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This paper establishes the argmin of a random objective function to be
unique almost surely. This paper first formulates a general result that proves
almost sure uniqueness without convexity of the objective function. The gen-
eral result is then applied to a variety of applications in statistics. Four appli-
cations are discussed, including uniqueness of M-estimators, both classical
likelihood and penalized likelihood estimators, and two applications of the
argmin theorem, threshold regression and weak identification.

1. Introduction. This paper establishes the argmin of a random objective function to be
unique almost surely. This means that the probability the argmin contains two or more points
is zero. The task of finding the argmin of a random function is a very general problem, and
evaluating whether the argmin is unique is important in many applications. For example, in
M-estimation, uniqueness is equivalent to the estimator being well defined as a point. In ad-
dition, uniqueness is a condition for the argmin theorem, which characterizes the asymptotic
distribution of many estimators.

The usual argument for uniqueness of the argmin relies on convexity. Without convexity,
it is difficult to guarantee uniqueness of the argmin. At the same time, there is a popular intu-
ition that multiple global minimizers occurring with positive probability requires a degenerate
random function, in some sense. By considering almost sure uniqueness and relying on a type
of nondegeneracy condition, this paper provides a systematic way to relax convexity.

This paper first formulates a general result, Lemma 1, that proves almost sure uniqueness
under very weak conditions. This result relies on a type of nondegeneracy condition, called
genericity, which states that certain derivatives of the objective function are nonzero. The key
to this condition is that it permits derivatives with respect to z, a random variable indexing the
randomness of the objective function, in addition to derivatives with respect to the domain of
optimization. This key aspect makes Lemma 1 useful in a variety of statistical applications.

At this level of generality, there are not many papers that seek to verify uniqueness of the
argmin of a function without convexity. The closest is an approach based on a “Mountain Pass
Lemma.” This applies if the Hessian of the objective function is positive definite whenever
the gradient is zero. The intuition is that between any two minimizers there must exist a local
maximum or saddle point. While this condition is sufficient in one dimension, [42] gives
a counterexample in multiple dimensions. A variety of papers, including [7, 28], and [31]
supplement the Hessian condition with additional regularity conditions to prove uniqueness
of the minimizer.

This approach has two disadvantages. First, it has narrow scope. The conclusion of the
Mountain Pass Lemma is that the local minimizer is unique. Thus, this approach does not
work for any function with multiple local minimizers but a unique global minimizer. Second,
the Hessian condition can be difficult to verify if the derivatives of the objective function are
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intractable. In contrast, Lemma 1 applies to functions with multiple local minimizers, and the
assumptions of Lemma 1 are easy to verify.

Lemma 1 has a variety of applications in statistics and, more broadly, optimization. In this
paper, we discuss four applications, two examples of M-estimation and two applications of
the argmin theorem. See Section 3 for the literature related to each application.

M-estimators minimize a random objective function. The literature proves uniqueness of
an M-estimator for a nonconvex objective function only in isolated cases. Lemma 1 can be
used to prove uniqueness more generally, which we demonstrate in two cases not established
in the literature. We prove uniqueness for the classical maximum likelihood estimator for a fi-
nite mixture model, and we prove uniqueness of the penalized maximum likelihood estimator
of a linear regression with a nonconvex penalty.

The argmin theorem characterizes the asymptotic distribution of an estimator using the
argmin of a limiting stochastic process, if it is almost surely unique. Lemma 1 can be used
to verify the uniqueness condition, which we demonstrate in two cases not established in
the literature. [30] considers a p-value based estimator of a threshold regression and uses the
argmin theorem, but is unable to verify the uniqueness condition. We verify it using Lemma 1.
Also, characterizing the asymptotic distribution for estimators of parameters that are weakly
identified uses the argmin theorem. In this case, we give low-level sufficient conditions for
the uniqueness condition to hold, as well as two counterexamples where it does not.

Section 2 states Lemma 1. Section 3 discusses the applications. Section 4 proves Lemma 1.
Section 5 concludes. An Appendix contains additional proofs.

2. A general uniqueness lemma. This paper studies minimizers of an objective func-
tion, t �→ Q(t, z), where z is random. The following assumption eliminates mass points in
the distribution of z.

ASSUMPTION ABSOLUTE CONTINUITY. Let z be an absolutely continuous random dz-
vector with distribution P . Let Z ⊂R

dz be a measurable set such that P(z ∈ Z) = 1.

REMARK.

1. The finite dimensionality of z is not restrictive. Infinite dimensional sources of ran-
domness can be accommodated by focusing on a finite dimensional marginal distribution,
and conditioning on the remainder. Section 3.2.1 demonstrates this in an application in which
the randomness is a Gaussian stochastic process.

The following assumption specifies the domain over which Q(t, z) is minimized.

ASSUMPTION MANIFOLD. Let T = ⋃
j∈J Tj be a disjoint union of finitely or countably

many second-countable Hausdorff manifolds, possibly with boundary or corner.

REMARK.

1. Using manifolds, possibly with boundaries or corners, is a flexible way to allow for a
variety of shapes to be minimized over. Tj is a manifold with boundary or corner if each point,

t ∈ Tj , is locally diffeomorphic to a neighborhood in R
dTj

+ , where R+ denotes the nonnegative
real numbers, dTj

denotes the dimension of Tj and where a diffeomorphism is a continuously
differentiable function with a continuously differentiable inverse. This definition is slightly
more general than common definitions in differential topology because it explicitly accounts
for corners and higher-dimensional corners (see how the boundary is handled in [12] and
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especially [44], which allows for corners, but not higher-dimensional corners). This general-
ization is important for many applications in statistics that require irregularly shaped T . In the
M-estimation application, T is the parameter space. In the weak identification application, T

is the identified set, which may have an irregular shape due to bounds.

For each t ∈ Tj , let A(t) denote a subset of the tangent cone of t to Tj . (Formally, the
tangent cone of t to Tj is defined as the set of derivatives of curves in Tj that start at t .
Informally the tangent cone indexes directions for which derivatives with respect to t can be
defined.) This is a flexible way to accommodate derivatives at boundary points of t ∈ Tj , as
well as some nondifferentiability of the objective function, which is permitted by the next
assumption.

ASSUMPTION CONTINUOUS DIFFERENTIABILITY.

(a) For each j ∈ J , Q(t, z) is a continuous function of t ∈ Tj and z ∈ Z .
(b) For every z ∈ Z and t ∈ Tj , Q(t, z) is differentiable with respect to z, and the deriva-

tive is continuous with respect to t and z.
(c) For every z ∈ Z , t ∈ Tj , and � ∈ A(t), Q(t, z) is differentiable with respect to t in the

direction �, and the derivative is continuous with respect to t and z.

REMARK. Permitting A(t) to be a strict subset of the tangent cone allows for nondiffer-
entiability of the objective function in directions excluded from A(t).

Let � = {(t, s, z) : z ∈Z, t, s ∈ T , and t �= s}. Let ξ(t, s, z) = Q(t, z) − Q(s, z) be defined
on �. The next assumption is a type of nondegeneracy condition that rules out t �= s both
being global minimizers of Q(t, z) simultaneously.

ASSUMPTION GENERIC. Assume ξ(t, s, z) is a generic function over �. That is, for
every (t, s, z) ∈ �, at least one of the following is true:

(a) ξ(t, s, z) �= 0,
(b) there exists � ∈ A(t) such that d

dh
ξ(t + h�, s, z)|h=0 < 0,

(c) there exists � ∈ A(s) such that d
dh

ξ(t, s + h�,z)|h=0 > 0, or
(d) d

dz
ξ(t, s, z) �= 0.

REMARKS.

1. The key to Assumption Generic is condition (d). Often, derivatives with respect to z are
more tractable than derivatives with respect to t . In the applications, the general strategy for
verifying Assumption Generic is to show that d

dz
Q(t, z) = d

dz
Q(s, z) implies t = s.

2. For interior points, t or s, conditions (b) and (c) are related to first order conditions for
optimality. If the derivative with respect to t is nonzero, then t not a global minimizer, and
condition (b) is satisfied for some �. These conditions can be augmented with conditions on
second derivatives to allow saddle points and local maximizers.

3. Assumption Generic makes precise the type of degeneracy needed for a random func-
tion to have multiple global minimizers with positive probability. Specifically, for interior t

and s, assumption generic is a system of n + 1 nonlinear equations in n unknowns. Intu-
itively, if such a system of equations permits a common solution, then it would seem to be
degenerate, in some sense.

LEMMA 1. Under Assumptions Absolute Continuity, Manifold, Continuous Differentia-
bility, and Generic, the argmin of Q(t, z) over t ∈ T is unique almost surely-z.
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REMARKS.

