime: In this regime, the per-feature sample size δ is large. This
regime, as will be seen later, is closely related to the classical asymptotic regime n/p → ∞,
and is appropriate for traditional applied statistical problems; see, for instance, [31] for the
asymptotic analysis of bridge estimators.

3.2.2. Analysis of AMSE for nearly black objects. As discussed in the preceding section,
the formulas of AMSE are implicit and depend on δ, σ and pB in a complicated way. The goal
of this section is to obtain explicit and accurate expressions for AMSE(q, λ∗

q) when ε is small
(i.e., the signal is very sparse). Toward this goal, a critical issue as made in, for example, [14]
for the case of orthogonal design, is that the strength of the signal affects the performance
of each estimator. Hence, in our analysis we let the strength of the signal vary with ε. This
generalization requires an extra notation we introduce here. Recall G is the random variable
with probability measure pG, which determines the values of the nonzero entries of β . Define

bε =
√
EG2, G̃ = G/bε.

Under this parameterization, EG̃2 = 1 and bε represents the (average) magnitude of each
nonzero coefficient. We refer to bε as the signal strength and will allow it to change with the
sparsity level ε. Our first theorem characterizes the behavior of bridge estimators for q > 1
and small values of ε.
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THEOREM 3.3. Suppose that bε → ∞ and bε = O(1/
√

ε).2 For q > 1, we have:

• If bε = ω(ε
1−q

2 ), then

lim
ε→0

ε
− 1

q b
− 2(q−1)

q
ε AMSE

(
q,λ∗

q

) = q(q − 1)
1
q
−1

σ
2
q
[
E|Z| 2

q−1
] q−1

q
[
E|G̃|2q−2] 1

q .

• If bε = o(ε
1−q

2 ), then limε→0 ε−1b−2
ε AMSE(q, λ∗

q) = 1.

• If limε→0 bεε
q−1

2 = cr ∈ (0,∞), then

lim
ε→0

ε
− 1

q b
− 2(q−1)

q
ε AMSE

(
q,λ∗

q

) = min
C

h(C),

where h : R+ →R and h(C) � (Cq)
− 2

q−1 σ 2
E|Z| 2

q−1 +E(ηq(crG̃;Cσ 2−q)− crG̃)2. Fur-
thermore, the minimizer of h(C) is finite.

We note that when q > 2, bε = o(ε
1−q

2 ) always holds, hence only the second item applies.
When q = 2, only the second and the third items apply.

This theorem is proved in Section E of the Supplementary Material [51]. Before we inter-
pret this result, we characterize AMSE(1, λ∗

1) in Theorem 3.4.

THEOREM 3.4. Suppose that bε → ∞ and bε = O(1/
√

ε). We have:

• If bε = ω(
√

log ε−1), then limε→0
AMSE(1,λ∗

1)

ε log ε−1 = 2σ 2.

• If bε = o(
√

log ε−1), then limε→0
AMSE(1,λ∗

1)

εb2
ε

= 1.

• If bε√
2 log ε−1

→ c ∈ (0,∞), then limε→0
AMSE(1,λ∗

1)

ε log ε−1 = E(η1(cG̃;σ) − cG̃)2.

This theorem will be proved in Section F of the Supplementary Material [51]. There are a
few points that we should emphasize about Theorems 3.3 and 3.4.

REMARK 3.2. First, let us discuss the assumptions of these two theorems. It is straight-
forward to show that with bε = ω(1/

√
ε), the SNR per measurement goes to infinity. Such

scenarios seem uncommon in applications, and for the sake of brevity we have only consid-
ered bε = O(1/

√
ε). Otherwise, the techniques we developed can be applied to higher SNR

as well. Furthermore, we postpone the discussion about the case bε = O(1) to Theorem 3.5.

REMARK 3.3. The work of [14] has studied the problem of estimating an extremely
sparse signal under the orthogonal design. The main goal of [14] is to obtain the minimax risk
for the class of ε-sparse signals (similar to our model) without any constraint on the signals’
power. They have shown that the approximately least favorable distribution has a point mass

at �(
√

log(ε−1)), and that LASSO achieves the minimax risk. Note that there are two major
differences between Theorem 3.4 and the work of [14]: (i) our result is for nonorthogonal
design, and (ii) we are not concerned with the minimax performance. In fact, we fix the
power of the signal and obtain the asymptotic mean square error. This platform enables us to
observe several delicate phenomena that are not observed in minimax settings. For instance,
as is clear from Theorem 3.4, the rate of AMSE(1, λ∗

1) undergoes a transition at the signal

2O notation used here is the standard big-O notation. We will also use other standard asymptotic notation. If
the reader is not familiar with these notation, he/she may refer to Section B.1 in the Supplementary Material [51].
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strength level �(
√

log(ε−1)). As we will discuss later, below this threshold, LASSO is not
necessarily optimal. However, since the risk of the Bayes estimator and LASSO is maximized

for bε = �(
√

log(ε−1)), this important information is missed in minimax analysis.

REMARK 3.4. Compared to other bridge estimators, the performance of LASSO is
much less sensitive to the strength of the signal: AMSE(1, λ∗

1) ∼ ε log ε−1 as long as

bε = �(
√

log ε−1), while the order of AMSE(q, λ∗
q) continuously changes as bε varies.

Theorems 3.3 and 3.4 can be used for comparing different bridge estimators, as clarified
in our next corollary.

COROLLARY 3.2. Suppose that bε = ε−γ for γ ∈ (0,1/2]. We have:

• If q > 2γ + 1, then AMSE(q, λ∗
q) ∼ ε1−2γ .

• If 1 < q ≤ 2γ + 1, then AMSE(q, λ∗
q) ∼ ε

1−2γ (q−1)
q .

• If q = 1, then AMSE(q, λ∗
q) ∼ ε log(ε−1).

The above result implies that in a wide range of signal strength, q = 1 offers the smallest
AMSE when the value of ε is very small. Consequently, according to Corollary 3.1, the two-
stage LASSO provides the best variable selection performance. One can further confirm that

the same conclusion continues to hold as long as bε = ω(
√

log ε−1).

So far, we have seen that if the signal is reasonably strong, that is, bε = ω(
√

log ε−1), then
two-stage LASSO outperforms all the other variable selection techniques. However, once

bε = O(
√

log ε−1), we can see that AMSE(q, λ∗
q) ∼ εb2

ε for all q ≥ 1. Hence, in order to
provide a fair comparison, one should perform finer analyses and obtain a more accurate
expression for AMSE. Our next result shows how this can be done.

