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Detection of an image boundary when the pixel intensities are measured
with noise is an important problem in image segmentation. From a statistical
point of view, a challenge is that likelihood-based methods require modeling
the pixel intensities inside and outside the image boundary, even though these
distributions are typically not of interest. Since misspecification of the pixel
intensity distributions can negatively affect inference on the image boundary,
it would be desirable to avoid this modeling step altogether. Toward this, we
develop a robust Gibbsian approach that constructs a posterior distribution for
the image boundary directly, without modeling the pixel intensities. We prove
that the Gibbs posterior concentrates asymptotically at the minimax optimal
rate, adaptive to the boundary smoothness. Monte Carlo computation of the
Gibbs posterior is straightforward, and simulation results show that the cor-
responding inference is more accurate than that based on existing Bayesian
methodology.

1. Introduction. In image analysis, the boundary or edge of the image is one of the
most important features of the image, and extraction of this boundary is a critical step. An
image consists of pixel locations and intensity values at each pixel, and the boundary can be
thought of as a curve separating pixels of higher intensity from those of lower intensity. Ap-
plications of boundary detection are wide-ranging, for example, Martin, Fowlkes and Malik
(2004) use boundary detection to identify important features in pictures of natural settings,
Li et al. (2010) identifies boundaries in medical images, and in Yuan et al. (2016) boundary
detection helps classify the type and severity of wear on machines. For images with noiseless
intensity, boundary detection has received considerable attention in the applied mathemat-
ics and computer science literature; see, for example, Ziou and Tabbone (1998), Maini and
Aggarwal (2009), Li et al. (2010) and Anam, Uchino and Suetake (2013). However, these ap-
proaches suffer from a number of difficulties. First, they can produce an estimate of the image
boundary, but do not quantify estimation uncertainty. Second, these methods use a two-stage
approach where the image is first smoothed to filter out noise and then a boundary is estimated
based on a calculated intensity gradient. This two-stage approach makes theoretical analysis
of the method challenging, and no convergence results are presently known to the authors.
Third, in our examples, these methods perform poorly on noisy data, and we suspect one rea-
son for this is that the intensity gradient is less informative for the boundary when we observe
noisy data. In the statistics literature, Gu, Pati and Dunson (2014) take a Bayesian approach
to boundary detection and emphasize borrowing information to recover boundaries of simi-
lar objects in an image. Boundary detection using wombling is also a popular approach; see
Liang, Banerjee and Carlin (2009), with applications to geography (Lu and Carlin (2004)),
public health (Ma and Carlin (2007)) and ecology (Fitzpatrick et al. (2010)). However, these
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techniques are used with areal or spatially aggregated data and are not suitable for the pixel
data encountered in image analysis.

In Section 2, we give a detailed description of the image boundary problem, following the
setup in Li and Ghosal (2017). They take a fully Bayesian approach, modeling the probability
distributions of the pixel intensities both inside and outside the image. This approach is chal-
lenging because it often introduces nuisance parameters in addition to the image boundary.
Therefore, in Section 3, we propose to use a so-called Gibbs model, where a suitable loss
function is used to connect the data to the image boundary directly, rather than a probabil-
ity model (e.g., Catoni (2007), Jiang and Tanner (2008), Syring and Martin (2017), Zhang
(2006), Bissiri, Holmes and Walker (2016)).

We investigate the asymptotic convergence properties of the Gibbs posterior in Section 4.
There we show that, if the boundary is α-Hölder smooth, then the Gibbs posterior concen-
trates around the true boundary at the rate {(logn)/n}α/(α+1), which is minimax optimal
(Mammen and Tsybakov (1995)) up to the logarithmic factor, relative to neighborhoods of
the true boundary measured by the Lebesgue measure of a symmetric difference. Moreover,
as a consequence of appropriately mixing over the number of knots in the prior, this rate is
adaptive to the unknown smoothness α. To our knowledge, this is the first Gibbs posterior
convergence rate result for an infinite-dimensional parameter, so the proof techniques used
herein may be of general interest. Further, since the Gibbs posterior concentrates at the op-
timal rate without requiring a model for the pixel intensities, we claim that the inference on
the image boundary is robust.

Computation of the Gibbs posterior is relatively straightforward and, in Section 5, we
present a reversible jump Markov chain Monte Carlo method; R code to implement to the
proposed Gibbs posterior inference is available at https://github.com/nasyring/GibbsImage.
A comparison of inference based on the proposed Gibbs posterior to that based on the fully
Bayes approach in Li and Ghosal (2017) is shown in Section 6. For smooth boundaries,
the two methods perform similarly, providing very accurate estimation. However, the Gibbs
posterior is easier to compute, thanks to there being no nuisance parameters, and is notably
more accurate than the Bayes approach when the model is misspecified or when the boundary
is not everywhere smooth. Proofs of technical results are deferred to the Appendix.

2. Problem formulation. Let � ⊂ R
2 be a bounded region that represents the frame of

the image; typically, � will be a square, say, [−1
2 , 1

2 ]2, but, generally, we assume only that �

is scaled to have unit Lebesgue measure. Data consists of pairs (Xi, Yi), i = 1, . . . , n, where
Xi is a pixel location in � and Yi is an intensity measurement at that pixel. The range of Yi

is context-dependent, and we consider both binary and real-valued cases below. The model
asserts that there is a region � ⊂ � such that the intensity distribution is different depending
on whether the pixel is inside or outside �. We consider the following model for the joint
distribution P� of pixel location and intensity, (X,Y ):

X ∼ g(x),

Y | (X = x) ∼ f�(y)1(x ∈ �) + f�c(y)1
(
x ∈ �c),(1)

where g is a density on �, f� and f�c are densities on the intensity space, F� and F�c are
their respective distribution functions and 1(·) denotes an indicator function. That is, given
the pixel location X = x, the distribution of the pixel intensity Y depends only on whether
x is in � or �c. Of course, more complex models are possible, for example, where the pixel
intensity distribution depends on the specific pixel location, but we will not consider such
models here. We assume that there is a true, star-shaped set of pixels, denoted by ��, with a
known reference point in its interior. That is, any point in �� can be connected to the reference
point by a line segment fully contained in ��. The observations {(Xi, Yi) : i = 1, . . . , n} are

https://github.com/nasyring/GibbsImage
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i.i.d. samples from P�� , and the goal is to make inference on �� or, equivalently, its boundary
γ � = ∂��.

