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ON THE OPTIMAL RECONSTRUCTION OF PARTIALLY OBSERVED
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We propose a new reconstruction operator that aims to recover the miss-
ing parts of a function given the observed parts. This new operator belongs
to a new, very large class of functional operators which includes the clas-
sical regression operators as a special case. We show the optimality of our
reconstruction operator and demonstrate that the usually considered regres-
sion operators generally cannot be optimal reconstruction operators. Our es-
timation theory allows for autocorrelated functional data and considers the
practically relevant situation in which each of the n functions is observed at
mi , i = 1, . . . , n, discretization points. We derive rates of consistency for our
nonparametric estimation procedures using a double asymptotic. For data sit-
uations, as in our real data application where mi is considerably smaller than
n, we show that our functional principal components based estimator can pro-
vide better rates of convergence than conventional nonparametric smoothing
methods.

1. Introduction. Our work is motivated by a data set from energy economics which
is shown in Figure 1. The data consist of partially observed price functions. Practitioners
use these functions, for instance, to do comparative statics, that is, a ceteris-paribus anal-
ysis of price effects with respect to changes in electricity demand (cf. Hirth (2013), Weigt
(2009)). The possibilities of such an analysis, however, are limited by the extent to which we
can observe the price functions. This motivates the goal of our work, which is to develop a
reconstruction procedure that allows us to recover the total functions from their partial obser-
vations.

Let X1, . . . ,Xn be an identically distributed, possibly weakly dependent sample of contin-
uous random functions, where each function Xi is an element of the separable Hilbert space
L

2([a, b]) with [a, b] ⊂ R and E(‖Xi‖4
2) < ∞, where ‖Xi‖2

2 = ∫ b
a (Xi(x))2 dx. We denote

the observed and missing parts of Xi by X
Oi

i and X
Mi

i , where

X
Oi

i (u) := Xi(u) for u ∈ Oi ⊆ [a, b] and

X
Mi

i (u) := Xi(u) for u ∈ Mi = [a, b] \ Oi,

and where Oi = [Ai,Bi] ⊆ [a, b] is a random subinterval, independent from Xi with Bi −
Ai > 0 almost surely. In our theoretical part (Section 2) we also allow for the general case,
where Oi consists of multiple subintervals of [a, b]. In what follows we use “O” and “M” to
denote a given realization of Oi and Mi . In addition, we use the following shorthand notation
for conditioning on Oi and Mi :

XO
i (u) := X

Oi

i (u)|(Oi = O),

XM
i (u) := X

Mi

i (u)|(Mi = M);
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FIG. 1. Partially observed electricity price functions XO
i (u) with u ∈ Oi ⊆ [a, b].

typical realizations of XO
i and O are shown in Figure 1. We denote the inner product and

norm of L2(O) as 〈·, ·〉2 and ‖ · ‖2; their dependency on O will be made obvious by writing,
for instance, 〈xO,yO〉2 and ‖xO‖2

2 = 〈xO,xO〉2 for all xO,yO ∈ L
2(O), where 〈xO,yO〉2 =∫

O x(u)y(u)du. Throughout the introduction and Section 2, we consider centered random
functions, that is, E(Xi(u)) = μ(u) with μ(u) = 0 for all u ∈ [a, b].

Our object of interest is the following linear reconstruction problem:

XM
i = L

(
XO

i

) + Zi,(1)

which aims to reconstruct the unobserved missing parts XM
i ∈ L

2(M) given the partial obser-
vation XO

i ∈ L
2(O). Our objective is to identify the optimal linear reconstruction operator L :

L
2(O) → L

2(M) which minimizes the mean squared error loss E[(XM
i (u) − L(XO

i )(u))2]
at any u ∈ M .

The case of partially observed functional data was initially considered in the applied work
of Liebl (2013) and the theoretical works of Goldberg, Ritov and Mandelbaum (2014) and
Kraus (2015). The work of Gromenko, Kokoszka and Sojka (2017) is also related as it pro-
poses an inferential framework for incomplete spatially and temporally correlated functional
data. Goldberg, Ritov and Mandelbaum (2014) consider the case of finite dimensional func-
tional data and their results have well-known counterparts in multivariate statistics. Kraus
(2015) starts by deriving his “optimal” reconstruction operator as a solution to the Fréchet-
type normal equation, where he assumes the existence of a bounded solution. The theoretical
results in our paper imply that this assumption generally holds only under the very restrictive
case of linear regression operators, that is, Hilbert–Schmidt operators. For showing consis-
tency of his empirical reconstruction operator, Kraus (2015) restricts his work to this case of
Hilbert–Schmidt operators. We demonstrate, however, that a Hilbert–Schmidt operator gen-
erally cannot be the optimal reconstruction operator.

In order to see the latter, we need some conceptional work. Hilbert–Schmidt operators on
L

2 spaces correspond to linear regression operators,

(2) L
(
XO

i

)
(u) =

∫
O

β(u, v)XO
i (v) dv with β ∈ L

2(M × O).

However, such a regression operator generally does not provide the optimal solution of the
reconstruction problem in (1). For instance, let us consider the “last observed”(=“first miss-
ing”) points, namely, the boundary points1 ϑ ∈ ∂M of M . For any optimal reconstruction

1The boundary ∂M of a subset M is defined as ∂M := M ∩ O , where M and O denote the closures of the
subsets M and O .
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operator L, it must hold that the “first reconstructed” value, L(XO
i )(ϑ), connects with the

“last observed” value, XO
i (ϑ), that is, that

XO
i (ϑ) = L

(
XO

i

)
(ϑ) for all ϑ ∈ ∂M.

There is no hope, though, of finding a slope function β(ϑ, ·) ∈ L
2(O) that fulfills the equation

XO
i (ϑ) = ∫

O β(ϑ, v)XO
i (v) dv (the Dirac-δ function is not an element of L2(O)). It is there-

fore impossible to identify the optimal reconstruction operator L within the class of linear
regression operators defined by (2).

Best possible linear reconstruction operators depend, of course, on the structure of the
random function Xi , and possible candidates have only to be well-defined for any function
in the support of Xi . We therefore consider the class of all linear operators L with finite
variance V(L(XO

i )(u)) < ∞ and thus P(|L(XO
i )(u)| < ∞) = 1 for any u ∈ M . This class

of reconstruction operators is much larger than the class of regression operators and contains
the latter as a special case. A theoretical characterization is given in Section 2. We then show
that the optimal linear reconstruction operator, minimizing E[(XM

i (u) −L(XO
i )(u))2] for all

u ∈ M , is given by

L
(
XO

i

)
(u) =

∞∑
k=1

ξO
ikE[XM

i (u)ξO
ik ]

λO
k

=
∞∑

k=1

ξO
ik

〈φO
k , γu〉2

λO
k

,(3)

where (φO
k , λO

k )k≥1 denote the pairs of orthonormal eigenfunctions and nonzero eigenvalues
of the covariance operator 
O(x)(u) = ∫

γ O(u, v)x(v) dv with x ∈ L
2(O), while ξO

ik :=
〈φO

k ,XO
i 〉2. Here γ O(u, v) = Cov(XO

i (u),XO
i (v)) denotes the covariance function of XO

i ,
and γu(v) = γ (u, v) the covariance function γ (u, v) = Cov(XM

i (u),XO
i (v)).

The general structure of L in (3) is similar to the structure of the operators considered in
the literature on functional linear regression, which, however, additionally postulates that L
has an (restrictive) integral-representation as in (2); see, for instance, Cardot, Mas and Sarda
(2007), Cai and Hall (2006), Hall and Horowitz (2007) in the context of functional linear
regression, or Kraus (2015) in a setup similar to ours.

There is, however, no reason to expect that the optimal reconstruction operator L satisfies
(2). To see the point note that L(XO

i )(u) can be represented in the form (2) if and only
if the additional square summability condition

∑∞
k=1〈φO

k , γu〉2
2/(λ

O
k )2 < ∞ is satisfied for

u ∈ M . Only then the series
∑L

k=1(〈φO
k , γu〉2/λ

O
k )φO

k (v), v ∈ O , converge as L → ∞ and
define a function βu := ∑∞

k=1(〈φO
k , γu〉2/λ

O
k )φO

k (·) ∈ L
2(O) such that

∫
O βu(v)XO

i (v) dv =∑∞
k=1 ξO

ik 〈φO
k ,βu〉2 = ∑∞

k=1 ξO
ik 〈φO

k , γu〉2/λ
O
k .

But consider again the reconstruction at a boundary point ϑ ∈ ∂M , where 〈φO
k , γϑ 〉2

simplifies to 〈φO
k , γϑ 〉2 = λO

k φO
k (ϑ), since for boundary points ϑ we have γϑ = γ O

ϑ and
γ O
ϑ (·) = γ O(ϑ, ·) = ∑∞

k=1 λO
k φO

k (ϑ)φO
k (·). Plugging this simplification into (3) and using

the Karhunen–Loéve decomposition of XO
i implies that L(XO

i )(ϑ) = ∑∞
k=1 ξO

ik φO
k (ϑ) =

XO
i (ϑ). This means that our reconstruction operator L indeed connects the “last observed”

value XO
i (ϑ) with the “first reconstructed” value L(XO

i )(ϑ). On the other hand, the sum∑L
k=1〈φO

k , γϑ 〉2
2/(λ

O
k )2 = ∑L

k=1(φ
O
k (ϑ))2 will generally tend to infinity as L → ∞, which

violates the additional condition necessary for establishing (2). Therefore, in general, L does
not constitute a regression operator.2

2A frequently used justification of the use of regression operators relies on the Riesz representation theorem

which states that any continuous linear functional L(XO
i )(u) can be represented in the form (2). This argument,

however, does not necessarily apply to the optimal linear functional L(XO
i )(u) which may not be a continu-
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The above arguments indicate that methods for estimating L should not be based on (2).
Any theoretical justification of such procedures has to rely on nonstandard asymptotics avoid-
ing the restrictive assumption that

∑∞
k=1〈φO

k , γu〉2
2/(λ

O
k )2 < ∞. This constitutes a major as-

pect of our asymptotic theory given in Section 4.
The problem of estimating L(XO

i ) from real data is considered in Section 3. Motivated by
our application, the estimation theory allows for an autocorrelated time series of functional
data and considers the practically relevant case where the function parts XO

i are only observed
at mi many discretization points (Yi1,Ui1), . . . , (Yimi

,Uimi
) with Yij = XO

i (Uij ) + εij , i =
1, . . . , n, and j = 1, . . . ,mi .

