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Self-normalization has attracted considerable attention in the recent liter-
ature of time series analysis, but its scope of applicability has been limited to
low-/fixed-dimensional parameters for low-dimensional time series. In this
article, we propose a new formulation of self-normalization for inference
about the mean of high-dimensional stationary processes. Our original test
statistic is a U-statistic with a trimming parameter to remove the bias caused
by weak dependence. Under the framework of nonlinear causal processes, we
show the asymptotic normality of our U-statistic with the convergence rate
dependent upon the order of the Frobenius norm of the long-run covariance
matrix. The self-normalized test statistic is then constructed on the basis of
recursive subsampled U-statistics and its limiting null distribution is shown
to be a functional of time-changed Brownian motion, which differs from the
pivotal limit used in the low-dimensional setting. An interesting phenomenon
associated with self-normalization is that it works in the high-dimensional
context even if the convergence rate of original test statistic is unknown. We
also present applications to testing for bandedness of the covariance matrix
and testing for white noise for high-dimensional stationary time series and
compare the finite sample performance with existing methods in simulation
studies. At the root of our theoretical arguments, we extend the martingale ap-
proximation to the high-dimensional setting, which could be of independent
theoretical interest.

1. Introduction. In this paper, we study the problem of hypothesis testing for the mean
vector of a p-dimensional stationary time series {Yt }Nt=1. Mean testing for independent and
identically distributed (i.i.d. hereafter) data is a classical problem in multivariate analysis.
When the dimension p is fixed as the sample size N grows, Hotelling’s T 2 test is a classical
one and it enjoys certain optimality properties under Gaussian assumptions (see Anderson
(2003), Theorem 5.6.6, page 196). There is a recent surge of interest in the high-dimensional
setting, where p grows as the sample size N → ∞, motivated by the collection of high-
dimensional data from many areas such as biological science, finance and economics, and
climate science among others. See Bai and Saranadasa (1996), Srivastava and Du (2008),
Srivastava (2009), Chen and Qin (2010), Lopes, Jacob and Wainwright (2011), Secchi,
Stamm and Vantini (2013), Cai, Liu and Xia (2014), Gregory et al. (2015), Xu et al. (2016),
Zhang (2017), Pini, Stamm and Vantini (2018) and references cited in these papers. All of
these works dealt with i.i.d. data, and the methods and theory developed may not be suitable
when the high-dimensional data exhibits serial dependence. High-dimensional data with se-
rial or temporal dependence occurs in many fields, such as large-dimensional panel data in
economics, fMRI data collected over time in neuroscience and spatiotemporal data analyzed
in climate studies.

The focus of this article is on inference for the mean of a high-dimensional time series.
When the dimension is low and fixed, several methods have been developed to perform hy-
pothesis testing for the mean of a multivariate time series with weak dependence, for example,
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normal approximation with consistent estimation of the long-run covariance matrix (Andrews
(1991)), subsampling (Politis and Romano (1994)), moving block bootstrap (Künsch (1989),
Liu and Singh (1992)) and variants, blockwise empirical likelihood (Kitamura (1997)) and
the self-normalization method (Lobato (2001) and Shao (2010)). When the dimension is high
and grows with respect to the sample size, little is known about the validity of the above
mentioned methods. It is worth noting that Jentsch and Politis (2015) showed the asymptotic
validity of a multivariate version of the linear process bootstrap (McMurry and Politis (2010))
for inference about the mean when the dimension of a time series is allowed to increase with
the sample size. However, the growth rate of p has to be slower than that of the sample size,
which rules out the case p > N . Recently, Zhang and Wu (2017) considered the problem of
approximating the maxima of sums of high-dimensional stationary time series by Gaussian
vectors under the framework of functional dependence measure (Wu (2005)). Their approach,
which can be viewed as an extension of Chernozhukov, Chetverikov and Kato (2013) from
the i.i.d. setting to the stationary time series setting, is applicable to tests about the mean
of high-dimensional time series. Another related work along this line is Zhang and Cheng
(2018), who obtained similar Gaussian approximation results as those presented in Zhang and
Wu (2017) but under more stringent assumptions. Note that Zhang and Cheng (2018) used a
blockwise multiplier bootstrap as an extension of multiplier bootstrap used in Chernozhukov,
Chetverikov and Kato (2013) to accommodate weak serial dependence, whereas Zhang and
Wu (2017) adopted direct estimation of the long-run covariance matrix, which also requires
selecting a block size in its batched mean estimate. Both Zhang and Cheng (2018) and Zhang
and Wu (2017) also extended their approaches to inference for other quantities beyond the
mean, and their theory allows p to grow at either a polynomial or exponential rate as a func-
tion of N depending on the moment and dependence assumptions.

In this article, we propose to adopt a U-statistic based approach to the testing problem,
extending the work of Chen and Qin (2010), who first proposed to use a U-statistic in a
high-dimensional two-sample mean testing problem for independent data. Our U-statistic is
however different from the one proposed for i.i.d. data in that we remove pairs of observations
that are within m time points of each other, where m is a trimming parameter, to alleviate the
bias caused by weak serial dependence. Under the framework of high-dimensional nonlinear
causal processes, we show that our U-statistic is asymptotically normal under the null hypoth-
esis. The norming sequence is dependent on the Frobenius norm of the long run covariance
matrix (i.e., ‖�‖F ), whose rate of divergence is not assumed to be known. To perform the
test, one approach is to find a ratio-consistent estimator of ‖�‖F , say using ‖�̂‖F , so that

(1.1)
‖�̂‖F

‖�‖F

→ 1 in probability,

where �̂ is the usual lag window estimator. Such an estimator typically involves a bandwidth
parameter, and its consistency has been shown in the low- and fixed-dimensional context;
see Andrews (1991), Newey and West (1987). In the high-dimensional context, Chen and
Wu (2019) showed the so-called normalized Frobenious norm consistency, which implies
the ratio consistency (1.1), in the context of trend testing. However, no discussion about the
choice of the bandwidth parameter seems offered in Chen and Wu (2019) and their result is
restricted to linear processes.

To circumvent the difficulty, we take an alternative approach, and our test is based on the
idea of self-normalization (SN, hereafter). SN for the mean of a time series was first proposed
by Lobato (2001); also see Kiefer, Vogelsang and Bunzel (2000) for a related development in
the time series regression framework around the same time. Later SN was extended by Shao
(2010) and coauthors to various inference problems in time series analysis; see Shao and
Zhang (2010), Zhou and Shao (2013), Kim, Zhao and Shao (2015) and Zhang et al. (2011)



2730 R. WANG AND X. SHAO

among others. The basic idea of self-normalization in the time series context is that it uses an
inconsistent variance estimator as the studentizer, and the resulting studentized test statistic
can still be (asymptotically) pivotal and its limiting null distribution and critical values can be
approximated by Monte Carlo simulations. It has the appealing feature of requiring no tun-
ing parameters for some problems or fewer tuning parameters compared to existing inference
procedures, but all existing SN-based methods are limited to inference for a parameter with fi-
nite and fixed dimension; see Shao (2015) for a recent review. Here, we make the first attempt
to extend the idea of SN for inference in high-dimensional time series and for a parameter of
high/growing dimension. To this end, we study the weak convergence of a recursive version
of our full-sample based U-statistic. Under suitable assumptions, we show that the limiting
process is a time-changed Brownian motion, which is different from the standard Brownian
motion limit in the application of SN for low-dimensional weakly dependent time series. The
limiting null distribution of our SN-based test statistic is still pivotal and its critical values are
tabulated via simulations.

One appealing feature of our test statistic is its adaptiveness to the unknown order of ‖�‖F ,
which gets canceled out in the limit of our self-normalized test statistic. This seems to be dis-
covered for the first time, as the convergence rate is typically known or needs to be estimated
in the use of SN for a low-dimensional parameter; see Shao (2015). On the theory side, we
extend the martingale approximation argument to the high-dimensional setting. In our result,
the dimension p can grow at an exponential rate as a function of N under suitable moment
and weak dependence assumptions on the processes. Compared to the maximum type tests
proposed by Zhang and Wu (2017), Zhang and Cheng (2018), our test is of L2 type and
it targets dense and weak alternatives, whereas theirs are expected to be more powerful for
strong and sparse alternatives. As two important applications, we apply our tests to testing
for the bandedness of a covariance matrix and testing for white noise for high-dimensional
time series. Finally, we mention a few recent works on inference for high-dimensional time
series. Lam and Yao (2012) proposed a static factor model for high-dimensional time series
and focused on estimating the number of factors; Basu and Michailidis (2015) investigated
the theoretical properties of l1-regularized estimates in the context of high-dimensional time
series and introduced a measure of stability for stationary processes using their spectral prop-
erties that provides insight into the effect of dependence on the accuracy of the regularized
estimates; Paul and Wang (2016) presented results related to asymptotic behavior of sample
covariance and autocovariance matrices of high-dimensional time series using random matrix
theory.

The rest of the article is organized as follows. Section 2 introduces the basic problem
setting and the notation we use throughout the paper. Section 3 presents our self-normalized
statistic as well as related asymptotic results. Section 4 introduces two extensions of the self-
normalized statistic to bandedness and white noise testing and Section 5 presents all finite
sample simulation results. Section 6 concludes. Finally, all the technical details are included
in the Appendix and Supplementary Material (Wang and Shao (2020)).

2. Problem setting. Assume that we have a p-dimensional stationary nonlinear time
series

Yt = μ + g(εt , εt−1, . . .)

for some measurable function g, where {εt }∞t=−∞ are i.i.d. random elements in some measur-
able space. For the j th element of Yt , denoted as Yt,j , assume

Yt,j = μj + gj (εt , εt−1, . . .),
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where gj is the j th component of the map g, and μ = (μ1, . . . ,μp)T . We assume
E[g(εt , εt−1, . . .)] = 0. Later we shall introduce suitable weak dependence assumptions un-
der the above framework, which was initially proposed by Wu (2005), who advocated the use
of physical dependence measure in asymptotic theory of time series analysis; see Wu (2011)
for a review. Our weak dependence condition is characterized by a variant of the geometric
moment contraction (see Hsing and Wu (2004), Wu and Shao (2004), Wu and Min (2005)),
which was found very useful for studying nonlinear time series and also verifiable for many
linear and nonlinear time series models; see Shao and Wu (2007).