1. In the special case that T = R
m, the conditions of Lemma 1 can be satisfied without

reference to manifolds or tangent cones. Assumption Continuous Differentiability is satis-
fied if Q(t, z) is continuously differentiable with respect to (t, z). Conditions (b) and (c) in
Assumption Generic simplify to

(b′) d
dt

ξ(t, s, z) �= 0, or
(c′) d

ds
ξ(t, s, z) �= 0.

Thus, Assumption Generic is satisfied if, for every (t, s, z) ∈ �, ξ(t, s, z) is nonzero, or any
of its derivatives are nonzero.

2. Intuitively, the proof of Lemma 1 eliminates potential global minimizers occurring
at distinct points. Each condition in Assumption Generic eliminates t �= s as simultaneous
global minimizers of Q(t, z). Clearly, using the first-order condition, if the derivative with
respect to t is nonzero, then we can eliminate that point as a global minimizer. The novel
idea is recognizing that we can do the same thing for derivatives with respect to z. If the
difference of the derivatives at two distinct points, t �= s, with respect to z is nonzero, then
the probability of two global minimizers occurring in neighborhoods of those two points is
zero. If, with probability 1, all simultaneous global minimizers t �= s are eliminated, we can
conclude that the argmin contains two or more points with probability zero.

3. Applications.

3.1. Nonconvex M-estimation. Lemma 1 can be applied to estimation methods that mini-
mize a random objective function, also known as M-estimation. In this case, Q is the negative
of the likelihood or some other objective function, T is the parameter space and z is the sam-
ple. These optimization problems are known to be nonconvex in general.

Uniqueness of the argmin is an important property in M-estimation, for a variety of rea-
sons. (1) Although it is not necessary for asymptotic results, such as consistency, uniqueness
is the finite sample property that the estimator is a point, a desirable property in itself. (2) In
addition, finding the global minimum is a very hard problem numerically, and there are many
algorithms, such as multistart or branch-and-bound, that are designed to find the global min-
imum. For all of these, uniqueness of the argmin is important for a well-defined convergence
criterion. At the same time, uniqueness is a property that is often difficult to verify numer-
ically because the objective function can be very flat or contain many local minimizers in
a neighborhood of the global minimizer. (3) Also, uniqueness is important for replication
and communication in research. If a replication study calculates a different value of an M-
estimator, the study may come to a different conclusion than the original. (4) In addition,
[15] provides a formula for the exact density of the maximum likelihood estimator, under the
assumption that it is unique, among other regularity conditions. For these reasons, it is useful
to have an analytic guarantee that the argmin is unique almost surely.

3.1.1. Classical likelihood. The canonical example is classical maximum likelihood.
A lot of effort has been put into verifying uniqueness of the argmin in isolated cases of
nonconvex likelihoods. These examples include the truncated normal likelihood ([34] and
[35]), the Cauchy likelihood ([5]), the Weibull likelihood ([3]), the Tobit model ([33] and
[45]), random coefficient regression models ([29]), k-monotone densities ([38]), estimating a
covariance matrix with a Kronecker product structure ([37] and [40]), and a variety of non-
parametric mixture models ([14, 17, 22–25, 39], and [46]). All of these examples require
specific knowledge about the structure of the objective function.
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The mixture model is an important example because of its widespread use and the presence
of many local minimizers. The cases where uniqueness has been verified, such as in [23], are
for nonparametric mixture models, where the number of mixture components, J , is allowed
to be as large as necessary to maximize the likelihood. In some cases, this can be as large as
n/2, or half of the sample size. This contrasts with finite mixture models, where the number of
mixture components is fixed and assumed known. To the author’s knowledge, uniqueness of
the maximum likelihood estimator has not been verified in finite mixture models. Theorem 1,
below, uses Lemma 1 to verify uniqueness of the maximum likelihood estimator for a finite
mixture of normal distributions.

The normal mixture model assumes the sample, {zi}ni=1, is drawn independently and iden-
tically from a continuous distribution with density, f0(z), that is approximated by a mixture
density, f (z; τ,μ), where τ is a J -vector of weights and μ is a J -vector of means. The
mixture density satisfies

f (z; τ,μ) =
J∑

j=1

τjφ(z − μj),

where φ(z) is the standard normal density. The weights, τj , are assumed to be positive and
sum to 1. The means, μj , are assumed to be strictly increasing: μ1 < μ2 < · · · < μJ . These
assumptions are necessary to ensure that the components can be separately identified. In this
case, the parameter to be optimized is (τ,μ), while the random vector is the full sample,
z = (z1, . . . , zn). We can write the negative of the log-likelihood as

Q(τ,μ, z) = −
n∑

i=1

logf (zi; τ,μ).

THEOREM 1. If J ≤ √
n, then the argmin of Q(τ,μ, z) over (τ,μ) is unique almost

surely-z.

REMARKS.

1. The proof of Theorem 1 verifies condition (d) in Assumption Generic by taking deriva-
tives with respect to z and arguing that d

dzi
Q(τ,μ, z) = d

dzi
Q(ς, ν, z) for all i = 1, . . . , n

implies τ = ς and μ = ν.
2. The assumption that J ≤ √

n is an artifact of the proof. The proof needs n to be large so
that there are enough derivatives with respect to zi for the argument in the first remark to be
successful. In practice, the assumption that J ≤ √

n is weak. Practical uses of finite mixture
models require very few components relative to the sample size.

3. Theorem 1 does not require the model to be correctly specified. The proof only requires
that zi is continuously distributed.

4. Theorem 1 demonstrates how Lemma 1 can be used to verify uniqueness of M-
estimators. It is stated for a normal mixture, but the proof also covers any mixture of a 1-
parameter exponential family. In addition, the proof of Theorem 1 can be extended to any
mixture of a p-parameter exponential family.

5. The mixture of a p-parameter exponential family includes, as a special case, a normal
mixture with unknown variance, but with an important caveat. As a variance parameter goes
to zero, the likelihood diverges. Thus, the assumption that Q(t, z) is a real-valued function
rules out values of the variance equal to zero. If no lower bound is placed on the variance,
no global minimum exists. With a lower bound on the variance, an extension to the proof of
Theorem 1 gives almost sure uniqueness.
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Theorem 1 requires μ1 < μ2 < · · · < μJ . In practice, Q(τ,μ, z) is usually minimized
without this restriction, resulting in nonuniqueness of the argmin. In this case, Lemma 1 can
still be used to characterize the argmin given any one global minimizer. When the global min-
imizer has all distinct means, the argmin is composed of all permutations of the components.
An additional complication arises when the global minimizer happens to have multiple com-
ponents with exactly the same mean. In that case, one can reweight the identical components
to find other global minimizers. Corollary 1, below, states this characterization in a way that
covers both cases.

Let ν∗ denote another J -vector of means, and let ς∗ denote another J -vector of positive
weights that sum to 1.

COROLLARY 1. If J ≤ √
n and if (τ ∗,μ∗) is a global minimizer of Q(τ,μ, z) over the

unrestricted parameter space, then the argmin of Q(τ,μ, z) over the unrestricted parameter
space is equal to{(

ς∗, ν∗) :
J∑

j=1

ς∗
j 1

{
ν∗
j = μ∗

k

} =
J∑

j=1

τ ∗
j 1

{
μ∗

j = μ∗
k

}
for all k = 1, . . . , J

}

almost surely-z.

REMARKS.

1. Corollary 1 states that the set of all global minimizers can be computed by permuting
and reweighting any one global minimizer.

2. The proof of Corollary 1 demonstrates a general argument for characterizing the argmin
of a random objective function, even when the argmin is not unique. The proof transforms
the parameter space to a nonredundant version, and then applies Lemma 1.

3.1.2. Penalized likelihood. Nonconvexity may also arise from a penalty term. Noncon-
vex penalties are popular because they have desirable properties for recovering sparsity. The
L0 penalty is the most direct way to impose sparsity. The Lq penalty for q ∈ (0,1), or bridge
penalty, is a continuous penalty that still leads to sparse estimates. [8, 9] and [10] consider a
class of folded concave penalties, including the smoothly clipped absolute deviation (SCAD)
penalty. [47] proposes the minimax concave penalty (MCP), which minimizes the noncon-
vexity of the penalty subject to constraints. [26] considers a class of nonconvex penalties and
gives conditions for variable selection consistency.

In particular, the global minimizer using these penalties has desirable properties. [48]
shows that the global minimizer has desirable recovery performance. [48] also shows that
the global minimizer is the unique sparse local solution. Also, [16] shows an oracle property
for the global minimizer with the bridge penalty, and [20] shows an oracle property for the
global minimizer with the SCAD penalty.