We basically follow the standard approach to estimate L(XO
i ) through approximating the

infinite series (3) by a truncated sequence relying only on the K largest eigenvalues of the
covariance operator. But note that our data structure implies that we are faced with two si-
multaneous estimation problems. One is efficient estimation of L(XO

i )(u) for u ∈ M , the
other one is a best possible estimation of the function Xi(u) for u ∈ O from the observations
(Yi1,Ui1), . . . , (Yimi

,Uimi
). We consider two different estimation strategies; both allow us to

accomplish these two estimation problems.
The first consists in using a classical functional principal components based approximation

of Xi on O , which is simply given by extending the operator L in (3) by extending γu(v) =
Cov(XM

i (u),XO
i (u)) to γu(v) = Cov(Xi(u),Xi(u)). This way the empirical counterpart of

the truncated sum

LK

(
XO

i

)
(u) =

K∑
k=1

ξO
ik

〈φO
k , γu〉2

λO
k

for u ∈ O ∪ M,

will simultaneously provide estimates of the true function XO
i (u) on the observed interval O

and of the optimal reconstruction L(XO
i )(u) on the unobserved interval M .

The second consists in estimating the true function XO
i (u) on the observed interval O

directly from the observations (Yi1,Ui1), . . . , (Yimi
,Uimi

) using, for instance, a local linear
smoother and to estimate L(XO

i )(u) for u ∈ M through approximating the infinite series (3)
by its truncated version. But a simple truncation would result in a jump at a boundary point
ϑu, with ϑu denoting the closest boundary point to the considered u ∈ M , that is, ϑu = Ai

if |Ai − u| < |Bi − u| and ϑu = Bi otherwise. We know, however, that for any u ≈ ϑu we
must have 〈φO

k , γu〉2 ≈ λO
k φO

k (ϑ) for all k ≥ 1, since 〈φO
k , γϑ 〉2 = λO

k φO
k (ϑ) for all boundary

points ϑu ∈ ∂M . Therefore, we explicitly incorporate boundary points and estimate L(XO
i )

by the empirical counterpart of the truncated sum

L∗
K

(
XO

i

)
(u) = XO

i (ϑu) +
K∑

k=1

ξO
ik

(〈φO
k , γu〉2

λO
k

− φO
k (ϑu)

)
, u ∈ M.

The above truncation does not lead to an artificial jump at a boundary point ϑu, since
(〈φO

k , γu〉2/λ
O
k − φO

k (ϑu)) → 0 continuously as u → ϑu for all k = 1, . . . ,K .
For estimating the mean and covariance functions—the basic ingredients of our recon-

struction operator—we suggest using Local Linear Kernel (LLK) estimators. These LLK
estimators are commonly used in the context of sparse functional data (see, e.g., Yao, Müller
and Wang (2005a)), though, we do not consider the case of sparse functional data. In the con-
text of partially observed functional data, it is advisable to use LLK estimators, since these

ous functional L2(O) → R. In particular, although being a well-defined linear functional, the point evaluation
L(XO

i )(ϑ) = XO
i (ϑ) is not continuous, since for two functions f,g ∈ L

2(O) an arbitrarily small L2-distance
‖f − g‖2 may go along with a very large pointwise distance |f (ϑ) − g(ϑ)| (see the example in Appendix B.1 of
the supplementary paper Kneip and Liebl (2019)).
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will guarantee smooth estimation results, which is not the case when using the empirical
moment estimators for partially observed functions as proposed in Kraus (2015).

We derive consistency as well as uniform rates of convergence under a double asymptotic
which allows us to investigate all data scenarios from almost sparse to dense functional data.
This leads to different convergence rates depending on the relative order of m and n. For
data situations, as in our real data application where m is considerably smaller than n and
all sample curves are of similar structure, we show that our functional principal components
based estimator achieves almost parametric convergence rates and can provide better rates
of convergence than conventional nonparametric smoothing methods, such as, for example,
local linear regression.

Our development focuses on the regular situation where (with probability tending to 1)
there exist functions that are observed over the total interval [a, b]. Only then is it possible to
consistently estimate the covariance function γ (u, v) for all possible pairs (u, v) ∈ [a, b]2. In
our application this is not completely fulfilled, and there is no information on γ (u, v) for very
large values |u − v|. Consequently, for some intervals O and M the optimal reconstruction
operator cannot be identified. This situation corresponds to the case of so-called fragmen-
tary observations, as considered by Delaigle and Hall (2013, 2016), Descary and Panaretos
(2019), and Delaigle et al. (2018). To solve this problem we suggest an iterative reconstruc-
tion algorithm. Optimal reconstruction operators are determined for a number of smaller
subintervals, and a final operator for a larger interval is obtained by successively plugging in
the reconstructions computed for the subintervals. We also provide some inequality bounding
the accumulating reconstruction error.

The rest of this paper is structured as follows: Section 2 introduces our reconstruction op-
erator and contains the optimality result. Section 3 comprises our estimation procedure. The
asymptotic results are presented in Section 4. Section 5 describes the iterative reconstruction
algorithm. Section 6 contains the simulation study and Section 7 the real data application.
All proofs can be found in the online supplement supporting this article (Kneip and Liebl
(2019)).

2. Optimal reconstruction of partially observed functions. Let our basic setup be as
described in Section 1. Any (centered) random function XO

i ∈ L
2(O) then adopts the well-

known Karhunen–Loéve (KL) representation

XO
i (u) =

∞∑
k=1

ξO
ik φO

k (u), u ∈ O,(4)

with the principal component (pc) scores ξO
ik = 〈XO

i ,φO
k 〉2, where E(ξO

ik ) = 0 and
E(ξO

ik ξO
il ) = λO

k for all k = l and zero else and λO
1 > λO

2 > · · · > 0. We want to note that all
arguments in this section also apply to the more general case where the observed subdomain
O = ⋃J

j=1[Aj ,Bj ] consists of a finite number 1 ≤ J < ∞ of mutually disjoint subintervals
[Aj ,Bj ] ⊆ [a, b].

By the classical eigen-equations we have that

φO
k (u) = 〈φO

k , γ O
u 〉2

λO
k

, u ∈ O,(5)

where γ O
u (v) = γ O(u, v) = E(XO

i (u)XO
i (v)). Equation (5) can obviously be generalized for

all u ∈ M which leads to the following “extrapolated” kth basis function:

φ̃O
k (u) = 〈φO

k , γu〉2

λO
k

, u ∈ M,(6)
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where γu(v) = E(XM
i (u)XO

i (v)). Equation (6) leads to the definition of our reconstruction
operator Lu as a generalized version of the KL representation in (4):

L
(
XO

i

)
(u) =

∞∑
k=1

ξO
ik φ̃O

k (u), u ∈ M.(7)

REMARK. Note that the KL representation provides the very basis of a majority of the
works in functional data analysis (cf. Horváth and Kokoszka (2012), Ramsay and Silverman
(2005)). Functional Principal Component Analysis (FPCA) relies on approximating Xi by its
first K principal components. This is justified by the best basis property, that is, the property
that for any K ≥ 1

∞∑
k=K+1

λO
k = E

(∥∥∥∥∥XO
i (u) −

K∑
k=1

ξO
ik φO

k (u)

∥∥∥∥∥
2

2

)

= min
v1,...,vK∈L2(O)

E

(
min

ai1,...,aik∈R

∥∥∥∥∥XO
i (u) −

K∑
k=1

aikvk(u)

∥∥∥∥∥
2

2

)
.

(8)

REMARK. For later use it is important to note that the definitions of φ̃O
k (u) and

L(XO
i )(u) in (6) and (7) can be extended for all u ∈ O ∪ M by setting γu = E(Xi(u)Xi(v)).

Then by construction φ̃O
k (u) = φO

k (u) for all u ∈ O and, therefore, L(XO
i )(u) = XO

i (u) for
all u ∈ O .

2.1. A theoretical framework for reconstruction operators. Before we consider the op-
timality properties of L, we need to define a sensible class of operators against which to
compare our reconstruction operator. We cannot simply choose the usual class of regression
operators, since L does generally not belong to this class, as pointed out in Section 1. There-
fore, we introduce the following (very large) class of “reconstruction operators”:

DEFINITION 2.1 (Reconstruction operators). Let the (centered) random function XO
i

have a KL representation as in (4). We call every linear operator L : L2(O) → L
2(M) a

“reconstruction operator with respect to XO
i ” if V(L(XO

i )(u)) < ∞ for all u ∈ M .

It is important to note that this definition of “reconstruction operators” is specific to the
considered process Xi . This should not be surprising, since a best possible linear reconstruc-
tion will of course depend on the structure of the relevant random function Xi . The following
theorem provides a useful representation of this class of linear operators:

THEOREM 2.1 (Representation of reconstruction operators). Let L : L2(O) → L
2(M)

be a “reconstruction operator with respect to XO
i ” according to Definition 2.1. Then there

exists a unique (deterministic) parameter function αu ∈ H such that almost surely

L
(
XO

i

)
(u) = 〈

αu,X
O
i

〉
H , u ∈ M,

where H := {f ∈ L
2(O) : ‖f ‖2

H < ∞} is a Hilbert space with inner product 〈f,g〉H :=∑∞
k=1〈f,φO

k 〉2〈g,φO
k 〉2/λ

O
k for all f,g ∈ L

2(O) and induced norm ‖f ‖H = √〈f,f 〉H .