Throughout the paper, we let �0 = Var(Yt ) denote the marginal covariance matrix and
� := ∑∞

k=−∞ cov(Yt , Yt+k) denote the long-run covariance matrix of Yt . We define Ft =
σ(εt , εt−1, . . . , ε1, ε0, ε−1, . . .) as the natural filtration generated by {εt }, and define F ′

t =
σ(εt , εt−1, . . . , ε1, ε

′
0, ε

′−1, . . .) where ε′
t is an i.i.d. copy of εt which is independent from

{εt }t∈Z. We use ‖ · ‖F to denote the Frobenius norm and ‖ · ‖ to denote the spectral norm for a
matrix (vector). We let ‖ · ‖h be the Lh norm for random vectors. We define Et (·) := E(·|Ft )

and E
′
t (·) := E(·|F ′

t ). For any random element Xt = X(Ft ) which is a function of Ft , we
define X′

t = X(F ′
t ). All asymptotic results are under the regime min(N,p) → ∞.

Given a stretch of observations Yt , t = 1, . . . ,N , from the above process, we are interested
in testing the hypothesis that

(2.1) H0 : μ = μ0 v.s. H1 : μ �= μ0.

Without loss of generality, we let μ0 = 0. If μ0 �= 0, we can apply our test to {Yt − μ0}Nt=1.
For this testing problem, a very natural test statistic is the distance between ȲN and 0,

where ȲN = N−1 ∑N
t=1 Yt is the sample mean. For example, if we use L2 distance, then

‖ȲN − 0‖2
2 = 1

N2

N∑
t=1

N∑
s=1

YT
t Ys.

However, the distribution for the above statistic is not easy to derive, in part because when
t and s are close to each other, the correlation between Yt and Ys induces a “bias” term
(under the null) that needs to be eliminated by consistent estimation; see Ayyala, Park and
Roy (2017). Since the autocorrelation can be viewed as a nuisance component for mean
inference, we propose to avoid its direct estimation by removing the cross product between
observations that are too close to each other in time. To this end, we consider the test statistic

(2.2) Tn =
(
n + 1

2

)−1 n∑
t=1

t∑
s=1

YT
t+mYs,

where n = N −m and m < N is a trimming parameter which satisfies 1/m+m/N = o(1) as
min(p,N) → ∞. See Chen and Wu (2019) for a similar trimming idea in testing for the form
of the trend of multivariate time series. Let θ = μT μ ∈ R

1 be the scalar parameter of interest.
Then μ = 0 is equivalent to θ = 0. Hence Tn can be viewed as a one sample U-statistic for
time series; see Lee (1990). The trimming parameter controls the amount of bias since the
bias E(Tn) − θ depends on m and tr(�h),h = m,m + 1, . . . , where �h = cov(Yt , Yt+h). The
larger values of m correspond to smaller bias, which is intimately related to the accuracy
of size; the smaller values of m correspond to more pairs of observations used in the test,
which can lead to more power. Section 5.1 offers numerical evidence and some discussion
of the role of m in detail. It is worth noting that another commonly used distance is ‖ȲN‖∞,
which has been studied recently in Zhang and Wu (2017) and Zhang and Cheng (2018). See
Section 5.1 for some numerical comparison.

Throughout the paper, we use “
p→” to denote convergence in probability and “

D→” to
denote convergence in distribution. Let D[0,1] be the space of functions on [0,1] which
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are right continuous and have left limits, endowed with the Skorokhod topology (Billingsley
(2008)). Denote by “�” weak convergence in D[0,1]. We use A � B to represent that A is
less than or equal to cB for some constant c > 0.

Under suitable moment and weak dependence assumptions on Yt , we can show that

(n + 1)Tn/
(√

2‖�‖F

) D→ N(0,1)

under the null; see Corollary 3.8. This motivates us to define the process

Tn(r) :=
	nr
∑
t=1

t∑
s=1

YT
t+mYs, r ∈ [0,1]

and study its process convergence in D[0,1]. Under the null hypothesis where μ0 = 0, con-
sider the decomposition

Yt = Dt − ξt ,

where Dt := ∑∞
k=0[Et (Yt+k) − Et−1(Yt+k)] and ξt := D̃t − D̃t−1, where D̃t :=∑∞

k=1 Et (Yt+k).
By simple calculation, we can show that (Dt ,Ft ) is a martingale difference sequence.

Martingale approximation for the partial sums of a stationary process has been investigated
by Gordin (1969), Hall and Heyde (2014), Wu and Woodroofe (2004), Wu (2007) among
others. All these works are done in a low-/fixed-dimensional setting. By contrast, we shall
show that it still works for our U-statistic and in the high-dimensional setting. Based on the
above decomposition, we write

Tn(r) =
	nr
∑
t=1

t∑
s=1

YT
t+mYs

=
	nr
∑
t=1

t∑
s=1

(Dt+m − ξt+m)T (Ds − ξs)

=
	nr
∑
t=1

t∑
s=1

DT
t+mDs −

	nr
∑
t=1

t∑
s=1

ξT
t+mDs −

	nr
∑
t=1

t∑
s=1

DT
t+mξs +

	nr
∑
t=1

t∑
s=1

ξT
t+mξs

= Sn(r) − R1,n(r) − R2,n(r) + R3,n(r),

where Sn(r) = ∑	nr

t=1

∑t
s=1 DT

t+mDs , R1,n(r) = ∑	nr

t=1

∑t
s=1 ξT

t+mDs , R2,n(r) =∑	nr

t=1

∑t
s=1 DT

t+mξs and R3,n(r) = ∑	nr

t=1

∑t
s=1 ξT

t+mξs . Note that Tn(r) = 0 if r < 1/n.

REMARK 2.1. It is worth mentioning that a straightforward extension of the SN idea
in Lobato (2001) does not really work in the setting p > N . To elaborate the idea, we shall
briefly review the SN method in Lobato (2001). Let B(r), r ∈ [0,1] be the standard Brownian
motion and Bq(r), r ∈ [0,1] be a q-dimensional vector of independent Brownian motions.
Define

Uq = Bq(1)T J−1
q Bq(1) where Jq =

∫ 1

0

[
Bq(r) − rBq(1)

][
Bq(r) − rBq(1)

]T
dr.

The critical values for Uq,q = 1, . . . ,20 have been tabulated by Lobato (2001). For Yt ∈
R

p , let D2
N = N−2 ∑N

t=1{
∑t

j=1(Yj − ȲN )}{∑t
j=1(Yj − ȲN )}T be the p × p normalization

matrix. If p is small and fixed, then under the null and suitable assumptions, we have N(ȲN −
μ0)

T (D2
N)−1(ȲN − μ0)

D→ Up , as N → ∞. The key ingredient is to replace the consistent
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estimator of �, as used in the traditional approach, with the inconsistent estimator D2
N . Since

the normalization factor D2
N is proportional to �, the nuisance parameter � is canceled out

in the limiting distribution of the resulting statistic. It is not hard to see that the SN approach
is not feasible when p > N , since D2

N is not invertible in this case. Even when p < N ,
both empirical and theoretical studies suggest that the approximation error grows with the
dimension p (Sun (2014)). So the use of this form of self-normalization can result in a big
size distortion when p is comparable to N .

3. Technical assumptions and theoretical results. To facilitate our methodological and
theoretical development, we shall introduce some technical assumptions. We first extend the
GMC (Geometric Moment Contraction) condition in Hsing and Wu (2004) and Wu and Shao
(2004) to the high-dimensional setting.

DEFINITION 3.1. Let {Yt }t∈Z be a p × d matrix-valued stationary process with Yt =
h(Ft ) for some h. It has the Uniform Geometric Moment Contraction (UGMC(k)) property
if there exists some positive number k such that

sup
i=1,...,p,j=1,...,d

E
[|Y0,i,j |k] < C < ∞

and

sup
i=1,...,p,j=1,...,d

E
(∣∣Yt,i,j − Y ′

t,i,j

∣∣k) ≤ Cρt , t ≥ 1

for some 0 < ρ < 1 and a positive constant C that do not depend on p or d . For vector-valued
stationary process, the same definition can be applied by letting d = 1.

REMARK 3.2. Define Ft,{k} = σ(εt , . . . , εk+1, ε
′
k, εk−1, . . .), and it is easy to see that

F ′
t = Ft,{0,−1,...}. Let Yt,{k} = g(Ft,{k}). In Zhang and Wu (2017) and Zhang and Cheng

(2018), they defined the functional dependence measure for each component process as

θt,q,j = ‖Yt,j − Yt,j,{0}‖q = ∥∥Yt,j − gj (Ft,{0})
∥∥
q,

and let 	m,q,j = ∑∞
t=m θt,q,j . Throughout these two papers, they imposed conditions on

	m,q,j . Specifically, Zhang and Cheng (2018) considered a special case where maxj 	m,q,j ≤
Cρm with ρ ∈ (0,1) and some constant C. Under this condition,∥∥Yt,j − Y ′

t,j

∥∥
q = ‖Yt,j − Yt,j,{0} + Yt,j,{0} − Yt,j,{0,−1} + Yt,j,{0,−1} − Yt,j,{0,−1,−2} + · · · ‖q

≤ ‖Yt,j − Yt,j,{0}‖q +
∞∑
l=0

‖Yt,j,{0,...,−l} − Yt,j,{0,...,−l,−(l+1)}‖q

≤ Cρt

( ∞∑
l=0

ρl

)
≤

(
C

1 − ρ

)
ρt ,

and maxj ‖Yt,j − Y ′
t,j‖q ≤ ( C

1−ρ
)ρt , which is just the definition of UGMC(q) defined above.

Conversely, if we assume UGMC(q), then

‖Yt,j − Yt,j,{0}‖q ≤ ∥∥Yt,j − Y ′
t,j

∥∥
q + ∥∥Y ′

t,j − Yt,j,{0}
∥∥
q

= ∥∥Yt,j − Y ′
t,j

∥∥
q + ∥∥Yt+1,j − Y ′

t+1,j

∥∥
q

≤ Cρt + Cρt+1 = C(1 + ρ)ρt ,
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which means maxj 	m,q,j ≤ C(1 + ρ)ρm. Hence our UGMC assumption is equivalent to
that in Zhang and Cheng (2018).

