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We propose a unified framework for establishing existence of nonpara-
metric M-estimators, computing the corresponding estimates, and proving
their strong consistency when the class of functions is exceptionally rich. In
particular, the framework addresses situations where the class of functions
is complex involving information and assumptions about shape, pointwise
bounds, location of modes, height at modes, location of level-sets, values of
moments, size of subgradients, continuity, distance to a “prior” function, mul-
tivariate total positivity and any combination of the above. The class might
be engineered to perform well in a specific setting even in the presence of
little data. The framework views the class of functions as a subset of a par-
ticular metric space of upper semicontinuous functions under the Attouch–
Wets distance. In addition to allowing a systematic treatment of numerous M-
estimators, the framework yields consistency of plug-in estimators of modes
of densities, maximizers of regression functions, level-sets of classifiers and
related quantities, and also enables computation by means of approximating
parametric classes. We establish consistency through a one-sided law of large
numbers, here extended to sieves, that relaxes assumptions of uniform laws,
while ensuring global approximations even under model misspecification.

1. Introduction. It is apparent that the class of functions from which nonparametric
M-estimators are selected should incorporate nondata information about the stochastic phe-
nomenon under consideration and also modeling assumptions the statistician would like to
explore. In applications, the class can become complex involving shape restrictions, bounds
on moments, slopes, modes and supports, limits on tail characteristics, constraints on the dis-
tance to a “prior” distribution and so on. The class might be engineered to perform well in
a particular setting; statistical learning is often carried out with highly engineered estima-
tors. An ability to consider rich classes of functions leads to novel estimators that even in the
presence of relatively little data can produce reasonable results.

Numerous theoretical and practical challenges arise when considering M-estimators se-
lected from rich classes of functions on R

d , which may even be misspecified, as we need
to analyze and solve infinite-dimensional random optimization problems with nontrivial con-
straints. In this article, we leverage and extend results from variational analysis to build a uni-
fied framework for establishing existence of such constrained M-estimators, computing the
corresponding estimates and proving their strong consistency. We also show strong consis-
tency of plug-in estimators of modes of densities, maximizers of regression functions, level-
sets of classifiers and related quantities that likewise account for a variety of constraints. In
contrast to “classical” analysis, variational analysis centers on functions that abruptly change
due to constraints and other sources of nonsmoothness and, therefore, emerges as a natural
tool for examining M-estimators selected from rich classes of functions.
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1.1. Setting and challenges. Given d0-dimensional random vectors X1, X2, . . . , Xn, we
consider constrained M-estimators of the form

(1) f̂ n ∈ εn- argmin
f ∈Fn

1

n

n∑
j=1

ψ
(
Xj,f

) + πn(f ),

where Fn is a class of candidate functions on R
d , or a subset thereof, possibly varying with

n (sieved), ψ is a loss function such as ψ(x,f ) = − logf (x) (maximum likelihood (ML)
estimation of densities) and ψ((x, y), f ) = (y − f (x))2 (least-squares (LS) regression), πn

is a penalty function possibly introduced for the purpose of smoothing and regularization,
and the inclusion of εn ≥ 0 indicates that near-minimizers are permitted. We focus on the
i.i.d. case, but extensions to non-i.i.d. samples is possible within our framework.

The Grenander estimator, the ML estimator over log-concave densities and the LS re-
gression function under convexity, just to mention a few constrained M-estimators, certainly
exist. However, existence is not automatic. For rich classes of functions, it is rather common
to have an empty set of minimizers in (1); Section 2 furnishes examples. The extensive lit-
erature on M-estimators establishes consistency under rather general conditions (see, e.g.,
[47], Theorem 3.2.2, Corollary 3.2.3, [45], Theorem 5.7, and [43], Theorems 4.3, 4.8). Stan-
dard arguments pass through uniform convergence of n−1 ∑n

j=1 ψ(Xj , ·) to E[ψ(X1, ·)],
almost surely or in probability, on a sufficiently large class of functions, which in turn
reduces to checking integrability and total boundedness of the class under an appropriate
(pseudo-)metric, the latter being equivalent to finite metric entropy. It has long been recog-
nized that uniform convergence is unnecessarily strong; already Wald [49] adopted a weaker
one-sided condition. In the central case of ML estimation of densities, an upper bound on
ψ(x,f ) = − logf (x) may not be available and typically force reformulations in terms of
ψ(x,f ) = − log(f (x) + f 0(x))/2f 0(x) and similar expressions, where f 0 is some refer-
ence density. Uniform convergence also gives rise to measurability issues, which may require
statements in terms of outer measures [47].

In the presence of rich classes of functions, it becomes nontrivial to compute estimates as
there are no general algorithm for (1). Approximations in terms of basis functions are not
easily constructed because the class of functions may neither be a linear space nor a convex
set.

1.2. Contributions. In this article, we address the challenges of existence, consistency
and computations of constrained M-estimators by viewing the class of functions under con-
sideration as a subset of a particular metric space of upper semicontinuous (usc) functions
equipped with the Attouch–Wets (aw)-distance.1 Although viewing M-estimators as mini-
mizers of empirical processes indexed by a metric space is standard, our particular choice is
novel. The only precursors are [32, 34], which hint to developments in this direction without
a systematic treatment. Three main advantages emerge from the choice of metric space: (i)
A unified and disciplined approach to rich classes of functions becomes possible as the aw-
distance can be used across M-estimators. (ii) Consistency of plug-in estimators of modes
of densities, maximizers of regression functions, level-sets of classifiers and related quanti-
ties follow immediately from consistency of the underlying estimators. (iii) Computation of
estimates becomes viable because usc functions, even when defined on unbounded sets, can
be approximated by certain parametric classes to an arbitrary level of accuracy in the aw-
distance. Moreover, the unified treatment of rich classes of functions allows for a majority of
algorithmic components to be transferred from one M-estimator to another.

1The aw-distance quantifies distances between sets, in this case hypo-graphs (also called subgraphs) and the
name hypo-distance is sometimes used; see Section 3.
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We bypass uniform laws of large numbers (LLN) and accompanying metric entropy calcu-
lations, and instead rely on a one-sided lsc-LLN for which upper bounds on the loss function
ψ becomes superfluous. Thus, concern about density values near zero and the need for re-
formulations in ML estimation vanish. Challenges related to measurability reduces to simple
checks on the loss function that can be stated in elementary terms. Already Wald [49] and
Huber [20] recognized the one-sided nature of (1) and this perspective was subsequently for-
malized and refined under the name epi-convergence; see [15, 31, 50] for results in the para-
metric case and also [28], Chapter 7. In the nonparametric case, the use of epi-convergence
to establish consistency of M-estimators appears to be limited to [12], which considers ML
estimators of densities that are selected from closed sets in some separable Hilbert space.
Moreover, either the support of the densities are bounded and the Hilbert space is a repro-
ducing kernel space or all densities are uniformly bounded from above and away from zero.
Sieves are not permitted. The Hilbert space setting is problematic as one cannot rely on
(strong) compactness to ensure existence of estimators and their cluster points, and weak
compactness essentially limits the scope to convex classes of functions. In addition to going
much beyond ML estimation, our particular choice of metric space addresses issues about
existence. We also provide a novel consistency result that extends the reach of the lsc-LLN
to sieves, which is of independent interest in optimization theory.

Without insisting on uniform approximations, the lsc-LLN establishes convergence in
some sense across the whole class of functions. Thus, consistency results are not hampered by
model misspecification or other circumstances under which an estimator is constrained away
from an actual (true) function. They only need to be interpreted appropriately, for example, in
terms of minimization of Kullback–Leibler divergence. It also becomes immaterial whether
the estimator and the actual function are unique. Under misspecification in ML estimation,
just to mention one case, there can easily be an uncountable number of densities that have the
same Kullback–Leibler divergence to the one from which the data is generated. Our results
still hold.

We construct an algorithm for (1) that under moderate assumptions produces an estimate in
a finite number of iterations if εn > 0 and converges to an estimate otherwise. The algorithm
permits the use of a wide variety of state-of-the-art optimization subroutines. We demon-
strate the framework in a small study of ML estimation over densities on [0,1]2 that satisfy
pointwise upper and lower bounds, have nonunique modes covering two specific points, are
Lipschitz continuous and are subject to smoothing penalties.

In our framework, conditions for existence and consistency of estimators essentially re-
duce to checking that the class of functions Fn is closed under the aw-distance. It is well
known that the class of concave densities is closed in this sense. We establish that many other
natural classes of functions are also closed in the aw-distance. Specifically, we show this for
classes defined by convexity, log-concavity, monotonicity, s-concavity, monotone transfor-
mations, Lipschitz continuity, pointwise upper and lower bounds, location of modes, height
at modes, location of level-sets, values of moments, size of subgradients, splines, multivari-
ate total positivity of order two and any combination of the above, possibly under additional
assumptions. To the best of our knowledge, no prior study has established existence and con-
sistency of M-estimators for such a variety of constraints.

We defer the systematic treatment of rates of convergence for M-estimators within the
proposed framework. Still, because covering numbers of bounded subsets of usc functions
under the aw-distance are known [30], it is immediately clear that under certain (strong)
assumptions rate results can be obtained (see [30] for preliminary examples), but these are
presently not as sharp as those available by means of empirical process theory.

Section 2 provides motivating examples and a small empirical study. Main results follow
in Section 3. Section 4 establishes the closedness of a variety of function classes under the
aw-distance. Section 5 states an algorithm for (1) and Section 6 gives additional examples.
The paper ends with intermediate results and proofs in Section 7.
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2. Motivation and examples. The study is motivated, in part, by estimation in the pres-
ence of relatively little data. In such contexts, constraints in the form of well-selected classes
of functions over which to optimize may become useful. Although statistical models often
aspire to be tuning-free (see, e.g., [8]), models in statistical learning and related application
areas are far from being free of tuning [27]. We follow that recent trend by considering novel
nonparametric estimators defined by complex constraints, many of which might be tuned to
address specific settings.

2.1. Role of constraints. Analysis using integral-type metrics such as those defined by
L2 and Hellinger distances leads to many of the well-known results for LS regression and
ML estimation of densities. However, difficulties arise with the introduction of constraints,
especially related to closedness and compactness of the class of function under consideration.
For example, consider the class of biconstant densities on [0,1], with each density having one
value on [0,1/2] and potentially another value on (1/2,1], that also must satisfy f (x) < 3/2
for all x ∈ [0,1]. When the number of samples in [0,1/2] is sufficiently different from that
in (1/2,1], the ML estimator over this class does not exist as the value of the density in the
interval with the more samples would be pushed up toward the unattainable upper bound. The
breakdown is caused by a class of densities that is not closed. Although rather obvious here,
the situation becomes nontrivial in nonparametric cases involving rich classes of functions
that may even be misspecified. In fact, already the ML estimators over unimodal densities on
R [3] and over log-concave densities on R

d for n ≤ d [14] fail to exist.
For another example, suppose that the definition of a class includes the constraint that

the maximizers of the functions should contain a given point in R
d . This constraint conveys

information or assumption about the location of modes in the density setting and “peaks” in
a regression problem. A sequence of estimates satisfying this constraint may have L2 and
Hellinger limits that violate it; the constraint is not closed under these metrics. Even the
simple constraint that f (x̄) ≥ 1 for a given x̄ ∈ R

d , which is a constraint on a level-set of f ,
would not be closed. However, the constraints on maximizers and such level-sets are indeed
closed in the aw-distance; see Section 2.2 and, more comprehensively, Section 3.4.

Constraints related to maximizers, maxima and level-sets motivate the choice of the aw-
distance in a profound way as neither pointwise nor uniform convergence would be satisfac-
tory with regard to those: Pointwise convergence fails to ensure convergence of maximizers
and uniform convergence applies essentially only to continuous functions defined on compact
sets.

2.2. Example formulation and result. As a concrete example of a rich class of densities
in ML estimation on R

d , suppose that α,κ ≥ 0; C,D ⊂ R
d ; I ⊂ [0,∞] is closed; g,h :

R
d → [0,∞), with h being usc and also satisfying

∫
h(x) dx < ∞; and

F =
{
f :Rd → [0,∞]

∣∣∣ f usc,
∫

f (x) dx = 1,

C ⊂ argmax
x∈Rd

f (x),D ⊂ lev≥α
f, sup

x∈Rd

f (x) ∈ I,(2)

g(x) ≤ f (x) ≤ h(x),
∣∣f (x) − f (y)

∣∣ ≤ κ‖x − y‖2,∀x, y ∈R
d

}
,

where lev≥α f = {x ∈ R
d |f (x) ≥ α} is an upper level-set of f . The second line restricts

the consideration to densities with (global) modes covering C and “high-probability regions”
covering D. Neither C nor D needs to be singletons. Although there are some efforts toward
accounting for information about the location of modes (see, e.g., [13]), the generality of
these constraints is unprecedented. The third line permits nearly arbitrary pointwise bounds.
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In settings with little data but substantial experience about what an estimate “should” look
like, such constraints can be helpful modeling tools. The last constraint restricts the class to
Lipschitz continuous functions with modulus κ .

Properties of the ML estimator on this class is stated next. Section 7 furnishes the proof
and those of most subsequent results. Let N= {1,2, . . . }.