The space H is the Reproducing Kernel Hilbert Space (RKHS) that takes the covariance
kernel γ O(u, v) = ∑∞

k=1 λO
k φO

k (u)φO
k (v) as its reproducing kernel. By construction, we ob-

tain that the variance of L(XO
i )(u) equals the H -norm of the parameter function αu, that is,

V(L(XO
i )(u)) = ‖αu‖2

H .
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Let us consider two examples of possible reconstruction operators. While the first example
does not belong the class of regression operators, the second example is a regression operator
demonstrating the more restrictive model assumptions.

EXAMPLE 1 (Point of impact). Consider L(XO
i )(u) = XO

i (τ ), that is, a model with
one “impact point” τ ∈ O for all missing points u ∈ M . With γτ (v) := γ (τ, v) =∑∞

k=1 λO
k φO

k (τ )φO
k (v) we have λO

k φO
k (τ ) = 〈γτ ,φ

O
k 〉2, and hence

L
(
XO

i

)
(u) = XO

i (τ ) =
∞∑

k=1

ξO
ik φO

k (τ ) =
∞∑

k=1

〈XO
i ,φO

k 〉2λ
O
k φO

k (τ )

λO
k

=
∞∑

k=1

〈XO
i ,φO

k 〉2〈γτ ,φ
O
k 〉2

λO
k

= 〈
γτ ,X

O
i

〉
H ,

(9)

where γτ (·) := ∑∞
k=1 λO

k φO
k (τ )φO

k (·) ∈ H with ‖γτ‖2
H = ∑∞

k=1
(λO

k )2φO
k (τ)2

λO
k

= ∑∞
k=1 λO

k ×
φO

k (τ )2 = V(Xi(τ )) < ∞.

EXAMPLE 2 (Regression operator). Let L be a regression operator (see (2)). Then there
exists a βu ∈ L

2(O) such that L(XO
i )(u) = 〈βu,X

O
i 〉2. Since eigenfunctions can be com-

pleted to an orthonormal basis of L
2(O), we necessarily have that

∑∞
k=1 β2

u,k < ∞ for
βu,k := 〈βu,φ

O
k 〉2. Then

L
(
XO

i

)
(u) = 〈

βu,X
O
i

〉
2 =

∞∑
k=1

ξO
ik βu,k =

∞∑
k=1

〈XO
i ,φO

k 〉λO
k βu,k

λO
k

=
∞∑

k=1

〈XO
i ,φO

k 〉〈αu,φ
O
k 〉

λO
k

= 〈
αu,X

O
i

〉
H ,

(10)

where αu(·) := ∑∞
j=1 λO

k βu,kφ
O
k (·) ∈ H with ‖α‖2

H = ∑∞
k=1

(λO
k )2β2

u,k

λO
k

= ∑∞
k=1 λO

k β2
u,k < ∞.

Also note that for any k we have 〈αu,φ
O
k 〉2 = λO

k βu,k . This means that for αu ∈ H the op-
erator 〈αu,X

O
i 〉H constitutes a regression operator if and only if in addition to ‖αu‖2

H =∑∞
k=1〈αu,φ

O
k 〉2

2/λ
O
k < ∞ we also have that

∑∞
k=1〈αu,φ

O
k 〉2

2/(λ
O
k )2 < ∞ (the latter is not

satisfied in Example 1).

These examples show that Definition 2.1 leads to a very large class of linear operators
which contains the usually considered class of regression operators as a special case. Of
course, the class of reconstruction operators as defined by Definition 2.1 also contains much
more complex operators than those illustrated in the examples.

Using Theorem 2.1, our reconstruction problem in (3) of finding a “best linear” reconstruc-
tion operator minimizing the squared error loss can now be restated in a theoretically precise
manner: Find the linear operator L : L2(O) → L

2(M) which for all u ∈ M minimizes

E
[(

XM
i (u) − L

(
XO

i

)
(u)

)2]
with respect to all reconstruction operators L satisfying L(XO

i )(u) = 〈αu,X
O
i 〉H for some

αu ∈ H . In the next subsection we show that the solution is given by the operator L defined
in (7) which can now be rewritten in the form

L
(
XO

i

)
(u) = 〈

γu,X
O
i

〉
H , u ∈ M,(11)

where γu(v) = γ (u, v) for v ∈ O and u ∈ M . In particular, Theorem 2.2 below shows that
V(L(XO

i )(u)) = ‖γu‖2
H < ∞ for any u ∈ M , that is, that L is indeed a reconstruction opera-

tor according to Definition 2.1.
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REMARK. In the context of reconstructing functions, problems with the use of regression
operators are clearly visible. But the above arguments remain valid for standard functional
linear regression, where for some real-valued (centered) response variable Yi with V(Yi) < ∞
one aims to determine the best linear functional L̃ : L2(O) → R according to the model
Yi = L̃(XO

i ) + εi . Straightforward generalizations of Theorems 2.2 and 2.3 below then show
that the optimal functional L̃(XO

i ) is given by

L̃
(
XO

i

) = 〈
σ,XO

i

〉
H ,

where σ(u) := E(YiX
O
i (u)) for u ∈ O . Following the arguments of Example 2 it is immedi-

ately seen that it constitutes a restrictive, additional condition, to assume that L̃(XO
i ) can be

rewritten in the form L(XO
i )(u) = 〈β,XO

i 〉2 for some βu ∈ L
2(O).

2.2. Theoretical properties. Result (a) of the following theorem assures that L is a re-
construction operator according to Definition 2.1, and result (b) assures unbiasedness.

THEOREM 2.2. Let the (centered) random function XO
i have a KL representation as in

(4).

(a) L(XO
i )(u) in (7) has a continuous and finite variance function, that is, V(L(XO

i )(u)) <

∞ for all u ∈ M .
(b) L(XO

i )(u) is unbiased in the sense that E(L(XO
i )(u)) = 0 for all u ∈ M .

The following theorem describes the fundamental properties of the reconstruction error

Zi := XM
i −L

(
XO

i

)
, Zi ∈ L

2(M),

and contains the optimality result for our reconstruction operator L. Result (a) shows that the
reconstruction error Zi is orthogonal to XO

i . This result serves as an auxiliary result for result
(b) which shows that L(XO

i ) is the optimal linear reconstruction of XM
i . Finally, result (c)

allows us to identify cases where XM
i can be reconstructed without any reconstruction error.

THEOREM 2.3 (Optimal linear reconstruction). Under our setup it holds that:

(a) For every v ∈ O and u ∈ M ,

E
(
XO

i (v)Zi (u)
) = 0 and(12)

V
(
Zi (u)

) = E
((
Zi (u)

)2) = γ (u,u) −
∞∑

k=1

λO
k

(
φ̃O

k (u)
)2

.(13)

(b) For any linear operator L : L2(O) → L
2(M) that is a reconstruction operator with

respect to XO
i , according to Definition 2.1,

E
((

XM
i (u) − L

(
XO

i

)
(u)

)2) ≥V
(
Zi (u)

)
for all u ∈ M.

(c) Assume that the underlying process Xi is Gaussian, and let Xi,1 and Xi,2 be two
independent copies of the random variable Xi . Then for all u ∈ M the variance of the recon-
struction error can be written as

V
(
Zi (u)

) = 1

2
E

(
E

((
Xi,1(u) − Xi,2(u)

)2|XO
i,1 = XO

i,2
))

(14)

where XO
i,1 = XO

i,2 means that Xi,1(v) = Xi,2(v) for all v ∈ O .
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Whether or not a sensible reconstruction of partially observed functions is possible, of
course, depends on the character of the underlying process. For very rough and unstructured
processes no satisfactory results can be expected. An example is the standard Brownian mo-
tion on [0,1] which is a pure random process with independent increments. If Brownian mo-
tions Xi are only observed on an interval O := [0, ϑ], it is well known that the “best” (and
only unbiased) prediction of Xi(u) for u ∈ M := (ϑ,1] is the last observed value XO

i (ϑ).
This result is consistent with our definition of an “optimal” operator L: The covariance func-
tion of the Brownian motion is given by γu(v) = min(u, v), and hence for all v ∈ [0, ϑ] and
u ≥ ϑ one obtains γu(v) = min(u, v) = min(ϑ, v) = γϑ(v) = v. Therefore, by (11) and (9)
we have L(XO

i )(u) = 〈γu,X
O
i 〉H = 〈γϑ,XO

i 〉H = XO
i (ϑ) for all u ∈ [ϑ,1]. Although in this

paper we focus on processes that lead to smooth, regularly shaped sample curves, the Brow-
nian motion is of some theoretical interest since it defines a reconstruction operator which
obviously does not constitute a regression operator. Also note that L(XO

i )(u) = XO
i (ϑ) will

provide perfect reconstructions if a.s. sample functions Xi(u) are constant for all u ∈ M .
Result (c) of Theorem 2.3 may be useful to identify cases that allow for a perfect re-

construction. By (14) there is no reconstruction error, that is, V(Zi (u)) = 0 for u ∈ M if
the event XO

i = XO
j implies that also XM

i = XM
j . This might be fulfilled for very sim-

ply structured processes. It is necessarily satisfied for finite dimensional random functions
XK

i (u) = ∑K
k=1 ξikφk(u), λK+1 = λK+2 = · · · = 0, as long as the basis functions φ1, . . . , φK

are linearly independent over O .

2.3. A deeper look at the structure of L. Remember that the definition of L can be ex-
tended to an operator L : L2(O) → L

2(O ∪ M). For elements u ∈ O of the observed part O

the best “reconstruction” of Xi(u) is obviously the observed value Xi(u) itself, and indeed
for any u ∈ O (11) yields L(XO

i )(u) = 〈γu,X
O
i 〉H = Xi(u). Equation (7) then holds with

φ̃O
k (u) := 〈φO

k , γu〉2

λO
k

= φO
k (u), u ∈ O.