THEOREM 3.5. Consider bε = 1, and hence G̃ = G. Assume G is bounded from above.
Then we have

For q = 1 : AMSE
(
1, λ∗

1
) = εEG2 + o

(
εk) ∀k ∈ N;(3.1)

For q > 1 : AMSE
(
q,λ∗

q

) = εEG2 − ε2E
2(|G

σ
+ Z| 1

q−1 sgn(G
σ

+ Z)G)

E|Z| 2
q−1

+ o
(
ε2)

,(3.2)

where sgn(·) denotes the sign of a random variable.

The proof of this theorem is presented in Section G of the Supplementary Material [51].
The first interesting observation about this theorem is that the first dominant term of AMSE
is the same for all bridge estimators. The second dominant term, on the other hand, is much
smaller for q = 1 compared to the other values of q . Hence, LASSO is suboptimal in this
setting. Accordingly, two-stage LASSO is outperformed by other TVS methods. However,
as is clear from Theorem 3.5, we should not expect the bridge estimator with q > 1 to out-
perform LASSO by a large margin when ε is too small. In fact, the second dominant term is
proportional to ε2 (for q > 1), while the first dominant term is proportional to ε. Hence, the
second dominant term is expected to become important for moderately small values of ε. In
such cases, we expect q > 1 to offer more significant improvements. Regarding the optimal
choice of q , it is determined by the constant of the second-order term in (3.2). As is shown
in Figure 2, while the optimal value of q is case-dependent, it gets closer to 1 as the signal
strength increases. This observation is consistent with the message delivered by Theorems
3.3 and 3.4.



WHICH REGULARIZER IS OPTIMAL FOR VARIABLE SELECTION? 2801

FIG. 2. The constant coefficient of the second order term in (3.2). We set G = M with M = 1,2,3, respectively,
and σ = 1. As the signal strength M increases, the optimal choice of q shifts toward 1.

3.2.3. Analysis of AMSE in large noise scenario. This section aims to obtain explicit
formulas for the optimal AMSE of bridge estimators in low SNR. This regime is particularly
important, since in many social and medical studies, variable selection plays a key role and
the SNR is low. The following theorem summarizes the main result of this section.

THEOREM 3.6. As σ → ∞, we have the following expansions of AMSE(q, λ∗
q):

(i) For q = 1, when G has a sub-Gaussian tail, we have

(3.3) AMSE
(
1, λ∗

1
) = εE|G|2 + o

(
e−C2σ2

2
)
,

where C can be any positive number smaller than C0, and C0 > 0 is a constant only depend-
ing on ε and G. The explicit definition of C0 can be found in the proof.

(ii) For 1 < q ≤ 2, if all the moments of G are finite, then

(3.4) AMSE
(
q,λ∗

q

) = εE|G|2 − ε2(E|G|2)2cq

σ 2 + o
(
σ−2)

,

with cq = (E|Z|
2−q
q−1 )2

(q−1)2E|Z|
2

q−1
.

(iii) For q > 2, if G has sub-Gaussian tail, then (3.4) holds.

We present our proofs in Section H of the Supplementary Material [51]. Figure 3 compares
the accuracy of the first-order approximation and second-order approximation for moderate
values of σ . As is clear, for q ∈ (1,∞), the second-order approximation provides an accurate
approximation of AMSE(q, λ∗

q) for a wide range of σ . Moreover, the first-order approxi-
mation for AMSE(1, λ∗

1) is already accurate as can be justified by its exponentially small
second-order term in (3.3).

According to this theorem, we can conclude that for sufficiently large σ , two-stage method
with any q > 1 can outperform the two-stage LASSO. This is because while the first dom-
inant term is the same for all the bridge estimators with q ∈ [1,∞), the second-order term
for LASSO is exponentially smaller (in magnitude) than that of the other estimators. More
interestingly, the following lemma shows that in fact q = 2 leads to the smallest AMSE in the
large noise regime.

LEMMA 3.1. The maximum of cq , defined in Theorem 3.6, is achieved at q = 2.

See Figure 4 for the plot of cq .
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FIG. 3. Absolute relative error of first-order and second-order approximations of AMSE under large noise
scenario. In these four figures, pB = (1 − ε)δ0 + εδ1, δ = 0.4, ε = 0.2.

PROOF. A simple integration by part yields

E|Z| 2−q
q−1 = 2(q − 1)

∫ ∞
0

z
q

q−1 φ(z) dz = (q − 1)E|Z| q
q−1 .

We can then apply Hölders’s inequality to obtain

cq = (E|Z| q
q−1 )2

E|Z| 2
q−1

≤ E|Z| 2
q−1EZ2

E|Z| 2
q−1

= 1 = c2. �

Therefore, while the AMSE of all bridge estimators share the same first dominant term,
Ridge offers the largest second dominant term (in magnitude), and hence the lowest AMSE.
If we combine this result with Corollary 3.1, we conclude that in low SNR regime, two-stage

FIG. 4. The constant cq in Theorem 3.6 part (ii). The maximum is achieved at q = 2.
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Ridge obtains the best variable selection performance among TVS schemes with their first
stage picked from the class of bridge estimators.

A comparison of this result with that for the high SNR derived in [55] clarifies the impact
of SNR on the best choice of q .

THEOREM 3.7. Assume ε ∈ (0,1). As σ → 0, we have the following expansions of
AMSE(q, λ∗

q) in terms of σ :

(i) For q = 1, if P(|G| ≥ μ) = 1 for some μ > 0, δ > M1(ε), and E|G|2 < ∞, then

(3.5) AMSE
(
1, λ∗

1
) = δM1(ε)

δ − M1(ε)
σ 2 + o

(
e

(M1(ε)−δ)μ̃2

2δσ2
)
,

where M1(ε) = minχ(1 − ε)Eη2
1(Z;χ) + ε(1 + χ2), and μ̃ can be any positive number

smaller than μ.
(ii) For 1 < q < 2, if P(|G| ≤ x) = O(x) (as x → 0), δ > 1, and E|G|2 < ∞ then

(3.6) AMSE
(
q,λ∗

q

) = σ 2

1 − 1/δ
− σ 2q δq+1(1 − ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2 + o
(
σ 2q)

.