We show that the global minimizer of the penalized likelihood is unique almost surely
in the case of the linear regression model with a wide variety of penalties, including all the
penalties mentioned above. Let

Y = Xβ + ε,

where Y is an n × 1 vector and X is a n × d matrix. We estimate β by minimizing

Q(β,Y,X) = 1

2
‖Y − Xβ‖2 + p(β),

where p(β) is a penalty term, over β ∈ B ⊂R
d .



590 G. COX

THEOREM 2. Assume B = ⋃J
j=1 Bj , where each Bj is a manifold, possibly with bound-

ary or corner, such that p(β) is continuous over each Bj . If X is full rank d and the distribu-
tion of Y conditional on X is absolutely continuous, then the argmin of Q(β,Y,X) over B is
unique almost surely.

REMARKS.

1. The assumption that X is full rank is the same condition for uniqueness in unpenalized
least squares. It is surprising that the only additional condition needed for uniqueness in
penalized least squares is absolute continuity of Y conditional on X.

2. Theorem 2 accommodates a wide variety of nonconvex penalties. Even some discontin-
uous penalties can be accommodated, including the L0 penalty by partitioning the parameter
space into all possible combinations of βj = 0 and βj �= 0.

3. Theorem 2 is stated for the linear regression model, but the argument can be used for
more general penalized likelihood models. In fact, if we verify uniqueness of the unpenalized
likelihood using Lemma 1, where we verify Assumption Generic using condition (d), as in
the finite mixture model, then uniqueness of the global minimizer of the penalized likelihood
follows by the same argument for any continuous, deterministic penalty.

3.2. The argmin theorem. In many cases, limit theory for M-estimators follows from the
argmin theorem (see [19] or [43]). An important condition in the argmin theorem is that the
limiting stochastic process has a unique minimum almost surely.

The uniqueness condition has been analyzed in the case that the limiting stochastic process
is, itself, a Gaussian process. Papers considering this case include [2, 11, 19, 21] and [32].
The arguments used in these papers are all specific to proving uniqueness of the minimizer of
a Gaussian process, rather than a more general function of a Gaussian process. In addition,
[27] and [36] characterize uniqueness using differentiability of a perturbation-expectation
operator, which is useful in some examples.

Lemma 1 provides a new technique for verifying the uniqueness condition. In addition
to covering the case where the limit is, itself, a Gaussian stochastic process, Lemma 1 is
applicable to the more general setting, where the limit is a function of a Gaussian process.
We demonstrate the usefulness of Lemma 1 using two novel applications in this setting: p-
value based threshold regression and weak identification.

3.2.1. Threshold regression. Consider the threshold regression model of [30]:

Y = μ(X) + ε,

where μ(·) is a continuous function that is equal to a fixed value τ for X ≤ d0 and is strictly
larger than τ for X > d0. The parameter of interest is the threshold d0 estimated by a p-value
based M-estimator.

[30] characterizes the limit of the objective function as a functional of a Gaussian process.
Specifically, let W(t) with t ∈ R be a Gaussian process with almost surely continuous sample
paths, continuous drift m(t) and continuous covariance kernel �t1,t2 . The limiting objective
function is

(3.1) Q
(
t,W(·)) =

∫ t

0
�

(
W(y)

)
dy − tγ,

where �(·) is the standard normal cdf and γ is a constant. This defines a functional of a
Gaussian process. [30] is unable to prove that (3.1) has a unique minimum almost surely, but
assumes uniqueness in order to invoke the argmin theorem. We show that under the assump-
tion �t,s > 0 for all t, s ∈ R (which follows from Assumption 3(a) and Lemma 2 in [30]), the
minimum is indeed almost surely unique.
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THEOREM 3. If �t,s > 0 for all s, t ∈ R, then the argmin of Q(t,W(·)), defined in equa-
tion (3.1), over t ∈ R is unique almost surely.

REMARK.

1. The proof of Theorem 3 demonstrates how Lemma 1 can accommodate an infinite
dimensional source of randomness: by taking derivatives with respect to Z = W(M), for
fixed values of M .

3.2.2. Limit theory for weakly identified parameters. Limit theory for estimators of
weakly identified parameters relies on the argmin theorem. This requires a unique minimum
assumption on the limit of the profiled objective function. Papers that use this assumption
include [1, 4, 6, 13] and [41]. [1] provides sufficient conditions for uniqueness in the special
case that the key parameter, which determines the strength of identification, is scalar. How-
ever, examples that require a vector of key parameters, including [4] and [6], can benefit from
the low-level sufficient conditions stated in this paper.

Following [6], one first reparameterizes the model into the identified parameters, β , and
the unidentified parameters, π . Next, one defines a function, h : (β,π) �→ h(β,π) ∈ R

dh , that
maps structural parameters to identified reduced-form parameters. h has the property that for
some values of β , h is injective as a function of π , and then π is identified, but for other
values of β , h is not injective as a function of π , and then π is not identified. In this way,
the identifiability of π depends on the true value of β . The simplest example of a function
satisfying this property is h(β,π) = βπ , which is injective as a function of π if and only if
β �= 0.

Consider an estimator (β̂, π̂) that minimizes a random objective, Qn(β,π). To derive the
asymptotic distribution of π̂ , we consider the profiled objective, Q

p
n(π) = minβ Qn(β,π).

Appropriately standardized, this converges to a limiting stochastic process over π whose
argmin characterizes the asymptotic distribution, if it is unique. In what follows, we give the
formula for the limit, as well as sufficient conditions for the argmin to be unique.

Let parameters β and π have dimensions dβ and dπ , respectively. We characterize the limit
along a sequence of true values of the parameters, βn converging to β0, a point for which
h is not an injective function of π . These sequences lead to an intermediate identification
strength, called weak identification, indexed by a local parameter b ∈ R

dβ . The asymptotic
distributions are continuous in this local parameter, and thus are the appropriate sequences
for contiguity. The case b = 0 is an important special case corresponding to a complete loss
of identification. It derives from βn = β0 for all n. A typical sequence satisfies the following
assumption, which says that βn influences the value of h(β,π) at the

√
n rate.

ASSUMPTION WEAK IDENTIFICATION.

(a) h(β,π) is twice continuously differentiable, and
(b) for some b ∈ R

dβ ,
√

n[h(βn,π) − h(β0, π)] → hβ(β0, π)b, uniformly on compact
sets over π , where hβ(β,π) denotes the derivative of h(β,π) with respect to β .

In this application, the parameter π serves the same purpose as t , indexing the domain of
the random function. The domain is the identified set for π under identification loss. Allowing
the domain to be a union of manifolds is useful because the identified set often has an unusual
shape that may be difficult to characterize exactly. Following calculations in [6], there exists
a continuous random vector, z, with dimension dz = dβ + dh, and there exists a symmetric
and positive definite dz × dz matrix, H , such that the limit of the profiled objective function
is

(3.2) Q(π, z) = 2z′H 1/2′
g(π) − (

H 1/2z + g(π)
)′
P(π)

(
H 1/2z + g(π)

) + κ(π),
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where

g(π) = H 1/2
[

0dβ×1

hβ(β0, π)b − hβ(β0, π0)b

]
,

S(π) = H 1/2
[

Idβ

hβ(β0, π)

]
,

P (π) = S(π)
[
S(π)′S(π)

]−1
S(π)′,

and κ(π) is some continuous deterministic function of π . Notice that this limit is indexed by
a finite dimensional random vector, z, rather than an infinite dimensional stochastic process,
and hence is more susceptible to nonuniqueness.

The following theorem places low-level conditions on h in order to show that the argmin
of Q(π, z) over π is almost surely unique.

THEOREM 4. Assume the identified set can be written as a finite or countable disjoint
union of second-countable Hausdorff manifolds. Let h(β,π) and the sequence βn satisfy
Assumption Weak Identification. Let Q(π, z) be defined in equation (3.2). If:

(c) for all π1 �= π2, the rank of hβ(β0, π1) − hβ(β0, π2) is dh, and
(d) there exists an open set B containing β0, such that for almost every β ∈ B , h(β,π) −

h(β0, π) is an injective function of π .

Then, ξ(π1, π2, z) = Q(π1, z) − Q(π2, z) satisfies Assumption Generic. Therefore, by
Lemma 1, the argmin of Q(π, z) over π is unique almost surely.

REMARKS.

1. Conditions (c) and (d) eliminate degeneracy in Q(π, z) as a function of π so that As-
sumption Generic can be verified by taking derivatives with respect to z. Condition (c) is a
rank condition guaranteeing that hβ(β0, π) varies enough as a function of π . A necessary
condition is that dπ ≤ dh. Condition (d) says that π is generically identified locally around
β0. Below, two examples are given that demonstrate the importance of these two conditions.