Since γu(v) = γ (u, v) = E(Xi(u)Xi(v)) is a continuous function on O ∪ M it follows
that the resulting “reconstructed” function [L(XO

i )] is continuous on O ∪ M . In particular,
[L(XO

i )] is continuous at any boundary point ϑu ∈ ∂M , and

lim
u∈M,u→ϑu

L
(
XO

i

)
(u) = Xi(ϑu) as well as

lim
u∈M,u→ϑu

φ̃O
k (u) = φO

k (ϑu), k = 1,2, . . .

Equation (7) together with our definition of Zi imply that the complete function Xi on
O ∪ M can be represented in the form

Xi(v) =
∞∑

k=1

ξO
ik φO

k (v), v ∈ O and

Xi(u) =
∞∑

k=1

ξO
ik φ̃O

k (u) +Zi (u), u ∈ M.

(15)

This sheds some additional light on result (14). We will have Zi (u) ≈ 0 and Xi(u) ≈∑∞
k=1 ξO

ik φ̃O
k (u) if on the segment M the process is essentially driven by the same random

components ξO
ik as those determining its structure on O . Additional random components

Zi (u), not present on O , and uncorrelated with ξO
ik , then have to be of minor importance. If

the observed interval is sufficiently long, then this may be approximately true for processes
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FIG. 2. Scatter plot of the observed data pairs (Yij ,Uij ).

with smooth, similarly shaped trajectories. Note that even if Xi(u) = ∑∞
k=1 ξO

ik φ̃O
k (u) for

u ∈ M , the eigenfunctions of XM
i will usually not coincide with φ̃O

k for u ∈ M , since there is
no reason to expect that these functions are mutually orthogonal.

3. Estimation. We typically do not observe a functional trajectory directly, but only
its discretization with or without measurement errors. For instance, Figure 1 shows the
pre-smoothed functions; however, the actual raw data is shown in Figure 2. Let X

O
i :=

((Yi1,Ui1), . . . , (Yimi
,Uimi

)) denote the observable data pairs of a function XO
i , where

Yij = XO
i (Uij ) + εij , i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi},(16)

and Uij ∈ Oi .
For the rest of the paper, we focus on the case where Oi = [Ai,Bi] as in our real data

application. However, we give detailed descriptions on how to use our methods in the more
general cases where Oi consists of several mutually disjoint subintervals. We consider the
case where Ui1, . . . ,Uimi

are iid random variables with strictly positive density over the ran-
dom subinterval [Ai,Bi], which in practice can be approximated by Ai ≈ min1≤j≤mi

(Uij )

and Bi ≈ max1≤j≤mi
(Uij ). Let the error term εij be a real iid random variable that is inde-

pendent from all other stochastic model components and has mean zero and finite (possibly
zero) variance V(εij ) = σ 2 with 0 ≤ σ 2 < ∞. Motivated by our real data application we will
concentrate on the case that n is considerably larger than mi , which also holds in many other
important applications.

So far, we have considered centered random functions XO
i . Henceforth, we consider non-

centered functions and will make the empirical centering explicit in all estimators. As already
outlined in Section 1, we propose to estimate L(XO

i )(u) by the empirical counterpart of the
truncated sum

LK

(
XO

i

)
(u) = μ(u) +

K∑
k=1

ξO
ik φ̃O

k (u) = μ(u) +
K∑

k=1

ξO
ik

〈φO
k , γu〉2

λO
k

,(17)

where the unknown true values of ξO
ik and φ̃O

k (u) are replaced by suitable estimates defined
below.

Remember, however, that our data structure in (16) implies that we are faced with two
simultaneous estimation problems. One is efficient estimation of L(XO

i )(u) for u ∈ M , the
other one is the estimation of the underlying function Xi(u) for u ∈ O . There are two possible
strategies which can be employed.
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The first is motivated by the best basis property (8) and simply consists in using an FPCA-
approximation of Xi on O . Recall that L(XO

i )(u) can be extended to an operator on O ∪ M .
For u ∈ O we then obtain φ̃O

k (u) = 〈φO
k , γu〉2/λ

O
k = φO

k (u), and thus L(XO
i )(u) = Xi(u).

That is, estimates L̂K(XO
i )(u) of LK(XO

i )(u) for u ∈ O ∪ M will simultaneously provide
estimates of the true function Xi(u) on the observed interval O and of the optimal recon-
struction L(XO

i )(u) on the unobserved interval M .
The second approach is to rely on nonparametric curve estimation, for example, local

linear smoothers, to approximate XO
i on O , while (17) is only used for reconstructing the

unobserved part M . We then, however, run into the boundary problem already mentioned
in the introduction. Let ϑu be the boundary point closest to the considered u ∈ M , that is,
ϑu = Ai if |Ai − u| < |Bi − u| and ϑu = Bi else. Usually nonparametric estimates of XO

i

and reconstruction estimates based on (17) will not coincide for u = Ai or u = Bi . A correc-
tion, leading to continuous function estimates on O ∪ M may then be based on the identity
L(XO

i )(u) = XO
i (ϑu) +L(XO

i )(u) −L(XO
i )(ϑu) and its truncated version

(18)

L∗
K

(
XO

i

)
(u) = XO

i (ϑu) +LK

(
XO

i

)
(u) −LK

(
XO

i

)
(ϑu)

= μ(u) − μ(ϑu) +
K∑

k=1

ξO
ik

(
φ̃O

k (u) − φ̃O
k (ϑu)

)
for u ∈ M

In this paper we propose to use the following empirical counterparts of LK(XO
i )(u) and

L∗
K(XO

i )(u):

L̂K

(
X

O
i

)
(u) := μ̂(u;hμ) +

K∑
k=1

ξ̂O
ik

ˆ̃
φO

k (u) for u ∈ O ∪ M,

with ˆ̃
φO

k (u) := 〈φ̂O
k , γ̂u〉2

λ̂O
k

, k = 1, . . . ,K,

(19)

L̂∗
K

(
X

O
i

)
(u) := X̂O

i (ϑu;hX) + L̂K

(
X

O
i

)
(u) − L̂K

(
X

O
i

)
(ϑu)

= X̂O
i (ϑu;hX) + μ̂(u;hμ) − μ̂(ϑu;hμ)

+
K∑

k=1

ξ̂O
ik

( ˆ̃
φO

k (u) − φ̂O
k (ϑu)

)
,

(20)

where X̂O
i denotes the LLK estimator of XO

i (see (21)), μ̂ denotes the LLK estimator of μ

(see (22)), γ̂u denotes the LLK estimator of the covariance function (see (23)), φ̂O
k and λ̂O

k

denote the estimators of the eigenfunctions and eigenvalues (see (24)), and ξ̂ik denote the
estimators of the pc-scores (see (25)).

REMARK. Estimator (19) can be directly applied in the general case, where O =⋃J
j=1[Aj ,Bj ] consists of a union of finitely many mutually disjoint subintervals [Aj,Bj ] ⊆

[a, b]. Estimator (20), however, must be adjusted for this general case as follows. First,
consider a point u ∈ M located between the observed intervals [Aj ,Bj ] and [Aj+1,Bj+1]
for any j = 1, . . . , J − 1. In this case the quantities X̂O

i (ϑu;hX) and φ̂O
k (ϑu) in (20) have

to be replaced by the linear interpolations (1 − wu)X̂
O
i (Bj ;hX) + wuX̂

O
i (Aj+1;hX) and

(1 −wu)φ̂
O
k (Bj )+wuφ̂

O
k (Aj+1) with wu = (u−Bj)/(Aj+1 −Bj). Second, for 0 ≤ u < A1

replace X̂O
i (ϑu;hX) and φ̂O

k (ϑu) by X̂O
i (A1;hX) and φ̂O

k (A1). Third, for BJ < u ≤ 1 replace
X̂O

i (ϑu;hX) and φ̂O
k (ϑu) by X̂O

i (BJ ;hX) and φ̂O
k (BJ ).
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In our asymptotic analysis (Section 4) we focus on the case of single subintervals Oi =
[Ai,Bi] which leads to comprehensible theorems and proofs.

For u ∈ O the LLK estimator X̂O
i (u;hX) is defined by X̂O

i (u;hX) = β̂0, where

(β̂0, β̂1) = arg min
β0,β1

mi∑
j=1

[
Yij − β0 − β1(Uij − u)

]2
KhX

(Uij − u)(21)

for Kh(·) = κ(·/h)/h. The kernel function κ is assumed to be a univariate symmetric pdf
with compact support supp(κ) = [−1,1] such as, for example, the Epanechnikov kernel (see
Assumption A5). The usual kernel constants are given by ν2(κ) := ∫

v2κ(v) dv, and R(κ) :=∫
κ(v)2 dv.
The LLK mean estimator μ̂(u;hμ) is defined by μ̂(u;hμ) = β̂0, where

(β̂0, β̂1) = arg min
β0,β1

n∑
i=1

mi∑
j=1

[
Yij − β0 − β1(Uij − u)

]2
Khμ(Uij − u).(22)

The LLK estimator γ̂u(v) = γ̂ (u, v;hγ ) is defined as γ̂ (u, v;hγ ) = β̂0, where

(β̂0, β̂1, β̂2) = arg min
β0,β1,β2

n∑
i=1

∑
1≤j,l≤mi

[
Ĉij l − β0 − β1(Uij − u) − β2(Uil − v)

]2

× Khγ (Uij − u)Khγ (Uil − v),

(23)

with raw-covariance points Ĉij l = (Yij − μ̂(Uij ))(Yil − μ̂(Uil)). Like Yao, Müller and Wang
(2005a), we do not include the diagonal raw-covariances Ĉijj for which Uij = Uij as these
would introduce an estimation bias through taking squares of the error term εij contained in
Yij .