The density g for the pixel locations is of no interest; mild assumptions about g are made
in Assumption 2 to facilitate theoretical analysis of the Gibbs posterior. The main question is
how to handle the two conditional distributions, f� and f�c . Li and Ghosal (2017) take a fully
Bayesian approach, modeling both f� and f�c . By specifying these parametric models, they
are obligated to introduce priors and carry out posterior computations for the corresponding
parameters. Besides the efforts needed to specify models and priors and to carry out posterior
computations, there is also a concern that the pixel intensity models might be misspecified,
potentially biasing the inference on ��. Since the forms of f� and f�c , as well as any as-
sociated parameters, are irrelevant to the boundary detection problem, it is natural to ask if
inference can be carried out robustly, without modeling the pixel intensities.

We answer this question affirmatively, developing a Gibbs model for � in Section 3. In the
present context, suppose we have a loss function ��(x, y) that measures how well an observed
pixel location–intensity pair (x, y) agrees with a particular region �. The defining character-
istic of �� is that �� should be the unique minimizer of � �→ R(�), where R(�) = P���� is
the risk, that is, the expected loss. A main contribution here, in Section 3.1, is specification
of a loss function that meets this criterion. A necessary condition to construct such a loss
function is that the distribution functions F� and F�c are stochastically ordered. Imagine a
gray-scale image; then stochastic ordering means this image is lighter, on average, inside the
boundary than outside the boundary, or vice versa. In the specific context of binary images,
the pixel densities f�� and f��c are simply numbers between 0 and 1, and the stochastic or-
dering assumption means that, without loss of generality, f�� > f��c , while for continuous
images, again without loss of generality, F��(y) < F��c(y) for all y ∈ R. If we define the
empirical risk,

(2) Rn(�) = 1

n

n∑
i=1

��(Xi, Yi),

then, given a prior distribution 	 for �, the Gibbs posterior distribution for �, denoted by
	n, has the formula

(3) 	n(B) =
∫
B e−nRn(�)	(d�)∫
e−nRn(�)	(d�)

,

where B is a generic 	-measurable set of �’s. Of course, (3) only makes sense if the de-
nominator is finite; in Section 3, our risk functions Rn are nonnegative so this integrability
condition holds automatically.

Proper scaling of the loss in the Gibbs model is important (e.g., Bissiri, Holmes and Walker
(2016), Syring and Martin (2019)), and here we will provide some context-specific scaling;
see Sections 4 and 5.2. Our choice of prior 	 for � is discussed in Section 3.2. Together, the
loss function �� and the prior for � define the Gibbs model, no further modeling is required.

3. Gibbs model for the image boundary.

3.1. Loss function. To start, we consider inference on the image boundary when the pixel
intensity is binary, that is, Yi ∈ {−1,+1}. In this case, the densities, f� and f�c , in (1) must
be Bernoulli, so the likelihood is known. Even though the parametric form of the conditional
distributions is known, the Gibbs approach only requires prior specification and posterior
computation related to �, whereas the Bayes approach must also deal with the nuisance pa-
rameters in these Bernoulli conditional distributions. The binary case is relatively simple and
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will provide insights into how to formulate a Gibbs model in the more challenging continuous
intensity problem.

A reasonable choice for the loss function �� is the following weighted misclassification
error loss, depending on a parameter h > 0,

(4) ��(x, y) = h1
(
y = +1, x ∈ �c) + 1(y = −1, x ∈ �).

Note that putting h = 1 in (4) gives the usual misclassification error loss. In order for the
Gibbs model to work the risk, or expected loss, must be minimized at the true �� for some
h. Picking h to ensure this property holds necessitates making a connection between the
probability model in (1) and the loss in (4). The condition in (5) below is just the connection
needed. With a slight abuse of notation, let f�� and f��c denote the conditional probabilities
for the event Y = +1, given X ∈ �� and X ∈ ��c, respectively. Recall our stochastic ordering
assumption implies f�� > f��c .

PROPOSITION 1. Using the notation in the previous paragraph, if h is such that

(5) f�� ≥ 1

1 + h
≥ f��c ,

then the risk function R(�) = P���� is minimized at ��.

The condition in (5) deserves some further explanation. For example, if we know f�� ≥
1
2 > f��c , then we take h = 1, which means that in (4) we penalize both intensities of 1
outside � and intensities of −1 inside � by a loss of 1. If, however, we know the overall image
brightness is higher so that f�� ≥ 4

5 > f��c , then we take h = 1/4 in (4) and penalize bright
pixels outside � by less than dull pixels inside �. To see why this loss balancing is so crucial,
suppose the second case above holds so that f�� = 4/5 and f��c = 3/4, but we take h = 1
anyway. Then, in (4), 1(y = +1, x ∈ �c) is very often equal to 1 while 1(y = −1, x ∈ �) is
very often 0. We will likely minimize the expected loss then by incorrectly taking � to be all
of � so that the first term in the loss vanishes. Knowing a working h corresponds to having
some prior information about f�� and f��c , but we can also use the data to estimate a good
value of h; see Section 5.2.