In Zhang and Wu (2017), they defined a so-called “dependence adjusted norm” by letting

‖Y.j‖q,α = sup
m≥0

(m + 1)α	m,q,j

which is equivalent to the classical Lq norm for i.i.d. data. Further they defined

�q,α = max
1≤j≤q

‖Y.j‖q,α and ϒq,α =
( p∑

j=1

‖Y.j‖q
q,α

)1/q

,

and imposed assumptions on these two quantities. Their weak dependence conditions are in
general weaker than ours in the sense that no (uniform) moment assumptions are required for
each component series and also algebraic decay of 	m,q,j for each j is allowed.

ASSUMPTION 3.3. Assume that {Yt }t∈Z are R
p-valued stationary time series with

E(Yt ) = 0 and they satisfy:

A.1 sup1≤j≤p

∑∞
k=0 ‖E0[Yk,j ]‖8 < C.

A.2 {Yt } is UGMC(8).
A.3

∑∞
h=0 ‖�h‖ = o(‖�‖F ).

A.4 p4ρm = o(‖�‖4
F ) and 1/m + m/N = o(1).

A.5 For h = 2,3,4,
∑p

j1,...,jh=1 | cum(Dt1,j1, . . . ,Dtl,jl
, D̃tl+1,jl+1, . . . , D̃th,jh

)| =
O(‖�‖h

F ), for any l = 0, . . . , h.

A.6
∑p

j1,...,j4=1 | cov(
t1,j1,j2,
t2,j3,j4)| = O(‖�‖4
F ) for any t1, t2, where 
t =

E(Dt+1D
T
t+1|Ft ) and 
t,i,j is the (i, j)th element of 
t .

Throughout the paper, we use cum(A1, . . . ,Ad) to denote the joint cumulant of d random
variables A1, . . . ,Ad ; see page 19 of Brillinger (2001) for a formal definition of the dth order
joint cumulant.

REMARK 3.4. Assumption A.1 indicates that supj ‖Y0,j‖8, supj ‖D0,j‖8 and
supj ‖D̃0,j‖8 are all bounded. To see this, E0[Y0,j ] = Y0,j and ‖D0,j‖8 ≤ ‖Y0,j‖8 +
‖D̃0,j‖8 + ‖D̃−1,j‖8. Moreover,

‖D̃0,j‖8 ≤
∞∑

k=1

∥∥E0[Yk,j ]
∥∥

8 < C.

Assumption A.1 can be shown to be implied by Assumption A.2 but since Assumption A.1
was used explicitly at several places, we put it up for the ease of reference. Assumption A.2
can be verified for stationary ARMA processes. The geometric decay rate associated with
UGMC condition can actually be relaxed to a polynomial rate, but at the expense of more
complicated details. Assumption A.3 effectively restricts the growth rate of

∑∞
h=0 ‖�h‖ rel-

ative to ‖�‖F , which can be verified for ARMA processes as well; see Section 3.2. Assump-
tion A.4 is the only constraint on the trimming parameter m, and it implies that the bias
after trimming is asymptotically negligible. Assumption A.5 can be verified under some mild
conditions. See Section 3.2 for the verification for linear process. Furthermore, we have the
following result.

PROPOSITION 3.5. Assumption A.5 can be satisfied if either one of the following is
true:
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1.

(3.1)
∣∣cum(Dt1,j1, . . . ,Dtl,jl

, D̃tl+1,jl+1, . . . , D̃th,jh
)
∣∣ ≤ Cρmaxk jk−mink jk

for any t1 ≤ · · · ≤ th, l = 0, . . . , h, and that all diagonal elements of � are greater than some
positive constant c0.

2. The conditional expectations of component processes are q-dependent, that is,
Et0(gi(εt1, εt1−1, . . .)) is independent of Es0(gj (εs1, εs1−1, . . .)) for any t1 ≥ t0, s1 ≥ s0, and
|i − j | ≥ q , where q is a positive fixed integer which is independent of n and p.

THEOREM 3.6. Under Assumptions 3.3, we have√
2

n‖�‖F

Sn(r) � B
(
r2)

in D[0,1].

THEOREM 3.7. Under Assumptions 3.3, we have

max
r∈[0,1]

∣∣∣∣
√

2

n‖�‖F

Ri,n(r)

∣∣∣∣ p→ 0

for i = 1,2,3.

Theorems 3.6 and 3.7 suggest that the leading term Sn(r) dominates in Tn(r) and that
the remainder terms Ri,n(r), i = 1,2,3 are asymptotically negligible. Thus the martingale
approximation still works in our high-dimensional setting and for our U-statistic.

COROLLARY 3.8. Under Assumption 3.3, we have
√

2
n‖�‖F

Tn(r) � B(r2) in D[0,1].
We introduce our self-normalizer as

(3.2) W 2
n = 1

n

n∑
k=1

(
Tn(k/n) − k(k + 1)

n(n + 1)
Tn(1)

)2
.

Then we define our self-normalized test statistic TSN,n as

(3.3) TSN,n := Tn(1)2

W 2
n

.

THEOREM 3.9. Under H0 and Assumptions 3.3, we have

(3.4) TSN,n
D→ K := B(1)2∫ 1

0 (B(u2) − u2B(1))2 du
.

Compared to the use of self-normalization in the low-dimensional setting (Lobato (2001),
Shao (2010)), there are some interesting differences we want to highlight. First, due to the use
of U-statistics, the limit of the process Tn(r) (after some standardization) is a time-changed
Brownian motion and it differs from the Bronwian motion limit for the partial sum process
in Lobato (2001) and Shao (2010). Second, the null limit of the self-normalized test statistic
K differs from that used in the low-dimensional case. Since it is still pivotal, we can obtain
the simulated quantiles for K, as presented in the table below. Third, we had to introduce a
trimming parameter m to eliminate the need to estimate autocovariances, which is not needed
in the low-dimensional case. Such trimming serves as a bias reduction tool, and it seems
necessary to preserve the main feature of self-normalization.

To approximate the theoretical quantiles of K, (Kα denotes the α quantile of K), we use
a sequence of i.i.d. standard normal random variables with length 106 to approximate one
realization of the standard Brownian motion path. We construct 106 Monte Carlo replicates
for this path and then the empirical quantiles for K are summarized in Table 1.
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TABLE 1
Upper quantiles of the distribution K simulated

based on 106 Monte Carlo replications

α 0.8 0.9 0.95 0.99 0.995
Kα 18.19 34.15 54.70 118.49 153.94

REMARK 3.10. Chen and Qin (2010) first proposed to use a U-statistic in a high-
dimensional two sample mean testing problem for independent data and they used normal
approximation and a direct ratio-consistent variance estimate; see page 814 for the expression
of the variance estimate and their Theorem 2 for the ratio-consistency statement. In compar-
ison, our U-statistic is different from theirs in that (1) we are using a one sample U-statistic;
(2) we have to introduce a trimming parameter m to remove pairs of observations that are
within m lags to avoid direct estimation of the bias caused by the temporal correlation. Our
U-statistic is tailored for weakly dependent time series; see Lee (1990); (3) the nuisance pa-
rameter associated with our test statistic is ‖�‖F , for which a ratio-consistent estimator still
involves a bandwidth parameter (see Chen and Wu (2019)), whereas the nuisance parameter
for the statistic in Chen and Qin (2010) is ‖�‖F which can be consistently estimated without
any tuning parameter. Our self-normalizer is not a consistent estimator of but proportional to
‖�‖F , and the resulting self-normalized test statistic has a pivotal limit under the null.

Another appealing and distinctive feature of the SN-based test in the high-dimensional set-
ting is that the use of self-normalization in the low-dimensional context requires the knowl-
edge of the convergence rate to a certain stochastic process, say standard Brownian motion.
However, in the high-dimensional setting we present here, we do not know the exact diverg-
ing rate of ‖�‖F , but within the self-normalization procedure, this nuisance parameter can be
canceled out from both the numerator and the denominator. In other words, the applicability
of the SN method is considerably broadened.

3.1. Limit theory under a local alternative. Under the alternative, E[Yt ] = μ �= 0. Then
Tn(r) can be decomposed as

Tn(r) =
	nr
∑
t=1

t∑
s=1

YT
t+mYs =

	nr
∑
t=1

t∑
s=1

(Yt+m − μ + μ)T (Ys − μ + μ)

=
	nr
∑
t=1

t∑
s=1

(Yt+m − μ)T (Ys − μ) +
(	nr
 + 1

2

)
‖μ‖2

2

+
	nr
∑
t=1

t (Yt+m − μ)T μ +
	nr
∑
s=1

(	nr
 − s + 1
)
(Ys − μ)T μ.

THEOREM 3.11. Under Assumptions 3.3 and the alternative hypothesis E[Yt ] = μ �= 0,
we have

1. If ‖μ‖ = o(n−1/2‖�‖1/2
F ), then

TSN,n
D→ B(1)2∫ 1

0 (B(u2) − u2B(1))2 du

and P(TSN,n ≥Kα) → α. Thus the SN-based test has trivial power asymptotically.
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2. If
√

n‖μ‖‖�‖−1/2
F → c, where c ∈ (0,∞), then

TSN,n
D→ (B(1) + c2/

√
2)2∫ 1

0 (B(u2) − u2B(1))2 du

and P(TSN,n ≥Kα) → β ∈ (α,1). Thus our test has nontrivial power asymptotically.

3. If
√

n‖μ‖‖�‖−1/2
F → ∞, then TSN,n

p→ ∞ and P(TSN,n ≥Kα) → 1. Thus the limiting
power is 1.

REMARK 3.12. Theorem 3.11 suggests that the local neighborhood around the null for
which there is a nontrivial power is characterized by ‖μ‖ = cn−1/2‖�‖1/2

F . In the special
case when � = Ip , μ = δ(1, . . . ,1)T where δ = Cn−1/2p−1/4, for some C �= 0, existing
methods which are designed to test against sparse alternatives fail to detect such dense and
faint alternatives; see Cai, Liu and Xia (2014). By contrast, TSN,n is able to achieve nontrivial
power.