(iii) For q = 2, if δ > 1 and E|G|2 < ∞, we have

(3.7) AMSE
(
2, λ∗

2
) = σ 2

1 − 1/δ
− σ 4 δ3

(δ − 1)3εE|G|2 + o
(
σ 4)

.

(iv) For q > 2, if δ > 1 and E|G|2q−2 < ∞, then

(3.8) AMSE
(
q,λ∗

q

) = σ 2

1 − 1/δ
− σ 4 δ3ε(q − 1)2(E|G|q−2)2

(δ − 1)3E|G|2q−2 + o
(
σ 4)

.

The results for q ∈ [1,2] are taken from [55]. The proof for the case q > 2 can be found
in Appendix I of [50]. It is straightforward to see that M1(ε) is an increasing function of ε ∈
[0,1] and M1(1) = 1. This implies that AMSE(1, λ∗

1) is the smallest among all AMSE(q, λ∗
q)

with q ∈ [1,∞). As is clear, the first-order terms in the expansion of AMSE(q, λ∗
q) are the

same for all q ∈ (1,∞). However, the second dominant term shows that the smaller values of
q are preferable (note the strict monotonicity only occurs in the range (1,2]).

Combining the above results with Corollary 3.1 implies that in the high SNR setting, two-
stage LASSO offers the best variable selection performance. We should also emphasize that
as depicted in Figure 1, in this regime two-stage LASSO offers a much better variable selec-
tion performance than LASSO.

REMARK 3.5. Theorems 3.6 and 3.7 together give a full and sharp evaluation of the
noise-sensitivity of bridge estimators. Among all the bridge estimators with q ∈ [1,∞),
LASSO and Ridge are optimal for parameter estimation and variable selection, in the low
and large noise settings, respectively. This result delivers an intriguing message: sparsity in-
ducing regularization is not necessarily preferable even in sparse models. Such phenomenon
might be well explained by the bias-variance tradeoff: variance is the major factor in very
noisy settings, thus a regularization that produces more stable estimator is preferred, when
the noise is large.
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3.2.4. Analysis of AMSE in large sample scenario. Our analysis in this section is con-
cerned with the large δ regime. Since n/p → δ in our asymptotic setting, large δ means large
sample size (relative to the dimension p). Intuitively speaking, this is similar to the classical
asymptotic setting where n → ∞ and p is fixed (especially if we assume the fixed number p

is large). We will later connect the results we derive in the large δ regime to those obtained
in classical asymptotic regime, and provide new insights.

In our original set-up, the elements of the design matrix are Xij
i.i.d.∼ N(0, 1

n
). This means

the SNR var(
∑

j Xijβj )/var(wi) → E|B|2
δσ 2 as n → ∞. Therefore, if we let δ → ∞, the SNR

will decrease to zero, which is not consistent with the classical asymptotics in which the SNR
is assumed to be fixed. To resolve this discrepancy, we scale the noise term by

√
δ and use

the model:

(3.9) y = Xβ + 1√
δ
w,

where {β,w,X} is the converging sequence in Definition 2.1. Under this model, we compare
the AMSE of different bridge estimators. The next theorem summarizes the main result.

THEOREM 3.8. Consider the model in (3.9) and ε ∈ (0,1). As δ → ∞, we have:

(i) For q = 1, if P(|G| ≥ μ) = 1 for some μ > 0 and E|G|2 < ∞, then

(3.10) AMSE
(
1, λ∗

1
) = M1(ε)σ

2

δ
+ o

(
δ−1)

,

where M1(ε) has the same definition as in Theorem 3.7(i).
(ii) For 1 < q < 2, if P(|G| ≤ x) = O(x) (as x → 0) and E|G|2 < ∞, then

(3.11) AMSE
(
q,λ∗

q

) = σ 2

δ
− σ 2q

δq

(1 − ε)2(E|Z|q)2

εE|G|2q−2 + o
(
δ−q)

.

(iii) For q = 2, if E|G|2 < ∞, then we have

(3.12) AMSE
(
2, λ∗

2
) = σ 2

δ
+ σ 2

δ2

[
1 − σ 2

εEG2

]
+ o

(
δ−2)

.

(iv) For q > 2, if E|G|2q−2 < ∞, then

(3.13) AMSE
(
q,λ∗

q

) = σ 2

δ
+ σ 2

δ2

[
1 − ε(q − 1)2σ 2(E|G|q−2)2

E|G|2q−2

]
+ o

(
δ−2)

.

The proof of Theorem 3.8 can be found in Section I of the Supplementary Material [51].
Figure 5 compares the accuracy of the first- and second-order expansions in large range of δ.
As is clear from this figure, the second-order term often offers an accurate approximation
over a wide range of δ.

REMARK 3.6. As mentioned in Section 3.2.3, M1(ε) is an increasing function of ε ∈
[0,1] and M1(1) = 1. This implies that AMSE(1, λ∗

1) is the smallest among all AMSE(q, λ∗
q)

with q ∈ [1,∞). Therefore, in this regime LASSO gives the smallest estimation error, and
thus two-stage LASSO offers the best variable selection performance.

REMARK 3.7. The AMSE(q, λ∗
q) with q > 1 share the same first dominant term, but

have different second-order terms. Furthermore, for q ∈ (1,2], the smaller q is, the better its
performance will be. Such monotonicity does not hold beyond q = 2.
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FIG. 5. Absolute relative error of first-order and second-order approximations of AMSE under large sample
scenario. In these four figures, pB = (1 − ε)δ0 + εδ1, ε = 0.5, σ = 1.

We now connect our results in this large δ regime to those obtained in classical asymptotic
setting. The classical asymptotics (p fixed) of bridge estimators for all the values of q ∈
[0,∞) is studied in [31]. We explain LASSO first. According to [31], if λ√

n
→ λ0 ≥ 0 and

1
n
XT X → C, then

(3.14)
√

n(β̂ − β)
d−→ arg min

u
V (u),

where V (u) = −2uT W + uT Cu + λ0
∑p

j=1[uj sgn(βj )1{βj 
=0} + |uj |1{βj=0}] with W ∼
N (0, σ 2C). We will do the following calculations to explore the connections. Since Xij ∼
N(0,1/n) in our paper, we first make the following changes to LASSO to make our set-up
consistent with that of [31]:

1

2
‖y − Xβ‖2

2 + λ‖β‖1 = 1

2

(∥∥∥∥y − √
nX

β√
n

∥∥∥∥2

2
+ 2

√
nλ

∥∥∥∥ β√
n

∥∥∥∥
1

)
.