PROPOSITION 2.1. Suppose that X1,X2, . . . are i.i.d. random vectors, each distributed
according to a density f 0 : Rd → [0,∞], F in (2) is nonempty, and {εn ≥ 0, n ∈ N} → 0.
Then the following hold almost surely:

(i) For all n ∈N, there exists f̂ n ∈ εn- argminf ∈F {−n−1 ∑n
j=1 logf (Xj )}.

(ii) Every cluster point (under the aw-distance) of {f̂ n, n ∈ N}, of which there is at least
one, minimizes the Kullback–Leibler divergence to f 0 over the class F .

(iii) If f 0 ∈ F , then f 0 is the limit (under the aw-distance) of {f̂ n, n ∈ N}.

The proposition establishes that despite the rather rich class, ML estimators exist and they
are consistent, even under model misspecification, which is especially relevant in the pres-
ence of many constraints. The specific case examined here is only an illustration. Section 3
provides general results along these lines. The framework aims to simplify the analysis of new
estimators constructed by adding and/or removing constraints. As we see below, the analysis
reduces largely to checking closedness and nonemptiness.

2.3. Empirical results. We consider ML estimation of the mixture of three uniform den-
sities on [0,1]2 depicted in Figure 1 (left). The resulting mixture density f 0 has height
f 0(x) = 3 for x in the areas colored yellow and f 0(x) = 0.6150 elsewhere. Using a sam-
ple of size 100 shown in Figure 1 (right), we compute a penalized ML estimate over the class
of functions

F =
{
f : [0,1]2 → [α,β]

∣∣∣ ∫
f (x) dx = 1, {x̄, ȳ} ⊂ argmax

x∈[0,1]2
f (x),

∣∣f (x) − f (y)
∣∣ ≤ κ‖x − y‖2,∀x, y ∈ [0,1]2,

piecewise affine on simplicial complex partition
}
.

A simplicial complex partition divides [0,1]2 into N equally sized triangles; see Section 5 for
details and the fact that optimization over F can be reduced to solving a finite-dimensional
convex problem. As discussed there, F can be viewed as an approximation, introduced for

FIG. 1. Top view of actual density (left) and sample of size n = 100 (right).
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FIG. 2. Estimates using n = 100 without (left) and with (right) argmax-constraint.

computational reasons, of the class obtained from F by relaxing the piecewise affine restric-
tion. We also adopt the penalty term π(f ) = λ

∑N
k=1 ‖gi‖1, where gi is the gradient of the ith

affine function defining f . In the results reported here, κ = 100 with x̄ = (0.4702,0.4657)

and ȳ = (0.7746,0.7773). We observe that F is misspecified as f 0 is not Lipschitz continu-
ous.

Figure 2 illustrates the effect of including the argmax-constraint for the case with λ = 0.05,
α = 0.0001, β = 10,000 and N = 200. In the left portion of the figure, the argmax-constraint
is not used and, visually, the errors are large. In the right portion, the argmax-constraint is
included and indications of the actual density emerges. This and other experiments show that
argmax-constraints regularize the estimates in some sense.

If α is increased to 0.3075 and β lowered to 4.5, that is, 50% below and above the lowest
and highest point of f 0, the estimate with argmax-constraint is slightly improved; see Fig-
ure 3 (left) for a top-view of the resulting density. The estimates are quite insensitive to the
choice of x̄ and ȳ. Over 25 replications with x̄ randomly selected from the box constituting
the left portion of argmaxx∈[0,1]2 f 0(x) and with ȳ randomly selected from the right box, 22
estimates resemble strongly that in Figure 3 (left). The remaining three blur together the two
peaks of f 0. Still, the KL-divergence between f̂ n and f 0 remains close: the mean across
the 25 replications is 0.177 and the standard deviation is 0.005. Naturally, a sample size of
n = 1000 improves the estimates significantly; see Figure 3 (right), where now λ = 0.02 and
N = 800 are used.

Table 1 summarizes typical computing times on a 2.60 GHz laptop using IPOPT [48] under
varying partition size N , sample size n and penalty parameter; α and β are as before. The
solver is not tuned for the specific problem instances and times can certainly be improved. In
most cases, the run times are at most a few seconds. Interestingly, they are nearly constant in
the sample size n as the size of the optimization problem is independent of n; see Section 5.2.

FIG. 3. Estimates using sample size n = 100 (left) and n = 1000 (right).
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TABLE 1
Computing times in seconds

Without penalty (λ = 0) With penalty (λ > 0)

Partition size N n = 100 n = 1000 n = 10,000 n = 100 n = 1000 n = 10,000

200 0.7 0.8 1.0 1.0 1.0 1.3
800 1.7 1.7 1.9 10.4 10.3 9.6

3200 6.6 11.7 14.8 38.5 29.1 22.0

Though, run times grow with partition size N . We observe that a piecewise affine density on
a partition of [0,1]2 with size N has 3N parameters that needs to be optimized. Thus, the
last row in the table implies overfitting to some extent. The longer run times with penalties
(λ > 0) are caused by additional optimization variables introduced in implementation of the
nonsmooth penalty term. There are well-known techniques for mitigating this effect, but they
are not explored here. Still, the table indicates the level of computational complexity for
constrained M-estimator of this kind. Section 5 includes further discussion.

3. Existence and consistency. After defining the aw-distance and establishing prelimi-
nary properties, this section turns to the main results on existence and consistency of estima-
tors.

3.1. Attouch–Wets distance. Throughout, we consider functions defined on a nonempty
and closed set S ⊂ R

d , which may be the whole of Rd . In the density setting, S could be
thought of as a support. However, we permit densities to have the value zero, so prior knowl-
edge of the support is not required. The class Fn in (1) is viewed as a subset of the (extended
real-valued) usc functions on S, which is denoted by

usc-fcns(S) = {f : S → R|f usc and f 
≡ −∞}, with R= [−∞,∞].
Thus, f ∈ usc-fcns(S) if and only if the hypo-graph hypof = {(x,α) ∈ S × R|f (x) ≥ α}
is a nonempty closed subset of Rd × R. The class of usc functions is rich enough for most
applications. We equip usc-fcns(S) with the aw-distance, which quantifies the distance be-
tween hypo-graphs. Figure 4 shows hypof n with shading and it appears “close” to hypof .
Specifically, let dist(z,A) be the usual point-to-set distance between a point z ∈ R

d ×R and
a set A ⊂ R

d ×R; any norm ‖ · ‖ can be used. Let zctr ∈ S ×R. The choice of norm and zctr

influence the numerical value of the aw-distance, but the resulting topology on usc-fcns(S)

remains unchanged, and thus all the stated results as well. For f,g ∈ usc-fcns(S), the aw-
distance is defined as

d(f, g) =
∫ ∞

0
dρ(f, g)e−ρ dρ,

FIG. 4. Hypo-graphs of distribution (left), density (middle), and regression functions (right).
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where, for ρ ≥ 0,

dρ(f, g) = max
{∣∣dist(z,hypof ) − dist(z,hypog)

∣∣ ∣∣∣ ∥∥z − zctr∥∥ ≤ ρ
}
.

Indeed, (usc-fcns(S),d) is a complete separable metric space, for which closed and bounded
subsets are compact [28], Proposition 4.45, Theorem 7.58. Boundedness can be verified by
the inequality d(f, g) ≤ 1 + max{dist(zctr,hypof ), dist(zctr,hypog)} [29], Proposition 3.1.
The aw-distance metrizes hypo-convergence: for f n,f ∈ usc-fcns(S),

f n hypo-converges to f ⇐⇒ hypof n set-converges to hypof

⇐⇒
{∀xn → x limsupf n(

xn) ≤ f (x),

∀x,∃xn → x liminff n(
xn) ≥ f (x)

⇐⇒ d
(
f n,f

) → 0; simply denoted by f n → f.

(3)

Set-convergence is in the sense of Painlevé–Kuratowski;2 see [28], Chapter 7.
Distribution functions hypo-converge if and only if they converge weakly [33, 36, 37] as

illustrated in Figure 4 (left). Figure 4 (middle, right) hints to the fact that modes and max-
imizers of hypo-converging densities and regression functions converge to those of limiting
functions; see Section 3.4.

In general, f n → f does not guarantee pointwise convergence; only limsup f n(x) ≤ f (x)

holds for all x ∈ S by (3). This issue surfaces in the analysis of (semi)continuity properties
of functions on usc-fcns(S). For x̄ ∈ S and ρ ≥ 0, let B(x̄, ρ) = {x ∈ S|‖x̄ − x‖ ≤ ρ}. We
recall that {f n,n ∈ N} ⊂ usc-fcns(S) is equi-usc at x̄ ∈ S when liminff n(x̄) → ∞ or when
for every ρ, ε ∈ (0,∞), there exists n̄ ∈ N and δ > 0 such that

sup
x∈B(x̄,δ)

f n(x) ≤ max
{
f n(x̄) + ε,−ρ

}
for all n ≥ n̄.

A class F ⊂ usc-fcns(S) is equi-usc at x̄ ∈ S when every sequence {f n ∈ F,n ∈ N} is equi-
usc at x̄. The main consequence of this property is that hypo-convergence implies pointwise
convergence [28], Theorem 7.10.

PROPOSITION 3.1 (Pointwise convergence). If {f n,n ∈ N} ⊂ usc-fcns(S) is equi-usc at
x̄ ∈ S, then f n → f ∈ usc-fcns(S) implies f n(x̄) → f (x̄).

Although the property is nontrivial, many interesting classes of functions are equi-usc at
all, or “most,” points in S as seen next. Let intA denote the interior of A ⊂R

d . A log-concave
function f = eg for some concave function g : S →R.

PROPOSITION 3.2 (Sufficient conditions for equi-usc). Any one of the following condi-
tions suffice for the functions {f n,n ∈ N} ⊂ usc-fcns(S) to be equi-usc at x̄ ∈ S.

(i) The functions are nonnegative, f n → f ∈ usc-fcns(S), and f (x̄) = 0.
(ii) The functions are concave, f n → f ∈ usc-fcns(S), and x̄ ∈ int{x ∈ S|f (x) > −∞}.

(iii) The functions are log-concave, f n → f ∈ usc-fcns(S), and x̄ ∈ int{x ∈ S|f (x) > 0}.
(iv) The functions are nondecreasing3 (alternatively, nonincreasing), f n → f ∈

usc-fcns(S) and f is continuous at x̄ ∈ intS.

2The outer limit of a sequence of sets {An,n ∈N} in a topological space, denoted by OutLimAn, is the collec-
tion of points to which a subsequence of {an ∈ An,n ∈ N} converges. The inner limit, denoted by InnLimAn, is
the collection of points to which a sequence {an ∈ An,n ∈ N} converges. If both limits exist and are equal to A,
we say that {An,n ∈N} set-converges to A and write An → A or LimAn = A.

3Monotonicity of functions on S are always with respect to the partial order induced by inequalities interpreted
componentwise, that is, f ∈ usc-fcns(S) is nondecreasing (nonincreasing) if x ≤ y implies f n(x) ≤ (≥)f n(y).
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(v) The functions are locally Lipschitz continuous at x̄ with common modulus, that is,
there exist δ > 0 and κ ∈ [0,∞) such that |f n(x) − f n(x̄)| ≤ κ‖x − x̄‖ for all x ∈ B(x̄, δ)

and n ∈N.

Although the aw-distance cannot generally be related to some of the other common met-
rics, the Hellinger and L2 distances tend to zero whenever the aw-distance vanishes under
equi-usc and integrability assumptions.

PROPOSITION 3.3 (Connections with other metrics). Suppose that {f,f n, n ∈ N} ⊂
usc-fcns(S), f n → f , and for some (measurable) g : S → [0,∞], |f n(x)| ≤ g(x) for all
x ∈ S and n ∈ N. Then:

(i) L2
P (f n, f ) = ∫

(f n(x) − f (x))2 dP (x) → 0 provided
∫

g2(x) dP (x) < ∞ and
{f n,n ∈N} is equi-usc at P -a.e. x ∈ S;

(ii) H 2(f n, f ) = 1
2

∫
(
√

f n(x)−√
f (x))2 dx → 0 provided that f n ≥ 0,

∫
g(x) dx < ∞,

and {f n,n ∈N} is equi-usc at Lebesgue-a.e. x ∈ S.

3.2. Existence. Our first main result establishes that existence of an estimator reduces to
having a semicontinuity property for the loss and penalty functions and a closed and bounded
class of functions in the aw-distance.

We recall that a function ϕ : F → R defined on a closed subset F of usc-fcns(S) is lower
semicontinuous (lsc) if liminfϕ(f n) ≥ ϕ(f ) for all f n ∈ F → f . To clarify earlier notation,4

let ε- argminf ∈F ϕ(f ) = {f ∈ F |ϕ(f ) ≤ infg∈F ϕ(g) + ε}.
Although our focus is on the existence of M-estimators, that is, minimizers of losses un-

der an empirical distribution, occasionally we consider general distributions and thereby also
treat approximation problems. We consider the following general setting [28], Chapter 14:
For a closed F ⊂ usc-fcns(S) and a complete probability space (S0,B0,P 0), with S0 ⊂ R

d0 ,
we say that ψ : S0 × F → R is a random lsc function if for all x ∈ S0, ψ(x, ·) is lsc and
ψ is measurable with respect to the product sigma-algebra5 on S0 × F . A random lsc func-
tion ψ : S0 × F → R is locally inf-integrable if for all f ∈ F there exists ρ > 0 such that6∫

infg∈F {ψ(x,g)|d(f, g) ≤ ρ}dP 0(x) > −∞.