3.2. Linear processes. A direct application of the main theorem is to the case of linear
processes. Consider the data generating process

(3.5) Yt = μ +
∞∑

k=0

ckεt−k,

where εt are i.i.d. p-dimensional innovations with mean 0 and ck are p × p coefficient
matrices. Applying the martingale approximation, we can obtain by simple calculation that
Dt = C(1)εt where C(1) = ∑∞

k=0 ck and

D̃t =
∞∑

j=0

( ∞∑
k=j+1

ck

)
εt−j .

This is exactly the well-known Beveridge Nelson (BN) decomposition described in
Phillips and Solo (1992). In this case, the long-run covariance matrix is � = C(1)�εC(1)T ,
where �ε = Var(ε0).

ASSUMPTION 3.13. Assume that {Yt } is generated from (3.5) with μ = 0 and that:

B.1 sup1≤j≤p ‖εt,j‖8 < C.
B.2

∑∞
k=m k‖ck‖ < Cρm for some positive constant C and 0 < ρ < 1.

B.3
∑∞

h=0 ‖�h‖ = o(‖�‖F ).
B.4 p4ρm = o(‖�‖4

F ) and 1/m + m/N = o(1).
B.5 For h = 2,3,4,

∑p
j1,...,jh=1 | cum(Dt1,j1, . . . ,Dtl,jl

, D̃tl+1,jl+1, . . . , D̃th,jh
)| =

O(‖�‖h
F ), for any l = 0, . . . , h.

COROLLARY 3.14. Under Assumptions 3.13, we have
√

2

n‖�‖F

Tn(r) � B
(
r2)

in D[0,1].

Assumptions B.3 and B.5 can be verified for many weakly dependent time series mod-
els. In the following proposition, we shall present some more primitive assumptions for the
vector AR(1) model, that is, Yt = AYt−1 + εt , for t ∈ Z. For simplicity, we assume A to be
symmetric and εt to be i.i.d. p-dimensional random vectors with mean zero and covariance
matrix �ε .
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PROPOSITION 3.15. Assume that Yt are generated from a VAR(1) model satisfying:

1. |�i,i | > c0 > 0 for some positive constant c0 and all i = 1, . . . , p;
2. ‖�ε‖ = o(‖�‖F ),
3. lim supp→∞ ‖A‖ < c1 < 1 for some positive constant c1.

Then B.3 can be verified. Furthermore, if we substitute Condition 3 with

4. lim supp→∞ ‖A‖1 < c1 < 1 for some positive constant c1,

and in addition assume

5.
∑p

k1,...,kh=1 | cum(ε0,k1, . . . , ε0,kh
)| = O(‖�‖h

F ), for h = 2,3,4,

then B.5 holds.

REMARK 3.16. Under the conditions in Proposition 3.15, it is easy to see that the order
of ‖�‖F is between

√
p and p. When ‖�‖F is of order p, theoretically we do not have

any explicit restriction on the growth rate of p as a function of n (or N ). In this case, the
Condition B.4 holds as long as the trimming parameter m grows to infinity but slower than N .
When ‖�‖F is of order

√
p, we can allow the order of p to be enβ

, for any β ∈ (0,1), by
choosing m to be of order nγ , where γ ∈ (β,1). Condition 5 in Proposition 3.15 basically
restricts the coordinate dependence of the innovation sequence εt . If the components of εt

satisfy certain m-dependence or geometric moment contraction condition (see Wu and Shao
(2004)), then

∑p
k1,...,kh=1 | cum(ε0,k1, . . . , ε0,kh

)| = O(p), so Condition 5 is satisfied.

4. Applications. The SN-based test can be extended to test the bandedness of the co-
variance matrix of high-dimensional time series (HDTS). Assume that we have a stationary
s-dimensional time series (Xt)t∈Z with E(Xt) = 0 for notational simplicity (we can apply our
method to demeaned data in practice). For high-dimensional temporally-independent data,
the covariance matrix � = Cov(Xt ,Xt) = (γjk)j,k=1,...,s is an important measure of the de-
pendence among components of Xt , and for time series, it measures the contemporaneous
component-wise dependence. In this section, we slightly abuse the notation and use � to de-
note the covariance matrix of Xt , �h to denote the autocovariance matrix of Xt at lag h. Qiu
and Chen (2012) first developed a test for bandedness of �, motivated by promising results
regarding banding and tapering the sample covariance in estimating �; see Bickel and Lev-
ina (2008), Cai, Zhang and Zhou (2010) among others. Specifically, for a given bandwidth
L, they test

HL,0 : � = BL(�) versus HL,1 : � �= BL(�),

where BL(�) = (γjkI{|j − k| ≤ L})s×s is a banded version of � with bandwidth L. Note
that diagonal matrices are the simplest among banded matrices, and testing for � being di-
agonal (or the so-called sphericity hypothesis in classical multivariate analysis) in the high-
dimensional setting has been considered in Ledoit and Wolf (2002), Jiang (2004), Schott
(2005), Chen, Zhang and Zhong (2010) and Cai and Jiang (2011), among others. All of the
above works are for independent data, and they seem no longer applicable to HDTS due to
temporal dependence. As a practical motivation, we note that in the analysis of fMRI func-
tional connectivity for brain networks in the format of multivariate time series, � has been
used to characterize functional connectivity; see Hutchison et al. (2013). As pointed out by
a referee, Liu, Tamura and Taniguchi (2018) studied the sphericity hypothesis testing in the
context of high-dimensional time series. However, their test statistic seems infeasible as they
assumed certain unknown quantities in their test to be known and did not offer any consistent
estimates for these unknown quantities.
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To test HL,0, we let Xt = (Xt1, . . . ,Xts)
T and γjk = Cov(Xtj ,Xtk) for j, k = 1, . . . , s.

Further, let I = {(j, k) : |j − k| > L,j > k}. Then the null hypothesis HL,0 is equivalent to
0 = γ = (γjk)(j,k)∈I ∈ R

PL , where PL = (s − L)(s − L − 1)/2. Let Zt,jk = XtjXtk , and
Yt = (Zt,jk)(j,k)∈I ∈ R

PL×1. Then we can formulate this as a testing-many-means problem
based on the transformed observations (Yt )

N
t=1.

In addition, we can also apply the SN-based test to testing the white noise hypothesis
for HDTS. Testing for white noise is an important problem in time series analysis and it
is indispensable in diagnostic checking for linear time series modeling. There is a huge
literature for univariate and low-dimensional vector time series; see Li (2004) for a re-
view of the literature of univariate time series and Hosking (1980), Li and McLeod (1981)
and Lütkepohl (2005), among others for the diagnostic checking methods for vector time
series. The literature on white noise testing for high-dimensional time series is quite re-
cent. Chang, Yao and Zhou (2017) proposed to use maximum of absolute autocorrelations
and cross correlations of component series as a test statistic and its null distribution is
approximated by Gaussian approximation (Chernozhukov, Chetverikov and Kato (2013)).
Li et al. (2019) used the sum of squares of the eigenvalues in the symmetrized sample
autocovariance matrix at a certain lag, and the limiting null distribution is derived us-
ing tools from random matrix theory. Specifically, they both test H0,d : �1 = �2 =
· · · = �d = 0, where d is a fixed and prespecified lag and �h = Cov(Xt ,Xt−h) =
(γh,jk)j,k=1,...,s , where γh,jk = Cov(Xtj ,X(t−h)k) = E(Zt,h,jk) and Zt,h,jk = XtjX(t−h)k .
Let Yt,h = (Zt,h,jk)j,k=1,...,p = (Zt,h,11,Zt,h,12, . . . ,Zt,h,1s,Zt,h,21,Zt,h,22, . . . ,Zt,h,2s, . . . ,

Zt,h,s1,Zt,h,s2, . . . ,Zt,ss)
T , which is a s2 × 1 vector. Then �h = 0 is equivalent to E(Yt,h) =

0, and H0,d can be tested using our SN-based method and the new data sequence (Yt )
N
t=d+1,

where Yt = (Y T
t,1, . . . , Y

T
t,d)T .

5. Simulation results. In this section, we investigate the finite sample performance of
SN-based methods for mean testing, bandedness testing of covariance matrices, and white
noise testing in Sections 5.1, 5.2 and 5.3, respectively.

5.1. Mean inference. In this subsection, we study the finite sample performance of the
proposed method for mean inference. Consider the data generating process

Yt − μ = A(Yt−1 − μ) + εt ,

which is a p-dimensional VAR(1) model. Here, μ = E[Yt ] and the innovation sequence {εt }
are i.i.d. according to a multivariate normal distribution with mean 0 and covariance �ε

where �
1/2
ε is a tridiagonal matrix with diagonal elements all equal to 1, and the first off-

diagonal entries all equal to 0.5. We consider two sample sizes, N ∈ {120,480} and three
dimensions, p ∈ {50,100,200}. For the coefficient matrix A, we simply let A = ρIp and
pick ρ ∈ {0.2,0.8,−0.5}.