2. The proof of Theorem 4 using Lemma 1 is nontrivial and requires an appeal to Sard’s
theorem to characterize the critical values of hβ(β0, π)(z1 − b) as a function of π .

EXAMPLE 1. This example demonstrates the importance of condition (d), that π is
generically identified in a neighborhood of β0. Consider the model,

Yi = α + β1X1i + β2X2i + (
β1π + β2π

2)
X3i + ui,

where E(ui |X1i ,X2i ,X3i) = 0. In this case, identification of π is determined by injectivity of
h(β1, β2, π) = β1π + β2π

2 in a neighborhood of (β1, β2) = (0,0). Condition (d) is not sat-
isfied because, for any β1 and β2 �= 0, there exists an h ∈ R such that the quadratic equation,
β1π + β2π

2 = h, has multiple solutions in π . We can calculate d
dβ

h(β1, β2, π)|β1=0,β2=0 =
[π,π2], which satisfies condition (c). If π is estimated by nonlinear least squares, the limit
of the profiled objective function, Q(π, z), has multiple minimizers with positive probability.
Figure 1 gives some simulations of this function.

EXAMPLE 2. This example demonstrates the importance of condition (c), which states
that hβ(β0, π1) − hβ(β0, π2) has full rank, dh, for all π1 �= π2. Consider the model,

Yi = α + βX1i + β
(
π + π2)

X2i + β2πX3i + ui,



UNIQUENESS OF A GLOBAL MINIMUM 593

FIG. 1. Sample simulations for Q(π, z) from Example 1 when b = (0,0)′ and H = I3. In the left panel,
z = (−1.03,1.29,2.77)′ and in the right panel, z = (−1.82,−0.52,0.16)′. These values were chosen randomly
and are representative of a positive probability of multiple global minimizers.

where E(ui |X1i ,X2i ,X3i) = 0. In this case, identification of π is determined by injectivity
of

h(β,π) =
[
β

(
π + π2)
β2π

]
,

in a neighborhood of β = 0. Condition (d) is satisfied because for any β �= 0, β2π is injective
as a function of π . We can calculate

d

dβ
h(β,π)

∣∣∣∣
β=0

=
[
π + π2

0

]
,

which does not satisfy condition (c) because the rank is zero whenever π1 and π2 are both
roots of π + π2 = c.

If π is estimated by nonlinear least squares, the limit of the profiled objective function,
Q(π, z), has multiple minimizers with positive probability. Figure 2 gives some simulations
of this function. The key components of this example are the two functions in h(β,π) that
depend nonlinearly on β , and contain different amounts of information about π . As βn → 0,
the more informative function is weaker and, therefore, cannot satisfy condition (c). This
example is concerning because it seems likely that these key components are present in more
complicated weakly identified models.

FIG. 2. Sample simulations for Q(π, z) from Example 2 when b = 0 and H = I3. In the left panel,
z = (−0.23,−0.28,1.31)′ and in the right panel, z = (−0.76,−0.25,−1.65)′. These values were chosen ran-
domly and are representative of a positive probability of multiple global minimizers.
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4. The proof of Lemma 1. This section gives the proof of Lemma 1. The proof is simple
and intuitive. The first subsection reduces the global problem to a local problem, the second
subsection states lemmas for the local problem and the third subsection completes the proof.
The proofs of the additional lemmas are in the Appendix.

4.1. Global to local. We first reduce from minimization over all of T to minimization
over a countable collection of compact neighborhoods, K ∈ Kj , that separate points of Tj .
Since each Tj is second-countable and Hausdorff, this countable collection always exists. For
any K ⊂ T , define the value function

V (K, z) = inf
t∈K

Q(t, z).

We consider j1, j2 ∈ J . Let K ∈ Kj1 and C ∈ Kj2 be disjoint. Lemma 2 shows that the
value of the minimum over disjoint compact sets, K and C, being different from each other
or from the value of the minimum over all of T is sufficient for the argmin to be unique
almost surely.

LEMMA 2. Suppose that {Zk}∞k=1 is a sequence of compact subsets of Z such that
P(Zk) → 1 as k → ∞, and suppose that for every k ∈ N, for every j1, j2 ∈ J , for every
K ∈ Kj1 and C ∈ Kj2 such that K ∩ C = ∅,

P
({

z ∈ Zk|V (T , z) = V (K, z) = V (C, z)
}) = 0.

Then the argmin of Q(t, z) over t ∈ T is unique almost surely.

The condition in Lemma 2 is still not local. Lemma 3 reduces this condition to a local
condition by finding neighborhoods of t , s and z that can be used to cover these compact sets
such that an appropriate probability is zero.

LEMMA 3. Fix Zk ⊂ Z , compact, fix j1, j2 ∈ J and fix K ∈ Kj1 and C ∈ Kj2 such that
K ∩ C = ∅. Suppose, for every z̄ ∈ Zk and for every (t, s) ∈ K × C, there exist neighbor-
hoods, Nt,s,z̄, Mt,s,z̄ and Wt,s,z̄ of t , s and z̄, respectively, such that

P
({

z ∈ Wt,s,z̄|V (T , z) = V (K, z) = V (Nt,s,z̄, z)

= V (C, z) = V (Mt,s,z̄, z)
}) = 0.

(4.1)

Then

P
({

z ∈ Zk|V (T , z) = V (K, z) = V (C, z)
}) = 0.

4.2. The local problem. For the rest of this section, fix j1, j2 ∈ J , K ∈ Kj1 , C ∈Kj2 such
that K ∩ C = ∅, t ∈ K , s ∈ C and z̄ ∈ Zk . We state lemmas that are useful for showing the
existence of neighborhoods, N , M and W , that satisfy (4.1), using properties of Q(t, z̄) that
follow from Assumption Generic. Assumption Generic implies one of three conditions:

1. Q(t, z̄) �= Q(s, z̄),
2. there exists a � ∈ A(t) such that d

dh
Q(t + h�, z̄)|h=0 < 0, and symmetrically for s,

and
3. d

dz
Q(t, z̄) �= d

dz
Q(s, z̄).

Lemmas 4, 5 and 6, below, show the existence of neighborhoods that satisfy (4.1) for each of
these cases, respectively.

Lemma 4 follows from the intuitive notion that if the value of Q(t, z̄) is far from the value
of Q(s, z̄), then the value of V (N, z) is far from the value of V (M,z), for small enough
neighborhoods of t , s and z̄.
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LEMMA 4. If Q(t, z̄) �= Q(s, z̄), then there exist neighborhoods, N , M and W , so that{
z ∈ W |V (N, z) = V (M,z)

} = ∅.

Lemma 5 uses the first-order conditions for optimality of t or s. It uses the intuitive notion
that if t is not a relative minimum of Q(t, z̄), then it is not a global minimum of Q(t, z̄) over
T , and it can be bounded away from the minimum in a neighborhood of z̄.

LEMMA 5. If there exists a � ∈ A(t) such that

d

dh
Q(t + h�, z̄)

∣∣∣∣
h=0

< 0,

then there exist neighborhoods of t and z̄, N and W , such that{
z ∈ W |V (N, z) = V (T , z)

} =∅.

Lemma 6 is a novel contribution allowing a simple proof of Lemma 1. It relies on a type of
mean value bound for secants of the value function. The intuition is if, in some z-direction,
the derivative of Q(t, z̄) is always less than the derivative of Q(s, z̄), then any secants of
V (N, z̄) and V (M, z̄) share that property, for sufficiently small neighborhoods, N and M .
Thus, V (N, z̄) is always increasing or decreasing at a rate which is less than the rate at which
V (M, z̄) is increasing or decreasing. This implies that they cannot cross more than once, and
the set of crossing points must have probability zero.

LEMMA 6. If

d

dz
Q(t, z̄) �= d

dz
Q(s, z̄),

then there exist neighborhoods, N , M and W , so that

P
({

z ∈ W |V (N, z) = V (M,z)
}) = 0.

Lemmas 4–6 are sufficient to find neighborhoods that satisfy (4.1). We now use them to
prove Lemma 1.

4.3. Proof of Lemma 1. For any P over R
dz , there exists a sequence of compact sets,

Zk ⊂ Z , such that P(Zk) → 1 as k → ∞. Fix j1, j2 ∈ J , K ∈ Kj1 and C ∈ Kj2 such that
K ∩ C = ∅. We seek to verify the conditions of Lemma 3. Fix t ∈ K , s ∈ C, and let z̄ ∈ Zk .
We divide into cases:

1. Q(t, z̄) �= Q(s, z̄). In this case, the existence of neighborhoods, N , M and W , satisfying
(4.1) follows from Lemma 4.