THEOREM 3.4 (Existence of approximation). Suppose that ε ≥ 0 and F is a nonempty,
closed and bounded subset of usc-fcns(S) and (S0,B0,P 0) is a complete probability space.
If ψ : S0 × F → R is a locally inf-integrable random lsc function and π : F → (−∞,∞] is
lsc, then

ε- argmin
f ∈F

∫
ψ(x,f )dP 0(x) + π(f ) 
= ∅

and inf
f ∈F

∫
ψ(x,f )dP 0(x) + π(f ) > −∞.

COROLLARY 3.5 (Existence of estimator). Suppose that ε ≥ 0, {xj ∈ R
d0, j = 1, . . . , n},

and F is a nonempty, closed and bounded subset of usc-fcns(S). If π : F → (−∞,∞] and

4Throughout, we use the common extended real-valued calculus: 0 ·∞ = 0, α ·∞ = ∞ for α > 0, α +∞ = ∞
for α ∈R and α − ∞ = −∞ for α ∈ [−∞,∞); see [28], Section 1.E.

5For F , we adopt the Borel sigma-algebra under d.
6With ∞−∞ = ∞, the integral of any measurable function is well defined. In particular, the present integrand

is measurable [28], Theorem 14.37, [12], Proposition 6.3.
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ψ(xj , ·) : F → (−∞,∞] are lsc for all j , then

ε- argmin
f ∈F

1

n

n∑
j=1

ψ
(
xj , f

) + π(f ) 
=∅ and inf
f ∈F

1

n

n∑
j=1

ψ
(
xj , f

) + π(f ) > −∞.

For F to be bounded, it suffices that there are x ∈ S and α ∈ R such that for all f ∈ F ,
f (x) ≥ α, which becomes trivial for densities and distribution functions. As we see below,
the condition can sometimes be removed. Many natural classes are closed as indicated in the
Introduction and detailed in Section 4. The common penalty function π(f ) = supx∈S |f (x)|
is lsc (cf. Proposition 4.7). Familiar loss functions satisfy the lsc requirement too, at least
under certain assumptions. Several examples are furnished including some involving support
vector machines (SVM). The class in the next corollary considers concave classifiers in a
“band” that are also subject to constraints on the location of level-sets.

COROLLARY 3.6 (Existence of concave SVM classifier). For g : S → (−∞,∞], h ∈
usc-fcns(S), α ∈ R and C ⊂ R

d , suppose that {yj ∈ {−1,1}, xj ∈ intS, j = 1, . . . , n} and
F = {f ∈ usc-fcns(S)|f concave, g(x) ≤ f (x) ≤ h(x) ∀x ∈ S,C ⊂ lev≥α f }. Then, as long
as F is nonempty,

argmin
f ∈F

1

n

n∑
j=1

max
{
0,1 − yjf

(
xj )} 
=∅.

When classification errors of different types need to be treated separately, a Neyman–
Pearson model leads to the following setting [4, 5, 39].

COROLLARY 3.7 (Existence of robust Neyman–Pearson classifier). Suppose that {xj ∈
S, j = 1, . . . , n} and {zi ∈ S, i = 1, . . . ,m} are associated with +1 and −1 labels, respec-
tively, and F is a nonempty closed subset of usc-fcns(S). Then, for open sets {Zi ⊂ R

d, i =
1, . . . ,m}, with zi ∈ Zi ,

argmin
f ∈F

{
1

n

n∑
j=1

max
{
0,1 − f

(
xj )} ∣∣∣ f (z) ≤ 0 ∀z ∈ Zi, i = 1, . . . ,m

}

= ∅.

The corollary establishes the existence of an estimator, defined by a broad class F , that
minimizes hinge loss across the +1 labels and tolerates no training error across the −1 labels
even after perturbations within sets Zi .

COROLLARY 3.8 (Existence of ML estimator). If F is a nonempty closed subset of
usc-fcns(S) consisting of nonnegative functions, ε ≥ 0, {xj ∈ S, j = 1, . . . , n}, and f (xj ) <

∞ for all j and f ∈ F , then

ε- argmin
f ∈F

−1

n

n∑
j=1

logf
(
xj ) 
=∅ and inf

f ∈F
−1

n

n∑
j=1

logf
(
xj )

> −∞.

We observe that the corollary actually applies to any f : S → [0,∞] and not only densi-
ties.7 This fact is beneficial in analysis of estimators for which the integral-to-one constraint
is relaxed, for example, due to computational concerns. Nevertheless, the constraint enters in
many settings and needs a closer examination.

7We extend α �→ logα to [0,∞] by assigning the end points −∞ and ∞, respectively.
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If F is the class of normal densities with mean zero and positive standard deviation, then F

is not closed because there is a sequence in F hypo-converging to a degenerate density with
zero standard deviation. Similarly, if F is the class of normal densities with standard devia-
tion one, then closedness fails again since one can construct densities in F hypo-converging
to the zero function. Also classes of bounded densities on a compact set S may not be closed.
Elimination of such pathological cases is required for a class of densities to be closed. Propo-
sition 2.1 furnishes a concrete example, while Proposition 4.8 shows that if F is equi-usc
at Lebesgue-a.e. x ∈ S and an integrability condition holds, then

∫
f (x) dx = 1 is closed

under hypo-convergence. The log-concave class exhibits an equi-usc property as established
in Proposition 3.2. It is therefore not surprising that the ML estimator over this class exists
under a mild condition on the sample [14]; see Proposition 6.2 below.

COROLLARY 3.9 (LS regression). Suppose that F is a nonempty closed subset of
usc-fcns(S). If {yj ∈ R, xj ∈ S, j = 1, . . . , n} and F is equi-usc at xj , j = 1, . . . , n, then

argmin
f ∈F

1

n

n∑
j=1

(
yj − f

(
xj ))2 
= ∅.

Proposition 3.2 gives various sufficient conditions for a class of functions to be equi-usc.
The concave functions are equi-usc at “most” points according to that proposition and a
variant of LS regression that also includes pointwise upper and lower bound, for example,
introduced to engineer desirable estimates in high-dimensional settings, does indeed exist.
This can be established using the same arguments as those supporting Corollary 3.6.

In special cases with relatively simple constraints such as only monotonicity or only con-
vexity, existence of LS estimators are well known; see [38, 40]. The key feature of these
special cases is that they reduce in some sense to finite-dimensional problems expressed in
terms of the heights θj = f (xj ), j = 1, . . . , n, and the limit of sequence of such heights
generated by feasible functions can easily be shown to be extendable to a feasible function.
In the presence of nontrivial constraints that impose restrictions on f at points other than
the design points, the situation is more complicated and our systematic approach has merit.
In particular, starting from a closed equi-usc class, one can build up closed equi-usc classes
through set operations that preserve closedness such as intersections and thereby construct
novel estimators that will exist by Corollary 3.9.

3.3. Consistency. Our second main result establishes that consistency follows essentially
from lower-semicontinuity and one-sided integrability of the loss function and the closedness
of the class under consideration.

THEOREM 3.10 (Consistency). Suppose that X1,X2, . . . are i.i.d. random vectors with
values in S0 ⊂ R

d0 , F is a closed subset of usc-fcns(S), ψ : S0 × F → R is a locally inf-
integrable random lsc function, and πn : F → [0,∞) satisfies πn(f n) → 0 for every conver-
gent sequence {f n ∈ F,n ∈ N}. Then the following hold almost surely:

(i) For all {εn ≥ 0, n ∈ N} → 0,

OutLim

(
εn- argmin

f ∈F

1

n

n∑
j=1

ψ
(
Xj,f

) + πn(f )

)
⊂ argmin

f ∈F

E
[
ψ

(
X1, f

)]
.

(ii) There exists {εn ≥ 0, n ∈ N} → 0, such that(
εn- argmin

f ∈F

1

n

n∑
j=1

ψ
(
Xj,f

) + πn(f )

)
→ argmin

f ∈F

E
[
ψ

(
X1, f

)]

provided that E[ψ(X1, f )] < ∞ for at least one f ∈ F and F is bounded.
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The first conclusion of Theorem 3.10 guarantees that every cluster point of sequences
constructed from near-minimizers of n−1 ∑n

j=1 ψ(Xj , ·) + πn is contained in

argminf ∈F E[ψ(X1, f )] provided that εn vanishes.
Since argminf ∈F E[ψ(X1, f )] may not be a singleton, especially under model misspeci-

fication, there might be a strict inclusion in the first conclusion. For example, let S = S0 =
[0,1], F = {f |f (x) = 1 for x ∈ [0,1), f (1) ∈ [1,2]}, the actual density f 0 be uniform on
S and πn(f ) = n−1 supx∈S f (x). Then, almost surely, argminf ∈F −n−1 ∑n

j=1 logf (Xj ) +
πn(f ) = {f 0}, a strict subset of argminf ∈F E[− logf (X1)] = F . In this example, the diffi-
culty is caused by effects on a set of Lebesgue measure zero. However, in more complicated
situations, the concern may be more prevalent. An example is furnished by the same f 0,
S and S0, but with F = {g1, g2}, where g1(x) = 1 + δ for x ∈ [0,1/2] and g1(x) = 1 − δ

for x ∈ (1/2,1], and g2(x) = 1 − δ for x ∈ [0,1/2] and g2(x) = 1 + δ for x ∈ (1/2,1],
where δ ∈ (0,1), and πn(f ) = n−1/2f (0). The actual density f 0 is outside F . Then, al-
most surely, OutLim{argminf ∈F −n−1 ∑n

j=1 logf (Xj ) + πn(f )} = {g2}, a strict subset of

argminf ∈F E[− logf (X1)] = F .
The second conclusion in Theorem 3.10 guarantees that if εn tends to zero sufficiently

slowly, then the inclusion cannot be strict; near-minimizers of n−1 ∑n
j=1 ψ(Xj , ·) + πn set-

converge to argminf ∈F E[ψ(X1, f )]. Thus, in this sense, estimators can converge to any
function in the latter argmin.

A comparison with the common approach to consistency laid out, for example, in [47],
Section 3.2.1, is illuminating. In our notation, [47], Corollary 3.2.3, states roughly that if
(i) n−1 ∑n

j=1 ψ(Xj ,f ) converges in probability to E[ψ(X1, f )] uniformly in f across F ,

which is permitted to be any metric space, and (ii) E[ψ(X1, ·)] has a well-separated (unique)
minimizer f 0 on F , then f̂ n converges in probability to f 0. The ability to handle an arbitrary
metric space is an advantage over Theorem 3.10, but also burdens the user with verifying
the well separability of f 0 in the chosen metric. We do not insist on a unique minimizer
as discussed above. The required uniform weak law of large numbers would typically need
ψ(X1, f ) to be integrable. In contrast, Theorem 3.10 insists only on a one-sided integrability
condition, which is trivially satisfied when ψ(x,f ) is uniformly bounded from below across
x ∈ S0 and f ∈ F as would be the case for hinge-loss, least-squares and other common loss
functions.

COROLLARY 3.11 (Consistency for concave SVM classifier). For g : Rd → (−∞,∞],
h ∈ usc-fcns(Rd), γ ∈ R, and C ⊂ R

d , suppose that (X1, Y 1), (X2, Y 2), . . . are i.i.d. random
vectors in R

d × {−1,1} and F = {f ∈ usc-fcns(Rd)|f concave, g(x) ≤ f (x) ≤ h(x) ∀x ∈
R

d,C ⊂ lev≥γ f }.
If {εn ≥ 0, n ∈ N} → 0 and

f̂ n ∈ εn- argmin
f ∈F

1

n

n∑
j=1

max
{
0,1 − Y jf

(
Xj )}

,

then, almost surely, {f̂ n, n ∈ N} has at least one cluster point and every such point f � satisfies

f � ∈ argmin
f ∈F

E
[
max

{
0,1 − Y 1f

(
X1)}]

.

Moreover, for a subsequence {nk, k ∈ N} with f̂ nk → f � and β < α ∈ R,

OutLimk

(
lev≥α

f̂ nk

)
⊂ lev≥α

f � and InnLimk

(
lev≥β

f̂ nk

)
⊃ lev≥α

f �.
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We note that the upper level-sets of f̂ n, which are central in the practical use of the clas-
sifier (especially for α = 0), indeed approximate the “true” level-set lev≥α f �. Without ad-
ditional assumptions, we are unable to permit β = α because it is fundamentally difficult to
estimate lev≥α f � when f �(x) = α on a set of positive measure. For consistency of SVM
defined over a subset of a reproducing kernel Hilbert space, we refer to [42].

The Kullback–Leibler divergence

K(g;f ) =
∫

g(x)
[
logg(x) − logf (x)

]
dx for (measurable) f,g : S → [0,∞]

enters in ML estimation of densities.