Next, for the continuous case, we assume that the pixel intensities take values in R. Our
strategy is to modify the misclassification error (4) by working with a suitably discretized in-
tensity measurement, reminiscent of threshold modeling. In particular, consider the following
version of the misclassification error, depending on parameters (c, k, z), with c, k > 0:

(6) ��(x, y) = k1
(
y > z, x ∈ �c) + c1(y ≤ z, x ∈ �).

Again, we claim that, for suitable (c, k, z), the risk function is minimized at ��. Let F�

and F�c denote the distribution functions corresponding to the densities f� and f�c in (1),
respectively. Recall our stochastic ordering assumption implies F��(z) < F��c(z).

PROPOSITION 2. If (c, k, z) in (6) satisfies

(7) F��(z) ≤ k

k + c
≤ F��c(z),

then the risk function R(�) = P���� is minimized at ��.

The parameters k and c in (6) determine the scale of the loss as mentioned in Section 1,
while z determines an intensity cutoff. According to the loss in (6), if a given pixel is located
at x ∈ �c, and with intensity y larger than cutoff z, it will incur a loss of k > 0. This implies
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that the true image �� can be identified by working with a suitable version of the loss (6).
A similar condition to (7) (see Assumption 1 in Section 4) says what scaling is needed in
order for the Gibbs posterior to concentrate at the optimal rate. Although the conditions on
the scaling all involve the unknown distribution P�� , a good choice of (c, k, z) can be made
based on the data alone, without prior information, and we discuss this strategy in Section 5.2.

3.2. Prior specification. We specify a prior distribution for the boundary of the region
� by first expressing the pixel locations x in polar coordinates (θ, r), an angle and radius,
where θ ∈ [0,2π ] and r > 0, relative to the reference point described in Section 2. Li and
Ghosal (2017) tested the influence of the reference point in simulations and found it to have
little influence on their results. Using polar coordinates, the boundary of � can be determined
by the parametric curve (θ, γ (θ)). We proceed to model this curve γ .

Whether one is taking a Bayesian or Gibbsian approach, a natural strategy to model the
image boundary is to express γ as a linear combination of suitable basis functions, that
is, γ (θ) = γ̂D,β(θ) = ∑D

j=1 βjBj,D(θ). Li and Ghosal (2017) use the eigenfunctions of the
squared exponential periodic kernel as their basis functions. Here, we consider a model based
on free knot b-splines, where the basis functions are defined recursively as

Bi,1(θ) = 1
(
θ ∈ [ti , ti+1]),

Bi,k(θ) = θ − ti

ti+k−1 − ti
Bi,k−1(θ) + ti+k − θ

ti+k − ti+1
Bi+1,k−1(θ),

where θ ∈ [0,2π ], t−2, t−1, t0 and tD+1, tD+2, tD+3 are outer knots, t1, . . . , tD are inner knots
and β = (β1, . . . , βD) ∈ (R+)D is the vector of coefficients. Note that we restrict the coef-
ficient vector β to be positive because the function values γ (θ) measure the radius of a
curve from the origin. In the simulations in Section 6, the coefficients β2, . . . , βD are free
parameters, while β1 is calculated deterministically to force the boundary to be closed, that
is, γ (0) = γ (2π), and we require t1 = 0 and tD = 2π ; all other inner knots are free. Our
model based on the b-spline representation performs as well as the eigenfunctions used in Li
and Ghosal (2017) for smooth boundaries, and a bit better for boundaries with corners; see
Section 6.

Therefore, the boundary curve γ is parametrized by an integer D and a D-vector β . We
introduce a prior 	 on (D,β) hierarchically as follows: D has a Poisson distribution with
rate μD and, given D, the coordinates β1, . . . , βD of β are i.i.d. exponential with rate μβ .
These choices satisfy the technical conditions on 	 detailed in Section 4. In our numerical
experiments in Section 6, we take μD = 12 and μβ = 10.

4. Gibbs posterior convergence. The Gibbs model depends on two inputs, namely, the
prior and the loss function. In order to ensure that the Gibbs posterior enjoys desirable asymp-
totic properties, some conditions on both of these inputs are required. The first assumption
listed below concerns the loss; the second concerns the true image boundary γ � = ∂��; and
the third concerns the prior. Here, we will focus on the continuous intensity case, since the
only difference between this and the binary case is that the latter provides the discretization
for us.

ASSUMPTION 1. Loss function parameters (c, k, z) in (6) satisfy

(8) F��(z) <
ek − 1

ec+k − 1
and F��c(z) >

ek − 1

ek − e−c
.
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Compared to the condition (7) that was enough to allow the loss function to identify the
true ��, condition (8) in Assumption 1 is only slightly stronger. This can be seen from the
following inequality:

ek − 1

ek − e−c
>

k

k + c
>

ek − 1

ec+k − 1
.

However, if (c, k) are small, then the three quantities in the above display are all approx-
imately equal, so Assumption 1 is not much stronger than what is needed to identify ��.
Again, these conditions on (c, k, z) can be understood as providing a meaningful scale to the
loss function. Intuitively, the scale of the loss between observations receiving no loss versus
some loss, expressed by parameters k and c, should be related to the level of information in
the data. When F��(z) and F��c(z) are far apart, the data can more easily distinguish between
F�� and F��c , so we are free to assign larger losses than when F��(z) and F��c(z) are close
and the data are relatively less informative.