2. There exists a � ∈ A(t) such that d
dh

Q(t + h�, z̄)|h=0 < 0 or d
dh

Q(s + h�, z̄)|h=0 <

0. In both cases, the existence of neighborhoods satisfying equation (4.1) follows from
Lemma 5.

3. d
dz

Q(t, z̄) �= d
dz

Q(s, z̄). In this case, the existence of neighborhoods, N , M and W ,
satisfying (4.1) follows from Lemma 6.

The above cases exhaust the possibilities. Thus, for every (t, s) ∈ K × C, the condition of
Lemma 3 is satisfied for K and C. Since K and C are arbitrary, this verifies the condition
of Lemma 2. Therefore, by Lemma 2, the argmin of Q(t, z) over t ∈ T is unique almost
surely-z.
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5. Conclusion. This paper establishes the argmin of a random objective function to be
unique almost surely. This paper first formulates a general result, Lemma 1, that proves
uniqueness without convexity of the objective function. This paper applies the result to prove
uniqueness in a variety of statistical applications. In M-estimation, uniqueness of the argmin
is established for the first time in finite mixture models and penalized linear regression with
nonconvex penalty. In the argmin theorem, uniqueness of the argmin of the limiting stochas-
tic process is established for the first time in two cases: p-value based threshold estimation
and the profiled objective function for weakly identified parameters.

APPENDIX A: PROOFS OF LEMMAS 2–6

PROOF OF LEMMA 2. Let z ∈ Zk for some k. Suppose Q(t, z) is not uniquely minimized
over t ∈ T . Then there exist j1, j2 ∈ J , t ∈ Tj1 and s ∈ Tj2 , t �= s, so that Q(t, z) = Q(s, z) =
inft∈T Q(t, z). Furthermore, there exist sets, K ∈ Kj1 and C ∈ Kj2 , such that K ∩ C = ∅,
t ∈ K and s ∈ C. It follows that V (T , z) = V (K, z) = Q(t, z) = V (C, z) = Q(s, z). This
implies that for every k,{

z ∈ Zk|Q(t, z) is not uniquely minimized over t ∈ T
}

⊂ ⋃
j1,j2∈J

⋃
K∈Kj1 ,C∈Kj2

K∩C=∅

{
z ∈Zk|V (T , z) = V (K, z) = V (C, z)

}
.

This implies, by countability of J and Kj , that

P
({

z ∈ Z|Q(t, z) is not uniquely minimized over t ∈ T
})

≤ P
(
Zc

k

) + P
({

z ∈Zk|Q(t, z) is not uniquely minimized over t ∈ T
})

≤ P
(
Zc

k

) + ∑
j1,j2∈J

∑
K∈Kj1 ,C∈Kj2

K∩C=∅

P
({

z ∈Zk|V (T , z) = V (K, z) = V (C, z)
})

= P
(
Zc

k

) → 0,

where Zc
k denotes the complement of Zk in Z , the equality follows by assumption, and the

convergence follows as k → ∞ by the assumption on Zk . �

PROOF OF LEMMA 3. Notice that {Nt,s,z̄ × Mt,s,z̄ × Wt,s,z̄|z̄ ∈ Zk, t ∈ K, and s ∈ C}
is an open cover of Zk × K × C. Thus, there is a finite subcover that we index by
{(tm, sm, z̄m)}Mm=1. Then

P
({

z ∈ Zk|V (T , z) = V (K, z) = V (C, z)
})

≤
M∑

m=1

P
({

z ∈ Wtm,sm,z̄m |V (T , z) = V (Ntm,sm,z̄m, z)(A.1)

= V (Mtm,sm,z̄m, z) = V (K, z) = V (C, z)
})

= 0,(A.2)

where (A.1) follows from the following argument. Let z ∈Zk . By compactness there exist, t̃ ∈
K and s̃ ∈ C such that Q(t̃, z) = inft∈K Q(t, z) and Q(s̃, z) = inft∈C Q(t, z). Using the open
cover, there exists an m ∈ {1, . . . ,M} such that Ntm,sm,z̄m × Mtm,sm,z̄m × Wtm,sm,z̄m contains
(t̃ , s̃, z). This implies that V (Ntm,sm,z̄m, z) = V (K, z) and V (Mtm,sm,z̄m, z) = V (C, z).

Equation (A.2) follows by assumption. �
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PROOF OF LEMMA 4. There exists an ε > 0 such that |Q(t, z̄) − Q(s, z̄)| > ε. By conti-
nuity of Q(t, z), there exist W , N and M , bounded neighborhoods of z̄, t and s, respectively,
such that

(A.3) inf
t̃∈N

inf
s̃∈M

inf
z∈W

∣∣Q(t̃, z) − Q(s̃, z)
∣∣ > ε.

These neighborhoods satisfy Lemma 4. To see this, fix z ∈ W and let t̄ ∈ cl(N) and s̄ ∈ cl(M)

satisfy Q(t̄, z) = V (N, z) and Q(s̄, z) = V (M,z), where cl(·) denotes closure. Then, by
continuity of Q(t, z), |Q(t̄, z) − Q(s̄, z)| ≥ ε, which implies that V (N, z) �= V (M,z). �

PROOF OF LEMMA 5. Since d
dh

Q(t + h�, z̄)|h=0 < 0, there exists an ε > 0 and a t̄ ∈ T

such that Q(t̄, z̄) < Q(t, z̄) − ε. By the continuity of Q(t, z̄), there exist neighborhoods of z̄

and t , W and N , respectively, such that for all t† ∈ N and for all z ∈ W , Q(t̄, z) < Q(t†, z)−
ε. This implies that for every z ∈ W , V (N, z) ≥ Q(t̄, z) + ε > V (T , z), where the second
inequality follows from the fact that ε > 0. This shows that {z ∈ W |V (N, z) = V (T , z)} = ∅.

�

PROOF OF LEMMA 6. There exists a λ ∈ R
dz and an ε > 0 such that

d

dh

(
Q(t, z̄ + hλ) − Q(s, z̄ + hλ)

)∣∣∣∣
h=0

< −ε.

By Assumption Continuous Differentiability, there exists a convex neighborhood of z̄, W and
neighborhoods N and M of t and s, respectively, such that

(A.4) sup
z∈W

d

dh

(
Q(t̃, z + hλ) − Q(s̃, z + hλ)

)∣∣∣∣
h=0

< −ε

for all t̃ ∈ N and s̃ ∈ M .
Without loss of generality, we rotate z so that λ = e1, the first unit vector. Then

P
({

z ∈ W |V (N, z) = V (M,z)
})

=
∫
W

1
{
V (N, z) = V (M,z)

}
p(z) dz

=
∫
Rdz−1

∫
R

1
{
V

(
N, (z1, z2)

) = V
(
M,(z1, z2)

)}
1
{
(z1, z2) ∈ W

}
p(z) dz1 dz2,

where the first equality uses Assumption Absolute Continuity with p(z), the density of P ,
and the second equality uses Tonelli’s theorem. Thus, it is sufficient to show that for every z2
fixed, the set of all z1 ∈R such that V (N, z1, z2) = V (M,z1, z2) and (z1, z2) ∈ W is finite.

We show that the number of such z1 is at most one. Suppose there exist two, z′
1 > z′′

1. Let
z′ = (z′

1, z2) and z′′ = (z′′
1, z2). Then

0 = V (N, z′) − V (N, z′′)
z′

1 − z′′
1

− V (M,z′) − V (M,z′′)
z′

1 − z′′
1

= lim
m→∞

Q(t∗m(z′), z′) − Q(t∗m(z′′), z′′)
z′

1 − z′′
1

− Q(s∗
m(z′), z′) − Q(s∗

m(z′′), z′′)
z′

1 − z′′
1

= lim
m→∞

Q(t∗m(z′), z′) − Q(s∗
m(z′), z′) − (Q(t∗m(z′′), z′′) − Q(s∗

m(z′′), z′′))
z′

1 − z′′
1

≤ limsup
m→∞

Q(t∗m(z′′), z′) − Q(s∗
m(z′), z′) − (Q(t∗m(z′′), z′′) − Q(s∗

m(z′), z′′))
z′

1 − z′′
1
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= limsup
m→∞

d

dz1

(
Q

(
t∗m

(
z′′), (z1, z2)

) − Q
(
s∗
m

(
z′), (z1, z2)

))∣∣∣∣
z1=z̃1m

≤ −ε < 0,

where the second equality follows by letting t∗m(z) be a sequence in N for which Q(t∗m(z),

z) → V (N, z) as m → ∞, and similarly for s∗
m(z). The third equality follows by rearranging

terms. The first inequality follows because limm→∞ Q(t∗m(z′), z′) ≤ limsupm→∞ Q(t∗m(z′′),
z′) and limm→∞ Q(s∗

m(z′′), z′′) ≤ limsupm→∞ Q(s∗
m(z′), z′′). The final equality follows by

the mean value theorem for some z̃1m between z′′
1 and z′

1.
The second inequality follows from (A.4) because t∗m(z′) ∈ N , s∗

m(z′′) ∈ M , and (z̃1m, z2) ∈
W , by convexity. This is a contradiction. Therefore, the set of all z1 ∈ R such that
V (N, z1, z2) = V (M,z1, z2) and (z1, z2) ∈ W contains at most one point. Therefore, P({z ∈
W |V (N, z) = V (M,z)}) = 0. �

APPENDIX B: PROOF OF THEOREMS AND COROLLARY 1

PROOF OF THEOREM 1. For each K = 1, . . . , J , let TK = {(τ,μ) : τ ∈ R
K,μ ∈

R
K, τj > 0,

∑K
j=1 τj = 1 and μ1 < μ2 < · · · < μK}. Notice that Q(τ,μ, z) can be defined

for any (μ, τ ) ∈ ⋃J
K=1 TK with K in place of J .