COROLLARY 3.12 (Consistency in ML estimation). Suppose that X1,X2, . . . are i.i.d.
random vectors, each distributed according to a density f 0 : S → [0,∞], F is a closed subset
of usc-fcns(S) with nonnegative functions, and for every f ∈ F there exists ρ > 0 such that
E[supg∈F {logg(X1)|d(f, g) ≤ ρ}] < ∞. If {εn ≥ 0, n ∈ N} → 0 and

f̂ n ∈ εn- argmin
f ∈F

−1

n

n∑
j=1

logf
(
Xj )

,

then, almost surely, {f̂ n, n ∈ N} has at least one cluster point and every such point f � satisfies

f � ∈ argmin
f ∈F

K
(
f 0;f )

.

Under the additional assumption that F contains only densities and f 0 ∈ F , we also have
that f �(x) = f 0(x) for Lebesgue-a.e. x ∈ S.

It is obvious that when there exists an α ∈ R such that f (x) ≤ α for all f ∈ F , then the
expectation assumption is satisfied. In particular, such an α exists if for some κ ∈ [0,∞) the
class F ⊂ {f : S → [0,∞]| ∫ f (x) dx = 1, |f (x) − f (y)| ≤ κ‖x − y‖2 ∀x, y ∈ S}. Alterna-
tively, if X1 is integrable and there exist α,β ∈ R such that f (x) ≤ exp(α + β‖x‖∞) for all
f ∈ F , then again the expectation assumption in the corollary is satisfied.

We next turn the attention to LS regression. Suppose that we are given the random design
model

Y j = f 0(
Xj ) + Zj , j = 1,2, . . . ,

where the i.i.d. random vectors X1,X2, . . . take values in the closed set S ⊂ R
d , the

i.i.d. zero-mean and finite-variance random variables Z1,Z2, . . . are also independent of
X1,X2, . . . and f 0 : S → R is an unknown function to be estimated based on observations
of (X1, Y 1). Let

L2
P (f, g) =

∫ (
f (x) − g(x)

)2
dP (x),

where P is the distribution of X1. Consistency in the aw-distance is stated next; see [44] for
consistency in the empirical L2 sense.

COROLLARY 3.13 (Consistency in LS regression). Suppose that {εn ≥ 0, n ∈ N} → 0
and F is a closed subset of usc-fcns(S) equi-usc at every x ∈ S. For the random design
model above and

f̂ n ∈ εn- argmin
f ∈F

1

n

n∑
j=1

(
Y j − f

(
Xj ))2

,
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we have, almost surely, that every cluster point f � of {f̂ n, n ∈N} satisfies

f � ∈ argmin
f ∈F

L2
P

(
f,f 0)

.

If inff ∈F E[(Y 1 −f (X1))2] < ∞, which occurs in particular when f 0 ∈ F , then {f̂ n, n ∈ N}
has at least one cluster point.

When f 0 ∈ F , we also have that f �(x) = f 0(x) for P -a.e. x ∈ S.

We next turn to consistency in the presence of sieves, that is, the class of functions Fn

varies with n. The importance of sieves is well documented and prior studies include [6,
9–11, 18, 19]; see also [46], Theorems 8.4 and 8.12.

THEOREM 3.14 (Consistency; sieves). Suppose that X1,X2, . . . are i.i.d. random vec-
tors with values in S0 ⊂ R

d0 , F is a closed subset of usc-fcns(S), Fn ⊂ F , ψ : S0 × F → R

is a locally inf-integrable random lsc function, πn : F → [0,∞) satisfies πn(f n) → 0 for
every convergent sequence {f n ∈ F,n ∈ N}, and δ > 0. If {εn ≥ 0, n ∈ N} → 0, then

OutLim

(
εn- argmin

f ∈Fn
δ

1

n

n∑
j=1

ψ
(
Xj,f

) + πn(f )

)

⊂
{
f ∈ F∞

δ

∣∣∣E[
ψ

(
X1, f

)] ≤ inf
g∈LimFn

E
[
ψ

(
X1, g

)]}
a.s.,

where Fn
δ = {f ∈ F | infg∈Fn d(f, g) ≤ δ} and F∞

δ is defined similarly with Fn replaced
by LimFn. In particular, if LimFn = F , then the right-hand side of the inclusion equals
argminf ∈F E[ψ(X1, f )].

The assumptions of the theorem are nearly identical to those of Theorem 3.10. The main
difference is that consistency is ensured for estimators that are near-minimizers of a slightly
relaxed problem over the class Fn

δ and not over Fn. This relaxation is potentially beneficial
from a computationally point of view (see Section 5.1).

Theorem 3.14 guarantees that estimators selected from such relaxed classes will be con-
sistent in some sense. Specifically, every cluster point of the estimators is at least as “good”
as infg∈LimFn E[ψ(X1, g)] and is also in F∞

δ . If Fn eventually “fills” F , consistency takes
place in the usual sense.

To illustrate one application area, we specialize the theorem for ML estimation of densities,
while retaining some of its notation.

COROLLARY 3.15 (Consistency in ML estimation; sieves). Suppose that X1, X2, . . .

are i.i.d. random vectors, each distributed according to a density f 0 : S → [0,∞], F is a
closed subset of usc-fcns(S) consisting of densities, Fn ⊂ F , and for every f ∈ F there exists
ρ > 0 such that E[supg∈F {logg(X1)|d(f, g) ≤ ρ}] < ∞. If δ > 0, {εn ≥ 0, n ∈ N} → 0,
f 0 ∈ LimFn and

f̂ n ∈ εn- argmin
f ∈Fn

δ

−1

n

n∑
j=1

logf
(
Xj )

,

then, almost surely, {f̂ n, n ∈ N} has at least one cluster point and every such point f � satisfies

K
(
f 0;f �) = 0 and f � ∈ F∞

δ .

Thus, f �(x) = f 0(x) for Lebesgue-a.e. x ∈ S.
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3.4. Plug-in estimators. Among the many plug-in estimators that can be constructed
from density estimators, those of modes, near-modes, height of modes and high-likelihood
events are especially accessible within our framework because strong consistency is automat-
ically inherited from that of the density estimator. Similarly, plug-in estimators of “peaks” of
regression functions and level-sets of classifiers will also be consistent. Maxima and max-
imizers of regression functions are important, especially in engineering design where “sur-
rogate models” are built using regression and that are subsequently maximized to find an
optimal design or decision.

We recall that ε- argmaxx∈S f (x) = {y ∈ S|f (y) ≥ supx∈S f (x) − ε} for ε ≥ 0 and f :
S → R. Thus, f (x�) = ∞ when x� ∈ ε- argmaxx∈S f (x) and supx∈S f (x) = ∞. If f is a
density, then argmaxx∈S f (x) is the set of modes of f , δ- argmaxx∈S f (x) is a set of near-
modes, and lev≥α f is a set of high-likelihood events. We stress that modes are defined here
as global maximizers of densities. Extension to a more inclusive definition is possible but
omitted.

THEOREM 3.16 (Plug-in estimators of modes and related quantities). Suppose that esti-
mators f̂ n → f 0 almost surely, with estimates being functions in usc-fcns(S). If {δn ≥ 0, n ∈
N} → δ and {αn ∈R, n ∈ N} → α, then the plug-in estimators

m̂n ∈ δn- argmax
x∈S

f̂ n(x) and l̂n ∈ lev≥αn
f̂ n

are consistent in the sense that almost surely δ- argmaxx∈S f 0(x) and lev≥α f 0 contain every
cluster point of {m̂n, n ∈ N} and {l̂n, n ∈ N}, respectively.

Moreover, if there is a compact B ⊂ S such that for all n argmaxx∈S f̂ n(x)∩B 
= ∅ almost
surely, then the plug-in estimator

ĥn = sup
x∈S

f̂ n(x) → sup
x∈S

f 0(x) almost surely.

The theorem provides foundations for a rich class of constrained estimators for modes,
near-modes, height of modes and high-likelihood events and similar quantities for regression
functions and classifiers. We observe that the theorem holds even if f 0 fails to have a unique
maximizer. Convergence of densities in the sense of L1, L2, Hellinger, and Kullback–Leibler
as well as pointwise convergence fails to ensure convergence of modes and related quantities
without additional assumptions.

4. Closed classes. The central technical challenge associated with applying our exis-
tence and consistency theorems is often to establish that the class of functions under consid-
eration is a closed subset of usc-fcns(S). The analysis is significantly simplified by the fact
that any intersection of closed sets is also closed. Thus, it suffices to examine each individual
requirement of a class separately.

It is well known that the limit of a hypo-converging sequence of concave functions must
also be concave, and thus the class of concave functions is closed [28], Proposition 4.15.
In this section, we provide numerous results for other classes. We note that S is necessarily
convex when f ∈ usc-fcns(S) is convex, concave or log-concave.

PROPOSITION 4.1 (Convexity and (log-)concavity). For {f,f n, n ∈ N} ⊂ usc-fcns(S)

and f n → f , we have:

(i) If {f n,n ∈ N} are concave, then f is concave. Moreover, if the functions are finite-
valued, κ ≥ 0, and ‖v‖2 ≤ κ for every subgradient v ∈ ∂f n(x) and x ∈ S, then ‖v‖2 ≤ κ for
every v ∈ ∂f (x) and x ∈ S.
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(ii) If {f n ≥ 0, n ∈ N} are log-concave, then f is log-concave.
(iii) If {f n,n ∈ N} are convex and intS is nonempty, then f is convex.

The additional assumption about intS being nonempty for the convex case is caused by
the fact that the aw-distance is inherently tied to hypo-graphs, which makes the treatment of
convex functions slightly more delicate than that of concave functions.

Transformations of convex and concave functions beyond the log-concave case lead to the
rich class of s-concave densities; see, for example, [21, 41].

PROPOSITION 4.2 (Monotone transformations). For a continuous nondecreasing func-
tion h0 : R → R, let h : R → R have h(y) = h0(y) if y ∈ R, h(−∞) = infȳ∈R h0(ȳ), and
h(∞) = supȳ∈R h0(ȳ). Then, for {gn : S → R, n ∈ N}, with h � gn ∈ usc-fcns(S) → f ∈
usc-fcns(S), the following hold:

(i) If {gn,n ∈ N} are concave, then f = h � g for some concave g : S →R.
(ii) If {gn,n ∈ N} are convex and intS is nonempty, then f = h � g for some convex g :

S → R.

Since h � g with h nonincreasing and g convex can be written as h̃ � g̃ with h̃ nonde-
creasing and g̃ concave, the proposition also addresses nonincreasing functions and in fact
all s-concave functions. This ensures closedness for classes of functions under such shape
restrictions.

PROPOSITION 4.3 (Monotonicity). For {f,f n, n ∈ N} ⊂ usc-fcns(S) and f n → f , we
have:

(i) If f n is nondecreasing in the sense that f n(x) ≤ f n(y) for x ∈ S, y ∈ intS, with
x ≤ y, then f is also nondecreasing in the same sense.

If S is a box,8 then intS can be replaced by S.
(ii) If f n is nonincreasing in the sense that f n(x) ≥ f n(y) for x ∈ intS, y ∈ S, with x ≤ y,

then f is also nonincreasing in the same sense.
If S is a box, then intS can be replaced by S.

The limit of a hypo-converging sequence of nondecreasing functions is not necessar-
ily nondecreasing for arbitrary S. Consider S = {(x1, x2) ∈ R

2|x1 = x2,0 ≤ x1, x2 ≤ 1} ∪
{(2,0)}, f (x) = f n(x) = 0 if x = (2,0) and f (x) = 1 and f n(x) = min{1, n(x1 + x2)} oth-
erwise. Clearly, x = (0,0) ≤ y = (2,0), but f (x) = 1 > f (y) = 0. Meanwhile, f n(x) =
f n(y) = 0 for all n at these two points and it is nondecreasing elsewhere, too. Still, f n → f .

We recall that f : S → R is Lipschitz continuous with modulus κ when |f (x) − f (y)| ≤
κ‖x − y‖ for all x, y ∈ S.

PROPOSITION 4.4 (Lipschitz continuity). Suppose that {f,f n, n ∈ N} ⊂ usc-fcns(S),
f n → f and {f n,n ∈ N} are Lipschitz continuous with common modulus κ . Then f is also
Lipschitz continuous with modulus κ .

PROPOSITION 4.5 (Pointwise bounds). Suppose that g : S → R, h ∈ usc-fcns(S),
{f,f n, n ∈ N} ⊂ usc-fcns(S), and f n → f . If g(x) ≤ f n(x) ≤ h(x) for all n ∈ N and x ∈ S,
then g(x) ≤ f (x) ≤ h(x) for all x ∈ S.

8A box in R
d is of the form S = [α1, β2] × · · · × [αd,βd ], with −∞ ≤ αi < βi ≤ ∞, where in the case of

αi = −∞ and βi = ∞ the closed intervals are replaced by (half-) open intervals. Its dimension is therefore d .
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A function f : S → R is in the class of multivariate totally positive functions of order two
when f (x)f (y) ≤ f (min{x, y})f (max{x, y}) for all x, y ∈ S; see, for example, [17]. The
min and max are taken componentwise.

PROPOSITION 4.6 (Multivariate total positivity of order two). If {f n,n ∈ N} ⊂
usc-fcns(S) is equi-usc at x̄ ∈ S, the functions f n are multivariate totally positive of order
two, and f n → f ∈ usc-fcns(S), then f is multivariate totally positive of order two.

Penalty terms and constraints are often defined in terms of sup-functions and integrals.
Their (semi)continuity properties are recorded next.