Estimates of the eigenvalues λO
k and the eigenfunctions φO

k are defined by the correspond-
ing solutions of the empirical eigen-equations∫

O
γ̂ (u, v;hγ )φ̂O

k (v) dv = λ̂O
k φ̂O

k (u), u ∈ O.(24)

REMARK. The implementation of (24) can be done as usually by discretizing the
smoothed covariance γ̂ (ur , vs) using regular grid points (ur, vs) ∈ [a, b]2, r, s ∈ {1, . . . ,L}
(see, for instance, Rice and Silverman (1991)). For approximating the eigenvalues and eigen-
functions of 
O(x)(u) = ∫

γ O(u, v)x(v) dv one needs to construct the matrix (γ̂ O(ur, vs))r,s
from the grid points falling into [A,B] × [A,B]. In the case of several disjoint intervals the
matrix must be assembled from the grid points falling into the intervals [Aj ,Bj ]× [Aj ′,Bj ′ ],
j, j ′ ∈ {1, . . . , J }.

Finally, the empirical pc-score ξ̂O
ik is defined by the following integral approximation of

ξO
ik :

ξ̂O
ik =

mi∑
j=2

φ̂O
k (Ui(j))

(
Yi(j) − μ̂(Ui(j);hμ)

)
(Ui(j) − Ui,(j−1)),(25)

where (Yi(j),Ui(j)) are ordered data pairs for which the ordering is determined through the
order sample Ui(1) ≤ · · · ≤ Ui(mi)

In our theoretical analysis we consider K ≡ Knm → ∞ as the sample size nm → ∞,
where m ≤ mi for all i = 1, . . . , n. In practice, the truncation parameter K can be chosen by
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one of the usual procedures such as, for instance, Cross Validation or the Fraction of Variance
Explained (FVE) criterion.

Alternatively, one can use an adapted version of the GCV criterion in Kraus (2015) in order
to define an M-specific GCV criterion. For this let C denote the index set of the completely
observed functions Xl , l ∈ C, with [a, b] ≈ [min1≤j≤mi

(Ulj ),max1≤j≤m(Ulj )], for instance,
with min1≤j≤mi

(Ulj ) ∈ [a, a + (b − a)/10] and min1≤j≤mi
(Ulj ) ∈ [b − (b − a)/10, b] and

define the following vectors by partitioning the complete data-vectors into pseudo-missing
and pseudo-observed parts:

YM
l = (Ylj : j = 1, . . . ,ml;Ulj ∈ M)�,

X
O
l = (

(Ylj ,Ulj ) : j = 1, . . . ,ml;Ulj ∈ O
)� and

ŶM
lK = (

L̂K

(
X

O
l

)
(Ulj ) : j = 1, . . . ,ml;Ulj ∈ M

)�
.

This allows us to compute the weighted sum of the residual sum of squares ‖YM
l − ŶM

lK‖2

for reconstructions over M

RSSM(K) = ∑
l∈C

∥∥YM
l − ŶM

lK

∥∥2
/
∣∣YM

l

∣∣,
where |YM

l | is the number of elements in YM
l . The GCV criterion for reconstructing functions

over M is

GCVM(K) = RSSM(K)

(1 − K/|C|)2 ,(26)

where |C| is the number of elements in C, that is, the number of complete functions.

4. Asymptotic results. Our theoretical analysis analyzes the reconstruction of an arbi-
trary sample function Xi satisfying O ⊆ Oi = [Ai,Bi].

Our asymptotic results on the convergence of our nonparametric estimators are developed
under the following assumptions which are generally close to those in Yao, Müller and Wang
(2005b) and Hall, Müller and Wang (2006). We additionally allow for weakly dependent time
series of random functions (Xi)i , and we consider a different asymptotic setup excluding the
case of sparse functional data. Only second-order kernels are employed.

A1 (Stochastic) For some dmin > 0 the conditional random variables Ui1|Oi, . . . ,Uim|Oi

are iid with pdf fU |Oi
(u) ≥ dmin for all u ∈ Oi = [Ai,Bi] and zero else. For the marginal

pdf fU it is assumed that fU(u) > 0 for all u ∈ [a, b] and zero else. The time series
(Ai)i=1,...,n, (Bi)i=1,...,n, and (Xi)i=1,...,n are strictly stationary ergodic (functional) time
series with finite fourth moments (i.e., E(‖Xi‖4

2) < ∞ in the functional case) and autoco-
variance functions with geometric decay. That is, there are constants CA, CB , C, Ċ, ιA, ιB ,
ι, ι̇ with 0 < CA,CB,C, Ċ < ∞ and 0 < ιA, ιB, ι, ι̇ < 1, such that |Cov(Ai,Bi+h)| ≤ CAιhA,
|Cov(Bi,Bi+h)| ≤ CBιhB ,

sup
(u,v)∈[a,b]2

∣∣γh(u, v)
∣∣ ≤ Cιh,

and

sup
(u1,v1,u2,v2)∈[a,b]4

∣∣γ̇h

(
(u1, v1), (u2, v2)

)∣∣ ≤ Ċι̇h

for all h ≥ 0, where γh(u, v) := Cov(Xi+h(u),Xi(v)) and γ̇h((u1, v1), (u2, v2)) :=
Cov(Xi+h(u1)Xi+h(v1),Xi(u2)Xi(v2)).
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The error term εij is assumed to be independent from all other random variables. The
random variables Uij and Oi are assumed to be independent from (Xi)i=1,...,n, which leads
to the so-called “missing completely at random” assumption. The event Oi × Oi = [a, b]2

has a strictly positive probability and Bi > Ai almost surely.
A2 (Asymptotic scenario) nm → ∞ with m ≤ mi for all i = 1, . . . , n, where n → ∞ and

m = m(n) � nθ with 0 < θ < ∞. Here, a(n) � b(n) is used to denote that (a(n)/b(n)) → c

as n → ∞, where c is some constant 0 < c < ∞.
A3 (Smoothness) For μ̂: All second order derivatives of μ(u) on [a, b], fU(u) on [a, b],

γ (u, v) on [a, b]2, and of fYU(y,u) on R × [a, b] are uniformly continuous and bounded,
where fYU is the joint pdf of (Yij ,Uij ). For γ̂ : All second order derivatives of γ (u, v) on
[a, b]2, fUU(u, v) on [a, b]2, γ̇ ((u1, v1), (u2, v2)) on [a, b]4, and of fCUU(c,u, v) on R ×
[a, b]2 are uniformly continuous and bounded, where fCUU is the joint pdf of (Cijl,Uij ,Uil).
Finally, fU |Oi

(u) is a.s. continuously differentiable, and E(|f ′
U |Oi

(u)|/fU |Oi
(u)2) < ∞, and

Xi is a.s. twice continuously differentiable.
A4 (Bandwidths) For estimating XO

i : hX → 0 and (mhX) → ∞ as m → ∞. For es-
timating μ: hμ → 0 and (nmhμ) → ∞ as nm → ∞. For estimating γ : hγ → 0 and
(nMhγ ) → ∞ as nM → ∞, where M = m2 − m.

A5 (Kernel function) κ is a second-order kernel with compact support supp(κ) = [−1,1].
In Assumption A2, we follow Zhang and Chen (2007) and consider a deterministic sample

size m → ∞, where m ≤ mi for all i = 1, . . . , n. As Hall, Müller and Wang (2006), Zhang
and Chen (2007) and Zhang and Wang (2016) we do not consider random numbers mi , but if
mi are random, our theory can be considered as conditional on mi .

While A1–A5 suffice to determine rates of convergence of mean and covariance estima-
tors, it is well-known from the literature that rates of convergence of estimated eigenfunctions
will depend on the rate of decay characterizing the convergence of λO

k to zero as k → ∞.
We want to note that for a subinterval O ⊂ [a, b] the decay of eigenvalues λO

1 , λO
2 , . . .

will usually be faster than the rate of decay of the eigenvalues λC
1 , λC

2 , . . . of the complete
covariance operator defined on [a, b]2 ⊃ O2. This is easily seen. Let γ C

1 , γ C
2 , . . . denote the

corresponding eigenfunctions on [a, b], and define γ
C|O
k ∈ L

2(O) by γ
C|O
k (u) = γk(u) for

u ∈ O and k = 1,2, . . . . For the special case vk = γ
C|O
k , k = 1, . . . ,K , inequality (8) then im-

plies that for all K ≥ 1 we have
∑∞

k=K+1 λO
k ≤ ∑∞

k=K+1 λC
k

∫
O γ

C|O
k (u)2 du ≤ ∑∞

k=K+1 λC
k ,

since
∫
O γ

C|O
k (u)2 du ≤ ∫ b

a γ C
k (u)2 du = 1 for all k = 1,2, . . . .

To complete our asymptotic setup, we consider the reconstruction of arbitrary sample
functions Xi observed over an interval Oi = [Ai,Bi] with length Bi − Ai ≥ �min, where
0 < �min < b − a is an (arbitrary) constant. We then impose the following additional assump-
tions.

A6 (Eigenvalues) For any subinterval O = [A,B] ⊂ [a, b] with B −A ≥ �min the ordered
eigenvalues λO

1 > λO
2 > · · · > 0 have all multiplicity one. Furthermore, there exist some aO >

1 and some 0 < cO < ∞, possibly depending on O , such that λO
k − λO

k+1 ≥ cOk−aO−1 with
0 < cO < ∞, and λO

k = O(k−aO ) as well as 1/λO
k = O(kaO ) as k → ∞.

A7 (Eigenfunctions) For any subinterval O = [A,B] ⊂ [a, b] with B −A ≥ �min there ex-
ists a constant 0 < DO < ∞ such that supu∈[a,b] supk≥1 |φ̃O

k (u)| ≤ DO (recall that φ̃O
k (U) =

φO
k (u) for u ∈ O).