We verify the assumptions of Lemma 1. Assumption Manifold is satisfied because TJ is a
manifold in R

2J of dimension 2J − 1. Assumption Absolute Continuity is satisfied because
zi is continuously distributed. We take Z to be the set of all (z1, . . . , zn) ∈ R

n that are distinct.
This is permitted because any two draws of zi being equal occurs only on a set of measure
zero. Assumption Continuous Differentiability is satisfied with A(t) equal to the full tangent
space because the objective function is continuously differentiable as a function of both z and
(τ,μ).

We verify a stronger version of Assumption Generic. For any z ∈ Z and for any
(τ,μ), (ς, ν) ∈ ⋃J

K=1 TK , we show that if

(B.1)
d

dzi

[
Q(τ,μ, z1, . . . , zn) − Q(ς, ν, z1, . . . , zn)

] = 0

for all i = 1, . . . , n, then τ = ς and μ = ν. By the contrapositive, if τ �= ς or μ �= ν,
then Condition (d) in Assumption Generic must hold for some i = 1, . . . , n. If (B.1) holds
for

⋃J
K=1 TK , then it also must hold for TJ . In that case, by Lemma 1, the argmin of

Q(τ,μ, z1, . . . , zn) is unique almost surely.
Let (τ,μ) ∈ TK1 and let (ς, ν) ∈ TK2 . Suppose for every i = 1, . . . , n, the following holds:

0 = d

dzi

[
Q(τ,μ, z1, . . . , zn) − Q(ς, ν, z1, . . . , zn)

]

= 1

f (zi; τ,μ)

K1∑
k=1

τk(zi − μk)φ(zi − μk)

− 1

f (zi;ς, ν)

K2∑
j=1

ςj (zi − νj )φ(zi − νj ).
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This holds if and only if

f (zi;ς, ν)

K1∑
k=1

τk(zi − μk)φ(zi − μk) = f (zi; τ,μ)

K2∑
j=1

ςj (zi − νj )φ(zi − νj )

⇐⇒ 0 =
K2∑
j=1

K1∑
k=1

ςj τkφ(zi − νj )φ(zi − μk)(μk − νj ).

(B.2)

Rewrite equation (B.2), for all i = 1, . . . , n, as

(B.3) Ab = 0,

where b is a K1K2 × 1 vector, which is indexed by j = 1, . . . ,K1 and k = 1, . . . ,K2. The
(j, k)th element of b is given by

ςj τk(μk − νj ) exp
{−0.5

(
ν2
j + μ2

k

)}
.

A is an n × K1K2 matrix, whose (i, (j, k))th element is exp{zi(νj + μk)}, which uses

φ(zi − νj )φ(zi − μk) = (2π)−1 exp
{−z2

i

}
exp

{
zi(νj + μk)

}
exp

{−0.5
(
ν2
j + μ2

k

)}
,

together with multiplying equation (B.2) by 2π exp{z2
i } to simplify.

We would like to show that A has full rank equal to K1K2, but this is not true because
some of the columns of A are redundant whenever there are pairs of indices, (j1, k1) and
(j2, k2) such that νj1 + μk1 = νj2 + μk2 . To deal with this, we define equivalence classes of
indices and shrink the matrix, A.

Consider sets of indices, (j, k), divided into equivalence classes according to the equiva-
lence relation

(j1, k1) ∼ (j2, k2) ⇐⇒ νj1 + μk1 = νj2 + μk2 .

Let the set of all equivalence classes be G. For every g ∈ G, let |g| denote the value of νj +μk

for (j, k) ∈ g. Suppose there are M ≤ K1K2 equivalence classes, enumerated by g1, . . . , gM ,
in ascending order. Consider the following equation:

(B.4) Ãb̃ = 0,

where b̃ is an M vector, indexed by g ∈ G. The gth element of b̃ is given by∑
(j,k)∈g

ςj τk(μk − νj ) exp
{−0.5

(
ν2
j + μ2

k

)}
.

Ã is an n × M matrix, whose (i, g)th element is exp{zi |g|}. We can see that equation (B.4)
follows from equation (B.3) by eliminating those columns that are redundant.

Next, we use the fact that Ã is a strictly totally positive matrix (see [18], Section 1.2). This
implies that for distinct, |g1|, . . . , |gM |, and distinct z1, . . . , zn, Ã has full rank M , using the
fact that n ≥ J 2 ≥ K1K2 ≥ M . Therefore, by inversion, we know that b̃ = 0 or, for every
g ∈ G,

(B.5)
∑

(j,k)∈g

ςj τk(μk − νj ) exp
{−0.5

(
ν2
j + μ2

k

)} = 0.

We use equation (B.5) to show the following claim.

CLAIM. K1 = K2 and for all j, k = 1, . . . ,K1, μj = νj and τkςj = τjςk .

PROOF OF CLAIM. The proof proceeds by induction on j and k.
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1. Initialization step: For j = k = 1, g1 = {(1,1)}. This is because νj + μk is minimized
when both νj and μk are at their minimum values, ν1 and μ1. Applying equation (B.5) to g1
gives

ς1τ1(μ1 − ν1) exp
{−0.5

(
ν2

1 + μ2
1
)} = 0.

Since ς1 > 0 and τ1 > 0, this reduces to μ1 = ν1. Also, τ1ς1 = τ1ς1 holds trivially.
2. Induction step: For j, k ≤ K , assume that μj = νj and τkςj = τjςk . We want to show

the result for j, k ≤ K + 1.
Consider νK+1 and μK+1. Without loss of generality, suppose νK+1 ≤ μK+1. Let ḡ ∈

G be the smallest equivalence class that contains K + 1 as an index. One can verify that
(K + 1,1) ∈ ḡ and |ḡ| = νK+1 + μ1, since any other pair of indices containing K + 1 must
be larger than or equal to νK+1 + μ1. ḡ may also contain three other types of indices:

(a) (1,K + 1) may belong to ḡ depending on whether or not μK+1 = νK+1.
(b) (j, j) may belong to ḡ for some 1 ≤ j ≤ K .
(c) The pair, (j, k) and (k, j), may both belong to ḡ, for 1 ≤ j, k ≤ K .

The proof that no other pairs of indices belongs to ḡ follows from noticing the following facts.
First, notice that if j or k is greater than K +1, then νj +μk > νK+1 +μ1. Second, notice that
if either j = K + 1 or k = K + 1, then the other index must be equal to 1. Finally, notice that
if (j, k) ∈ ḡ, where j, k ≤ K , then (k, j) ∈ ḡ because, by the induction assumption, νj = μj

and νk = μk .
Now, consider equation (B.5) applied to ḡ. We have that

0 = ςK+1τ1(μ1 − νK+1) exp
{−0.5

(
ν2
K+1 + μ2

1
)}

+ 1
{
(1,K + 1) ∈ ḡ

}
ς1τK+1(μK+1 − ν1) exp

{−0.5
(
ν2

1 + μ2
K+1

)}

+
K∑

j=1

1
{
(j, j) ∈ ḡ

}
ςj τj (μj − νj ) exp

{−0.5
(
ν2
j + μ2

j

)}

+
K∑

j=2

j−1∑
k=1

1
{
(j, k) ∈ ḡ

}[
ςjτk(μk − νj ) exp

{−0.5
(
ν2
j + μ2

k

)}

+ ςkτj (μj − νk) exp
{−0.5

(
ν2
k + μ2

j

)}]
.