PROPOSITION 4.7 (lsc of sup-norm). If F ⊂ usc-fcns(S) and g : R → R is lsc,9 then
π : F → R defined by π(f ) = supx∈S g(f (x)) is lsc.

In particular, f �→ supx∈S |f (x)| is lsc because this corresponds to having g(y) = |y| for
y ∈ R and g(y) = ∞ for y = −∞ and ∞ in the proposition.

PROPOSITION 4.8 (Integral quantities). If {f n,n ∈ N} ⊂ usc-fcns(S) is equi-usc at
Lebesgue-a.e. x ∈ S, f n → f ∈ usc-fcns(S), and for some (measurable) g : S → [0,∞],
|f n(x)| ≤ g(x) for all x ∈ S and n ∈ N, then:

(i)
∫

f n(x) dx → ∫
f (x) dx provided

∫
g(x) dx < ∞;

(ii)
∫

xf n(x) dx → ∫
xf (x) dx provided

∫ ‖x‖g(x) dx < ∞.

We end the section with an example of approximating and/or evolving moment information
in the definition of a function class.

PROPOSITION 4.9 (Moment information). Suppose that C ⊂ Cn ⊂R
d are closed, F 0 ⊂

usc-fcns(S) is closed and equi-usc at every x ∈ S, and there is a function g : S → [0,∞] with∫ ‖x‖g(x) dx < ∞ and |f (x)| ≤ g(x) for all x ∈ S and f ∈ F 0. Let

F =
{
f ∈ F 0

∣∣∣ ∫
xf (x) dx ∈ C

}
and Fn =

{
f ∈ F 0

∣∣∣ ∫
xf (x) dx ∈ Cn

}
.

If Cn set-converges to C, then Fn set-converges to F .

5. Estimation algorithm. For given data x1, . . . , xn ∈ S0 ⊂ R
d0 , there are no general

algorithms available for finding a function in

(4) ε- argmin
f ∈F

1

n

n∑
j=1

ψ
(
xj , f

) + π(f ).

In this section, we provide an algorithm for this purpose that combines the need for ap-
proximation of functions in usc-fcns(S) with the use of state-of-the-art solvers for finite-
dimensional optimization.

Suppose that πν is an approximation of π and Fν is an approximation of F involving
only functions that are described by a finite number of parameters, that is, Fν is a parametric
class. (The sample size n is fixed and we therefore let ν ∈ N index sequences.) We assume
that the statistician finds the class F appropriate and, for example, believes it balances over-
and underfitting. Consequently, the goal becomes to find a function in (4). The approximation
Fν is introduced for computational reasons and is often selected as close to F as possible,
only limited by the computing resources available.

9g : R →R is lsc if liminfg(yn) ≥ g(y) for every yn → y ∈R.
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ESTIMATION ALGORITHM.

Step 0. Set ν = 1.
Step 1. Find f ν ∈ εν- argminf ∈Fν

1
n

∑n
j=1 ψ(xj , f ) + πν(f ).

Step 2. Replace ν by ν + 1 and go to Step 1.

This seemingly simple algorithm captures a large variety of situations. It constructs a se-
quence of functions that approximate those in (4) by allowing a tolerance εν that may be
larger than ε and by resorting to approximations Fν and πν of the actual quantities F and
π . The difficulty in carrying out Step 1 depends on many factors, but since Fν consists only
of functions described by a finite number of parameters it reduces to finite-dimensional opti-
mization for which there are a large number of solvers available. Section 5.2 shows that we
often end up with convex problems.

The algorithm permits the strategy of initially considering coarse approximations in Step 1
with subsequent refinement. Since iteration number ν has f ν−1 available for warm-starting
the computations of f ν , the amount of computational work required by a solver in Step 1
is often low. In essence, the algorithm can make much progress toward (4) using relatively
coarse approximations.

THEOREM 5.1 (Convergence of algorithm). Suppose that x1, . . . , xn ∈ R
d0 , Fν,F ⊂

F 0 ⊂ usc-fcns(S) are closed, ψ(xj , ·) : F 0 → (−∞,∞] is continuous for all j , and π,πν :
F 0 → R satisfy πν(gν) → π(g) whenever gν ∈ F 0 → g. Moreover, let {εν ≥ 0, ν ∈ N} →
ε∞, LimFν = F and {f ν, ν ∈ N} be generated by the estimation algorithm:

(i) If ε∞ ≤ ε, then (4) contains every cluster point of {f ν, ν ∈ N}.
(ii) If ε∞ < ε, Fν ⊂ F , F 0 is bounded, and there exists g ∈ F such that ψ(xj , g) < ∞

for all j , then (4) contains f ν̄ for some finite ν̄.

When ε > 0, item (ii) of the theorem establishes that we obtain an estimate in a finite
number of iterations of the estimation algorithm as long as Fν approximates F from the
“inside.” Although not the only possibility, such inner approximations are the primary forms
as seen in Section 5.1.

The main technical and practical challenge associated with the estimation algorithm is the
construction of a parametric class Fν that set-converges to F . Since F can be a rich class
of usc functions, standard approaches (see, e.g., [24–26]) may fail and we leverage instead a
tailored approximation theory for usc-fcns(S).

5.1. Parametric class of epi-splines. Epi-splines is a parametric class that is dense in
usc-fcns(S) after a sign change and furnish the building blocks for constructing a parametric
class Fν that approximates F . In essence, an epi-spline on S ⊂ R

d is a piecewise polynomial
function that is defined in terms of a partition of S consisting of N disjoint open subsets that
is dense in S. On each such subset, the epi-spline is a polynomial function. Outside these
subsets, the epi-spline is defined by the lower limit of function values making epi-splines
lsc; see [29, 31, 32]. Although approximation theory for epi-splines exists for noncompact
S, arbitrary partitions and higher-order polynomials, we here develop the possibilities in the
statistical setting for a compact polyhedral S ⊂ R

d , simplicial complex partitions and first-
degree polynomials.

We denote by clA the closure of a set A ⊂ R
d . A collection R = {Rk}Nk=1 of open subsets

of S is a simplicial complex partition of S if clR1, . . . , clRN are simplexes,10 ⋃N
k=1 clRk =

10A simplex in R
d is the convex hull of d + 1 points x0, x1, . . . , xd ∈ R

d , with x1 − x0, x2 − x0, . . . , xd − x0

linearly independent.



CONSTRAINED M-ESTIMATORS 2777

S and Rk ∩ Rl = ∅, k 
= l. Suppose that {Rν = (Rν
1 , . . . ,Rν

Nν ), ν ∈ N} is a collection of
simplicial complex partition of S with mesh size maxk=1,...,Nν supx,y∈Rν

k
‖x − y‖ → 0 as

ν → ∞.
A first-order epi-spline s on a simplicial complex partition R = {Rk}Nk=1 is a real-valued

function that on each Rk is affine and that satisfies liminf s(xν) = s(x) for all xν → x. Let
e-spl(R) be the collection of all such epi-splines. We deduce from [29, 32] that⋃

ν∈N

{
f : S →R|f = −s, s ∈ e-spl

(
Rν)}

is dense in
(
usc-fcns(S),d

)
.

In the context of the estimation algorithm and Theorem 5.1, this fact underpins several
approaches to constructing a parametric class Fν that set-converges to F . For example, sup-
pose that F is solid,11 then Fν = F ∩ e-spl(Rν) → F as can be established by a standard
triangular array argument. One particular class of functions that always will be solid is Fn

δ in
Theorem 3.14 provided that it is a subset of a convex F 0. For example, F 0 can be taken to
be {f ∈ usc-fcns(S)|f (x) ≥ α ∀x ∈ S}, which is convex, so this is no real limitation. Con-
sequently, the relaxation of Fn to Fn

δ in Theorem 3.14 not only facilitates consistency of an
estimator, it also supports the development of computational methods.

5.2. Examples of formulations. If Fν is defined in terms of first-order epi-splines on a
partition of S ⊂ R

d consisting of Nν open sets, then each function in Fν is characterized by
Nν(d + 1) parameters. Consequently, Step 1 of the estimation algorithm amounts to approx-
imately solving an optimization problem with Nν(d + 1) variables. The number of variables
is independent of the sample size n. The number of open sets Nν would usually grow with d ,
but when the growth is slow the number of variables is manageable for modern optimization
solvers even for moderately large d .

Among the numerous formulations of the problem in Step 1 of the estimation algorithm,
we illustrate one based on first-order epi-splines with a simplicial complex partition, which is
also used in Section 2.3. Suppose that c0

k, c
1
k, . . . , c

d
k ∈ R

d are the vertexes of the kth simplex
of a simplicial complex partition of S ⊂R

d with N simplexes. A first-order epi-spline is then
fully defined by its height at these vertexes. Let hi

k ∈ R be the height at ci
k , i = 0,1, . . . , d ,

k = 1, . . . ,N . These N(d + 1) variables are to be optimized. (Optimization over such “tent
poles” is familiar in ML estimation over log-concave densities, but then they are located at
the data points and not according to simplexes as here; see, e.g., [8].) We next give specific
expressions for typical objective and constraint functions.

In ML estimation of densities, the loss expressed in terms of the optimization variables
becomes

−1

n

n∑
j=1

logf
(
xj ) = −1

n

n∑
j=1

log
d∑

i=0

μi
jh

i
kj

,

where kj is the simplex in which data point xj is located and the scalars {μi
j , i =

0,1, . . . , d, j = 1, . . . , n} can be precomputed by solving xj = ∑d
i=0 μi

j c
i
kj

. The loss is there-
fore convex in the optimization variables.

The requirement that functions are nonnegativity is implemented by the constraints hi
k ≥ 0

for all i = 0,1, . . . , d , k = 1, . . . ,N , which define a polyhedral feasible set.
The requirement that functions integrate to one is implemented by∫

f (x) dx = 1

d + 1

N∑
k=1

αk

d∑
i=0

hi
k = 1,

11A set A is solid if cl(intA) = A.
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where αk is the hypervolume of the kth simplex.
The requirement that functions should have their argmax covering a given point x� is

implemented by the constraints

d∑
i=0

ηihi
k� ≥ hi′

k for all i′ = 0,1, . . . , d, k = 1, . . . ,N,

where k� is the simplex in which x� is located and the scalars {ηi, i = 0,1, . . . , d} can be
precomputed by solving x� = ∑d

i=0 ηici
k� . The constraints form a polyhedral feasible set.

Implementation of continuity, Lipschitz continuity, concavity and many other conditions
also lead to polyhedral feasible sets. Consequently, ML estimation of densities on a compact
polyhedral set S ⊂ R

d under a large variety of constraints can be achieved by optimization
of a convex function over a polyhedral feasible sets for which highly efficient solvers are
available. A switch to LS regression, would result in a convex quadratic function to mini-
mize, with many of the constraints remaining unchanged. In that case, specialized quadratic
optimization solvers apply.

6. Additional examples. This section discusses existence of solutions of approximation
problems for the already well-understood classes of monotone and of log-concave functions.
We give proofs passing through the metric space (usc-fcns(S),d) to further illustrate the
framework.

PROPOSITION 6.1 (Existence of monotone LS approximation). For a box S ⊂ R
d , sup-

pose that F = {f ∈ usc-fcns(S)|f nondecreasing} and P is an absolutely continuous distri-
bution on S ×R. Then

argmin
f ∈F

∫ (
y − f (x)

)2
dP (x, y) 
=∅.

PROOF. By Proposition 4.3, F is closed. Suppose that f n ∈ F → f . Let D = {x ∈
intS|f is discontinuous at x}. In view of Propositions 3.2(iv) and 3.1, f n(x) → f (x) for
all x ∈ intS \ D. Thus, (y − f n(x))2 → (y − f (x))2 for all such x and all y ∈ R. By [23],
D has Lebesgue measure zero and the same holds for S \ intS. Then, by Fatou’s lemma,
liminf

∫
(y −f n(x))2 dP (x, y) ≥ ∫

(y −f (x))2 dP (x, y) and f �→ ∫
(y −f (x))2 dP (x, y) is

lsc on F . Its lower level-sets are compact at every finite level (cf. the argument in the proof
of Corollary 3.7) and the conclusion follows. �

The next result is in [14], but we provide a proof with some novel elements: the log-
likelihood criterion function is shown to be lsc on the enlarged class of log-concave functions
that integrate to values in [0,1].