The ability of a statistical method to make inference on the image boundary will depend
on the true boundary smoothness. Li and Ghosal (2017) interpret γ � as a function from the
unit circle to the positive real line, and they formulate a Hölder smoothness condition for this
function. Following the prior specification described in Section 3.2, we treat the boundary
γ � as a function from the interval [0,2π ] to the positive reals, and formulate the smoothness
condition on this arguably simpler version of the function. Since the reparametrization of
the unit circle in terms of polar coordinates is smooth, it is easy to check that the Hölder
smoothness condition (9) below is equivalent to that in Li and Ghosal (2017).

ASSUMPTION 2. The true boundary function γ � : [0,2π ] → R
+ is α-Hölder smooth,

that is, there exists a constant L = Lγ � > 0 such that

(9)
∣∣(γ �)([α])

(θ) − (
γ �)([α])(

θ ′)∣∣ ≤ L
∣∣θ − θ ′∣∣α−[α] ∀θ, θ ′ ∈ [0,2π ],

where (γ �)(k) denotes the kth derivative of γ � and [α] denotes the largest integer less than
or equal to α. Following the description of �� in the Introduction, we also assume that the
reference point is strictly interior to �� meaning that it is contained in an open set itself
wholly contained in �� so that γ � is uniformly bounded away from zero. Moreover, the
density g for X, as in (1), is uniformly bounded above by g := supx∈� g(x) and below by
g := infx∈� g(x) ∈ (0,1) on �.

General results are available on the error in approximating an α-Hölder smooth function
by b-splines of the form specified in Section 3.2. Indeed, Theorem 6.10 in Schumaker (1981)
implies that if γ � satisfies (9), then

(10) ∀d > 0, ∃β�
d ∈ (

R
+)d such that

∥∥γ � − γ̂d,β�
d

∥∥∞ � d−α .

Since γ �(θ) > 0, we can consider all coefficients to be positive, that is, β�
d ∈ (R+)d ; see

Lemma 1(b) in Shen and Ghosal (2015). The next assumption about the prior makes use of
the approximation property in (10).

ASSUMPTION 3. Let β�
d , for d > 0, be as in (10). Then there exists C, t > 0 such that

the prior 	 for (D,β) satisfies, for all d > 1,

log	(D > d) � −d logd,

log	(D = d) � −d logd,

log	
(∥∥β − β�

d

∥∥
1 ≤ kd−α | D = d

)
� −d log

{
1/

(
kd−α)}

,

log	
(
β /∈ [−m,m]d | D = d

)
� logd − Cmt .
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The first two conditions in Assumption 3 ensure that the prior on D is sufficiently spread
out while the second two conditions ensure that there is sufficient prior support near β’s that
approximate γ � well. Our suggested Poisson prior for D and independent exponential prior
for β , given D, satisfy these conditions; see also Shen and Ghosal (2015). Assumption 3 is
also needed in Li and Ghosal (2017) for convergence of the Bayesian posterior at the optimal
rate. However, the Bayes model also requires assumptions about the priors on the nuisance
parameters, for example, Assumption C in Li and Ghosal (2017), which are not necessary in
our approach here.

In what follows, let A
B denote the symmetric difference of sets in � and λ(A
B) its
Lebesgue measure.

THEOREM 1. With a slight abuse of notation, let 	 denote the prior for �, induced by
that on (D,β), and 	n the corresponding Gibbs posterior (3). Under Assumptions 1–3, there
exists a constant M > 0 such that

P��	n

({
� : λ(

��
�
)
> Mεn

}) → 0 as n → ∞,

where εn = εn(α) = {(logn)/n}α/(α+1) and α is the Hölder smoothness coefficient in As-
sumption 2.

Theorem 1 says that, as the sample size increases, the Gibbs posterior places its mass
on a shrinking neighborhood of the true boundary γ �. The rate, given by the size of the
neighborhood, is optimal according to Mammen and Tsybakov (1995), up to a logarithmic
factor, and adaptive since the prior does not depend on the unknown smoothness α.

5. Computation.

5.1. Sampling algorithm. We use reversible jump Markov chain Monte Carlo (e.g.,
Green (1995)) to sample from the Gibbs posterior. These methods have been used success-
fully in Bayesian free-knot spline regression problems; see, for example, Denison, Mallick
and Smith (1998) and DiMatteo, Genovese and Kass (2001). Although sampling is more
complicated when the number and locations of knots are random instead of fixed, the result-
ing spline functions can do a better job fitting curves with low smoothness.

To summarize the algorithm, we start with the prior distribution 	 for (D,β) as discussed
in Section 3.2. Next, we need to initialize values of D, the knot locations {t−2, . . . , tD+3},
and the values of β2, . . . , βD . The value of β1 is then calculated numerically to force closure.
We choose D = 12 with t−2 = −2, t−1 = −1, t0 = −0.5, t13 = 2π + 0.5, t14 = 2π + 1,
t15 = 2π + 2 and t1, . . . , t12 evenly spaced in [0,2π ]. We set inner knots t0 = 0 and tD = 2π

while the other inner knot locations remain free to change in birth, death, and relocation
moves; we also set β2 = β3 = · · · = β12 = 0.1. Then the following three steps constitutes a
single iteration of the reversible jump Markov chain Monte Carlo algorithm to be repeated
until the desired number of samples are obtained:

1. Use Metropolis-within-Gibbs steps to update the elements of the β vector, again solving
for β1 to force closure at the end. In our examples, we use normal proposals centered at the
current value of the element of the β vector, and with standard deviation 0.10.

2. Randomly choose to attempt either a birth, death, or relocation move to add a new inner
knot, delete an existing inner knot or move an inner knot.