We thus have C = 1
n
(
√

nX)T (
√

nX) → I and λ0 = 2λ. Now suppose the result (3.14)

works for β̂(1, λ). Then we have

(3.15) β̂(1, λ) − β
d−→ arg min

u
V (u),

where V (u) = −2uT W + uT u + 2λ
∑p

j=1[uj sgn(βj )1{βj 
=0} + |uj |1{βj=0}] with W ∼
N (0, σ 2

δ
I ). It is straightforward to see that the optimal choice of u in (3.15) has the following

form:

ûj =
{
Wj − λ sgn(βj ) when βj 
= 0,

Wj − λs(ûj ) when βj = 0,
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where s(uj ) = sgn(uj ) when uj 
= 0 and |s(uj )| ≤ 1 when uj = 0. Furthermore, for the case
of βj = 0, ûj = 0 is equivalent to |Wj | ≤ λ and sgn(Wj ) = sgn(ûj ) when ûj 
= 0. Based on
this result, we do the following heuristic calculation to connect our results with those of [31]:

1

p

∥∥β̂(1, λ) − β
∥∥2

2

≈ 1

p
E

[ ∑
j :βj 
=0

[
W 2

j − 2λ sgn(βj )Wj + λ2] + ∑
j :βj=0,ûj 
=0

[
W 2

j − 2λWj sgn(ûj ) + λ2]]

≈ 1

p

[ ∑
j :βj 
=0

(
σ 2

δ
+ λ2

)
+ ∑

j :βj=0

Eη2
1(Wj ;λ)

]
= k

p

(
σ 2

δ
+ λ2

)
+ p − k

p
Eη2

1(Wj ;λ)

= σ 2

δ

[
p − k

p
Eη2

1(Z;√δλ/σ) + k

p

(
1 + (

√
δλ/σ)2)]

,

where k is the number of nonzero elements of β and Z ∼ N(0,1). Note that in our asymptotic
setting k/p → ε and we consider the optimal tuning λ∗

1. Therefore, following the above
calculations, we obtain

min
λ

1

p

∥∥β̂(1, λ) − β
∥∥2

2 ≈ σ 2

δ
min

χ
(1 − ε)Eη2

1(Z;χ) + ε
(
1 + χ2) = M1(ε)σ

2

δ
.

This is consistent with (3.10) in our asymptotic analysis. We can do similar calculations
to show that the asumptotic analysis of [31] leads to the first-order expansion of AMSE in
Theorem 3.8 for the case q > 1.

Based on this heuristic argument, we may conclude that the information provided by the
classical asymptotic analysis is reflected in the first-order term of AMSE(q, λ∗

q). Moreover,
our large sample analysis is able to derive the second dominant term for q > 1. This term
enables us to compare the performance of different values of q > 1 more accurately (note
they all have the same first-order term). Such comparisons cannot be performed in [31].

4. Debiasing.

4.1. Implications of debiasing for LASSO. As is clear from Theorem 3.2, since LASSO
produces a sparse solution, it is not possible for a LASSO based two-stage method to achieve
ATPP values beyond what is already reached by the first stage. This problem can be resolved
by debiasing. In this approach, instead of thresholding the LASSO estimate (or in general a
bridge estimate), we threshold its debiased version. Below we will add a dagger † to afore-
mentioned notation to denote their corresponding debiased version. Recall β̂(q, λ) denotes
the solution of bridge regression for any q ≥ 1. Define the debiased estimates as:

(i) For q = 1,

β̂†(1, λ)� β̂(1, λ) + XT y − Xβ̂(1, λ)

1 − ‖β̂(1, λ)‖0/n
,

where ‖ · ‖0 counts the number of nonzero elements in a vector.
(ii) For q > 1,

(4.1) β̂†(q, λ)� β̂(q, λ) + XT y − Xβ̂(q,λ)

1 − f (β̂(q, λ), γ̂λ)/n
,
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where f (v,w) = ∑p
i=1

1
1+wq(q−1)|vi |q−2 and γ = γ̂λ is the unique solution of the following

equation:

(4.2)
λ

γ
= 1 − 1

n
f

(
β̂(q, λ), γ

)
.

We have the following theorem to confirm the validity of the debiasing estimator β̂†(q, λ).

THEOREM 4.1. For any given q ∈ [1,∞), with probability one, the empirical distribu-
tion of the components of β̂†(q, λ)−β converges weakly to N(0, τ 2), where τ is the solution
of (2.3) and (2.4).

See Section J in the Supplementary Material [51] for the proof. In order to perform variable
selection, one may apply the hard thresholding function to these debiased estimates, that is,

β̄†(q, λ, s) = η0
(
β̂†(q, λ); s2/2

) = β̂†(q, λ)1{|β̂†(q,λ)|≥s}.

We use the notation ATPP†(q, λ, s) and AFDP†(q, λ, s) to denote the ATPP and AFDP of
β̄†(q, λ, s), respectively. In the case of LASSO, note that unlike β̂(1, λ) the debiased estima-
tor β̂†(1, λ) is dense. Hence we expect the two-stage variable selection estimate β̄†(1, λ, s)

to be able to reach any value of ATPP between [0,1]. The following theorem confirms this
claim.

THEOREM 4.2. Given the ATPP level ζ ∈ [0,1], for every value of λ > 0, there exists
s(λ, ζ ) such that ATPP†(1, λ, s(λ, ζ )) = ζ . Furthermore, whenever β̄†(1, λ, s) and β̄(1, λ, s̃)

reach the same level of ATPP, they have the same AFDP. The value of λ that minimizes
AFDP†(1, λ, s(λ, ζ )) also minimizes AMSE(1, λ).

As expected since the solution of bridge regression for q > 1 is dense, the debiasing step
does not help variable selection for q > 1. Our next theorem confirms this claim.

THEOREM 4.3. Consider q > 1. Given the ATPP level ζ ∈ [0,1], for every value of λ >

0, there exists s(λ, ζ ) such that ATPP†(q, λ, s(λ, ζ )) = ζ . Furthermore, whenever β̄†(q, λ, s)

and β̄(q, λ, s̃) reach the same level of ATPP, they have the same AFDP. Also, the value of
λ that minimizes AFDP†(q, λ, s(λ, ζ )) also minimizes AMSE(q, λ). As a result, the optimal
value of AFDP†(q, λ, s(λ, ζ )) is the same as AFDP(q, λ∗

q, s
∗
q (ζ )).