PROPOSITION 6.2 (Existence of log-concave ML estimator). Suppose that F = {f ∈
usc-fcns(Rd)|f ≥ 0, log-concave}. Then, for any probability distribution P on R

d ,

argmin
f ∈F

{∫
− logf (x) dP (x)

∣∣∣ ∫
f (x) dx = 1

}

= ∅

if and only if∫
‖x‖dP (x) < ∞ and P(H) < 1 for all hyperplane H ⊂ R

d .
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PROOF. For f n ∈ F → f , Proposition 4.1(ii) establishes that f is log-concave. More-
over, f n(x) → f (x) for all x ∈ int{x ∈ R

d |f (x) > 0} and also when f (x) = 0 by Proposi-
tions 3.1 and 3.2. The subset of Rd that fails outside both of these cases has Lebesgue measure
zero so f n(x) → f (x) for Lebesgue-a.e. x ∈ R

d . Fatou’s lemma gives that liminf
∫

f n(x) dx

≥ ∫
f (x) dx. Thus, F≤ = {f ∈ F | ∫ f (x) dx ≤ 1} is closed and actually compact because all

functions in F are nonnegative.
We show that ϕ(f ) = ∫ − logf (x) dP (x) is lsc as a function on (F≤,d). Let f n ∈ F≤ →

f . We consider two cases: a)
∫

f (x) dx = γ > 0. Then γ −1f is a log-concave density and
by [7], Lemma 1, there are ξ0 ∈ R and ξ1 ∈ (0,∞) such that f (x) ≤ exp(ξ0 − ξ1‖x‖) for
all x ∈ R

d . Let ε = supx∈Rd f (x)/4, which then must be positive, and ρ ∈ (2ε,∞) such that
f (x) ≤ ε for ‖x‖2 ≥ ρ/2. (Here, we adopt the Euclidean norm, with the correspond balls
denoted by B2(x, δ), to simplify a reference to [28].) Hypo-convergence is locally uniform in
the following sense [28], Theorem 4.10: there is n̄ such that for n ≥ n̄,

hypof n ∩B2(0, ρ) ⊂ hypof +B2(0, ε),

hypof ∩B2(0, ρ) ⊂ hypof n +B2(0, ε).

Take (x, f n(x)) with ‖x‖2 = ρ. If f n(x) > ρ, then (x, ρ) ∈ hypof n ∩ B2(0, ρ) and
there exists (y,β) ∈ hypof such that ‖x − y‖2 ≤ ε and |ρ − β| ≤ ε. Thus, f (y) ≥
β ≥ ρ − ε > ε. However, f (y) ≤ ε because ‖y‖2 ≥ ρ/2 and we have reached a contra-
diction. Thus, f n(x) ≤ ρ, (x, f n(x)) ∈ hypof n ∩ B2(0, ρ) and there is (y,β) ∈ hypof

such that ‖x − y‖2 ≤ ε and |f n(x) − β| ≤ ε. This leads to f n(x) ≤ β + ε ≤ f (y) +
ε ≤ 2ε for all n ≥ n̄. The choice of ρ ensures that x̄ ∈ argmaxx∈Rd f (x) with ‖x̄‖2 ≤
ρ/2 exists. By (3), there is xn → x̄ such that f n(xn) → f (x̄) = 4ε. Thus, for some
n∗ ≥ n̄, ‖xn‖2 ≤ 3ρ/4 and f n(xn) ≥ 3ε for all n ≥ n∗. Since we also have f n(x) ≤
2ε for ‖x‖2 = ρ, argmaxx∈Rd f n(x) ⊂ B2(0,3ρ/4) for all n ≥ n∗. By [28], Theorem
7.31, this implies that supx∈Rd f n(x) → supx∈Rd f (x). Consequently, for sufficiently
large n,

∫ − logf n(x) dP (x) ≥ ∫ − log[2 supx̄∈Rd f (x̄)]dP (x) > −∞, which then fur-
nishes an integrable lower for application of Fatou’s lemma: liminf

∫ − logf n(x) dP (x) ≥∫
liminf[− logf n(x)]dP (x). Since liminf − logf n(x) ≥ − logf (x) for all x ∈ R

d by (3),
we conclude that ϕ is lsc at points f ∈ F≤ with

∫
f (x) dx > 0. This fact holds for any P .

Next, we consider (b)
∫

f (x) dx = 0 and now it becomes essential to limit the scope to
P with the stated properties. Let D = {x ∈ R

d |f (x) > 0}, which then has Lebesgue measure
zero (because

∫
f (x) dx = 0) and intD = ∅. Since D is also convex by the log-concavity of

f , it lies in an affine subspace of Rd of dimension less than d , that is, D is a subset of some
hyperplane H ⊂R

d . Consequently, the first term of

ϕ(f ) =
∫
x /∈D

− logf (x) dP (x) +
∫
x∈D

− logf (x) dP (x)

integrates to ∞ in view of the assumption on P . The convention ∞ − α = ∞ for any α ∈ R

implies that ϕ(f ) = ∞ regardless of the value of the second term. It remains to show that
ϕ(f n) → ∞ when f n ∈ F≤ → f . Since ϕ(f n) = ∞ when

∫
f n(x) dx = 0 as just argued,

we assume without loss of generality that
∫

f n(x) dx > 0 for all n. In fact, those integrals
can be assumed to be one because, with

∫
f n(x) dx = γ n,

∫ − logf n(x) dP (x) = − logγ n +∫ − log(f n(x)/γ n) dP (x) → ∞ when the last term tends to ∞.
Each sn = supx∈Rd f n(x), n ∈ N, is finite (cf. [7], Lemma 1), but the sequence could be

unbounded. If supn∈N sn is also finite, then

ϕ
(
f n) =

∫
f (x)=0,f n(x)≤1

− logf n(x) dP (x) +
∫
f (x)>0,f n(x)≤1

− logf n(x) dP (x)

+
∫
f n(x)>1

− logf n(x) dP (x) → ∞;
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the first term tends to ∞ because f n(x) → 0 when f (x) = 0 by Proposition 3.2(i) and the
last term is bounded from below uniformly in n. Hence, suppose that sn → ∞. For η > 0,
τn = log sn, and σn = exp(−ητn),∫

− logf n(x) dP (x) ≥ ητnP
(
R

d \ lev≥σn
f n

)
− τnP

(
lev≥σn

f n
)

= (η + 1)τn

(
η

η + 1
− P

(
lev≥σn

f n
))

.

By [14], Lemma 4.1, the Lebesgue measure of lev≥σn f n is no greater than

(1 + η)d
(
τn)d exp

(−τn)
/

∫ (1+η)τn

0
td exp(−t) dt → 0

as sn (and τn) tends to infinity for any given η > 0. Moreover, [14], Lemma 2.1, estab-
lishes that P(lev≥σn f n) < η/(η + 1) when the Lebesgue measure of lev≥σn f n is suffi-
ciently low and η sufficiently high. (This fact relies critically on the assumption on P .)
Thus,

∫ − logf n(x) dP (x) → ∞ when sn → ∞ and ϕ is lsc (in fact continuous) at f when∫
f (x) dx = 0.
In summary, we have shown that ϕ is lsc on the compact set F≤. Thus, there exists

f � ∈ argminf ∈F≤ ϕ(f ). Trivially, there is f ∈ F≤ with finite ϕ(f ), which implies that
ϕ(f �) < ∞ and, as argued above,

∫
f �(x) dx = γ > 0. Since ϕ(f �/γ ) ≤ ϕ(f �), f �/γ ∈

argminf ∈F {ϕ(f )| ∫ f (x) dx = 1}.
For the necessity of the conditions on P , we refer to [14]. �

7. Intermediate results and proofs. This section includes proofs of all the results in the
paper.

PROOF OF PROPOSITION 2.1. By Proposition 3.2(v), F is equi-usc at all x ∈ R
d . Propo-

sition 4.8(i) ensures that the integral constraint is closed. Theorem 3.16 as well as Propo-
sitions 4.4 and 4.5 establish that the other constraints are closed, too. Consequently, F is
compact. Corollary 3.8 applies and confirms (i). Corollary 3.12 and the discussion immedi-
ately after it establish (ii). When f 0 ∈ F , then every cluster point of {f̂ n, n ∈ N} must deviate
from f 0 at most on set of Lebesgue measure zero. For Lipschitz continuous functions, this
means that the functions must be identical and (iii) holds. �

PROOF OF PROPOSITION 3.2. When f n → f , it suffices by [28], Theorem 7.10, to
establish that f n(x̄) → f (x̄). In view of (3), (i) is trivial. Items (ii), (iii) follow by [28], The-
orem 7.17. For (iv), we only prove the nondecreasing case as a nearly identical argument
establishes the conclusion for nonincreasing functions. Let ε > 0. Since x̄ ∈ intS and f is
continuous at x̄, there exist ȳ ∈ S, with ȳi < x̄i for i = 1, . . . , d , and f (ȳ) ≥ f (x̄)− ε. More-
over, for some xn ∈ S → ȳ, f n(xn) → f (ȳ) by (3). Since xn ≤ x̄ for sufficiently large n,
liminff n(x̄) ≥ liminff n(xn) = f (ȳ) ≥ f (x̄)−ε. Since ε is arbitrary, the conclusion follows
because limsupf n(x̄) ≤ f (x̄) already by (3). For (v), consider the definition of equi-usc. The
Lipschitz condition ensures that there is δ ∈ (0,∞) with f n(x) ≤ f n(x̄) + κ‖x − x̄‖ for all
n ∈ N and x ∈ B(x̄, δ). Let ε > 0. If κ = 0, then set δ′ = δ. Otherwise, set δ′ = min{ε/κ, δ}.
In either case, supx∈B(x̄,δ′) f

n(x) ≤ f n(x̄) + κδ′ ≤ f n(x̄) + ε. �

PROOF OF PROPOSITION 3.3. In view of Proposition 3.1, the result follows directly from
applications of the dominated convergence theorem. �

PROOF OF THEOREM 3.4. A trivial generalization of Fatou’s lemma shows that∫
ψ(x, ·) dP 0(x) is lsc on F (see, e.g., [12], Appendix). Since for all f ∈ F ,

∫
ψ(x,
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f )dP 0(x) and π(f ) exceed −∞,
∫

ψ(x, ·) dP 0(x)+π is lsc on F . All lsc functions defined
on a compact set attain their infima. �

PROOF OF COROLLARY 3.5. The function n−1 ∑n
j=1 ψ(xj , ·) + π is lsc on F because

each term in the sum involves a lsc function that is never −∞. All lsc functions defined on a
compact set attain their infima. �

PROOF OF COROLLARY 3.6. By Propositions 4.1(i) and 4.5 as well as Theorem 3.16, F

is closed. It is also bounded; see the remark after Corollary 3.5. Since g > −∞ and xj ∈ intS,
it is also equi-usc at xj , j = 1, . . . , n, by Proposition 3.2(ii). Thus, in view of Proposition
3.1 f �→ max{0,1 − yjf (xj )} is continuous on F for all j and the conclusion follows by
Corollary 3.5. �

PROOF OF COROLLARY 3.7. Let ϕ(f ) = n−1 ∑n
j=1 max{0,1 − f (xj )}, f ∈ F , and

f n ∈ F → f . By (3), limsupf n(xj ) ≤ f (xj ) and liminf(max{0,1 − f n(xj )}) ≥ max{0,1 −
f (xj )} for all j = 1, . . . , n, which implies that ϕ is lsc on F . Since Zi is open,
liminf(supx∈Zi f n(x)) ≥ supx∈Zi f (x) by [28], Proposition 7.29. Thus, F 0 = {f ∈ F |
supx∈Zi f (x) ≤ 0, i = 1, . . . ,m} is closed. For g ∈ F , suppose that {f n ∈ F,n ∈ N} is such
that d(f n, g) → ∞. Then hypof n set-converges to ∅, which implies f n(xj ) → −∞ for
all j and ϕ(f n) → ∞. Consequently, {f ∈ F |ϕ(f ) ≤ α} is bounded for α ∈ R. Since it is
also closed by virtue of ϕ being lsc, these level-sets are actually compact. A lsc function with
compact level-set attains it infimum. �

PROOF OF COROLLARY 3.8. Let f n ∈ F → f . By (3), limsupf n(xj ) ≤ f (xj ) for all
j so liminf− logf n(xj ) ≥ − logf (xj ). Thus, f �→ −n−1 ∑n

j=1 logf (xj ) is lsc on F . The
conclusion then follows by Corollary 3.5. �

PROOF OF COROLLARY 3.9. In view of Proposition 3.1, f �→ ∑n
j=1(y

j − f (xj ))2 is
continuous on F . An argument similar to the one in the proof of Corollary 3.7 yields that this
function has compact level-sets. �

The proof of Theorem 3.10 relies on a lsc-LLN, essentially in [1, 22], that ensures almost
sure epi-convergence of empirical processes indexed on a polish space. For completeness, we
include the statement as well as a new proof, which is simpler than that in [1]. It follows the
arguments in [22] for ergodic processes, but takes advantage of the present i.i.d. setting. The
statement is made slightly more general than needed without complication.

PROPOSITION 7.1 (lsc-LLN). Suppose that (Y, dY ) is a complete separable (polish) met-
ric space, (�,A,P ) is a complete12 probability space, and ψ : � × Y → R is a locally inf-
integrable random lsc function.13 If ξ1, ξ2, . . . is a sequence of i.i.d. random elements that
take values in � with distribution P , then almost surely

1

n

n∑
j=1

ψ
(
ξ j , ·) epi-converges E

[
ψ

(
ξ1, ·)],

12In view of [22], the result (but not our proof) holds without completeness.
13The definitions of Section 3.2 carry over to the more general context here.
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which is equivalent to having for all y ∈ Y ,

∀yn → y, liminf
1

n

n∑
j=1

ψ
(
ξ j , yn) ≥ E

[
ψ

(
ξ1, y

)]
,

∃yn → y, limsup
1

n

n∑
j=1

ψ
(
ξ j , yn) ≤ E

[
ψ

(
ξ1, y

)]
.