(B.6)

The terms in the third line are zero because μj = νj by the induction assumption. The terms
in the fourth line are also zero because μk = νk , μj = νj and ςjτk = ςkτj . Finally, there are
two cases. If (1,K + 1) /∈ ḡ, then the equation

0 = ςK+1τ1(μ1 − νK+1) exp
{−0.5

(
ν2
K+1 + μ2

1
)}

implies a contradiction because ςK+1 > 0, τ1 > 0, νK+1 > ν1 = μ1, and exp{−0.5(ν2
K+1 +

μ2
1)} > 0. Therefore, it must be the case that (1,K + 1) ∈ ḡ. This can only happen if μK+1 =

νK+1. Further, in this case equation (B.5) reduces to: ςK+1τ1 = ς1τK+1. This proves the
induction step because for any j ≤ K , we multiply the equation by τj

τ1
= ςj

ς1
to get: ςK+1τj =

ςj τK+1.
3. The induction proceeds until K = min(K1,K2). We show that K1 = K2. To reach a

contradiction, suppose K1 < K2. The case K2 < K1 is treated symmetrically. Let ḡ ∈ G

be the smallest equivalence class that contains K1 + 1 as an index. Then (K1 + 1,1) ∈ ḡ

and |ḡ| = νK1+1 + μ1. Following the argument of the induction step, equation (B.5) applied
to ḡ gives equation (B.6), except with the second line omitted. In this case, equation (B.6)
becomes

0 = ςK1+1τ1(μ1 − νK1+1) exp
{−0.5

(
ν2
K1+1 + μ2

1
)}

,
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which is a contradiction because ςK1+1 > 0, τ1 > 0, νK1+1 > ν1 = μ1, and exp{−0.5 ×
(ν2

K1+1 + μ2
1)} > 0. Therefore, it must be the case that K1 = K2. �

Finally, we show that ς = τ . From the claim, we know that for any j, k = 1, . . . ,K1,
τk/τj = ςk/ςj . If τk > ςk for some k, then τj > ςj for any other j , to make the equation

hold. Summing up, we get 1 = ∑K1
j=1 τj >

∑K1
j=1 ςj = 1, a contradiction. Therefore, ςk = τk

for all k. This verifies (B.1). �

PROOF OF COROLLARY 1. We apply Lemma 1 to Q(τ,μ, z) defined over T =⋃J
K=1 TK , where TK is defined at the beginning of the proof of Theorem 1. Assumption

Manifold is satisfied because T is a disjoint union of TK , a manifold in R
2K of dimension

2K − 1. Assumption Absolute Continuity is satisfied because zi is continuously distributed.
We take Z to be the set of all (z1, . . . , zn) ∈ R

n that are distinct. This is permitted because
any two draws of zi being equal occurs only on a set of measure zero. Assumption Con-
tinuous Differentiability is satisfied with A(t) equal to the full tangent space because the
objective function is continuously differentiable, as a function of both z and (τ,μ). Assump-
tion Generic is satisfied by (B.1) in the proof of Theorem 1. Therefore, Q(τ,μ, z) is uniquely
minimized over T almost surely.

Next, let z be such that Q(τ,μ, z) is uniquely minimized over T . Let (τ∗,μ∗) be a global
minimizer of Q(τ,μ, z) over the unrestricted parameter space. Suppose ν∗ is another J -
vector of means and ς∗ is another J -vector of positive weights that sum to 1 satisfying∑J

j=1 ς∗
j 1{ν∗

j = μ∗
k} = ∑J

j=1 τ ∗
j 1{μ∗

j = μ∗
k} for all k. Then, for all z,

f
(
z;ς∗, ν∗) =

J∑
j=1

ς∗
j φ

(
z − ν∗

j

) =
J∑

j=1

τ ∗
j φ

(
z − μ∗

j

) = f
(
z; τ ∗,μ∗)

.

This implies that (ς∗, ν∗) is also a global minimizer of Q(τ,μ, z) over the unrestricted pa-
rameter space.

For the converse, let (ς∗, ν∗) satisfy
∑J

j=1 ς∗
j 1{ν∗

j = μ∗
k} �= ∑J

j=1 τ ∗
j 1{μ∗

j = μ∗
k} for

some k. Let (ς†, ν†) be a permutation and compression of (ς∗, ν∗) so that ν
†
1 < ν

†
2 < · · · <

ν
†
K1

are the distinct elements of ν∗ and ς
†
k = ∑J

j=1 ς∗
j 1{ν∗

j = ν
†
k }. Similarly, let (τ †,μ†) be

a permutation and compression of (τ ∗,μ∗). Notice that (τ †,μ†) and (ς†, ν†) belong to T .
Also notice that Q(τ ∗,μ∗, z) = Q(τ †,μ†, z) and Q(ς∗, ν∗, z) = Q(ς†, ν†, z). This, together
with the fact that (τ ∗,μ∗) is a global minimizer of Q(τ,μ, z) over the unrestricted param-
eter space, implies that (τ †,μ†) is a global minimizer of Q(τ,μ, z) over T (because each
element of T can be associated with some element of the unrestricted parameter space). By
uniqueness, (τ †,μ†) must be the unique global minimizer of Q(τ,μ, z) over T . Also, the
fact that there exists a k such that

∑J
j=1 ς∗

j 1{ν∗
j = μ∗

k} �= ∑J
j=1 τ ∗

j 1{μ∗
j = μ∗

k} implies that

(τ †,μ†) �= (ς†, ν†). Therefore, Q(τ †,μ†, z) < Q(ς†, ν†, z), so that (ς∗, ν∗) is not a global
minimizer of Q(τ,μ, z) over the unrestricted parameter space. �

PROOF OF THEOREM 2. We verify the conditions of Lemma 1. Assumption Absolute
Continuity is satisfied for Y conditional on X. Assumption Manifold is satisfied by the as-
sumption on B . Assumption Continuous Differentiability is satisfied because p(β) is con-
tinuous on each Bj , Q(β,Y,X) is continuously differentiable with respect to Y , and setting
A(t) = {0}, so that no differentiability with respect to β is needed. Consider condition (d) in
Assumption Generic for β1 �= β2. If equation (d) in Assumption Generic is not satisfied for
all i = 1, . . . , n, then

d

dYi

(
Q(β1, Y,X) − Q(β2, Y,X)

) = X′
i (β2 − β1) = 0.
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Stacking these up, we get that X(β2 −β1) = 0, and by the full rank of X this implies β2 = β1,
a contradiction. Therefore, equation (d) in Assumption Generic is satisfied for some i =
1, . . . , n. �

PROOF OF THEOREM 3. If, for every M > 0, the argmin of Q(t,W(·)) over t ∈
[−M,M] is unique almost surely, then the argmin of Q(t,W(·)) over t ∈ R is unique al-
most surely. This is because, if ω ∈ � is the underlying state space, then{

ω ∈ �|Q(
t,Wω(·)) has multiple minimizers over R

}
=

∞⋃
M=1

{
ω ∈ �|Q(

t,Wω(·)) has multiple minimizers over [−M,M]},
where Wω(·) denotes the draw of W(·) that is associated with ω ∈ �. Thus, we fix M > 0
and show that the probability of multiple minimizers over [−M,M] is zero.

Let

W(t) = m(t) + B(t) + �t,M�−1
M,MZ,

where Z = W(M) − m(M) and B(t) = W(t) − m(t) − �t,M�−1
M,MZ is independent of Z.

Notice that the conditional distribution of Z given B(·) is normal with variance �M,M > 0
and, therefore, continuously distributed. We condition on the realization of B(·) and verify
Assumption Generic by taking a derivative with respect to Z.

Fix t1 > t2 and calculate

d

dZ

(
Q

(
t1,W(·)) − Q

(
t2,W(·))) =

∫ t1

t2

φ
(
W(y)

)
�y,M�−1

M,M dy,

by the bounded convergence theorem, where φ(·) is the standard normal pdf. Since the inte-
grand on the right-hand side is continuous and positive, for any t1 > t2, the integral is positive,
verifying Assumption Generic. Therefore, by Lemma 1, Q(t,W(·)) has a unique minimum
over t ∈ [−M,M] almost surely, which implies uniqueness over t ∈ R almost surely. �

LEMMA 7. Let T = ⋃
j∈J Tj be a finite or countable disjoint union of second-countable

Hausdorff manifolds. Let f : T → R
l be continuously differentiable. Let u ∈ R

l be a
noninvertible value for f if there exist t1 �= t2 ∈ T such that f (t1) = f (t2) = u. Sup-
pose fn : T → R

l is a sequence of continuously differentiable and injective functions,
converging uniformly over compact sets to f . Then the Lebesgue measure of {u ∈ R

l :
u is a noninvertible value of f } is zero.