For the proof of Theorems 4.2 and 4.3, please refer to Section J in the Supplementary
Material [51].

REMARK 4.1. Comparing Theorem 4.2 with Theorem 3.2, we see that replacing LASSO
in the first stage with the debiased version enables to achieve wider range of ATPP level. On
the other hand, given the value of λ, if β̄†(1, λ, s) and β̄(1, λ, s̃) reach the same level of
ATPP, their AFDP are equal as well. Therefore, the debiasing for LASSO expands the range
of AFDP–ATPP curve without changing the original one. Figure 6 compares the variable
selection performance of LASSO with that of the two-stage scheme having the debiased
LASSO estimate in the first stage. Compare this figure with Figure 1 to see the difference
between the two-stage LASSO and two-stage debiased LASSO.

REMARK 4.2. The debiasing does not present any extra gain to the two-stage variable
selection technique based on bridge estimators with q > 1. In other words, debiasing does
not change the AFDP–ATPP curve for q > 1.
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FIG. 6. Comparison of AFDP–ATPP curve between LASSO and two-stage debiased LASSO. Here, we pick
the setting δ = 0.8, ε = 0.3, σ ∈ {0.5,0.22,0.15}, pG = δ1. For the two-stage debiased LASSO, we use optimal
tuning λ∗

1 in the first stage. The gray dotted line is the upper bound for the two-stage LASSO without debiasing
can reach.

4.2. Debiasing and sure independence screening. Sure Independence Screening (SIS) is
a variable selection scheme proposed for ultra-high dimensional settings [21]. Our asymp-
totic setting is not considered an ultrahigh dimensional asymptotic. We are also aware that
SIS is typically used for screening out irrelevant variables and other variable selection meth-
ods, such as LASSO, will be applied afterwards. Nevertheless, we present a connection and
comparison between our two-stage methods and SIS in the linear asymptotic regime. Such
comparisons shed more light on the performance of SIS. It is straightforward to confirm that
sure independence screening is equivalent to

β̄†(q,∞, s) = η0
(
β̂†(q,∞); s2/2

) = η0
(
XT y; s2/2

)
.

Therefore, the main difference between the approach we propose in this paper and SIS, is that
SIS sets λ to ∞, while we select the value of λ that minimizes AMSE.3 This simple difference
may give a major boost to the variable selection performance. The following lemma confirms
this claim.

LEMMA 4.1. Consider q ≥ 1. Given any ATPP level ζ ∈ [0,1], let AFDPsis(ζ ) and
AFDP†(q, λ∗

q, s(λ
∗
q, ζ )) denote the asymptotic FDP of SIS and two-stage debiased bridge

estimator respectively, when their ATPP is equal to ζ . Then AFDP†(q, λ∗
q, s(λ

∗
q, ζ )) ≤

AFDPsis(ζ ).

Refer to Section J of the Supplementary Material [51] for the proof. Note that when the
noise σ is large, we expect the optimally tuned λ to be large, and hence the performance of
SIS gets closer to the TVS. However, as σ decreases, the gain obtained from using a better
estimator in the first stage improves. Figure 7 compares the performance of SIS and TVS
under different noise settings.

5. Numerical experiments.

5.1. Objective and simulation set-up. This section aims to investigate the finite sam-
ple performances of various two-stage variable selection estimators under the three different
regimes analyzed in Section 3.2. In particular, we will study to what extent our theory works
for more realistic situations, where model parameters σ , ε, δ are of moderate magnitudes or
the i.i.d. Gaussian design assumption is violated. For brevity, we will use bridge estimator

3Our approach is more aligned with the approach proposed in [53]. However, [53] uses data splitting to select λ.
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FIG. 7. Comparison of AFDP–ATPP curve between SIS and the two-stage debiased LASSO. Here, we pick
the setting δ = 0.8, ε = 0.3, σ ∈ {0.5,0.22,0.15}, pG = δ1. For the two-stage debiased LASSO, we use optimal
tuning λ∗

1 in the first stage. The gray dotted line is the upper bound that the two-stage LASSO without debiasing
can reach.

to refer to the corresponding two-stage method whenever it does not cause any confusion.
More specifically, in all the figures, �q will be used to denote the TVS that uses the bridge
estimator with q in the first stage, and �1-db denotes the two-stage debiased LASSO. The
performances of different methods will be compared via the AFDP–ATPP curves.4

The organization of this section is as follows. In Sections 5.2–5.6, we focus on experiments
under i.i.d. Gaussian design as assumed in our theories. In Section 5.7, we present numerical
results for non-i.i.d. or non-Gaussian designs to evaluate the accuracy of our results, when
i.i.d. Gaussian assumption on X is violated.

We adopt the following settings for i.i.d. Gaussian design. The settings for general design
are described in Section 5.7.

1. Number of variables is fixed at p = 5000. Sample size n = pδ is then decided by δ.

2. Given the values of δ, ε, σ , we sample X ∈ R
n×p with Xij

i.i.d.∼ N (0, 1
n
). We pick the

probability measure pG as a point mass at M where M will be specified in each scenario. We

generate β ∈ R
p with βi

i.i.d.∼ pB = (1 − ε)δ0 + εpG, and w ∈ R
n with wi

i.i.d.∼ N (0, σ 2) or
N (0, σ 2

δ
).5 Construct y according to y = Xβ + w.

3. For each data set (y,X), AFDP–ATPP curves will be generated for different variable
selection methods. In each setting of parameters, 80 samples are drawn and the average
AFDP–ATPP curves are calculated. The associated one standard deviation confidence in-
terval will be presented.

We compute bridge estimators via coordinate descent algorithm, with the proximal opera-
tor ηq(x; τ) calculated through a properly implemented Newton’s method.

We discuss how to pick optimal tuning under i.i.d. Gaussian design in Section 5.2. Sec-
tion 5.3 presents the large/small noise scenario. Section 5.4 is devoted to the large sample
regime. Section 5.5 covers the nearly black object scenario. In Section 5.6, we compare the
performance of LASSO and two-stage LASSO to shed more lights on our two-stage methods.