Under the null hypothesis, μ is simply a vector of zeroes. We let μ = 0.8× (1/
√

p,1/
√

p,

. . . ,1/
√

p)T under the alternative. We include four methods and ten statistics in the sim-
ulation: (1) Self-Normalized Statistic (m = 5,10,20,30) (denoted as “SN(5),” “SN(10),”
“SN(20),” “SN(30)”); (2) the test proposed in Ayyala, Park and Roy (2017). Note that their
test assumed the q-dependence for the data generating process but in practice we typically
do not know the value of q . We shall set q = 5 and 10 here so the test is denoted as “AY(5)”
and “AY(10),” respectively; (3) the approach proposed in Zhang and Cheng (2018) with the
block size used in the block bootstrap bZC = {10,20}, denoted as “ZC(10)” and “ZC(20)”;
(4) the approach proposed in Zhang and Wu (2017) with the block size used in batched
mean estimate bZW = {10,20}, denoted as “ZW(10)” and “ZW(20).” Note that there seems
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TABLE 2
Empirical rejection rate (in percentage) for the mean testing (H0)

ρ N p SN(5) SN(10) SN(20) SN(30) AY(5) AY(10) ZC(10) ZC(20) ZW(10) ZW(20)

ρ = 0.2 120 50 4.5 5.5 5.7 5.5 5.5 5.6 4.6 4.9 43.4 84.5
100 5.3 5.7 5.9 5.7 5.0 4.1 3.1 2.7 59.2 96.9
200 6.5 7.0 6.5 7.5 6.5 3.6 2.4 1.8 74.5 100.0

480 50 4.9 4.9 5.6 5.3 5.2 3.9 13.2 20.7
100 5.4 5.4 5.5 5.8 4.6 2.8 17.9 32.1
200 5.5 5.4 5.5 5.8 4.5 2.8 17.9 32.1

ρ = 0.8 120 50 21.1 9.5 8.7 9.4 39.3 11.2 26.9 10.1 80.5 93.2
100 25.7 11.9 9.8 9.3 52.9 11.8 28.6 7.5 94.5 99.4
200 33.2 15.4 11.7 10.4 74.6 14.4 30.4 7.1 99.7 100.0

480 50 14.4 5.0 5.1 5.9 33.1 10.6 51.4 36.7
100 21.4 7.0 5.9 5.5 40.1 10.7 64.3 50.2
200 23.8 10.8 4.6 4.4 48.1 13.7 76.4 62.8

ρ = −0.5 120 50 5.2 4.8 3.8 3.7 12.5 7.8 1.1 1.4 30.4 79.8
100 5.2 3.4 3.2 3.4 12.5 4.5 0.8 1.1 41.5 95.5
200 7.7 2.7 4.2 2.6 13.5 5.0 0.7 0.8 55.2 99.8

480 50 7.1 5.4 5.0 5.5 1.8 2.3 6.5 13.4
100 7.8 4.3 5.1 4.6 1.9 2.6 7.4 18.0
200 10.0 5.1 5.0 5.4 1.1 1.2 6.1 22.4

no data driven formula for the block size used in Zhang and Cheng (2018) and Zhang and
Wu (2017), and it is indeed an open problem on how to select the optimal block size in
the high-dimensional setting. For the choice of our trimming parameter m, we shall let
m = 5,10,20,30 and leave the detailed discussion on its role later.

We set the nominal level as 5% and perform 1000 Monte Carlo simulations for N = 120
and N = 480. The computation for the test in Ayyala, Park and Roy (2017) is very expensive
so only the result for the case N = 120 is shown here. The results are summarized in Tables 2
and 3. Under the null hypothesis, SN has an accurate size mostly when the dependence is
weak (i.e., ρ = 0.2). When the dependence gets stronger (i.e., ρ = 0.8), there are some fairly
large size distortion corresponding to m = 5, which is likely due to the bias incurred by using
a small m, and the size corresponding to larger m (i.e., m = 20,30) appears much better.
When ρ = −0.5, there are slight conservativeness in the size of SN test, but most are quite
close to nominal level, especially when m = 10,20,30 and N = 480. By contrast, ZC and
ZW showed much more severe size distortion, especially in the (relatively) strong dependent
case (i.e., ρ = 0.8). For both block sizes 10 and 20, ZW method appears to fail to provide
a reasonable size in almost all cases, whereas ZC method seems to perform better when the
block size is 20, although the size appears too liberal when ρ = 0.8 and too conservative
when ρ = 0.2 and −0.5. Also we can observe the sensitivity of both ZW and ZC with respect
to the block size, the choice of which seems to be an open problem in the high-dimensional
setting. The test AY(5) exhibits huge size distortion when ρ = 0.8, which is presumably due
to the fact that q = 5 is too small, whereas AY(10) shows much improvements although it
is still quite oversized. In the case ρ = 0.2, there are some noticeable size distortions with
AY(5) and again AY(10) exhibits more accurate size. Overall the size of SN-based test seems
much more satisfactory and stable than ZC and ZW, and outperforms that of AY slightly.

As seen from Table 3, which presents the power, SN-based test exhibits highest power
when ρ = −0.5, and the power in the case ρ = 0.8 is quite low. This can be explained by
the fact that in the limit the power is a monotonic increasing function of

√
n‖μ‖‖�‖−1/2

F ,
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TABLE 3
Empirical rejection rate (in percentage) for the mean testing (H1)

ρ N p SN(5) SN(10) SN(20) SN(30) AY(5) AY(10) ZC(10) ZC(20) ZW(10) ZW(20)

ρ = 0.2 120 50 30.6 30.9 27.2 26.1 64.3 61.0 20.1 16.3 76.0 95.8
100 20.7 20.2 17.9 18.8 46.2 37.5 11.3 8.9 78.4 99.2
200 16.5 16.3 14.3 13.5 28.4 22.0 5.3 3.9 85.1 99.9

480 50 94.4 94.1 94.4 94.2 82.7 77.2 93.2 96.4
100 87.5 87.6 87.1 87.0 54.5 45.5 78.6 87.3
200 78.5 78.4 77.9 77.1 31.5 23.2 64.7 80.7

ρ = 0.8 120 50 23.0 10.3 8.9 9.3 44.4 14.0 29.8 12.0 84.7 93.8
100 28.8 13.7 9.6 9.0 56.8 14.4 31.5 8.9 93.9 99.1
200 33.8 17.0 11.9 10.5 76.8 15.6 30.9 7.9 99.4 100.0

480 50 26.1 12.7 9.0 9.2 46.9 20.6 63.8 49.5
100 29.8 12.8 8.0 8.0 47.6 17.8 72.0 56.4
200 29.2 14.6 8.1 7.0 49.7 14.5 80.1 56.3

ρ = −0.5 120 50 85.4 86.3 86.5 81.0 99.5 98.9 44.4 46.0 95.2 99.9
100 68.8 78.4 74.8 67.7 98.4 94.1 15.7 18.0 91.4 100.0
200 41.0 61.1 57.5 50.5 95.0 81.0 5.4 5.3 89.0 100.0

480 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 97.3 97.5 99.8 100.0
200 99.9 100.0 100.0 100.0 67.8 69.4 94.1 99.5

which takes the largest value when ρ = −0.5 and admits the smallest value when ρ = 0.8.
The powers for ZW and ZC are a bit hard to interpret due to the strong overrejection under
the null hypothesis. One can present size-adjusted power, but given the severely distorted
size we decide not to pursue this. The tests by Ayyala, Park and Roy (2017) exhibit higher
power than SN-based tests in almost all cases and the power gain appears quite moderate in
some cases. This might suggest that if we can completely remove the bias caused by weak
temporal dependence and choose the tuning parameter properly, the normal approximation
can work reasonably well, outperforming the SN-based test in power. This is consistent with
the “better size but less power” phenomenon observed for SN-based test as compared to
normal approximation in the low-dimensional setting; see Shao (2010). It is also worth noting
that for our SN-based test the powers corresponding to m = 20,30 are a little lower than that
for m = 10 in most cases, and the power for m = 30 is comparable or slightly less than that
for m = 20. As we increase m, we expect less power as there are fewer pairs of observations
used in the test.

Discussion on the role of m: The trimming parameter m plays an important role in balanc-
ing the tradeoff between size distortion and power loss. If m is too small, then the bias might
not be negligible especially in the strongly dependent case and this could lead to a big size
distortion. If m is too large, then the effective sample size, which is proportional to N − m,
is less than the optimal level, which could result in power loss. In general, it would be desir-
able to come up with a data-driven formula for m that is adaptive to the magnitude of serial
dependence, which may require a theoretical characterization of the leading term for the bias
and the asymptotic power function. An empirical way of choosing m is to visualize the auto
and cross-correlations of the time series at hand, and choose a m such that majority of auto
and cross-correlations are smaller than some threshold for lags beyond m. Our simulation
experience suggests that the size and power performance are relatively stable over a certain
range [m0,m1], which might suggest that the optimal choice of m is not that critical, as long
as we choose a m that is in the suitable interval. A careful study of this issue is beyond the
scope of this paper and is left for future investigation.
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5.2. Testing the bandedness of covariance matrix. In this subsection, we shall present
the simulation result for testing the bandedness of a covariance matrix. We modify the model
assumptions in Qiu and Chen (2012) by allowing temporal dependence. In particular, we
generate p-dimensional Xt from the model

Xt,i =
k0∑

l=0

γlZt,i−l + δXt−1,i ,

where k0 is the bandwidth of the covariance matrix, γ0 = 1 for all cases and other coeffi-
cients γl will be specified later on. We let δ ∈ {0,0.4} and sample Zt,i independently from
N(0,1). Notice that when δ = 0, the observations Xt are i.i.d. We choose the sample size
N ∈ {20,50,100} and the dimension p ∈ {20,60}.

We calculate the statistic proposed in Qiu and Chen (2012), denoted as TQC and compare
with our test statistic, denoted as TSN. Note that TQC requires X′

t s to be i.i.d. whereas TSN
does not, thus when δ �= 0, we should expect an impact on the size of TQC. There is no tuning
for TQC and for TSN we set the trimming parameter m = 10. Under the null hypothesis, we
consider three cases for the bandwidth k0 ∈ {0,2,5}. For k0 = 2, we let γ1 = 0.5, γ2 = 0.25
and for k0 = 5, we let γ1 = · · · = γ5 = 0.4. To examine the power, we let k0 = 2,5 and test
the null hypothesis that � = Bk0−2(�). Those coefficients are the same as those with the
same k0 in evaluating the size. We set the nominal level as 5% and run the experiment for
1000 times and record the empirical rejection rate.

The results under the null are summarized in Table 4. For the i.i.d. case, both methods
provide reasonably accurate empirical sizes. It is worth noting that the TQC underrejects the
null when both N and p are small for H0 : � = B5(�). When data are weakly dependent, we
observe that TQC fails for all cases with a huge size distortion. This is somewhat expected as
TQC strongly relies on the i.i.d. assumption. In comparison, TSN still delivers very good size
in most cases, except for some size distortion when the sample size N is too small, that is,
N = 20.