PROOF. A slight generalization of Fatou’s lemma (see [12], Appendix) ensures that
E[ψ(ξ1, ·)] is lsc. Let D̄ ⊂ Y ×R be a countable dense subset of the epigraph epiE[ψ(ξ1, ·)],
with epih = {(y, y0) ∈ Y × R|h(y) ≤ y0}, which may be empty. Moreover, let D ⊂ Y be a
countable dense subset of Y that contains the projection of D̄ on Y and Q+ be the nonnega-
tive rational numbers. For y ∈ D and r ∈ Q+, we define πy,r : � →R by setting

πy,r (ξ) = inf
y′∈Bo(y,r)

ψ
(
ξ, y′) if r > 0 and πy,0(ξ) = ψ(ξ, y),

where B
o(y, r) = {y′ ∈ Y |dY (y′, y) < r}. By Theorem 3.4 in [22], every such πy,r is an

extended real-valued random variable defined on the probability space (�,A,P ). Since ψ is
locally inf-integrable, it follows that for every y ∈ D there is a closed neighborhood Vy of y

and ry ∈ (0,∞) such that

B
o(y, r) ⊂ Vy and E[πy,r ] ≥

∫
inf

y′∈Vy

ψ
(
ξ, y′)dP (ξ) > −∞ for r ∈ [0, ry].

Let (�∞,A∞,P ∞) be the product space constructed from (�,A,P ) in the usual manner.
For every y ∈ D and r ∈ [0, ry] ∩ Q+, a standard law of large numbers for extended real-
valued random variables (see, e.g., [16], Theorems 7.1, 7.2) ensures that

1

n

n∑
j=1

πy,r

(
ξj ) → E[πy,r ] for P ∞-a.e.

(
ξ1, ξ2, . . .

) ∈ �∞.

Since {πy,r |y ∈ D,r ∈ [0, ry] ∩ Q+} is a countable collection of random variables, there
exists �∞

0 ⊂ �∞ such that P(�∞
0 ) = 1 and

1

n

n∑
j=1

πy,r

(
ξj ) → E[πy,r ] for all

(
ξ1, ξ2, . . .

) ∈ �∞
0 and y ∈ D,r ∈ [0, ry] ∩ Q+.

We proceed by establishing the liminf and limsup conditions of the theorem. First, suppose
that yn → y. There exist n̄k ∈ N, zk ∈ D and rk ∈ [0, ry] ∩ Q+, k ∈ N, such that zk → y,
rk → 0,

B
o(zk, rk) ⊃ B

o(zk+1, rk+1), and yn ∈ B
o(zk, rk) for n ≥ n̄k, k ∈N.

We temporarily fix k. Then, for n ≥ n̄k and (ξ1, ξ2, . . . ) ∈ �∞
0 ,

1

n

n∑
j=1

ψ
(
ξj , yn) ≥ 1

n

n∑
j=1

inf
y′∈Bo(zk,rk)

ψ
(
ξj , y′) = 1

n

n∑
j=1

πzk,rk

(
ξj ) → E[πzk,rk ].

The nestedness of the balls implies that πzk,rk ≤ πzk+1,rk+1 for all k. Moreover, the lsc
of ψ(ξ, ·) implies that for all ξ ∈ �, πzk,rk (ξ) → πy,0(ξ) = ψ(ξ, y). Thus, in view of
the monotone convergence theorem, E[πzk,rk ] → E[ψ(ξ1, y)]. We have establish that for
(ξ1, ξ2, . . . ) ∈ �∞

0 , liminf n−1 ∑n
j=1 ψ(ξj , yn) ≥ E[ψ(ξ1, y)].

Second, for every y ∈ Y , we construct a sequence yn → y such that for (ξ1, ξ2, . . . ) ∈ �∞
0 ,

limsupn−1 ∑n
j=1 ψ(ξj , yn) ≤ E[ψ(ξ1, y)].
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Suppose that y ∈ D. Then, the claim holds because for (ξ1, ξ2, . . . ) ∈ �∞
0

limsup
1

n

n∑
j=1

ψ
(
ξj , y

) = 1

n

n∑
j=1

πy,0
(
ξj ) → E[πy,0] = E

[
ψ

(
ξ1, y

)]
.

Fix (ξ1, ξ2, . . . ) ∈ �∞
0 and let h : Y → R be the unique lsc functions that has as epi-

graph the set OutLim{epin−1 ∑n
j=1 ψ(ξj , ·)}. Thus, the prior equality is equivalent to having

h(y) ≤ E[ψ(ξ1, y)], which then holds for all y ∈ D. Consequently, {(y,α) ∈ Y × R|h(y) ≤
α,y ∈ D} ⊂ epiE[ψ(ξ1, ·)]. Since h is lsc and epiE[ψ(ξ1, ·)] is closed, we have after
taking the closure on both sides that epih ⊂ epiE[ψ(ξ1, ·)] and also h(y) ≤ E[ψ(ξ1, y)

for all y. By construction of h, this implies that for all y there exists yn → y such that
limsupn−1 ∑n

j=1 ψ(ξj , yn) ≤ E[ψ(ξ1, y)] and the conclusion holds. �

PROOF OF THEOREM 3.10. If F is empty, the results hold trivially. Suppose that F is
nonempty. By [28], Proposition 4.45, Theorem 7.58, (usc-fcns(S),d) is a complete separa-
ble metric space. By virtue of being a closed subset, F forms another complete separable
metric space (F,d). Let ϕn(f ) = n−1 ∑n

j=1 ψ(Xj ,f ) + πn(f ) and ϕ(f ) = E[ψ(X1, f )],
f ∈ F . Proposition 7.1 applied with this metric space establishes that n−1 ∑n

j=1 ψ(Xj , ·)
epi-converges to ϕ a.s. Moreover, for all f n ∈ F → f ,

liminfϕn(
f n) ≥ liminf

1

n

n∑
j=1

ψ
(
Xj,f n) ≥ ϕ(f ) a.s.

Also, there exists f n ∈ F → f such that

limsupϕn(
f n) ≤ limsup

1

n

n∑
j=1

ψ
(
Xj,f n) + limsupπn(

f n) ≤ ϕ(f ) a.s.

We have established that ϕn epi-converges to ϕ a.s. If ϕ is improper, which in this case means
that ϕ(f ) = ∞ for all f ∈ F , then item (i) holds trivially because the right-hand side of the
inclusion is the whole of F . If ϕ is proper, then ϕn is also proper and [29], Proposition 2.1,
applies, which establishes (i).

The additional assumptions in item (ii) imply that both ϕ and ϕn are proper, and also that
ϕn epi-converges tightly ϕ because then F is compact. Thus, [35], Theorem 3.8, applies and
item (ii) is established. �

PROOF OF COROLLARY 3.11. We deduce from the proof of Corollary 3.6 that F

is compact and equi-usc at all x ∈ R
d . This implies that for all (x, y) ∈ R

d × {−1,1},
f �→ max{0,1 − yf (x)} is continuous on F . Suppose that f n → f and xn → x. By (3),
limsupf n(xn) ≤ f (x). Thus, (x, f ) �→ f (x) is usc on R

d × F . From this, we conclude that
((x, y), f ) �→ max{0,1 − yf (x)} is measurable and a random lsc function. It is trivially lo-
cally inf-integrable by virtue of being nonnegative. Theorem 3.10(i) therefore applies and a
cluster point f � of {f̂ n, n ∈ N}, of which one exits due to compactness of F , must satisfy
the first conclusion a.s. The second conclusion follows by an application of [28], Proposition
7.7. �

PROOF OF COROLLARY 3.12. Since F consists of nonnegative functions, it is bounded
and in fact compact since closed. Thus, {f̂ n, n ∈ N} must have at least one cluster point.
Next, we show that ψ : S × F → R given by ψ(x,f ) = − logf (x) is a random lsc func-
tion. Suppose that f n ∈ F → f and xn ∈ S → x, then limsupf n(xn) ≤ f (x) and also
liminf− logf n(xn) ≥ − logf (x), which implies that ψ is lsc. Measurability then follows
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directly from the fact that lower level-sets of lsc functions are closed. Theorem 3.10(i) there-
fore applies and a cluster point f � of {f̂ n, n ∈ N} must satisfy a.s.,

f � ∈ argmin
f ∈F

E
[− logf

(
X1)] ⊂ argmin

f ∈F

E
[
logf 0(

X1)] −E
[
logf

(
X1)]

.

The inclusion holds even if E[logf 0(X1)] equals −∞ or ∞. The last conclusion of the
theorem follows directly from the properties of the Kullback–Leibler divergence. �

PROOF OF COROLLARY 3.13. From the proof of Corollary 3.9, we deduce that f �→
(y −f (x))2 is continuous for any (x, y) ∈ S ×R. Moreover, if f n ∈ F → f and xn ∈ S → x,
then limsupf n(xn) ≤ f (x) by (3). Thus, the mapping (x, f ) �→ f (x) on S × F is usc, and
thus measurable. We therefore have that ((x, y), f ) �→ (y − f (x))2 is measurable, too, as a
function on S × R × F and also a random lsc function. It is trivially locally inf-integrable
by its nonnegativity. Theorem 3.10(i) therefore applies and a cluster point f � of {f̂ n, n ∈ N}
must satisfy a.s.,

f � ∈ argmin
f ∈F

E
[
(Y 1 − f

(
X1)2] = argmin

f ∈F

L2
P

(
f 0, f

)

because E[Z1] = 0 and X1 and Z1 are independent; the finite variance of Z1 prevents
E[(Y 1 − f (X1)2] from being ∞ when L2

P (f 0, f ) is finite. The existence of a cluster
point is realized as follows. Let ϕ(f ) = E[(Y 1 − f (X1)2], f ∈ F . If {f n ∈ F,n ∈ N}
satisfies d(f n, g) → ∞ for some g ∈ F , then hypof n set-converges to ∅ and f n(x) →
−∞ for all x ∈ S. Thus, ϕ(f n) = E[(f 0(X1) − f n(X1)2] + E[(Z1)2] → ∞ since f 0

is real-valued. This implies that {f ∈ F |ϕ(f ) ≤ α} is bounded for all α ∈ R and con-
tains OutLim{f ∈ F |ϕn(f ) ≤ α} for any sequence of functions {ϕn : F → R, n ∈ N} epi-
converging to ϕ [2], Theorem 3.1, and also limsup(inff ∈F ϕn(f )) ≤ inff ∈F ϕ(f ) [35], The-
orem 3.8. Under the assumption that inff ∈F ϕ(f ) < ∞, we therefore have that for some
n̄, {εn- argminf ∈F ϕn(f ), n ≥ n̄} is bounded. Applying these facts to the (random) function
defined by ϕn(f ) = n−1 ∑n

j=1(Y
j − f (Xj ))2, which epi-converges to ϕ almost surely (cf.

Theorem 3.10), establishes that {f̂ n, n ∈ N} is bounded almost surely and, therefore, must
have a cluster point. The final conclusion follows directly from the properties of the L2

P dis-
tance. �

PROOF OF THEOREM 3.14. Following the arguments in the proof of Theorem 3.10,
we established that f �→ ϕn(f ) = n−1 ∑n

j=1 ψ(Xj , ·) + πn epi-converges to f �→ ϕ(f ) =
E[ψ(X1, ·)] a.s. as functions on (F,d). Next, suppose that

f � ∈ OutLim
(
εn- argmin

f ∈Fn
δ

ϕn(f )
)
.

Then there exist a subsequence {nk, k ∈N} and

f k ∈ εnk - argmin
f ∈F

nk
δ

ϕnk (f ) → f �.

The continuity of the point-to-set distance and the fact that dist(f k,F nk ) ≤ δ for all k implies
that dist(f �,LimFn) ≤ δ, that is, f � ∈ F∞

δ . Thus, it only remains to show that ϕ(f �) ≤
inff ∈LimFn ϕ(f ). Let g� ∈ argminf ∈LimFn ϕ(f ). Then, because ϕn epi-converges to ϕ, there
exists gn ∈ F → g� such that

limsupϕn(
gn) ≤ ϕ

(
g�).
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Since g� ∈ LimFn, there is n̄ ∈ N such that dist(gn,F n) ≤ δ for all n ≥ n̄. Consequently,
leveraging the epi-convergence property and the above facts,

ϕ
(
f �) ≤ liminfϕnk

(
f k) ≤ liminf

(
inf

f ∈F
nk
δ

ϕnk (f ) + εnk

)

≤ limsupϕnk
(
gnk

) ≤ ϕ
(
g�) = inf

f ∈LimFn
ϕ(f ).

The first conclusion is established. The second conclusion is immediate after realizing that
F∞

δ = F when LimFn = F . �

PROOF OF COROLLARY 3.15. The arguments of Corollary 3.12 in conjunction with The-
orem 3.14 yield f � ∈ F∞

δ and K(f 0;f �) ≤ infg∈LimFn K(f 0;g). Since LimFn ⊂ F con-
sists only of densities and f 0 ∈ LimFn, the right-hand side in this inequality is zero and the
conclusion follows. �

PROOF OF THEOREM 3.16. The assertions about m̂n and ĥn are essentially in [29],
Proposition 2.1, with an extension to improper functions following straightforwardly. The
conclusion about l̂n holds by [28], Proposition 7.7. �

LEMMA 7.2 (Hypo-convergence under composition). For a continuous nondecreasing
function h0 : R → R, let h : R → R have h(y) = h0(y) if y ∈ R, h(−∞) = infȳ∈R h0(ȳ),
and h(∞) = supȳ∈R h0(ȳ). If gn : S → R hypo-converges to g : S → R, then h � gn hypo-
converges to h � g.