5.2. Estimating the optimal tuning λ∗
q . For two-stage variable selection procedures, it

is critical to have a good estimator in the first step. One challenge here is to search for the

4Since the simulations are in finite samples, the curve we calculate is actually FDP–TPP instead of the asymp-
totic version. With a little abuse of notation, we will call it AFDP–ATPP curve throughout the section.

5The setting wi
i.i.d.∼ N (0, σ 2

δ ) will be used in the large sample scenario, since we have scaled the error term

by
√

δ in our asymptotic analysis in Section 3.2.4.
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optimal tuning that minimizes AMSE of β̂(q, λ). According to the result of Theorem B.1 of
the Supplementary Material [51] and the definition of AMSE in (2.1), it is straightforward to
see that τ 2 = σ 2 + 1

δ
AMSE. Hence, one can minimize τ 2 to achieve the same optimal tuning.

Motivated by [38], we can obtain a consistent estimator of τ 2:

q = 1 : τ̂ 2 = ‖y − Xβ̂(1, λ)‖2
2

n(1 − ‖β̂(1, λ)‖0/n)2
, q > 1 : τ̂ 2 = ‖y − Xβ̂(q,λ)‖2

2

n(1 − f (β̂(q, λ), γ̂λ)/n)2
,

where f (·, ·), γ̂λ are the same as the ones in (4.1) and (4.2). The consistency τ̂
a.s.→ τ can

be easily seen from the proof of Theorem 4.1. We thus do not repeat it. As a result, we
approximate λ∗

q by searching for the λ that minimizes τ̂ 2. Notice that this problem has been
studied for LASSO in [38] and a generalization is straightforward for other bridge estimators.
We use the following grid search strategy:

• Initialization: An initial search region [a, b], a window size � and a grid size m.
• Searching: A grid with size m is built over [a, b], upon which we search in descending

order for λ that minimizes τ̂ 2 with warm initialization.
– If the minimal point λ̂ ∈ (a, b), stop searching and return λ̂.
– If λ̂ = a or b, update the search region with [ a

10 , a] or [b, b + �] and do the next round
of searching.

• Stability: If the optimal λ̂ obtained from two consecutive search regions are smaller than a
threshold ε0, we stop and return the previous optimal λ̂; If the number of nonzero locations
of a LASSO estimator is larger than n (which may happen numerically for very small
tuning), we set its τ̂ 2 to ∞.

For our experiments, we pick the initial [a, b] = [0.1, 1
2‖XT y‖∞], � = 1

2‖XT y‖∞ and
m = 15.

5.3. From large noise to small noise. Theorems 3.6 and 3.7 showed that in low and high
SNR situations, ridge and LASSO offer the best performances, respectively. These results
are obtained for limiting cases σ → ∞ and σ → 0. In this section, we run a few simulations
to clarify the scope of applicability of our analysis. Toward this goal, we fix the probability
measure pG = δM with M = 8 and run TVS for q ∈ {1,1.2,2,4} and debiased LASSO6

under four settings:

1. δ = 0.8, ε = 0.2: The results are shown in Figure 8. Here, we pick σ ∈ {1.5,3,5}.
As expected from our theoretical results, for small values of noise LASSO offers the best
performance. As we increase the noise, eventually ridge outperforms LASSO and the other
bridge estimators. Note that under this setting, the outperformance occurs at a high noise
level so that all estimators have large errors. In this example, we make 1 > δ > M1(ε). Refer
to Theorem 3.7 for the importance of this condition.

2. δ = 2, ε = 0.4: The results are included in Figure 8. Here, we pick σ ∈ {2,4,8}. Similar
phenomena are observed. However, for all choices of σ , the AFDP–ATPP curves of different
methods are quite close to each other.

3. δ = 0.6, ε = 0.4: Figure 9 contains the results for this part. Here, we have σ ∈
{0.25,0.75,2}. An important feature of this simulation is that δ < M1(ε), which does not
satisfy the condition of Theorem 3.7. It is interesting to observe that in this case, ridge outper-
forms LASSO even for small values of the noise. We thus see that the superiority of LASSO

6We include the results for two-stage debiased LASSO in Sections 5.3–5.5 to validate the effect of debiasing
stated in Theorem 4.2 and Remark 4.1.
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FIG. 8. Top row: AFDP–ATPP curve under the setting δ = 0.8, ε = 0.2, σ ∈ {1.5,3,5}. Second row: Y-axis is
the difference of AFDP between the other bridge estimators and ridge. One standard deviation of the difference
is added. Third and fourth rows: the same type of plots as in the first two rows, under the setting δ = 2, ε = 0.4,
σ ∈ {2,4,8}.

in small noise characterized by Theorem 3.7 may not hold when the conditions of the theo-
rem are violated. In fact, Theorem 3.7 is restricted to the regime below the phase transition
(i.e., when the signal can be fully recovered without noise). However, in the current setting,
the optimal AMSE for q = 1,1.2,2,4 at σ = 0 are 14.9, 12.2, 10.2, 11.6, respectively.
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FIG. 9. Top row: AFDP–ATPP curve under the setting δ = 0.6, ε = 0.4, σ ∈ {0.25,0.75,2}. Second row: Y-axis
is the difference of AFDP between the other bridge estimators and ridge. One standard deviation of the difference
is added. Third and fourth rows: the same type of plots as in the first two rows, under the setting δ = 0.9, ε = 0.4,
σ ∈ {1.2,1.5,1.9}.

4. δ = 0.9, ε = 0.4: The results are shown in Figure 9. Here, we have σ ∈ {1.2,1.5,1.9}.
This group of figures provide us with examples where ridge based TVS outperforms the other
two-stage methods, and at the same time reaches a quite satisfactory AFDP–ATPP trade-off.
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For instance, when σ = 1.5 and AFDP ≈ 0.2, for ridge we have ATPP ≈ 0.8 while that for
LASSO is around 0.7. Note that here M1(ε) < δ < 1.

5.4. Large sample regime. We will validate the results in Theorem 3.8, which are ob-
tained under the limiting case δ → ∞. We fix the probability measure pG = δM with M = 1
and consider the following settings for q ∈ {1,1.5,2,4} and debiased LASSO:

1. ε = 0.1, σ = 0.4: The results for this setting are shown in Figure 10. We vary δ ∈
{2,3,4}. As is clear, LASSO starts to outperform the others even when δ = 2. As δ increases,
LASSO remains the best, but all the methods are becoming better and the AFDP–ATPP
curves get closer to each other.