3. Attempt the jump move proposed in Step 2. The β vector must be appropriately modi-
fied when adding or deleting a knot, and again we must solve for β1. Details on the calculation
of acceptance probabilities for each move can be found in Denison, Mallick and Smith (1998)
and DiMatteo, Genovese and Kass (2001).
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R code to implement this Gibbs posterior sampling scheme, along with the empirical
loss scaling method described in Section 5.2, is available at https://github.com/nasyring/
GibbsImage.

5.2. Loss scaling. It is not clear how to select (c, k, z) to satisfy Assumption 1 without
knowledge of F�� and F��c . However, it is fairly straightforward to select values of (c, k, z)

based on the data which are likely to meet the required condition. First, we need a notion
of optimal (c, k, z) values. If we knew F�� and F��c , then we would select z to maximize
F��c(z) − F��(z) because this choice of z gives us the point at which F�� and F��c are most
easily distinguished. Then we would choose (c, k) to be the largest values such that (8) holds.
Intuitively, we want large values of (c, k) so that the loss function in (6) is more sensitive to
departures from γ �.

Since we do not know F�� and F��c , we estimate F��(z) and F��c(z) from the data. In or-
der to do this, we need a rough estimate of γ � to define the regions �� and ��c. Our approach
is to model γ with a b-spline, as before, and estimate γ � several times by minimizing (6)
using several different values of the loss scaling parameters (c, k, z). Specifically, set a grid
of z values z1, z2, . . . , zg , and for each zj , find (c, k) = (cj , kj ) that satisfy

kj

kj + cj

= |{i : yi ≤ zj }|
n

.

Next, estimate γ � by minimizing (6) using (cj , kj , zj ). The estimate of γ � provides estimates
of the regions �� and ��c which we use to calculate the sample proportions

F̂�� := |{i : yi ≤ zj , xi ∈ �̂�}|
|{i : xi ∈ �̂�}| and F̂��c := |{i : yi ≤ zj , xi ∈ �̂�c}|

|{i : xi ∈ �̂�c}| .

Then the approximately optimal value is z = arg maxzj
F̂��c (zj ) − F̂��(zj ). Finally, choose

the approximately optimal values of (c, k) to satisfy (8) replacing F��(z) and F��c(z) by their
estimates F̂��(z) and F̂��c(z).

Based on the simulations in Section 6, this method produces values of (c, k, z) very close
to their optimal values. Importantly, the estimated (c, k) are more likely to be smaller than
their optimal values than larger, which makes our estimates more likely to satisfy (8). This is
a consequence of the stochastic ordering of F�� and F��c . Unless the classifier we obtain by
minimizing (6) is perfectly accurate, we will tend to mix together samples from F�� and F��c

in our estimates. If we estimate F��(z) with some observations from F�� and some from F��c ,
we will tend to overestimate F��(z), and vice versa we will tend to underestimate F��c(z).
These errors will cause (c, k) to be underestimated and, therefore, more likely to satisfy (8).

6. Numerical examples. We tested our Gibbs model on data from both binary and con-
tinuous images following much the same setup as in Li and Ghosal (2017). The pixel locations
in � = [−1

2 , 1
2 ]2 are sampled by starting with a fixed m × m grid in � and making a small

random uniform perturbation at each grid point. Several different pixel intensity distributions
are considered. We consider two types of shapes for ��: an ellipse with center (0.1,0.1),
rotated at an angle of 60 degrees, with major axis length 0.35 and minor axis length 0.25;
and a centered equilateral triangle of height 0.5. The ellipse boundary will test the sensitivity
of the model to boundaries which are off-center while the triangle tests the model’s ability to
identify nonsmooth boundaries.

We consider four binary and four continuous intensity images and compare with the
Bayesian method of Li and Ghosal (2017) as implemented in the BayesBD package (Syring
and Li (2017a)) available on CRAN and described in Syring and Li (2017b).

https://github.com/nasyring/GibbsImage
https://github.com/nasyring/GibbsImage
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TABLE 1
Average errors (and standard deviations) for each example

Model B1 B2 B3 B4 C1 C2 C3 C4

Bayes
0.00

(0.00)
0.02

(0.00)
0.01

(0.00)
0.02

(0.01)
0.03

(0.03)
0.04

(0.03)
0.11

(0.06)
0.10

(0.05)

Gibbs
0.01

(0.00)
0.01

(0.00)
0.02

(0.01)
0.02

(0.01)
0.01

(0.00)
0.01

(0.00)
0.01

(0.01)
0.01

(0.01)

B1. Ellipse image, m = 100 and F�� and F��c are Bernoulli with parameters 0.5 and 0.2,
respectively.

B2. Same as B1 but with triangle image.
B3. Ellipse image, m = 500, and F�� and F��c are Bernoulli with parameters 0.25 and

0.2, respectively.
B4. Same as B3 but with triangle image.
C1. Ellipse image, m = 100, and F�� and F��c are N(4,1.52) and N(1,1), respectively.
C2. Same as C1 but with triangle image.
C3. Ellipse image, m = 100 and F�� and F��c are 0.2N(2,10) + 0.8N(0,1), a normal

mixture, and N(0,5), respectively.
C4. Ellipse image, m = 100 and F�� and F��c are t distributions with 3 degrees of free-

dom and noncentrality parameters 1 and 0, respectively.

For binary images, the likelihood must be Bernoulli, so the Bayesian model is correctly
specified in cases B1–B4. For the continuous examples in C1–C4, we assume a Gaussian
likelihood for the Bayesian model. Then cases C1 and C2 will show whether or not the
Gibbs model can compete with the Bayesian model when the model is correctly specified,
while cases C3 and C4 will demonstrate the superiority of the Gibbs model over the Bayesian
model under misspecification. Again, the Gibbs model has the added advantage of not having
to specify priors for or sample values of the mean and variance associated with the normal
conditional distributions.