Assumption A6 requires a polynomial decay of the sequence of eigenvalues. It cannot be
tested, but it corresponds to the usual assumption characterizing a majority of work concern-
ing eigenanalysis of functional data, although some authors also consider exponential decays.
There exist various types of functional data, but this paper focuses on applications where the
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true sample functions are smooth and all possess a similar functional structure. This is quite
frequent in practice, and in applied papers it is then often found that few functional principal
components suffice to approximate sample functions with high accuracy. In view of the best
basis property (8) one may then tend to assume that A6 holds for some very large aO � 1.
Indeed, for increasing k eigenfunctions φO

k will become less and less “smooth” since the
number of sign changes will necessarily tend to infinity. If observed trajectories are smooth,
then the influence of such high-frequency components must be very small, indicating a very
small eigenvalue λO

k = E(ξO
k ) for large k. This is of substantial interest, since the theorems

below show that rates of convergence of our final estimators are better the larger aO .
Assumption A7 imposes a (typical) regularity condition on the structure of the eigen-

functions φO
k (u), since φ̃O

k (u) = φO
k (u) for u ∈ O . For u ∈ M = [a, b] \ O condition

|φ̃O
k (u)| ≤ DO is much weaker than the standard assumption of a regression operator which

would go along with the requirement
∑∞

k=1 φ̃O
k (u)2 < ∞. But, for u ∈ M , theory only ensures

that
∑∞

k=1 λk(φ̃
O
k (u))2 < ∞ (see Theorem 2.3(a)) and A7 is restrictive in so far as it excludes

the possible case that for u ∈ M we have |φ̃O
k (u)| → ∞ as k → ∞. We are not sure whether

the latter excluded case constitutes a realistic scenario in practical applications, since by (15)
it would correspond to the fairly odd situation that for large k the high-frequency components
ξO
ik possess much larger influence on M than on O . Nevertheless, we want to emphasize that

the arguments used in the proof of our theorems may easily be generalized to prove consis-
tency of our estimators even in this excluded case; however, rates of convergence deteriorate
and asymptotic expressions become much more involved.

THEOREM 4.1 (Preliminary consistency results). Under Assumptions A1–A5 we have
that:

(a) supu∈[a,b] |μ̂(u;hμ) − μ(u)| = Op(rμ)

(ã) Conditional on XO
i : supu∈O |X̂O

i (u;hμ,hX) − XO
i (u)| =Op(rX)

(b) sup(u,v)∈[a,b]2 |γ̂ (u, v;hγ ) − γ (u, v)| = Op(rμ + rγ ), where

rμ ≡ rμ(hμ,n,m) := h2
μ + 1/

√
nmhμ + 1/

√
n,

rX ≡ rX(hX,m) := h2
X + 1/

√
mhX,

rγ ≡ rγ (hγ , n,M) := h2
γ + 1/

√
nMh2

γ + 1/
√

n,

and where M = m2 − m and m ≤ mi for all i = 1, . . . , n (see A2 and A4).

If additionally Assumption A6 and A7 hold, we obtain for every subinterval O = [A,B] ⊂
[a, b] with B − A ≥ �min:

(c) supk≥1 |λ̂O
k − λO

k | = Op(rμ + rγ ) for all k ≥ 1

(d) sup1≤k≤K δO
k ‖ĉkφ̂

O
k − φO

k ‖2 =Op(rμ + rγ )

where ĉk := sgn(〈φ̂O
k ,φO

k 〉2) and δO
k := minj �=k{λO

j − λO
k }.

Related results can be found in Yao, Müller and Wang (2005a), Li and Hsing (2010), and
Zhang and Wang (2016). Our proof of results (a)–(b) follows that of Yao, Müller and Wang
(2005a), but is more restrictive as we allow only for compact second order kernels. Results
(c) and (d) follow from standard arguments as used in Bosq (2000).

THEOREM 4.2 (Consistency results for L̂K(XO
i )). Consider an arbitrary i ∈ 1, . . . , n

and assume that O = [A,B] ⊆ [a, b] satisfies B − A ≥ �min > 0. For some 0 < C < ∞
let K̄mn = C · (min{n1/2, (nM)1/3})1/(aO+3/2). The following results hold then under As-
sumptions A1-A7, for 1 ≤ K ≤ K̄mn, hX � m−1/5, hμ � (nm)−1/5 and hγ � (nM)−1/6, as
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n → ∞ and m → ∞ with m � nθ , 0 < θ < ∞. For any u ∈ [a, b]:

(27)

L̂K

(
X

O
i

)
(u)

= LK

(
XO

i

)
(u) +Op

(
K

(
1

m1/2 + KaO/2+3/2

min{n1/2, (nM)1/3}
))

,

L
(
XO

i

)
(u) −LK

(
XO

i

)
(u)

= O
(( ∞∑

k=K+1

λO
k

)1/2)
=O

(
K−(aO−1)/2)

.

Furthermore, for all u ∈ M := [a, b] \ O

(28)

L̂∗
K

(
X

O
i

)
(u)

= L∗
K

(
XO

i

)
(u) +Op

(
m−2/5 + K

(
1

m1/2 + KaO/2+3/2

min{n1/2, (nM)1/3}
))

,

L
(
XO

i

)
(u) −L∗

K

(
XO

i

)
(u)

= O
(( ∞∑

k=K+1

λO
k

)1/2)
=O

(
K−(aO−1)/2)

.

The theorem tells us that for any u ∈ [a, b] the estimator L̂K(XO
i )(u) achieves the same

rate of convergence. But recall that for u ∈ O = Oi we have L(XO
i )(u) = Xi(u), and thus

L̂K(XO
i )(u) can be seen as a nonparametric estimator of Xi . In contrast, for u ∈ M we have

L(XO
i )(u) = Xi(u) +Zi (u), and therefore the distance between Xi(u) and L̂K(XO

i )(u) will
additionally depend on the reconstruction error Zi (u).

Note that by the above result the rates of convergence depend on m and n, and the optimal
K depends on these quantities in a complex way. However, the situation simplifies if m is
considerably smaller than n such that m = mn � nθ for θ ≤ 1/2. The following corollary
then is a direct consequence of (27).

COROLLARY 4.1. Under the conditions of Theorem 4.2 additionally assume that θ ≤
1/2. With K ≡ Km � m1/(aO+2) we obtain for all u ∈ [a, b]∣∣L(

XO
i

)
(u)) − L̂K

(
X

O
i

)
(u)

∣∣ = Op

(
m

− aO−1
2(aO+2)

)
.(29)

Let us consider the simple case where mi = m for all i = 1, . . . , n, and recall that the
main difference between L̂K and L̂∗

K consists in the way of estimating Xi on the observed
interval O := Oi . L̂∗

K is based on local linear smoothing of the individual data (Yij ,Uij ),
j = 1, . . . ,m, and the associated estimation error of order m−2/5 appears in result (28). Twice
continuously differentiable functions are assumed, and using only individual data it is well-
known that m−2/5 constitutes the optimal rate of convergence of nonparametric function
estimators with respect to this smoothness class.

In contrast, L̂K(XO
i )(u) combines information from all n sample curves in order to es-

timate Xi(u) for u ∈ O . If all samples curves are structurally similar in the sense that A6
holds for a very large aO � 1, then (29) implies that the rate of convergence of L̂K(XO

i )(u)

is very close to the parametric rate m−1/2. That is, under the conditions of Corollary 4.1 (m
smaller than

√
n and aO � 1) it becomes advantageous to use L̂K(XO

i ) instead of L̂∗
K(XO

i )
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for estimating Xi on the observed interval, since L̂K(XO
i ) may provide faster rates of con-

vergence than the rate m−2/5 achieved by nonparametric smoothing of individual data.. We
believe that this is an interesting result in its own right, which to our knowledge has not yet
been established in the literature.

5. Iterative reconstruction algorithm. So far we have focused on the regular situation
where the covariance function γ (u, v) is estimable for all points (u, v) ∈ [a, b]2. Under this
situation we can reconstruct the entire missing parts of the functions, such that the recon-
structed functions X̃i with

X̃i(u) =
{
L

(
XO

i

)
(u) if u ∈ M,

XO
i (u) if u ∈ O

(30)

are identifiable for all u ∈ [a, b].
In our application, however, we face the more restrictive situation where the mean function

μ(u) can still be estimated for all u ∈ [a, b], but where there is no information on γ (u, v) for
large values |u − v|; see Figure 5. This makes it impossible to reconstruct the entire missing
part of a function, such that X̃i(u) cannot be identified for all u ∈ [a, b].

In order to reconstruct functions X̃i that cover the total interval [a, b], or at least a very
large part of it, we propose successively plugging in the optimal reconstructions computed
for subintervals. In the following we describe our iterative reconstruction algorithm:

ALGORITHM 5.1 (Iterative reconstruction algorithm).

1st Step. Denote the originally observed interval O as O1 and compute

X̃i,1(u) =
{
L

(
X

O1
i

)
(u) if u ∈ M1,

X
O1
i (u) if u ∈ O1

r th Step (r ≥ 2). Choose a new “observed” interval Or ⊂ Or−1∪Mr−1 and use X̃
Or

i (u) :=
X̃i,r−1(u) with u ∈ Or as the new “observed” fragment. Compute

X̃i,r (u) =
{
L

(
X̃

Or

i

)
(u) if u ∈ Mr,

X̃
Or

i (u) if u ∈ Or.

Join the reconstructed fragments X̃i,1, . . . , X̃i,r to form the new “observed” fragment X̃i,r−1
on Or−1 ∪ Mr−1 and repeat the r th step.

Stopping. Stop if
⋃r

l=1 Ol ∪ Ml = [a, b] or if r = rmax.

This algorithm has to be applied to every fragment XO
i . An exemplary first step of

the reconstruction algorithm is shown in Figure 3. The subinterval O1 ∪ M1 is deter-
mined by the original interval O1 and the extent to which γ can be estimated (see right
panel). The function X̃i,1 shown in the left panel still lacks the upper fragment for values
u ∈ [77362(MW),82282(MW)] such that a second step of the reconstruction algorithm is
necessary.

This second step is shown in Figure 4. There the new interval O2 ⊆ O1 ∪ M1 is chosen
such that the still missing upper fragment becomes reconstructible. The new large interval
O2 ∪ M2 contains the missing upper fragments, such that we can stop the algorithm.

The choice of the subset Or in the r th step is crucial. On the one hand, Or should be chosen
as large as possible to contain as much information as possible. On the other hand, Or must
be chosen such that Mr contains a still missing fragment which is—in tendency—met by
smaller intervals Or . That is, any efficient implementation of the algorithm and the choice of
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FIG. 3. Explanatory plots for the first run of the reconstruction algorithm.

rmax depends on the extend to which γ can be estimated. A simple practical implementation
is described in our application in Section 7.