PROOF. Suppose that xn ∈ S → x, which implies that limsupgn(xn) ≤ g(x). Fix n and
let ε > 0. Suppose that ξn = supm≥n h(gm(xm)) ∈ R. Then there exists m̄ ≥ n such that
ξn ≤ h(gm̄(xm̄)) + ε ≤ h(supm≥n gm(xm)) + ε, the last inequality holds because h is nonde-
creasing. Since ε is arbitrary, ξn ≤ h(supm≥n gm(xm)). A similar argument leads to the same
inequality if ξn = ∞ and, trivially, also when ξn = −∞. Since the inequality holds for all n,
it follows by the continuity of h that

limsuph
(
gn(

xn)) = lim
n→∞

(
sup
m≥n

h
(
gm(

xm))) ≤ lim
n→∞h

(
sup
m≥n

gm(
xm))

= h
(

lim
n→∞

(
sup
m≥n

gm(
xm)))

= h
(
limsupgn(

xn)) ≤ h
(
g(x)

)
.

For any x ∈ S, there exists xn ∈ S → x with gn(xn) → g(x). Since h is continuous, this
implies h(gn(xn)) → h(g(x)) and the conclusion follows. �

PROOF OF PROPOSITION 4.1. The first claim follows by [28], Proposition 4.15. Since
−f n, −f are proper, lsc and convex, it follows by [28], Theorem 12.35, that the graphs of
the subdifferentials ∂f n set-converge to the graph of ∂f . Thus, for every (x, v) in the graph
of ∂f , there exists xn → x and vn → v, with vn ∈ ∂f n(xn). Since ‖vn‖2 ≤ κ for all n, we
also have that ‖v‖2 ≤ κ .

For part (ii), Lemma 7.2, with h defined by h(y) = logy if y ∈ (0,∞), h(y) = −∞ if
y = [−∞,0], and h(y) = ∞ if y = ∞, yields that h � f n hypo-converges to h � f . Since
h � f n is concave, it follows by [28], Proposition 4.15, that h � f is concave, too.

For part (iii), let λ ∈ (0,1) and x, y ∈ intS. Set z = λx + (1 − λ)y. Hypo-convergence
implies that there exists zn ∈ intS → z such that f n(zn) → f (z). Construct xn = x + zn − z

and yn = y + zn − z. Clearly, xn → x and yn → y. Then λxn + (1 − λ)yn = zn. Let ε > 0
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and suppose that f (z) < ∞, f (x) > −∞, and f (y) > −∞. There exists n̄ such that for all
n ≥ n̄, xn, yn ∈ S and

f (z) ≤ f n(
zn) + ε

3
, f n(

xn) ≤ f (x) + ε

3λ
, f n(

yn) ≤ f (y) + ε

3(1 − λ)
.

Collecting these results and use the convexity of f n, we obtain that for n ≥ n̄,

f (z) ≤ f n(
zn) + ε

3
≤ λf n(

xn) + (1 − λ)f n(
yn) + ε

3

≤ λf (x) + (1 − λ)f (y) + ε.

Since ε > 0 is arbitrary, f (z) ≤ λf (x) + (1 − λ)f (y). A similar argument leads to the same
conclusion when f (z) = ∞, f (x) = −∞, and/or f (y) = −∞.

It only remains to examine the case when x and/or y are at the boundary of S. Suppose
that λ ∈ (0,1), x ∈ intS, and y ∈ S \ intS. Then there exists yn ∈ intS → y with f (λx + (1−
λ)yn) ≤ λf (x) + (1 − λ)f (yn) because S must be convex. Since λx + (1 − λ)yn,λx + (1 −
λ)y ∈ intS and f is continuous on intS, the left-hand side tends to f (λx + (1 − λ)y). The
upper limit of the right-hand side is λf (x)+ (1−λ)f (y) by the usc of f . A similar argument
holds in the other cases. Thus, f is convex. �

PROOF OF PROPOSITION 4.2. By [28], Theorem 7.6, either hypogn set-converges to ∅

or there exist g ∈ usc-fcns(S) and a subsequence {nk, k ∈ N} such that gnk → g. In the second
case, h � gnk hypo-converges to h � g by Lemma 7.2. Since a hypo-limit is unique, f = h � g.
In the first case, for all x ∈ S, gn(x) → −∞ so that h � gn(x) → f (x) = h(−∞) = h � g(x),
when g(x) = −∞ for all x ∈ S. The conclusions then follow by Proposition 4.1. �

PROOF OF PROPOSITION 4.3. For part (i), let x ≤ y, with y ∈ intS, and ε > 0. The
usc property implies that there exists δ > 0 such that f (y) ≥ f (z) − ε for all z ∈ S with
‖z − y‖ ≤ δ. Since y ∈ intS, z can be takes such that zi > yi for i = 1, . . . , d and z ∈ intS.
By hypo-convergence, there exists xn ∈ S → x such that f (x) ≤ liminff n(xn) and also
limsupf n(z) ≤ f (z). Thus, xn ≤ z for sufficiently large n. By the nondecreasing property,

f (x) ≤ liminff n(
xn) ≤ liminff n(z) ≤ limsupf n(z) ≤ f (z) ≤ f (y) + ε.

Since ε > 0 is arbitrary, the first conclusion follows.
Under the additional structure of S, the argument can be modified as follows. Now with

y ∈ S, let δ > 0 and xn be as earlier. Construct z ∈ R
d by setting zi = min{βi, yi + δ}. Let n̄

be such that xn
i ≤ xi + δ for all i = 1, . . . , d and n ≥ n̄. Then, for n ≥ n̄, xn

i ≤ min{βi, xi + δ}
≤ min{βi, yi + δ} = zi . Thus, again we have that xn ≤ z for sufficiently large n and the
preceding arguments lead to the conclusion.

For (ii), let x ≤ y, with x ∈ intS, and ε > 0. The usc property implies that there exists
δ > 0 such that f (x) ≥ f (z) − ε for all z ∈ S with ‖z − x‖ ≤ δ. Since x ∈ intS, z can
be takes such that zi < xi for i = 1, . . . , d and z ∈ intS. In view of the hypo-convergence,
there exists yn ∈ S → y such that f (y) ≤ liminff n(yn) and also limsupf n(z) ≤ f (z). Thus,
z ≤ yn for sufficiently large n. Using the nonincreasing property, we then obtain that

f (y) ≤ liminff n(
yn) ≤ liminff n(z) ≤ limsupf n(z) ≤ f (z) ≤ f (x) + ε.

Since ε > 0 is arbitrary, the first conclusion follows.
Under the additional structure of S, the argument can be modified as follows. Now with

x ∈ S, let δ > 0 and yn be as earlier. Construct z ∈ R
d be setting zi = max{αi, xi − δ}. Let n̄

be such that yn
i ≥ yi − δ for all i = 1, . . . , d and n ≥ n̄. Then, for n ≥ n̄, yn

i ≥ max{αi, yi − δ}
≥ max{αi, xi − δ} = zi . Again we have z ≤ yn for sufficiently large n and the preceding
arguments lead to the conclusion. �
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PROOF OF PROPOSITION 4.4. If κ = 0, then f n are constant functions on S and f also,
and the conclusion holds. Suppose that κ > 0. Let x, y ∈ S, with f (x) and f (y) finite, and
ε > 0. Hypo-convergence implies that there exists xn ∈ S → x such that f n(xn) → f (x)

and limsupf n(y) ≤ f (y). Hence, there exists n̄ such that for all n ≥ n̄, ‖xn − x‖ ≤ ε/(3κ),
|f n(xn) − f (x)| ≤ ε/3, f n(y) ≤ f (y) + ε/3. For such n,

f (x) − f (y) = f (x) − f n(
xn) + f n(

xn) − f n(x) + f n(x) − f n(y) + f n(y) − f (y)

≤ ε

3
+ κ

∥∥xn − x
∥∥ + κ‖x − y‖ + f (y) + ε

3
− f (y) ≤ κ‖x − y‖ + ε.

Repeating this argument with the roles of x and y interchanged, we obtain that |f (x) −
f (y)| ≤ κ‖x − y‖ + ε. Since ε > 0 is arbitrary, f is Lipschitz continuous with modulus κ

when finite. If f is not finite on S, then it cannot be Lipschitz continuous. �

PROOF OF PROPOSITION 4.5. Let x ∈ S and observe that g(x) ≤ limsupf n(x) ≤ f (x)

by (3), which established the lower bound. Since h is usc, we also have that for some xn ∈
S → x, h(x) ≥ limsuph(xn) ≥ liminff n(xn) ≥ f (x), which confirms the upper bound. �

PROOF OF PROPOSITION 4.6. Since the collection of functions is equi-usc, hypo-
convergence implies pointwise convergence (Proposition 3.1) and the conclusion follows
immediately. �

PROOF OF PROPOSITION 4.7. Let ε > 0 and f n ∈ F → f . First, suppose that
supx∈S g(f (x)) ∈ R. Then there exists x̄ ∈ S such that g(f (x̄)) ≥ supx∈S g(f (x)) − ε. By
(3), there is xn ∈ S → x̄ such that f n(xn) → f (x̄). Since g is lsc,

liminf
(
sup
x∈S

g
(
f n(x)

)) ≥ liminfg
(
f n(

xn)) ≥ g
(
f (x̄)

) ≥ sup
x∈S

g
(
f (x)

) − ε.

Second, suppose that supx∈S g(f (x)) = ∞. Then there exists x̄ ∈ S such that g(f (x̄)) ≥ 1/ε.
Again, there is xn ∈ S → x̄ such that f n(xn) → f (x̄) and

liminf
(
sup
x∈S

g
(
f n(x)

)) ≥ liminfg
(
f n(

xn)) ≥ g
(
f (x̄)

) ≥ 1/ε.

Since ε > 0 is arbitrary, we have established that liminf(supx∈S g(f n(x))) ≥ supx∈S g(f (x));
it trivially holds when supx∈S g(f (x)) = −∞. �

PROOF OF PROPOSITION 4.8. Since the collection of functions is equi-usc at Lebesgue-
a.e. x ∈ S, hypo-convergence implies pointwise convergence at Lebesgue-a.e. x ∈ S by
Proposition 3.1. The conclusions follow directly from an application of the dominated con-
vergence theorem. �

PROOF OF PROPOSITION 4.9. Since C ⊂ Cn, F ⊂ Fn and it suffices to confirm that
OutLimFn ⊂ F . Take f ∈ OutLimFn. There exists f k ∈ Fnk → f . Since

∫
xf k(x) dx ∈

Cnk , that integral converges to
∫

xf (x) dx by Proposition 4.8, and the set-convergence Cn to
C allow us to conclude that

∫
xf (x) dx ∈ C. �

PROOF OF THEOREM 5.1. Let ϕ,ϕν : F 0 → (−∞,∞] be given by ϕ(f ) = n−1 ×∑n
j=1 ψ(xj , f ) + π(f ) if f ∈ F and ϕ(f ) = ∞ otherwise; and ϕν(f ) = n−1 ∑n

j=1 ψ(xj ,

f )+πν(f ) if f ∈ Fν and ϕν(f ) = ∞ otherwise. We start by showing that ϕν epi-converges
to ϕ. Let f ν ∈ F 0 → f . If f ∈ F , then

liminfϕν(
f ν) ≥ 1

n

n∑
j=1

ψ
(
xj , f

) + π(f ) = ϕ(f ).
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If f /∈ F , then because F is closed we must have that f ν /∈ Fν for sufficiently large ν. Thus,
liminfϕν(f ν) = ϕ(f ) = ∞. Next, let f ∈ F . There exists f ν ∈ Fν → f because Fν set-
converges to F . Then

limsupϕν(
f ν) = limsup

(
1

n

n∑
j=1

ψ
(
xj , f ν) + πν(

f ν)) = ϕ(f ).

This is sufficient for ϕν epi-converging to ϕ. Reasoning along the lines of those in the proof
of Theorem 3.10 yields (i).

For (ii), we recognize that the additional condition on F 0 ensures that it is compact. Thus,
{f ν, ν ∈ N} in the statement of the theorem must have a cluster point. Every such cluster point
must be in ε∞- argminf ∈F ϕ(f ). Let δ = ε − ε∞, which is positive. Since F 0 is compact,
πν converges uniformly to π . Hence, there exists ν̄ ∈ N such that π(f ν) ≤ πν(f ν) + δ/3,
εν ≤ ε∞ + δ/3, and, in view of epi-convergence, inff ∈Fν ϕν(f ) ≤ inff ∈F ϕ(f ) + δ/3 for all
ν ≥ ν̄. Since Fν ⊂ F , we then have

ϕ
(
f ν̄) = 1

n

n∑
j=1

ψ
(
xj , f ν̄) + π

(
f ν̄) ≤ 1

n

n∑
j=1

ψ
(
xj , f ν̄) + πν̄(

f ν̄) + δ/3

≤ inf
f ∈F ν̄

ϕν̄(f ) + εν̄ + δ/3 ≤ inf
f ∈F

ϕ(f ) + ε∞ + δ = inf
f ∈F

ϕ(f ) + ε,

which establishes the claim. �
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