2. ε = 0.3, σ = 0.4: The results can be found in Figure 10. Again δ ∈ {2,3,4}. Similar
phenomena are observed. Compared to the previous setting, a larger ε leads to a higher SNR
and all the methods have improved performances.

3. ε = 0.4, σ = 0.22: The results are shown in Figure 11. We set δ ∈ {0.7,0.8,1.2}. When
δ is 0.7 or 0.8, ridge significantly outperforms the others. As δ is increased to 1.2, LASSO
starts to lead the performances.

5.5. Nearly black object. In this section, we verify our theoretical results which are
presented in Section 3.2.2 for the nearly black object setting. Recall bε = √

EG2 and
G̃ = G/bε . We consider the following setting: δ = 0.8, σ ∈ {3,5}, bε = 4/

√
ε, G̃ = 1,

ε ∈ {0.25,0.0625,0.04}. The simulation results are displayed in Figure 12. We observe that
under both noise levels σ = 3,5, LASSO is suboptimal at sparsity level ε = 0.25. As ε de-
creases, LASSO becomes better. When ε is reduced to 0.04, LASSO outperforms the other
bridge estimators by a large margin. Note that in this simulation, the signal strength bε scales
with ε at the rate ε−1/2. This is the regime where LASSO is proved to be optimal in Sec-
tion 3.2.2.

5.6. LASSO versus two-stage LASSO. In Theorem 3.2 we proved that two-stage LASSO
with its first stage optimally tuned outperforms LASSO on variable selection. We now pro-
vide a brief simulation to verify this result. We choose pG = δM with M = 8 and set δ = 0.8,
ε = 0.2, σ ∈ {1,3,5}. As shown in Figure 13, two-stage LASSO improves over LASSO.
When the noise is small (σ = 1), the improvement is the most significant. As the noise level
increases, the difference between the two approaches becomes smaller. When the noise is
large (σ = 5), both have large errors.

5.7. General design. In this section, we extend our simulations to general design ma-
trices. Given that our theoretical results in Section 3 are derived under the i.i.d. Gaussian
assumption on X, the aim of this section is to numerically study the validity scope of our
main conclusions when such an assumption does not hold. In particular, we consider the
following correlated designs and i.i.d. non-Gaussian designs:

• Correlated design: We consider the model y = X�
1
2 β +w, where Xij

i.i.d.∼ N (0, 1
n
) and �

is a Toeplitz matrix with �ij = ρ|i−j |. Here, ρ ∈ (0,1) controls the correlation strength.

• i.i.d. non-Gaussian design: We generate X with i.i.d. components Xij ∼
√

ν−2
nν

tν where tν

is the t-distribution with degrees of freedom ν. The scaling
√

ν−2
nν

ensures var(Xij ) = 1
n

as
in the i.i.d. Gaussian case.

Throughout this section, we choose p = 2500, pG = δM , n = δp,wi
i.i.d.∼ N(0, σ 2).
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FIG. 10. Top row: AFDP–ATPP curve under the setting ε = 0.1, σ = 0.4, δ ∈ {2,3,4}. Second row: Y-axis is
the difference of AFDP between the other bridge estimators and LASSO. One standard deviation of the difference
is added. Third and fourth rows: the same type of plots as in the first two rows, under the setting ε = 0.3, σ = 0.4,
δ ∈ {2,3,4}.

Large/small noise. We set M = 8, δ = 0.9, ε = 0.4. For correlated design, we vary ρ ∈
{0.1,0.5,0.9} to allow for different levels of correlations among the predictors. Figure 14
shows the simulation results. There are a few important observations:
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FIG. 11. Top row: AFDP–ATPP curve under the setting ε = 0.4, σ = 0.22, δ ∈ {0.7,0.8,1.2}. Second row:
Y-axis is the difference of AFDP between the other bridge estimators and LASSO. One standard deviation of the
difference is added.

FIG. 12. Top row: AFDP–ATPP curve under the setting bε = 4/
√

ε, σ = 3, δ = 0.8, ε ∈ {0.25,0.0625,0.04}.
Second row: AFDP–ATPP curve under the setting bε = 4/

√
ε, σ = 5, δ = 0.8, ε ∈ {0.25,0.0625,0.04}. One

standard deviation is added.
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FIG. 13. LASSO versus two-stage LASSO. Here, δ = 0.8, ε = 0.2, M = 8, σ ∈ {1,3,5}. The outperformance
of two-stage LASSO is the most significant when the noise level is low. When noise gets higher, the gap becomes
smaller and smaller.

FIG. 14. Large/small noise scenario under correlated design.
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FIG. 15. Large/small noise scenario under i.i.d. non-Gaussian design. We set δ = 0.9, ε = 0.4, M = 8,
σ ∈ {0.8,1,2}. The degrees of freedom of the t-distribution is ν = 3.

(i) For a given ρ ∈ {0.1,0.5,0.9}, the comparison of bridge estimators under different
noise levels is similar to what we observe for i.i.d. Gaussian designs: LASSO performs best
in low noise case, and ridge becomes optimal when the noise is large.

(ii) Given the noise level σ = 0.8, as the design correlation ρ varies in {0.1,0.5,0.9}, it is
interesting to observe that, LASSO outperforms the other estimators when the correlation is
not high (ρ = 0.1,0.5), while ridge becomes the optimal one when the correlation is increased
to 0.9. Similar phenomenon happens at the noise level σ = 1. It seems that in terms of variable
selection performance comparison of TVS, adding dependency among the predictors is like
increasing the noise level in the system. We leave a theoretical analysis of the impact of
correlation on our results as an interesting future research.

Regarding i.i.d. non-Gaussian design, we choose the t-distribution tν with ν = 3. Note
that among all the t-distributions {tν, ν ∈ N} with finite variance, t3 has the heaviest tail. The
results are shown in Figure 15. We again observe the comparison predicted by our theory:
LASSO outperforms the other bridge estimators when the noise level is low (σ = 0.8), and
ridge performs best as the noise level increases to σ = 2.

Nearly black object. For nearly black objects, we consider δ = 0.8, σ = 3, bε = 4√
ε
, G̃ = 1,

ε ∈ {0.25,0.0625,0.04}. We construct the design matrix in the following ways:

(i) Set a correlated Gaussian design with correlation levels ρ = 0.5,0.9.
(ii) Set an i.i.d. non-Gaussian design with t3.