Table 5 shows the power under the alternative. For i.i.d. case TQC has higher power than
TSN for all cases. The power gain of TQC over TSN seems to diminish as sample size increases
from N = 20 to N = 100. For weakly dependent data, although TQC has a very high empirical
rejection rate in most cases, it should not be taken too seriously because of the huge size

TABLE 4
Empirical rejection rate (in percentage) for testing the bandedness (under null)

i.i.d. Weakly dependent

TQC TSN TQC TSN

N N N N

p 20 50 100 20 50 100 20 50 100 20 50 100

H0 : � = B0(�)

20 6.3 5.6 5.5 6.3 4.8 4.2 84.2 90.2 91.8 9.0 5.6 5.3
60 6.7 6.0 5.2 6.7 5.2 4.8 100.0 100.0 100.0 10.1 6.2 5.2

H0 : � = B2(�)

20 4.8 4.3 4.1 6.3 4.5 4.8 47.7 52.4 55.2 6.6 5.3 5.1
60 6.6 5.5 5.3 6.1 5.3 4.9 99.9 100.0 100.0 9.3 5.7 5.4

H0 : � = B5(�)

20 2.6 2.1 2.2 4.6 4.4 4.8 12.3 13.2 15.4 5.9 5.6 5.0
60 4.9 4.4 4.3 5.9 4.8 4.5 85.4 91.8 93.2 6.8 5.5 4.8
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TABLE 5
Empirical rejection rate (in percentage) for testing the bandedness (under alternative)

i.i.d. Weakly dependent

TQC TSN TQC TSN

N N N N

p 20 50 100 20 50 100 20 50 100 20 50 100

H0 : � = B0(�) when � = B2(�)

20 97.7 100.0 100.0 24.0 97.4 100.0 100.0 100.0 100.0 18.6 92.6 99.9
60 98.8 100.0 100.0 26.7 99.3 100.0 100.0 100.0 100.0 20.4 96.1 100.0

H0 : � = B3(�) when � = B5(�)

20 19.7 76.3 99.9 6.0 43.1 88.7 52.0 94.1 100.0 6.7 30.0 76.0
60 29.2 84.5 100.0 5.7 40.9 93.2 98.7 100.0 100.0 6.4 26.6 76.5

distortion under the null. Further, it is noted that the power for TSN is only slightly lower than
the i.i.d. case which indicates TSN still works under the weakly dependent case. In summary,
TSN provides a robust alternative to TQC, which is specifically designed for the i.i.d. data.

5.3. Testing for white noise. In this subsection, we investigate the finite sample properties
of our test for white noise. For the trimming parameter, we fix m = 10. The nominal level
is set as 5%, and we take N ∈ {75,150,300} and p ∈ {50,100}. For each experiment, we
have 1,000 Monte Carlo replicates.We compare our test statistic TSN with the test statistic TC

developed in Chang, Yao and Zhou (2017) (with time series PCA), which targets the sparse
alternative and has been implemented in the R package “HDtest.”

To examine the size, we generate the data from the model εt = Azt , which is the same
as the setting considered in Chang, Yao and Zhou (2017), where A is p × p and zt are p-
dimensional i.i.d. from N(0, Ip). For different loadings,

M1: Let S = (skl)1≤k,l≤p for skl = 0.995|k−l| and then let A = S1/2.
M2: Let A = (akl)1≤k,l≤p with the akl being independently generated from U(−1,1).

To evaluate the power, we let k0 = 12 and generate the data from the model

M3: εt = Aεt−1 + et where {et }t≥1 are i.i.d. p-dimensional random vectors with inde-
pendent components from t8 distribution. For the coefficient matrix A, we let Ai,j from
U(−0.25,0.25) independently for any 1 ≤ i, j ≤ k0 and Ai,j = 0 otherwise.

M4: εt = Azt , where zt = (zt,1, . . . , zt,p)T . For 1 ≤ k ≤ k0, z1,k, . . . , zN,k are N(0,�),
where � is N × N matrix with 1 as the main diagonal elements, 0.5|i − j |−0.6 as the (i, j)th
element for 1 ≤ |i − j | ≤ 7 and 0 for other elements. For k > k0, z1,k, . . . , zN,k are inde-
pendent standard normal random variables. The coefficient matrix A is generated as follows:
ak,l ∼ U(−1,1) with probability 1/3 and ak,l = 0 with probability 2/3 independently for
1 ≤ k �= l ≤ p, and ak,k = 0.8 for 1 ≤ k ≤ p.

M5: εt = Aεt−1 + et where {et }t≥1 are i.i.d. p-dimensional random vectors with inde-
pendent components from t8 distribution. For the coefficient matrix A, we let Ai,j = 0.9|i−j |
for an AR(1) type structure, then we normalize A so that ‖A‖ = 0.9.

Note that the models M1–M4 were used in Chang, Yao and Zhou (2017) whereas M5
is added to examine the behavior of our test in the case of dense alternative. Results are
summarized in Table 6. Under the null hypothesis (M1 & M2), TSN has an accurate and
stable empirical rejection rate, comparing to the designed nominal level 5%. TC tends to
underreject the null a lot, especially when N is small. We notice that the empirical rejection
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TABLE 6
Empirical rejection rate (in percentage) for white noise test

N = 75 N = 150 N = 300

p = 50 p = 100 p = 50 p = 100 p = 50 p = 100

lag d TSN TC TSN TC TSN TC TSN TC TSN TC TSN TC

M1 2 3.8 0.0 3.0 0.0 3.1 0.7 3.2 0.8 3.0 3.6 3.7 2.3
4 3.8 0.0 2.2 0.0 3.1 0.7 3.9 0.2 3.4 4.1 3.7 2.9
6 3.0 0.0 2.2 0.0 3.2 1.0 3.5 0.2 2.6 3.7 3.0 2.7
8 1.8 0.0 3.4 0.0 3.9 0.7 3.4 0.2 3.2 3.2 2.7 2.8

10 2.6 0.0 1.6 0.0 3.8 0.7 3.3 0.1 2.6 2.6 4.3 2.8

M2 2 4.8 0.1 4.1 0.4 4.5 1.2 6.0 5.9 4.8 4.2 6.0 12.3
4 4.7 0.0 5.1 0.3 5.4 1.2 4.4 4.9 5.0 3.1 4.6 13.3
6 4.9 0.1 4.1 0.2 5.4 0.8 5.1 4.6 4.0 3.6 5.6 14.6
8 2.4 0.0 3.3 0.2 4.8 0.6 5.1 3.8 5.9 3.3 6.1 14.6

10 1.8 0.0 1.2 0.1 4.3 0.5 5.2 2.8 5.2 3.6 4.6 14.0

M3 2 10.6 0.8 0.0 0.0 29.2 39.9 15.5 10.3 66.2 100 34.3 98.0
4 5.4 0.0 2.4 0.0 6.1 27.7 6.0 6.0 6.9 99.8 5.1 94.8
6 4.4 0.0 2.4 0.0 5.3 19.8 6.0 4.5 5.6 99.5 5.4 91.5
8 3.4 0.0 2.4 0.0 4.7 15.2 5.3 3.5 5.5 99.0 5.6 88.8

10 1.4 0.0 2.4 0.0 3.7 13.3 4.7 3.0 6.0 98.7 4.6 86.8

M4 2 11.2 1.6 5.3 0.4 22.2 14.0 9.1 7.1 57.9 63.1 20.0 30.1
4 5.7 1.3 5.5 0.1 8.4 8.7 6.0 6.0 19.8 53.9 8.3 26.1
6 4.9 0.6 4.4 0.1 6.6 6.6 5.5 5.0 10.2 48.4 6.7 24.1
8 3.5 0.3 2.8 0.0 4.5 5.4 5.5 4.0 5.9 44.2 4.9 22.1

10 2.0 0.2 2.0 0.0 4.5 4.2 4.7 3.2 5.1 41.2 4.8 19.6

M5 2 35.5 2.5 28.1 5.8 55.1 4.6 62.7 3.2 89.0 44.8 94.2 24.4
4 16.7 1.7 12.9 4.8 17.4 3.1 13.8 2.0 34.6 33.9 34.0 18.9
6 10.7 1.3 8.2 3.8 6.3 1.3 6.5 1.4 12.2 28.6 10.5 14.8
8 6.5 0.7 7.1 4.3 6.1 0.6 4.3 0.9 6.5 23.1 5.7 11.9

10 3.5 0.4 5.3 3.8 4.9 0.5 4.7 0.5 4.0 19.8 5.5 9.6

rate of TC is not stable. For example, it over-rejects the null under M2 with p = 100 and
N = 300 but the size appears quite accurate when p = 100 and N = 150. This phenomenon
may be due to the bootstrap procedure used in their test which involves a choice of block
size, and a sound data-driven choice seems difficult in the high-dimensional setting.

Under the alternative (M3), we can observe that both methods can have nontrivial power.
For TC , the overall performance is good when N = 150, 300 and has better power than TSN
especially when d is large, but performs very poorly when N = 75. TSN has a decent power
only at the case d = 2 and trivial power in other cases. Similar results can be found for M4.
The loss of power for the SN-based test at larger d can be explained by the fact that as d

increases the alternative becomes more sparse, which has less impact on the power of TC

than on that of TSN.
For M5, TSN outperforms TC in most cases. This is due to the highly dense alternative

under the model M5. It is also clear that when d gets larger, the power of TSN decreases for
the same reason explained for models M3 and M4.

6. Conclusion. In this paper, we propose a new formulation of self-normalization for the
inference of mean in the high-dimensional time series setting. We use a one sample U-statistic
with trimming to accommodate weak time series dependence, and show its asymptotic nor-
mality under the general nonlinear causal process framework. To avoid direct consistent es-
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timation of the nuisance parameter, which is the Frobenious norm of long run covariance
matrix, we apply the idea of self-normalization. Different from the low-dimensional case,
the recursive U-statistic based on subsamples (upon suitable standarization) converges to a
time-changed Brownian motion and the self-normalized test statistic has a different pivotal
limit. More interestingly, the convergence rate of our original U-statistic, which depends on
the diverging rate of ‖�‖F , is not required to be known. This phenomenon seems new, as
the convergence rate is typically known (See Shao (2010), Shao (2015)) or needs to be es-
timated (see, e.g., long memory time series setting in Shao (2011)) in the use of SN for
low-dimensional time series. Simulation studies show that our SN-based test statistic has ac-
curate size, and it is not overly sensitive to the trimming parameter involved, whereas the
size of the maximum type tests in Zhang and Cheng (2018) and Zhang and Wu (2017) can
critically depend on the block size.