We replicated each scenario 100 times for both the Gibbs and Bayesian models, each time
producing a posterior sample of size 4000 after a burn in of 1000 samples. We recorded
the errors—Lebesgue measure of the symmetric difference—for each run along with the
estimated loss function parameters for the Gibbs models for continuous images. The results
are summarized in Tables 1–2. We see that the Gibbs model is competitive with the fully
Bayesian model in Examples B1–B4, C1 and C2, when the likelihood is correctly specified.
When the likelihood is misspecified, the Bayesian model may fail, as in Examples C3 and
C4. The Gibbs model does not depend on a likelihood, only the stochastic ordering, so it

TABLE 2
Average (and optimal) values of the parameters (c, k, z) in (6)

Parameter C1 C2 C3 C4

c
1.45

(1.86)
1.47

(1.86)
0.80

(1.27)
0.71

(0.80)

k
2.30

(2.36)
2.29

(2.36)
0.26

(0.34)
0.71

(0.75)

z
2.43

(2.40)
2.39

(2.40)
−1.83

(−1.76)
0.46

(0.46)
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FIG. 1. From top, Examples B1–B2. In each row, the observed image is on the left, the Gibbs posterior mean
estimator is in the middle, and the Bayesian posterior mean estimator of Li and Ghosal (2017) is on the right.
Solid lines show the true image boundary, dashed lines are the estimates, and gray regions are 95% credible
bands.

continues to perform well in these non-Gaussian examples. From Table 2, we see that the
empirical method described in Section 5.2 is able to select parameters for the loss function in
(6) close to the optimal values and meeting Assumption 1.

Figures 1 and 2 show the results of the Bayesian and Gibbs models for one simulation
run in each of Examples B1–B2 and C1–C4, respectively. The 95% credible regions, as
in Li and Ghosal (2017), are highlighted in gray around the posterior means. That is, let
ui = supθ {s(θ)−1|γi(θ) − γ̂ (θ)|}, where γi(θ) is the ith posterior boundary sample, γ̂ (θ)

is the pointwise posterior mean and s(θ) the pointwise standard deviation of the γ (θ) sam-
ples. If τ is the 95th percentile of the ui’s, then a 95% uniform credible band is given by
γ̂ (θ) ± τs(θ). The results of cases B2 and C2 suggest that free-knot b-splines may do a bet-
ter job of approximating nonsmooth boundaries than the kernel basis functions used by Li and
Ghosal (2017). In particular, the reversible jump sampling method with its relocation moves
allowed knots to move toward the corners of the triangle, thereby improving estimation of
the boundary over b-splines with fixed knots.

APPENDIX: PROOFS

A.1. Proof of Proposition 1. By the definition of the loss function in (4), for a fixed h

and for any � ⊂ �, we have

��(x, y) − ���(x, y)

= h1
(
y = +1, x ∈ �c) − h1

(
y = +1, x ∈ ��c)

+ 1(y = −1, x ∈ �) − 1
(
y = −1, x ∈ ��)

= h1
(
y = +1, x ∈ �� \ �

) − 1
(
y = −1, x ∈ �� \ �

)
+ 1

(
y = −1, x ∈ � \ ��) − h1

(
y = +1, x ∈ � \ ��).

Then the expectation of the loss difference above is

P
(
X ∈ �� \ �

)
(hf�� + f�� − 1) + P

(
X ∈ � \ ��)(1 − f��c − hf��c),
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FIG. 2. Same as Figure 1, but for Examples C1–C4.

where the probability statement is with respect to the density g of X. By Assumption 2, the
density g is bounded away from zero on �, so the expectation of the loss difference is zero if
and only if � = ��. The expectation can also be lower bounded by

P
(
X ∈ �
��) min{hf�� + f�� − 1,1 − f��c − hf��c}.

According to (5) in Proposition 1, both terms in the minimum are positive. Therefore, R(�) ≥
R(��) with equality if and only if � = ��.

A.2. Proof of Proposition 2. The proof here is very similar to that of Proposition 1. By
the definition of the loss function in (6), for any fixed (c, k, z) and for any � ⊂ �, we get

��(x, y) − ���(x, y)

= k1
(
y ≥ z, x ∈ �c) − k1

(
y ≥ z, x ∈ ��c)
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+ c1(y < z, x ∈ �) − c1
(
y < z, x ∈ ��)

= k1
(
y ≥ z, x ∈ �� \ �

) − c1
(
y < z, x ∈ �� \ �

)
+ c1

(
y < z, x ∈ � \ ��) − k1

(
y ≥ z, x ∈ � \ ��).

Then, the expectation of the loss difference above is given by

P
(
X ∈ �� \ �

){
k − kF��(z) − cF��(z)

} + P
(
X ∈ � \ ��){cF��c(z) − k + kF��c(z)

}
,

where the probability statement is with respect to the density g of X. As in the proof of
Proposition 1, this quantity is zero if and only if � = ��. It can also be lower bounded by

P
(
X ∈ �
��) min

{
k − kF��(z) − cF��(z), cF��c(z) − k + kF��c(z)

}
.

Given the condition (7) in Proposition 2, both terms in the minimum are positive. Therefore,
R(�) ≥ R(��) with equality if and only if � = ��.

A.3. Preliminary results. Toward proving Theorem 1, we need several lemmas. The
first draws a connection between the distance between defined by the Lebesgue measure of
the symmetric difference and the sup-norm between the boundary functions.