Figures 16 and 17 contain the results for the correlated design and i.i.d. non-Gaussian de-
sign, respectively. We can see that as the model becomes sparser, LASSO starts to outperform
other choices of bridge estimator and eventually becomes optimal. This is consistent with the
main conclusion we have proved for the i.i.d. Gaussian designs.

LASSO versus two-stage LASSO. We compare LASSO and two-stage LASSO under more
general designs. As in Section 5.6 for i.i.d. Gaussian design, we set δ = 0.8, ε = 0.2, M = 8
and σ = 1,3,5. For correlated designs, we pick ρ = 0.5,0.9. For i.i.d. non-Gaussian design,
we choose ν = 3. As is seen in Figure 18, the same phenomenon observed in i.i.d. Gaussian
design also occurs under general designs: two-stage LASSO outperforms LASSO by a large
margin when the noise is small, and the outperformance becomes marginal in large noise.

6. Discussion.

6.1. Nonconvex bridge estimators. In this paper, our discussion has been focused on the
bridge estimators with q ∈ [1,∞). When q falls in [0,1), the corresponding bridge regres-
sion becomes a nonconvex problem. Given that certain nonconvex regularizations have been
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FIG. 16. Nearly black object with correlated design. We fix δ = 0.8, σ = 3 and bε = 4/
√

ε,
ε ∈ {0.25,0.0625,0.04}. The correlation ρ is set to 0.5 and 0.9 in the two rows.

shown to achieve variable selection consistency under weaker conditions than LASSO [32],
it is of great interest to analyze the variable selection performance of nonconvex bridge esti-
mators. An early work [26] has showed that bridge estimators for q ∈ (0,1) enjoy an oracle
property in the sense of [20] under appropriate conditions. However, the asymptotic regime
considered in [26] is fundamentally different from the linear asymptotic in the current paper.
A more relevant work is [60] which studied the estimation property of bridge regression when
q belongs to [0,1] under a similar asymptotic framework to ours. Nevertheless, the main fo-
cus of [60] is on the estimators returned by an iterative local algorithm. The analysis of the
global minimizer in [60] relies on the replica method [42] from statistical physics, which has
not been fully rigorous yet. To the best of our knowledge, under the linear asymptotic setting,
no existing works have provided a fully rigorous analysis of the global solution from non-

FIG. 17. Nearly black object with i.i.d. non-Gaussian design. We fix δ = 0.8, σ = 3 and bε = 4/
√

ε,
ε ∈ {0.25,0.0625,0.04}. The degrees of freedom for the t-distribution design is ν = 3.
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FIG. 18. LASSO versus two-stage LASSO under general designs. Here, δ = 0.8, ε = 0.2, M = 8, σ ∈ {1,3,5}.
The first two rows are for ρ = 0.5,0.9 in correlated design. The last row is for ν = 3 in i.i.d. non-Gaussian design.

convex regularization in linear regression models. We leave this important and challenging
problem as a future research.

6.2. Tuning parameter selection for a two-stage variable selection scheme. Two-stage
variable selection techniques discussed in this paper have two tuning parameters: the regu-
larization parameter λ in the first stage and the threshold s from the second stage. Further-
more, given that TVS using different bridge estimators offer the best performance in different
regimes, we may see q as another tuning parameter. How can these parameters be optimally
tuned in practice? As proved in Section 3, the TVS with an estimator of smaller AMSE in the
first stage provides a better variable selection. Hence, the parameter λ can be set by minimiz-
ing the estimated risk of the bridge estimator. Similarly, one can estimate the risk for different
values of q and choose the one that offers the smallest estimated risk. Section 5.2 has showed
how this can be done.

It remains to determine the parameter s. As presented in our results, the threshold s con-
trols the trade-off between AFDP and ATPP. By increasing s, we decrease the number of
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false discoveries, but at the same time, we decrease the number of correct discoveries. There-
fore, the choice of s depends on the accepted level of false discoveries (or similar quantities).
For instance, one can control the false discovery rate by combining the two-stage approach
with the knock-off framework [2]. Specifically, if we would like to control FDP at a rate of
ρ ∈ (0,1), we can go through the following procedure:

1. Construct the knock-off features X̃ ∈ R
n×p as stated in [2];

2. Run bridge regression on the joint design [X, X̃] and obtain the corresponding esti-

mator
[ β̂

β̃

]
. Let Wj = max(|β̂j |, |β̃j |) sign(|β̂j | − |β̃j |), j = 1,2, . . . , p. Define the threshold

s as s = min{t > 0 : 1+#{j :Wj≤−t}
#{j :Wj≥t}∨1 ≤ ρ}.

3. Select all the predictors with {j : Wj ≥ s}.
The above procedure only works for n ≥ p. We may adapt the new knockoff approach in [8]
when n < p.

7. Conclusion. We studied two-stage variable selection schemes for linear models un-
der the high-dimensional asymptotic setting, where the number of observations n grows at
the same rate as the number of predictors p. Our TVS has a bridge estimator in the first stage
and a simple threshold function in the second stage. For such schemes, we proved that for
a fixed ATPP, in order to obtain the smallest AFDP one should pick an estimator that mini-
mizes the asymptotic mean square error in the first stage of TVS. This connection between
parameter estimation and variable selection further led us to a thorough investigation of the
AMSE under different regimes including rare and weak signals, small/large noise and large
sample. Our analyses revealed several interesting phenomena and provided new insights into
variable selection. For instance, the variable selection of LASSO can be improved by debias-
ing and thresholding; a TVS with ridge in its first stage outperforms TVS with other bridge
estimators for large values of noise; the optimality of two-stage LASSO among two-stage
bridge estimators holds for very sparse signals until the signal strength is below some thresh-
old. We conducted extensive numerical experiments to support our theoretical findings and
validate the scope of our main conclusions for general design matrices.

Acknowledgments. The authors would like to thank the anonymous referees, an Asso-
ciate Editor and the Editor for their constructive comments and suggestions that improved the
quality of this paper.

SUPPLEMENTARY MATERIAL

Supplement to “Which bridge estimator is the best for variable selection?” (DOI:
10.1214/19-AOS1906SUPP; .pdf). Due to space constraints, additional technical proofs are
relegated a supplementary document in [51], which contains Sections A–J.
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