To conclude, it is worth pointing out a few important future research directions. An obvious
one is to come up with a good data-driven formula for m, the trimming parameter involved
in our test. In addition, we assume stationarity throughout, while in practice the series may
be heteroscedastic and exhibits time varying dependence. This may be accommodated by
using the local stationary framework in Zhou (2013), the use of which seems to be limited
to the low-dimensional setting. Also we do not usually have a priori knowledge on whether
the alternative is sparse or dense. It would be interesting to develop an adaptive test in the
high-dimensional time series setting. One possibility is to extend recent work of He et al.
(2018) from i.i.d. to dependent data. We shall leave these topics for future research.

APPENDIX: PROOF OF MAIN THEOREMS

A.1. Proof of Theorem 3.6. To show the process convergence, we need to prove the
following two facts. Under Assumptions 3.3,

1. For any r1, . . . , rk ∈ [0,1],

(A.1)
( √

2

n‖�‖F

Sn(r1), . . . ,

√
2
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Sn(rk)

)
D−→ (

B
(
r2

1
)
, . . . ,B

(
r2
k

))
.

2. The process
√

2
n‖�‖F

Sn(r) is tight. It suffices to show for all 0 ≤ a ≤ b ≤ 1 and n ≥ n0
for some n0 > 0,

(A.2) E

[( √
2

n‖�‖F

Sn(b) −
√

2

n‖�‖F

Sn(a)

)4]
≤ C

((	nb
 − 	na
)/n
)2

according to Lemma 9.8 in the Supplementary Material.

A.1.1. Proof of (A.1). For simplicity, we only prove the case when k = 2, since for a
general k ≥ 2, the result can be proved by similar arguments. By the Cramer–Wold device, it
is equivalent to show for any α1, α2 ∈R,

√
2

n‖�‖F

(
α1Sn(r1) + α2Sn(r2)

) D−→ α1B
(
r2

1
) + α2B

(
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2
)
.

WLOG, we assume r1 ≤ r2. By simple calculation, we can see that
√

2
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(
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=
√
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It can be easily verified that for any fixed n, {ηt+m}nt=1 is a martingale difference sequence
with respect to Ft+m. Direct application of Theorem 35.12 in Billingsley (2008) (Martingale
CLT) indicates that we need to show the following:

1. ∀ε ≥ 0,
∑	nr2


t=1 E[η2
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To show 1, it suffices to show
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PROOF OF (A.3). Note that
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s1≤···≤s4=1

p∑
j1,...,j4=1

|L1|

≤ 1

n4‖�‖4
F

n∑
t=1

t∑
s1≤···≤s4=1

p∑
j1,...,j4=1

∣∣(�j1,j2�j3,j4 + �j1,j3�j2,j4 + �j1,j4�j2,j3
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+ cum(D0,j1,D0,j2,D0,j3,D0,j4)
)∣∣∣∣(�j1,j2�j3,j41{s1 = s2}1{s3 = s4}

+ �j1,j3�j2,j41{s1 = s3}1{s2 = s4} + �j1,j4�j2,j31{s1 = s4}1{s2 = s3} + 2Cρs4−s1
)∣∣

≤ 3

n4‖�‖4
F

n∑
t=1

∑
1≤s1≤s3≤t

(
sup

j1,j2=1,...,p

|�j1,j2 |
)2

O
(‖�‖4

F

)

+ 1

n4‖�‖4
F

n∑
t=1

∑
1≤s1≤···≤s4≤t

2Cρs4−s1O
(‖�‖4

F

)

≤ O
(
n−1) + 2C

n4

n∑
t=1

t∑
s1=1

t∑
l=0

l2ρlO(1) ≤ O
(
n−1) + O

(
n−2) = O

(
n−1) → 0

by Assumption A.5. Note that we have used the fact that supj1,j2=1,...,p |�j1,j2 | = O(1) under
A.1 in Assumption 3.3. In addition,

1

n4‖�‖4
F

n∑
t=1

t∑
s1≤···≤s4=1

p∑
j1,...,j4=1

|L2|

≤ 1

n4‖�‖4
F

n∑
t=1

t∑
s1≤···≤s4=1

p∑
j1,...,j4=1

8C sup
j

‖D0,j‖7
8ρ

t−s4+m

� p4

n4‖�‖4
F

n∑
t=1

t∑
s4=1

s3
4ρt−s4+m ≤ p4

n4‖�‖4
F

n∑
t=1

t−1∑
l=0

t3ρl+m ≤ p4ρm

‖�‖4
F

= o(1)

by Assumption A.4. Together with previous results, we have

1

n4‖�‖4
F

n∑
t=1

E

[(
DT

t+m

t∑
s=1

Ds

)4]
→ 0.

The proof is complete. �

PROOF OF (A.4). To simplify notation, we let 
t+m−1 = E[Dt+mDT
t+m|Ft+m−1], and


t+m−1,i,j is the (i, j) component of 
t+m−1.
Note that

2

n2‖�‖2
F

n∑
t=1

t∑
s1=1

t∑
s2=1

DT
s1


t+m−1Ds2

= 2

n2‖�‖2
F

n∑
t=1

t∑
s1=1

t∑
s2=1

DT
s1

�Ds2 + 2

n2‖�‖2
F

n∑
t=1

t∑
s1=1

t∑
s2=1

DT
s1

(
t+m−1 − �)Ds2

= L3 + L4.

By simple calculation, E[L3] → 1. Moreover,

E
[
L2

3
] = 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

E[Ds1,j1Ds2,j2Ds3,j3Ds4,j4]�j1,j2�j3,j4

= 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

cum[Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4]

× �j1,j2�j3,j4
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+ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

1{s1 = s2}1{s3 = s4}�2
j1,j2

�2
j3,j4

+ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

1{s1 = s3}1{s2 = s4}

× �j1,j3�j2,j4�j1,j2�j3,j4

+ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

1{s1 = s4}1{s2 = s3}

× �j1,j4�j2,j3�j1,j2�j3,j4

= K3,1 + K3,2 + K3,3 + K3,4,

since E[Ds,iDt,j ] = 0 if s �= t , for any i, j = 1, . . . , p, by property of martingale difference
sequence.

For the first term,

|K3,1| � 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

n∑
s1≤···≤s4=1

p∑
j1,...,j4=1

∣∣cum[Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4]
∣∣

× |�j1,j2 ||�j3,j4 |

≤ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

n∑
s1≤···≤s4=1

ρs4−s1

( p∑
j1,j2=1

|�j1,j2 |
)2

≤ 4

n4‖�‖4
F

n2
n∑

s1=1

n−1∑
s4−s1=0

(s4 − s1)
2ρs4−s1O

(‖�‖4
F

) = O
(
n−1) → 0.

For the second one,

K3,2 = 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t2∑
s3=1

p∑
j1,...,j4=1

�2
j1,j2

�2
j3,j4

→ 1.

For the third term,

|K3,3| =
∣∣∣∣∣ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

p∑
j1,...,j4=1

1{s1 = s3}1{s2 = s4}

× �j1,j3�j2,j4�j1,j2�j3,j4

∣∣∣∣∣
= 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1,s2=1

t2∑
s3,s4=1

1{s1 = s3}1{s2 = s4}
p∑

j1,j2=1

[(
�2)

j1,j2

]2

≤ 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

n∑
s1,s2=1

n∑
s3,s4=1

1{s1 = s3}1{s2 = s4}
∥∥�2∥∥2

F

≤ 4

n4‖�‖4
F

n4‖�‖2
F ‖�‖2 = O

( ‖�‖2

‖�‖2
F

)
→ 0,
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where the second from the last line is due to Lemma 9.1 in the Supplementary Material. And
by similar arguments, we have |K3,4| → 0. Combining these results, we have E[(L3 −1)2] →
0, which implies L3

p→ 1 by Chebyshev’s inequality.

For L4, it suffices to show L4
p→ 0, which is implied by E[L2

4] → 0. To this end, we note
that

E
[
L2

4
] = 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t1∑
s2=1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1

E
[
Ds1,j1Ds2,j2Ds3,j3Ds4,j4

× (
t1+m−1,j1,j2 − �j1,j2)(
t2+m−1,j3,j4 − �j3,j4)
]
.

Here, we need to deal with an expectation of a product of six random variables. By defini-
tion of joint cumulants, it can be decomposed as a summation of products of joint cumulants.
It is tedious to list all cases since the derivation for those cases are very similar. Hence only
some representative cases will be shown here:

1. cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4,
t1+m−1,j1,j2,
t2+m−1,j3,j4)

4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t1∑
s2=1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1∣∣cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4,
t1+m−1,j1,j2,
t2+m−1,j3,j4)

∣∣
� 4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1

Cρt1−s1+m−1

≤ 4Cn3p4

n4‖�‖4
F

n∑
t1=1

t1−1∑
l=0

lρl+m−1 = O

(
p4ρm

‖�‖4
F

)
→ 0.

2. cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4) cum(
t1+m−1,j1,j2,
t2+m−1,j3,j4)

4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t1∑
s2=1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1∣∣cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

∣∣∣∣cum(
t1+m−1,j1,j2,
t2+m−1,j3,j4)
∣∣

� 4

n4‖�‖4
F

∑
1≤t1≤t2≤n

∑
1≤s1≤s2≤s3≤s4≤t2

Cρs4−s1

×
p∑

j1,...,j4=1

∣∣cum(
t1+m−1,j1,j2,
t2+m−1,j3,j4)
∣∣

≤ 4Cn2

n4‖�‖4
F

(
n∑

s1=1

n∑
l=1

l2ρl

)
O

(‖�‖4
F

) = O
(
n−1) → 0,

where the second line from the last is due to Assumption A.6.
3. cum(Ds1,j1,Ds2,j2,
t2+m−1,j3,j4) cum(Ds3,j3,Ds4,j4,
t1+m−1,j1,j2)

4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t1∑
s2=1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1∣∣cum(Ds1,j1,Ds2,j2,
t2+m−1,j3,j4) cum(Ds3,j3,Ds4,j4,
t1+m−1,j1,j2)

∣∣
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� 4

n4‖�‖4
F

n∑
1≤t1≤t2≤n

∑
1≤s1≤s2≤t1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1∣∣cum(Ds1,j1,Ds2,j2,
t2+m−1,j3,j4)

∣∣∣∣cum(Ds3,j3,Ds4,j4,
t1+m−1,j1,j2)
∣∣

≤ 4

n4‖�‖4
F

n∑
1≤t1≤t2≤n

∑
1≤s1≤s2≤t1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1

Cρt2+m−1−s1
(∣∣E(Ds3,j3Ds4,j4
t1+m−1,j1,j2)

∣∣ + ∣∣E(Ds3,j3Ds4,j4)E[
t1+m−1,j1,j2]
∣∣)

≤ 4

n4‖�‖4
F

n∑
1≤t1≤t2≤n

∑
1≤s1≤s2≤t1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1

Cρt2+m−1−s1
(‖Ds3,j3‖4‖Ds4,j4‖4‖
t1+m−1,j1,j2‖2 + ‖Ds3,j3‖2‖Ds4,j4‖2|�j1,j2 |

)
≤ 4

n4‖�‖4
F

n∑
1≤t1≤t2≤n

∑
1≤s1≤s2≤t1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1

Cρt2+m−1−s1
(

sup
j=1,...,p

‖D0,j‖4

)4

= O

(
ρmp4

‖�‖4
F

)
→ 0.

4. cum(Ds1,j1,Ds2,j2) cum(Ds3,j3,Ds4,j4) cum(
t1+m−1,j1,j2,
t2+m−1,j3,j4)

4

n4‖�‖4
F

n∑
t1=1

n∑
t2=1

t1∑
s1=1

t1∑
s2=1

t2∑
s3=1

t2∑
s4=1

p∑
j1,...,j4=1∣∣cum(Ds1,j1,Ds2,j2)

∣∣∣∣cum(Ds3,j3,Ds4,j4)
∣∣∣∣cum(
t1+m−1,j1,j2,
t2+m−1,j3,j4)

∣∣
� 4

n4‖�‖4
F

∑
1≤t1≤t2≤n

t1∑
s1=1

t2∑
s3=1

p∑
j1,...,j4=1

|�j1,j2 ||�j3,j4 |Cρt2−t1

≤ 4Cn3

n4‖�‖4
F

( ∞∑
l=1

ρl

)
O

(‖�‖4
F

) = O
(
n−1) → 0.

By similar arguments, we can show the summations of cumulants for other partitions are

vanished. This implies L4
p→ 0. Together with previous arguments, the proof of (A.4) is

complete. �

A.1.2. Proof of (A.2). By the definition and Burkholder’s inequality (Theorem 2.10,
Hall and Heyde (2014)) the left-hand side can be simplified as

E

[( √
2

n‖�‖F

(
Sn(b) − Sn(a)

))4]

= E

[( √
2

n‖�‖F

	nb
∑
t=	na
+1

t∑
s=1

DT
t+mDs

)4]

� 4

n4‖�‖4
F

E

[( 	nb
∑
t=	na
+1

(
DT

t+m

t∑
s=1

Ds

)2)2]
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≤ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1

E[Dt1+m,j1Dt1+m,j2Dt2+m,j3Dt2+m,j4Ds1,j1Ds2,j2Ds3,j3Ds4,j4].
We only need to consider the case that 	nb
 − 	na
 ≥ 1, since otherwise it is trivially sat-

isfied. Here, we mainly deal with the expectation of 8 random variables. By similar argument
in the proof of (A.4), we only consider some representative cases for the joint cumulants
when we decompose the expectation. For simplicity, C is a generic constant which vary from
line by line:

1. | cum(Dt1+m,j1,Dt1+m,j2,Dt2+m,j3,Dt2+m,j4,Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)|
4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt1+m,j1,Dt1+m,j2,Dt2+m,j3,Dt2+m,j4,Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

∣∣
≤ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1

Cρt2+m−s1

≤ Cp4

n4‖�‖4
F

(	nb
 − 	na
)2
n2

∞∑
l=0

lρl+m ≤ Cp4ρm

‖�‖4
F

(	nb
 − 	na
)2

n2 ≤ C
(	nb
 − 	na
)2

n2 .

2. cum(Dt2+m,j3,Dt2+m,j4) cum(Dt1+m,j1,Dt1+m,j2,Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt2+m,j3,Dt2+m,j4) cum(Dt1+m,j1,Dt1+m,j2,Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

∣∣
� 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤s3≤s4≤t1

p∑
j1,...,j4=1

Cρt1+m−s1
(

sup
j1,j2=1,...,p

|�j1,j2 |
)

+ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤s3≤t1

∑
	na
+1≤s4≤	nb


p∑
j1,...,j4=1

Cρt1+m−s1
(

sup
j1,j2=1,...,p

|�j1,j2 |
)

+ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
	na
+1≤s3≤s4≤	nb


p∑
j1,...,j4=1

Cρt1+m−s1
(

sup
j1,j2=1,...,p

|�j1,j2 |
)
,

which is further bounded by

Cp4

n4‖�‖4
F

(	nb
 − 	na
)2

(
n∑

l=0

l3ρl+m

)
+ Cp4

n4‖�‖4
F

(	nb
 − 	na
)3

(
n∑

l=0

l2ρl+m

)

+ Cp4

n4‖�‖4
F

(	nb
 − 	na
)4

(
n∑

l=0

lρl+m

)
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≤ Cp4ρm

n2‖�‖4
F

(	nb
 − 	na
)2

n2 + Cp4ρm

n‖�‖4
F

(	nb
 − 	na
)3

n3 + Cp4ρm

‖�‖4
F

(	nb
 − 	na
)4

n4

≤ C
(	nb
 − 	na
)2

n2 ,

where the last line is due to Assumption A.4, and we only need to consider the case that
	nb
 ≥ 	na
 + 1.

3. cum(Dt2+m,j3,Dt2+m,j4,Ds1,j1) cum(Dt1+m,j1,Dt1+m,j2,Ds2,j2,Ds3,j3,Ds4,j4)

4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt2+m,j3,Dt2+m,j4,Ds1,j1) cum(Dt1+m,j1,Dt1+m,j2,Ds2,j2,Ds3,j3,Ds4,j4)

∣∣
� 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤s3≤s4≤t1

p∑
j1,...,j4=1

Cρt2+m−s1ρt1+m−s2

+ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤s3≤t1

∑
	na
+1≤s4≤	nb


p∑
j1,...,j4=1

Cρt2+m−s1ρt1+m−s2

+ 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
	na
+1≤s3≤s4≤	nb


p∑
j1,...,j4=1

Cρt2+m−s1ρt1+m−s2

≤ Cρ2mp4

‖�‖4
F

(	nb
 − 	na
)2

n4 + Cρ2mp4

‖�‖4
F

(	nb
 − 	na
)3

n4 + Cρ2mp4

‖�‖4
F

(	nb
 − 	na
)4

n4

≤ C
(	nb
 − 	na
)2

n2 .

4. cum(Dt1+m,j1,Dt1+m,j2,Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt1+m,j1,Dt1+m,j2,Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)

∣∣
� 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


p∑
j1,...,j4=1

∣∣cum(Dt1+m,j1,Dt1+m,j2,Dt2+m,j3,Dt2+m,j4)
∣∣

×
( ∑

1≤s1≤s2≤s3≤s4≤n

∣∣cum(Ds1,j1,Ds2,j2,Ds3,j3,Ds4,j4)
∣∣)

≤ 4C

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


(
n∑

s1=1

n∑
l=0

l2ρl

)
O

(‖�‖4
F

)

≤ C
(	nb
 − 	na
)2

n3 ≤ C
(	nb
 − 	na
)2

n2 .

5. cum(Dt1+m,j2,Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2,Ds3,j3) cum(Dt1+m,j1,Ds4,j4)
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Notice that cum(Dt1+m,j1,Ds4,j4) �= 0 only if t1 + m = s4. Since s4 ≤ t2, this implies that
t2 − t1 ≥ m. Then

4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt1+m,j2,Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2,Ds3,j3) cum(Dt1+m,j1,Ds4,j4)

∣∣
� 4

n4‖�‖4
F

	nb
−m∑
t1=	na
+1

	nb
∑
t2=t1+m

∑
1≤s1≤s2≤s3≤n

p∑
j1,...,j4=1∣∣cum(Dt1+m,j2,Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2,Ds3,j3)�j1,j4

∣∣
≤ Cp2ρm

n4‖�‖2
F

(	nb
 − 	na
)2
n∑

s1=1

∞∑
l=0

lρl ≤ C

(	nb
 − 	na

n

)2
.

6. cum(Dt1+m,j1,Dt1+m,j2) cum(Dt2+m,j3,Dt2+m,j4) cum(Ds1,j1,Ds2,j2) cum(Ds3,j3,

Ds4,j4)

4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


∑
1≤s1≤s2≤t1

∑
1≤s3≤s4≤t2

p∑
j1,...,j4=1∣∣cum(Dt1+m,j1,Dt1+m,j2) cum(Dt2+m,j3,Dt2+m,j4)

× cum(Ds1,j1,Ds2,j2) cum(Ds3,j3,Ds4,j4)
∣∣

= 4

n4‖�‖4
F

∑
	na
+1≤t1≤t2≤	nb


t1∑
s1=1

t2∑
s3=1

p∑
j1,...,j4=1

�2
j1,j2

�2
j3,j4

≤ 4(	nb
 − 	na
)2

n2 .

Other partitions can be proved by similar arguments. Combining the results, we have

E

[( √
2

n‖�‖F

Sn(b) −
√

2

n‖�‖F

Sn(a)

)4]
≤ C

(	nb
 − 	na
)2

n2

for every n ≥ n0 for some fixed n0 > 0. �
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