LEMMA 1. Suppose ��, with boundary γ � = ∂��, satisfies Assumption 2, in particular,
γ � := infθ∈[0,2π ] γ �(θ) > 0. Take any � ⊂ �, with γ = ∂�, such that λ(�
��) > δ for some
fixed δ > 0, and any �̃ ⊂ � such that γ̃ = ∂�̃ satisfies ‖γ̃ − γ ‖∞ < ωδ, where ω ∈ (0,1).
Then

λ
(
�̃
��) >

4δ

γ �

(
1

diam(�)
− πω

)
,

where diam(�) = supx,x′∈� ‖x − x′‖ is the diameter of �. So, if ω < {π diam(�)}−1, then
the lower bound is a positive multiple of δ.

PROOF. The first step is to connect the symmetric difference-based distance to the L1
distance between boundary functions. A simple conversion to polar coordinates gives

λ
(
�
��) =

∫
�
��

dλ

=
∫ 2π

0

∫ γ (θ)∨γ �(θ)

γ (θ)∧γ �(θ)
r dr dθ

= 1

2

∫ 2π

0

{
γ (θ) ∧ γ

(
θ�)}2 − {

γ (θ) ∨ γ
(
θ�)}2

dθ

= 1

2

∫ 2π

0

∣∣γ (θ) − γ �(θ)
∣∣∣∣γ (θ) + γ �(θ)

∣∣dθ.

If we let γ � = infθ γ �(θ), then it is easy to verify that

γ � ≤ ∣∣γ (θ) + γ �(θ)
∣∣ ≤ diam(�) ∀θ ∈ [0,2π ].

Therefore,

(11)
1

2
γ �

∥∥γ − γ �
∥∥

1 ≤ λ
(
�
��) ≤ 1

2
diam(�)

∥∥γ − γ �
∥∥

1.

Next, if λ(�
��) > δ, which is positive by Assumption 2, then it follows from the right-most
inequality in (11) that diam(�)‖γ − γ �‖1 > 2δ and, by the triangle inequality,

diam(�)
{‖γ − γ̃ ‖1 + ∥∥γ̃ − γ �

∥∥
1

}
> 2δ.
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We have ‖γ − γ̃ ‖1 ≤ 2π‖γ − γ̃ ‖∞ which, by assumption, is less than 2πωδ. Consequently,

diam(�)
{
2πωδ + ∥∥γ̃ − γ �

∥∥
1

}
> 2δ

and hence,

∥∥γ̃ − γ �
∥∥

1 >
2δ

diam(�)
− 2πωδ.

By the left-most inequality in (11), we get

λ
(
�̃
��) >

4δ

γ � diam(�)
− 4πωδ

γ �
= 4δ

γ �

(
1

diam(�)
− πω

)
,

which is the desired bound. It follows immediately that the lower bound is a positive multiple
of δ if ω < {π diam(�)}−1. �

The next lemma shows that we can control the expectation of the integrand in the Gibbs
posterior under the condition (8) on the tuning parameters (c, k, z) in the loss function defi-
nition.

LEMMA 2. If (8) holds, then P��e−(��−���) < 1 − ρλ(��
�) for a constant ρ ∈ (0,1).

PROOF. From the proof of Proposition 2, we have

��(x, y) − ���(x, y)

= k1
(
y ≥ z, x ∈ �� \ �

) − c1
(
y < z, x ∈ �� \ �

)
+ c1

(
y < z,x ∈ � \ ��) − k

(
y ≥ z, x ∈ � \ ��).

The key observation is that, if x /∈ �
��, then the loss difference is 0 and, therefore, the
exponential of the loss difference is 1. Taking expectation with respect P�� , we get

P��e−(��−���)

= Pg

(
X /∈ ��
�

)
+ {

e−k(1 − F��(z)
) + ecF��(z)

}
Pg

(
X ∈ �� \ �

)
+ {

e−cF��c(z) + ek − ekF��c(z)
}
Pg

(
X ∈ � \ ��).

If we define

κ = max
{
e−k(1 − F��(z)

) + ecF��(z), e−cF��c(z) + ek − ekF��c(z)
}
,

then it follows from (8) that κ < 1 and

P��e−(��−���) ≤ 1 − Pg

(
X ∈ �
��) + κPg

(
X ∈ �
��)

= 1 − (1 − κ)Pg

(
X ∈ �
��).

Since Pg(X ∈ �
��) ≥ gλ(�
��), the claim holds with ρ = (1 − κ)g. �

The next lemma yields a necessary lower bound on the denominator of the Gibbs posterior
distribution. The neighborhoods Gn are simpler than those in Lemma 1 of Shen and Wasser-
man (2001), because the variance of our loss difference is automatically of the same order as
its expectation, but the proof is otherwise very similar to theirs, so we omit the details.
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LEMMA 3. Let tn be a sequence of positive numbers such that ntn → ∞ and set Gn =
{� : R(�) − R(��) ≤ Ctn} for some C > 0. Then

∫
exp[−n{Rn(�) − Rn(�

�)}]	(d�) �
	(Gn) exp(−2ntn) with P��-probability converging to 1 as n → ∞.

Our last lemma is a summary of various results derived in Li and Ghosal (2017) toward
proving their Theorem 3.3. This helps us to fill in the details for the lower bound in Lemma 3
and to identify a sieve with high prior probability but relatively low complexity.

LEMMA 4. Let εn be as in Theorem 1 and let Dn = (n/ logn)
1

α+1 . Then ‖γ � −
γ̂Dn,β�‖∞ ≤ Cεn for some C > 0, β� = β�

Dn
∈ (R+)Dn from (10). Define the following two

sets:

B�
n = {

(β, d) : β ∈R
d, d = Dn,

∥∥γ � − γ̂d,β

∥∥∞ ≤ Cεn

}
,

�n(r) = {
γ : γ = γ̂d,β, β ∈ R

d, d ≤ Dn,‖β‖∞ ≤ r
}
, r > 0.