In each iteration of the reconstruction algorithm we accumulate reconstruction errors. The
following proposition provides a theoretical description of this accumulation of reconstruc-
tion errors:

PROPOSITION 5.1 (Accumulated reconstruction error). For simplicity, let E(Xi(u)) = 0
for all u ∈ [a, b] and consider the second step of the reconstruction algorithm. Let X

M2
i (u)

denote a missing value that we aim to reconstruct by L(X̃
O2
i )(u) using X̃

O2
i which is taken

from the reconstruction of the 1st Step. The mean squared reconstruction error can then be
approximated as following:

E
((

X
M2
i (u) −L

(
X̃

O2
i

)
(u)

)2) ≤ E
((

X
M2
i (u) −L

(
X

O2
i

)
(u)

)2)
+E

((
X

M2
i (u) −L

(
X

O1
i

)
(u)

)2)
,

FIG. 4. Explanatory plots for the second run of the reconstruction algorithm.
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where L(X
O1
i ) and L(X

O2
i ) are the hypothetical reconstruction operators if γ were fully

observed over [a, b]2, and X
O2
i were observable.

That is, the mean squared reconstruction error in the second run of the iterative algo-
rithm is bounded from above by the two hypothetical mean squared reconstruction errors of
L(X

O1
i )(u) and L(X

O2
i )(u).

6. Simulation study. We compare the finite sample performance of our reconstruction
operators (19) and (20) with that of the PACE method proposed by Yao, Müller and Wang
(2005a) and the functional linear ridge regression model proposed by Kraus (2015). A further
interesting comparison method might be the functional linear regression model for sparse
functional data as considered by Yao, Müller and Wang (2005b). Note, however, that this
regression model becomes equivalent to the PACE method of Yao, Müller and Wang (2005a),
when used to predict the trajectory of Xi given its own sparse, that is, irregular and noise
contaminated measurements (see Appendix B.2 in the supplementary paper Kneip and Liebl
(2019) for more detailed explanations regarding this equivalence).

The following acronyms are used to refer to the different reconstruction methods consid-
ered in this simulation study:

ANo: L̂
K̂iM

(XO
i ) in (19) is denoted as ANo to indicate that this method involves No

Alignment of the estimate of XO
i and the reconstruction of XM

i .
ANoCE: Equivalent to ANo, but with replacing the integral scores (25) using the follow-

ing Conditional Exactions (CE) scores adapted from Yao, Müller and Wang (2005a)

ξ̂O
ik,CE = λ̂O

k φ̂
O�
ik �̂

−1
Yi

(Yi − μi ),(31)

where Yi = (Yi1, . . . , Yimi
)�, φ̂

O

ik = (φ̂O
k (Ui1), . . . , φ̂

O
k (Uimi

))�, [�̂Yi
]1≤j,k≤mi

= γ̂ (Uij ,

Uik) + σ̂ 2δjk , with δjk = 1 if j = k and zero else, and with λ̂O
k and φ̂O

k as defined in (24).
The estimate of the error variance, σ̂ 2, is computed using LLK estimators as described in
equation (2) of Yao, Müller and Wang (2005a).

AYes: L̂∗
K̂iM

(XO
i ) in (20) is denoted as AYes to indicate that this method involves an

alignment of the estimate of XO
i and the reconstruction of XM

i .
AYesCE: Equivalent to AYes, but with replacing the integral scores (25) by the conditional

exaction scores of (31).
PACE: The method of Yao, Müller and Wang (2005a), who approximate the miss-

ing XM
i and observed XO

i parts jointly using the truncated Karhunen–Loève decomposition

X̂i(t) = μ̂(t) + ∑K̂iM

k=1 ξ̂PACE
ik φ̂k(t) with conditional expectation scores

ξ̂PACE
ik = λ̂kφ̂

�
ik�̂

−1
Yi

(Yi − μi ),(32)

where λ̂k and φ̂k are as defined in (24), but with O = [a, b].
KRAUS: The functional linear ridge regression model of Kraus (2015).

The idea of using the conditional expectation scores (31) in ANoCE and AYesCE as an
alternative to the integral scores (25) in ANo and AYes is inspired by a comment of one
of the anonymous referees, who correctly pointed out that the integral scores (25) might be
instable for irregular and noisy data. PACE also uses condition expectation scores, but is
fundamentally different from ANoCE and AYesCE. While PACE uses approximations of the
classical eigenfunctions φk , the classical eigenvalues λk , and the classical scores ξik , ANoCE
and AYesCE use approximations of the reconstructive eigenfunctions φ̃O

k , the eigenvalues
λO

k , and the scores ξO
ik with respect to the partially observed domain O .



RECONSTRUCTING PARTIALLY OBSERVED FUNCTIONS 1711

The truncation parameters K̂iM for ANo, ANoCE, AYes, AYesCE, and PACE are selected
by minimizing the GCV criterion in (26). For PACE, we do not use the AIC-type criterion
as proposed by Yao, Müller and Wang (2005a), since this criterion determines a “global”
truncation parameter K̂ , which performs worse than our local, that is, M-specific truncation
parameter K̂iM . The ridge regularization parameter for KRAUS is determined using the GCV
criterion as described in Kraus (2015).

We consider four different Data Generating Processes (DGPs). DGP1 and DGP2 comprise
irregular evaluation points and measurement errors which facilitates the comparison of ANo,
ANoCE, AYes, AYesCE and the PACE method. DGP3 and DGP4 comprise regular evaluation
points and no measurements errors which facilitates the comparison of ANo, AYes, PACE and
the KRAUS method. For all simulations we set [a, b] = [0,1].

DGP1: The data points (Yij ,Uij ) are generated according to Yij = Xi(Uij ) + εij with
error term εij ∼ N(0,0.0125) and random function Xi(u) = μ(u) + ∑50

k=1 ξik,1 cos(kπu)/√
5 + ξik,2 sin(kπu)/

√
5, where μ(u) = u + sin(2πu), ξik,1 = 50

√
exp(−(k − 1)2/5)Zi,1,

and ξik,2 = 50
√

exp(−k2/5)Zi,2 with Zi,1,Zi,2 ∼ N(0,1). The evaluation points are gen-
erated as Uij ∼ Unif[Ai,Bi], where with probability 1/2, Ai ∼ Unif[0,0.45] and Bi ∼
Unif[0.55,1] and with probability 1/2, [Ai,Bi] = [0,1]. That is, about one half of the sample
consists of partially observed functions with mean interval-width 0.55.

DGP2: Equivalent to DGP1, except for a larger noise component with εij ∼ N(0,0.125).
DGP3: The data points (Yij ,Uij ) are generated according to Yij = Xi(Uij ) with random

function Xi(u) = μ(u)+∑50
k=1 ξik,1 cos(kπu)+ξik,2 sin(kπu), where μ(u) = u2 +sin(2πu),

ξik,1 = 50
√

exp(−(k − 1)2)Zi,1, and ξik,2 = 50
√

exp(−k2)Zi,2 with Zi,1,Zi,2 ∼ N(0,1).
The evaluation points are equidistant grid points Uij = j/51, with j = 1, . . . ,51, where
all points Uij /∈ [Ai,Bi] are set to NA. With probability 3/4, Ai ∼ Unif[0,1/3] and Bi =
Ai + 1/2 and with probability 1/4, [Ai,Bi] = [0,1].

DGP4: Equivalent to DGP3, but with Ai ∼ Unif[0,2/3] and Bi = Ai + 1/3. That is,
DGP4 has smaller and therefore more challenging fragments than DGP3.

For each DGP, we generate 50 different targets X�, � = 1, . . . ,50, where each target is
partitioned into a (nondegenerated) missing part XM

� and an observed part XO
� . Each of these

targets X� are reconstructed in each of the b = 1, . . . ,100 simulation runs with sample sizes
n ∈ {50,100} for DGP1–DGP4 and m ∈ {15,30} for DGP1 and DGP2.

Let X̂�,b denote the reconstructed function in simulation run b using one of the recon-
struction methods ANo, ANoCE, AYes, AYesCE, PCAE, or KRAUS. For each target X�, we
compute the integrated mean squared error, the integrated squared bias, and the integrated
variance,

MSE� = Var� + Bias2
�, Bias2

� =
∫ 1

0

(
X̄�(u) − X�(u)

)2
dt,

and Var� =
∫ 1

0
100−1

100∑
b=1

(
X̂�,b(u) − X̄�(u)

)2
dt,

where X̄�(u) = 100−1 ∑100
r=1 X̂�,b(u). The finite sample performance is evaluated using the

averages over all 50 targets,

Var = 1

50

50∑
�=1

Var�, Bias2 = 1

50

50∑
�=1

Bias2
� and MSE = 1

50

50∑
�=1

MSE�.

The simulation study is implemented using the R-package ReconstPoFD which can be
downloaded and installed from the second author’s GitHub account.
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TABLE 1
Simulation results for DGP1

DGP n m Method MSEratio MSE Bias2 Var

DGP1 50 15 AYesCE 1.00 0.161 0.135 0.025
DGP1 50 15 AYes 1.02 0.164 0.139 0.025
DGP1 50 15 ANoCE 1.38 0.222 0.199 0.023
DGP1 50 15 ANo 1.39 0.224 0.200 0.024
DGP1 50 15 PACE 10.49 1.685 0.259 1.426

DGP1 50 30 AYesCE 1.00 0.136 0.112 0.024
DGP1 50 30 AYes 1.00 0.137 0.113 0.024
DGP1 50 30 ANoCE 1.48 0.202 0.173 0.029
DGP1 50 30 ANo 1.53 0.209 0.180 0.029
DGP1 50 30 PACE 5.19 0.707 0.131 0.576

DGP1 100 15 AYesCE 1.00 0.131 0.112 0.018
DGP1 100 15 AYes 1.00 0.131 0.114 0.017
DGP1 100 15 ANoCE 1.58 0.207 0.191 0.017
DGP1 100 15 ANo 1.61 0.211 0.194 0.017
DGP1 100 15 PACE 8.74 1.145 0.154 0.991

DGP1 100 30 AYes 1.00 0.125 0.108 0.017
DGP1 100 30 AYesCE 1.01 0.126 0.109 0.017
DGP1 100 30 ANoCE 1.36 0.170 0.146 0.023
DGP1 100 30 ANo 1.45 0.181 0.158 0.023
DGP1 100 30 PACE 3.59 0.448 0.123 0.325

MSEratio = MSE/min(MSE).