PROOF. For each j ∈ J , denote the dimension of Tj by dj . Notice that in order for fn to
be continuously differentiable and injective, dj must be less than or equal to l for all j ∈ J .
Denote the derivative of f (t) by f ′(t).

First, we show that any noninvertible value, u, must be a critical value, in the sense that
there exists a t ∈ T such that f (t) = u and f ′(t) has rank less than l. Let u be a noninvertible
value. Then there exist t1 �= t2 ∈ T such that f (t1) = f (t2) = u. Let t1 ∈ Tj1 and t2 ∈ Tj2 .
Suppose, to reach a contradiction, that f ′(t1) and f ′(t2) both have rank l. Notice that this
requires dj1 = dj2 = l. Then, by the inverse function theorem, there exist neighborhoods, N1
and N2, of t1 and t2, and a neighborhood, M , of u such that f restricted to Ni is invertible as
a function onto M , for i = 1,2. We can take N1, N2 and M to be compact and homeomorphic
to a closed ball in R

l . We can also take N1 and N2 to be disjoint.
Let ε > 0 such that the ball of radius ε around u is contained in M . Then, by uniform

convergence on compact sets, there exists an n such that for all t ∈ N1 ∪N2, ‖fn(t)−f (t)‖ <
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ε/2. For each i = 1,2, let fn(Ni) = Mi denote the image of Ni under fn, and let fn(∂Ni) =
∂Mi denote the image of the boundary of Ni , ∂Ni , under fn. We know that f maps the
boundary of Ni to the boundary of M because f is a homeomorphism when restricted to Ni ,
for each i = 1,2.

We show that u ∈ Mi for both i = 1,2. Suppose not for some i. Then let ū = fn(f
−1(u)),

where the inverse of f is restricted to Ni . By the choice of n, ‖ū − u‖ < ε/2, and ū ∈ Mi .
On the line segment connecting u and ū, there exists at least one point, u† ∈ ∂Mi . Let t† =
f −1

n (u†), and we notice that

ε/2 >
∥∥fn

(
t†) − f

(
t†)∥∥ ≥ ∥∥u − f

(
t†)∥∥ − ∥∥fn

(
t†) − u

∥∥ > ε/2,

where the first inequality follows by the choice of n, the second inequality is the triangle
inequality, and the third inequality follows because (1) f (t†) ∈ ∂M , which is at least ε away
from u by the choice of ε, and (2) fn(t

†) = u† is on the line segment connecting u and ū, so
‖u† − u‖ ≤ ‖ū − u‖ < ε/2. This contradiction shows that u ∈ Mi for both i = 1,2.

The fact that u ∈ M1 ∩ M2 is a contradiction because then there exist t̄1 ∈ N1 and t̄2 ∈ N2
such that fn(t̄1) = fn(t̄2) = u, which is impossible because fn is injective and N1 ∩ N2 = ∅.
Altogether, this shows that any noninvertible value, u, must be a critical value.

By Sard’s theorem (see [12]), the set of critical values in R
l has Lebesgue measure zero.

�

PROOF OF THEOREM 4. We verify the conditions of Lemma 1. Assumption Manifold
is satisfied by the assumption on the identified set. The fact that z is a continuous random
vector implies Assumption Absolute Continuity. Assumption Continuous Differentiability is
satisfied by Assumption Weak Identification (a). The only assumption we need to verify is
Assumption Generic.

Let π ∈ � denote the identified set. Consider z ∈ R
dz and write z = (z1, z2), where z1 ∈

R
dβ and z2 ∈R

dh . For a fixed z = (z1, z2), consider the equation

(B.7) hβ(β0, π)(z1 − b) = z2 − hβ(β0, π0)b.

We show that {z = (z1, z2) : equation (B.7) has multiple solutions over π ∈ �} has Lebesgue
measure zero.

Fix z1, and for every n let

β̃n = βn − z1√
n

+ an

n
,

where ‖an‖ ≤ 1 is chosen so that h(β̃n,π)−h(β0, π) is injective as a function of π . Such an
an always exists by Assumption (d) and for n large enough so that βn − z1/

√
n ∈ B . Let

f (π) = hβ(β0, π)(z1 − b), and

fn(π) = −√
n
(
h(β̃n,π) − h(β0, π)

)
.

We verify the conditions of Lemma 7. Let K be a compact subset of �, and notice

fn(π) = −√
n
(
h(β̃n,π) − h(βn,π)

) − √
n
(
h(βn,π) − h(β0, π)

)
= −hβ(β̈n,π ,π)

(
−z1 + an√

n

)
− √

n
(
h(βn,π) − h(β0, π)

)
→ hβ(β0, π)z1 − hβ(β0, π)b uniformly over π ∈ K

= f (π),
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where the second equality follows by a mean value expansion for every π ∈ K and β̈n,π is
on the line segment between β̃n and βn. The convergence follows because (1) the second
term converges to hβ(β0, π)b uniformly over π ∈ K by Assumption Weak Identification (b),
and (2) the first term converges to hβ(β0, π)z1 uniformly over π ∈ K by the continuity of
hβ(β,π) and the fact that an is bounded.

Therefore, by Lemma 7, the set of all z2 ∈ R
dh such that the equation f (π) = z2 −

hβ(β0, π0)b has multiple solutions over π ∈ � has Lebesgue measure zero. Since this holds
for every z1, the Lebesgue measure of {z = (z1, z2): equation (B.7) has multiple solutions
over π ∈ �} has Lebesgue measure zero.

Next, let Z = {z ∈ R
dz : equation (B.7) admits at most one solution}. We want to show that

ξ(π1, π2, z) satisfies Assumption Generic on � = {(π1, π2, z) : π1, π2 ∈ �,π1 �= π2, z ∈ Z}.
We write ξ(π1, π2, z) as

Q(π1, z) − Q(π2, z)

= 2z′H 1/2′(
g(π1) − g(π2)

) + κ(π1) − κ(π2)

− (
H 1/2z + g(π1)

)′
P(π1)

(
H 1/2z + g(π1)

)
+ (

H 1/2z + g(π2)
)′
P(π2)

(
H 1/2z + g(π2)

)
= 2W ′(2Idz − P(π1) − P(π2)

)
δ − W ′(P(π1) − P(π2)

)
W + κ̃(π1, π2),

where W = H 1/2z + g(π1)+g(π2)
2 and δ = g(π1)−g(π2)

2 , and the second equality follows from
some algebra for some κ̃(π1, π2) that does not depend on z.

Suppose part (d) in Assumption Generic is not satisfied. Then

0 = d

dz
ξ(π1, π2, z)

= 2H 1/2′(
2Idz − P(π1) − P(π2)

)
δ − 2H 1/2′(

P(π1) − P(π2)
)
W.

This implies that

(B.8) 0 = M(π1)(W + δ) + M(π2)(δ − W),

where M(π) = Idz − P(π) projects onto the span of H−1/2′[ −hβ(β0,π)′
Idh

]
. Condition (c) im-

plies that the ranges of M(π1) and M(π2) are linearly independent. Then equation (B.8)
implies that both M(π1)(W + δ) = 0 and M(π2)(δ − W) = 0. Premultiply both equations by
[0dβ×dh

, Idh
]H 1/2 to get

([−hβ(β0, π1)
′

Idh

]′
H−1

[−hβ(β0, π1)
′

Idh

])−1 [−hβ(β0, π1)
′

Idh

]′
H−1/2(W + δ) = 0,

([−hβ(β0, π2)
′

Idh

]′
H−1

[−hβ(β0, π2)
′

Idh

])−1 [−hβ(β0, π2)
′

Idh

]′
H−1/2(δ − W) = 0.

Premultiplying by invertible matrices and using the formulas for W and δ gives[−hβ(β0, π1)
′

Idh

]′
H−1/2(

H 1/2z + g(π1)
) = 0,

[−hβ(β0, π2)
′

Idh

]′
H−1/2(

H 1/2z + g(π2)
) = 0.
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Rearranging, using z = (z1, z2)
′ and using the formula for g(π) gives

hβ(β0, π1)(z1 − b) = z2 − hβ(β0, π0)b,

hβ(β0, π2)(z1 − b) = z2 − hβ(β0, π0)b.

This shows that for (z1, z2) ∈ Z , both π1 and π2 are solutions to equation (B.7). This is a
contradiction because we have assumed that for any z ∈ Z , equation (B.7) has at most one
solution. Therefore, d

dz
ξ(π1, π2, z) �= 0. This must hold for all (π1, π2, z) ∈ �, showing that

ξ(π1, π2, z) satisfies Assumption Generic. �
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