1. 	(B�
n) � exp(−anεn) for some a > 0 depending on C.

2. Set �n = �n(K0mn) where mn satisfies Dn logmn � nεn and K0 > 0 is a constant.
Then 	(�c

n) � exp(−Knεn) for some K > 0.
3. If Dn exp(−Cmt

n) � exp(−nεn), for t > 0 as in Assumption 3, then the bracketing
entropy of �n satisfies logN(εn,�n,‖ · ‖∞) � nεn.

Based on our choice of prior and Assumption 3, t = 1, mn = n and C > 1, satisfy the
conditions in Lemma 4.

A.4. Proof of Theorem 1. Define the set

(12) An = {
� : λ(

��
�
)
> Mεn

}
.

For the sieve �n in Lemma 4, we have 	n(An) = 	n(An ∩�c
n)+	n(An ∩�n). We want to

show that both terms in the right-hand side of the previous equality vanish, in L1(P��).
It helps to start with a lower bound on In = ∫

e−n{Rn(�)−Rn(��)}	(d�), the denominator in
both of the terms discussed above. First, write

In ≥
∫
Gn

e−n{Rn(�)−Rn(��)}	(d�),

where Gn is defined in Lemma 3 with tn = εn and C > 0 to be determined. From Proposi-
tion 2 and Lemma 1,

R(�) − R
(
��) ≤ Pg

(
X ∈ �
��)V ≤ 1

2
V g diam(�)

∥∥γ − γ �
∥∥

1,

where V = min{k − kF��(z) − cF��c(z), cF��c(z) + kF��c(z)}. Let B∞(γ �; r) denote the
set of regions � with boundary functions γ = ∂� that satisfy ‖γ − γ �‖∞ ≤ r . If � ∈
B∞(γ �;C0εn), then we have ∥∥γ − γ �

∥∥
1 ≤ 2πgC0εn

and, therefore, R(�) − R(��) ≤ Cεn, where C = C0πV g2 diam(�). From Lemma 3, we
have In � 	(Gn)e

−2Cεn , with P��-probability converging to 1. Since Gn ⊇ B∞(γ �;C0εn),
it follows from Lemma 4, part 1,

In � 	
{
B∞

(
γ �;C0εn

)}
e−2Cεn � e−C1nεn,
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with P�� probability converging to one, and where C1 > 0 is a constant depending on C0 and
C.

Now we are ready to bound 	n(An ∩ �c
n). Write this quantity as

	n

(
An ∩ �c

n

) = Nn(An ∩ �c
n)

In

= 1

In

∫
An∩�c

n

e−n{Rn(�)−Rn(��}	(d�).

It will suffice to bound the expectation of Nn(An ∩�c
n). By Tonelli’s theorem, independence,

Lemma 2 and the definition of An, we have

P��Nn

(
An ∩ �c

n

) =
∫
An∩�c

n

P��e−n{Rn(�)−Rn(��)}	(d�)

=
∫
An∩�c

n

{
P��e−(��−���)}n

	(d�)

≤
∫
An∩�c

n

{
1 − ρλ

(
�
��)}n

	(d�)

≤ 	
(
�c

n

)
e−ρMnεn.

By Lemma 4, part 2, we have that 	(�c
n) ≤ e−Knεn and, consequently, we can conclude

P��Nn(An ∩ �c
n) ≤ e−(K+ρM)nεn .

Next, we bound 	n(An ∩ �n) and, as before, it will suffice to bound the expectation of
Nn(An ∩ �n). Choose a covering An ∩ �n by sup-norm balls Bj = B∞(γj ;ωMεn), j =
1, . . . , Jn, with centers γj = ∂�j in An and radii ωMnεn, where ω < {π diam(�)}−1 is as
in Lemma 1. Also, from Lemma 4, part 3, we have that Jn is bounded by eK1nεn for some
constant K1 > 0. For this covering, we immediately get

P��Nn(An ∩ �n) ≤
Jn∑

j=1

P��Nn(Bj ).

For each j , using Tonelli, independence, and Lemma 2 again, we find

P��Nn(Bj ) =
∫
Bj

{
P��e−(��−���)}n

	(d�) ≤
∫
Bj

e−nρλ(�
��)	(d�).

By Lemma 1, for � in Bj , since the center γj is in An, it follows that λ(�
��) is lower
bounded by ηMεn, where η = η(��) is given by

η = 4

γ �

(
1

diam(�)
− πω

)
> 0.

Therefore, from the bound on Jn,

P��Nn(An ∩ �n) ≤
Jn∑

j=1

P��Nn(Bj ) ≤ e−nηMεnJn ≤ e−(ηM−K1)nεn.

Finally, putting everything together, we have

	n(An) ≤ Nn(An)

In

1
(
In > e−C1nεn

) + 1
(
In ≤ e−C1nεn

)
≤ eC1nεn

{
Nn(An ∩ �n) + Nn

(
An ∩ �c

n

)} + 1
(
In ≤ e−C1nεn

)
.

Now take P�� -expectation of both sides:

P��	n(An) ≤ eC1nεn
{
P��Nn(An ∩ �n) + P��Nn

(
An ∩ �c

n

)} + o(1)

≤ e−(ηM−K1−C1)nεn + e−(K+ρM−C1)nεn + o(1).

If M > max{(K1 + C1)/η, (K − C1)/ρ}, then the upper bound vanishes, completing the
proof.
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