Table 1 shows the simulation results for DGP1. The methods (ANo, ANoCE, AYes,
AYesCE and PACE) are ranked according to their MSEratio which is defined by the method’s
MSE-value relative to the lowest MSE-value within the comparison group. The rankings are
stable for all sample sizes m and n. The AYesCE reconstruction method shows the best per-
formance. The AYes method, which uses integral scores instead of conditional expectation
scores, is only marginally less efficient than AYesCE. Our nonalignment methods ANoCE
and ANo are ranked third and fourth. The PACE method of Yao, Müller and Wang (2005a),
originally proposed for sparse functional data analysis, shows a rather poor performance. The
reason for this is that PACE adds the variance of the measurement error to the diagonal of
the discretized covariance matrix, which has a regularization effect on the generally ill-posed
inversion problem. For DGP1, however, the variance of the error term is rather small which
results in a too small regularization of the inverse.

Table 2 shows the simulation results for DGP2. DGP2 is equivalent to DGP1 except for a
larger variance of the error term. Our alignment methods AYesCE and AYes still show the best
performance. However, having a larger variance leads to a better regularization of the inverse
problem involved in the PACE method, such that PACE is ranked third. Our nonalignment
methods ANoCE and ANo are ranked fourth and fifth. Figures 7 and 8 in Appendix C of the
supplementary paper Kneip and Liebl (2019) provide graphical illustrations of the different
reconstruction results as well as a visual impression of the different signal-to-noise ratios in
DGP1 and DGP2.

Table 3 shows the simulation results for DGP3 and DGP4 comparing the methods ANo,
AYes, PACE and KRAUS. Here, the alignment method AYes shows by far the best perfor-
mance for all sample sizes and for both DGPs. The partially very bad performance of PACE
is due to the missing measurement error in DGP3 and DGP4, which results in a missing
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TABLE 2
Simulation results for DGP2

DGP n m Method MSEratio MSE Bias2 Var

DGP2 50 15 AYesCE 1.00 0.198 0.173 0.025
DGP2 50 15 AYes 1.04 0.207 0.179 0.027
DGP2 50 15 PACE 1.07 0.212 0.174 0.039
DGP2 50 15 ANoCE 1.14 0.227 0.203 0.023
DGP2 50 15 ANo 1.16 0.230 0.204 0.026

DGP2 50 30 AYesCE 1.00 0.189 0.167 0.022
DGP2 50 30 AYes 1.01 0.192 0.169 0.023
DGP2 50 30 PACE 1.09 0.206 0.167 0.039
DGP2 50 30 ANoCE 1.14 0.215 0.188 0.027
DGP2 50 30 ANo 1.16 0.219 0.190 0.028

DGP2 100 15 AYesCE 1.00 0.178 0.161 0.017
DGP2 100 15 AYes 1.01 0.180 0.162 0.018
DGP2 100 15 PACE 1.08 0.193 0.165 0.028
DGP2 100 15 ANoCE 1.20 0.213 0.198 0.015
DGP2 100 15 ANo 1.21 0.216 0.199 0.018

DGP2 100 30 AYesCE 1.00 0.177 0.159 0.018
DGP2 100 30 AYes 1.03 0.181 0.162 0.020
DGP2 100 30 PACE 1.03 0.183 0.153 0.029
DGP2 100 30 ANoCE 1.07 0.189 0.167 0.023
DGP2 100 30 ANo 1.12 0.197 0.174 0.024

MSEratio = MSE/min(MSE).

TABLE 3
Simulation results for DGP3 and DGP4

DGP n Method MSEratio MSE Bias2 Var

DGP3 50 AYes 1.00 0.168 0.131 0.037
DGP3 50 PACE 1.33 0.223 0.099 0.124
DGP3 50 ANo 1.40 0.234 0.178 0.056
DGP3 50 KRAUS 1.52 0.254 0.205 0.049

DGP3 100 AYes 1.00 0.142 0.120 0.022
DGP3 100 PACE 1.26 0.179 0.081 0.098
DGP3 100 KRAUS 1.29 0.184 0.151 0.033
DGP3 100 ANo 1.36 0.194 0.158 0.035

DGP4 50 AYes 1.00 0.276 0.220 0.056
DGP4 50 ANo 1.11 0.307 0.247 0.060
DGP4 50 KRAUS 1.20 0.330 0.269 0.061
DGP4 50 PACE 41.93 11.564 0.313 11.252

DGP4 100 AYes 1.00 0.232 0.202 0.030
DGP4 100 KRAUS 1.11 0.258 0.222 0.035
DGP4 100 ANo 1.12 0.261 0.227 0.034
DGP4 100 PACE 3.59 0.834 0.151 0.682

MSEratio = MSE/min(MSE).
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regularization of the inverse problem involved in the PACE method. Furthermore, PACE is
designed for the case where one observes only a few noisy discretization points per function,
but these points should be distributed over the total domain [a, b]. For the considered DGPs,
however, the discretization points are only observed within challenging small subdomains
[Ai,Bi] ⊂ [0,1]. Graphical illustrations of the different reconstruction results for DGP3 and
DGP4 are provided in Figures 9 and 10 in Appendix C of the supplementary paper Kneip and
Liebl (2019).

Summing up, in all DGPs the best performing reconstruction method are our alignment
methods AYesCE and AYes. For discretized functional data plus measurement errors it is
advantageous to use the alignment method AYesCE which involves conditional expectation
scores.

7. Application. Our functional data point of view on electricity spot prices provides a
practical framework that is useful for forecasting electricity spot prices (Liebl (2013), Weron
(2014)) and for testing price differences (Liebl (2019)). In the following, we focus on the
problem of reconstructing the partially observed price-functions, which is highly relevant
for practitioners who need complete price functions for doing comparative statics, that is,
a ceteris-paribus analysis of price effects with respect to changes in electricity demand (cf.
Hirth (2013), Weigt (2009)).

The data for our analysis come from three different sources. Hourly spot prices of the
German electricity market are provided by the European Energy Power Exchange (EPEX)
(www.epexspot.com), hourly values of Germany’s gross electricity demand, Dij , and net-
imports of electricity from other countries, Nij , are provided by the European Network of
Transmission System Operators for Electricity (www.entsoe.eu), and German wind and so-
lar power infeed data are provided by the transparency platform of the European energy
exchange (www.eex-transparency.com). The data dimensions are given by m = 24 hours
and n = 241 working days between March 15, 2012 and March 14, 2013. Very few (0.4%)
data pairs (Yij ,Uij ) with prices Yij > 120 EUR/MWh and Uij > 82,000 MW are consid-
ered as outliers and reset to Yij = 120. The German electricity market, like many other
electricity markets, provides purchase guarantees for Renewable Energy Sources (RES).
Therefore, the relevant variable for pricing at the energy exchange is electricity demand
minus electricity infeeds from RES (Nicolosi (2010)). Correspondingly, the relevant values
of electricity demand Uij are defined as electricity demand minus infeeds from RES and
plus net-imports from other countries, that is, Uij := Dij − RESij + Nij , where RESij =
Wind.Infeedij + Solar.Infeedij . The effect of further RES such as biomass is still
negligible for the German electricity market.

The estimated mean and covariance functions are shown in Figure 5. The outer off-
diagonal parts of the covariance function γ cannot be estimated, since these parts of the
domain are not covered by data pairs (Uij ,Uil), j �= l. In order to reconstruct the entire miss-
ing parts XM

i , we use the AYesCE estimator, which showed a very good performance in our
simulation studies, and our iterative reconstruction Algorithm 5.1 implemented as follows.
We use three iterations for each partially observed price function. In the first step, we use the
information with respect to the original observations XO

i in order to reconstruct the missing
parts as far as possible. In the second step, we use the upper half of the reconstructed curve
ˆ̃
Xi,1 and try to reconstruct possibly further missing upper fragments. In the final step we use

the lower half of ˆ̃
Xi,1 and try to reconstruct possibly further missing lower fragments.

This approach allows us to recover 91% of the price functions over the total support (Fig-
ure 6). Note that the price functions with negative electricity prices are perfectly plausible.
Negative prices are an important market-feature of the EPEX (see, for instance, Cludius et al.

http://www.epexspot.com
http://www.entsoe.eu
http://www.eex-transparency.com
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FIG. 5. LEFT PANEL: Estimated mean function plus a scatter plot of the data pairs (Yij ,Uij ). RIGHT PANEL:
Contour plot of the estimated covariance function. The white regions reflect the outer off-diagonal parts which
are infeasible to estimate.

(2014), Fanone, Gamba and Prokopczuk (2013), Nicolosi (2010)). Electricity producers are
willing to sell electricity at negative prices (i.e., to pay for delivering electricity) if shutting
off and restarting their power plants is more expensive than selling their electricity at negative
prices. That is, the reconstructed price functions are conform with the specific market design
of the EPEX and may be useful for a variety of further subsequent analysis using classical
methods of functional data analysis.

Acknowledgements. We would like to thank the referees and the editors for their con-
structive feedback which helped to improve this research work.

SUPPLEMENTARY MATERIAL

Supplemental paper (DOI: 10.1214/19-AOS1864SUPP; .pdf). The supplemental paper
contains the proofs of our theoretical results.

FIG. 6. Recovered functions (gray) and the original partially observed functions (black).

https://doi.org/10.1214/19-AOS1864SUPP
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