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We consider the linearly transformed spiked model, where the observa-
tions Yi are noisy linear transforms of unobserved signals of interest Xi :

Yi = AiXi + εi ,

for i = 1, . . . , n. The transform matrices Ai are also observed. We model
the unobserved signals (or regression coefficients) Xi as vectors lying on
an unknown low-dimensional space. Given only Yi and Ai how should we
predict or recover their values?

The naive approach of performing regression for each observation sepa-
rately is inaccurate due to the large noise level. Instead, we develop optimal
methods for predicting Xi by “borrowing strength” across the different sam-
ples. Our linear empirical Bayes methods scale to large datasets and rely on
weak moment assumptions.

We show that this model has wide-ranging applications in signal process-
ing, deconvolution, cryo-electron microscopy, and missing data with noise.
For missing data, we show in simulations that our methods are more robust to
noise and to unequal sampling than well-known matrix completion methods.

1. Introduction. In this paper, we study the linearly transformed spiked model, where
the observed data vectors Yi are noisy linear transforms of unobserved signals of interest Xi :

Yi = AiXi + εi, i = 1, . . . , n.

We also observe the transform matrices Ai . A transform matrix reduces the dimension
of the signal Xi ∈ Rp to a possibly observation-dependent dimension qi ≤ p, thus Ai ∈
Rqi×p . Moreover, the signals are assumed to be random vectors lying on an unknown low-
dimensional space, an assumption sometimes known as a spiked model (Johnstone (2001)).

Our main goal is to recover (estimate or predict) the unobserved signals Xi . The problem
arises in many applications, some of which are discussed in the next section. Recovery is
challenging due to the two different sources of information loss: First, the transform matrices
Ai reduce the dimension, since they are generally not invertible. It is crucial that the transform
matrices differ between observations, as this allows us to reconstruct this lost information
from different “snapshots” of Xi . Second, the observations are contaminated with additive
noise εi . We study the regime where the size of the noise is much larger than the size of the
signal. This necessitates methods that are not only numerically stable, but also reduce the
noise significantly.

This setup can be viewed as a different linear regression problem for each sample i =
1, . . . , n, with outcome vector Yi and covariate matrix Ai . The goal is then to estimate the
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regression coefficients Xi . Since Xi are random, this is also a random effects model. Our
specific setting, with low-rank Xi , is more commonly considered in spiked models, and we
will call Xi the signals.

This paper assumes that the matrices A�
i Ai ∈ Rp are diagonal. Equivalently, we assume

that the matrices A�
i Ai all commute (and so can be jointly diagonalized). We will refer to

this as the commutative model. This is mainly a technical assumption and we will see that it
holds in many applications.

With large noise, predicting one Xi using one Yi alone has low accuracy. Instead, our
methods predict Xi by “borrowing strength” across the different samples. For this we model
Xi as random vectors lying on an unknown low-dimensional space, which is reasonable in
many applications. Thus our methods are a type of empirical Bayes methods (Efron (2012)).

Our methods are fast and applicable to big data, rely on weak distributional assumptions
(only using moments), are robust to high levels of noise, and have certain statistical opti-
mality results. Our analysis is based on recent insights from random matrix theory, a rapidly
developing area of mathematics with many applications to statistics (e.g., Bai and Silverstein
(2009), Paul and Aue (2014), Yao, Zheng and Bai (2015)).

1.1. Motivation. We study the linearly transformed model motivated by its wide appli-
cability to several important data analysis scenarios.

1.1.1. PCA and spiked model. In the well-known spiked model one observes data Yi of
the form Yi = Xi + εi , where Xi ∈ Rp are unobserved signals lying on an unknown low
dimensional space, and εi ∈ Rp is noise. With Ai = Ip for all i, this is a special case of the
commutative linearly transformed spiked model.

The spiked model is fundamental for understanding principal component analysis (PCA),
and has been thoroughly studied under high-dimensional asymptotics. Its understanding
will serve as a baseline in our study. Among the many references, see, for instance,
Johnstone (2001), Baik, Ben Arous and Péché (2005), Baik and Silverstein (2006), Paul
(2007), Nadakuditi and Edelman (2008), Nadler (2008), Bai and Ding (2012), Bai and
Yao (2012), Benaych-Georges and Nadakuditi (2012), Onatski (2012), Onatski, Moreira and
Hallin (2013), Donoho, Gavish and Johnstone (2018), Onatski, Moreira and Hallin (2014),
Nadakuditi (2014), Gavish and Donoho (2017), Johnstone and Onatski (2015), Hachem,
Hardy and Najim (2015).

1.1.2. Noisy deconvolution in signal processing. The transformed spiked model is
broadly relevant in signal acquisition and imaging. Measurement and imaging devices nearly
never measure the “true” values of a signal. Rather, they measure a weighted average of the
signal over a small window in time and/or space. Often, this local averaging can be modeled
as the application of a convolution filter. For example, any time-invariant recording device in
signal processing is modeled by a convolution (Mallat (2008)). Similarly, the blur induced
by an imaging device can be modeled as convolution with a function, such as a Gaussian
(Blackledge (2006), Campisi and Egiazarian (2016)). In general, this filter will not be numer-
ically invertible.

As is well known, any convolution filter Ai is linear and diagonal in the Fourier basis; see,
for example, Stein and Shakarchi (2011). Consequently, A�

i Ai is also diagonalized by the
Fourier basis. Convolutions thus provide a rich source of examples of the linearly transformed
spiked model.
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1.1.3. Cryo-electron microscopy (cryo-EM). Cryo-electron microscopy (cryo-EM) is an
experimental method for mapping the structure of molecules. It allows imaging of hetero-
geneous samples, with mixtures or multiple conformations of molecules. This method has
received a great deal of recent interest, and has recently led to the successful mapping of
important molecules (e.g., Bai, McMullan and Scheres (2015), Callaway (2015)).

Cryo-EM works by rapidly freezing a collection of molecules in a layer of thin ice, and
firing an electron beam through the ice to produce two-dimensional images. The resulting ob-
servations can be modeled as Yi = AiXi +εi , where Xi represents an unknown 3D molecule;
Ai randomly rotates the molecule, projects it onto the xy-plane, and applies blur to the re-
sulting image; and εi is noise (Katsevich, Katsevich and Singer (2015)). Since a low electron
dose is used to avoid destroying the molecule, the images are typically very noisy.

When all the molecules in the batch are identical, that is, Xi = X for all i, the task of ab-
initio 3D reconstruction is to recover the 3D molecule X from the noisy and blurred projec-
tions Yi (Kam (1980)). Even more challenging is the problem of heterogeneity, in which sev-
eral different molecules, or one molecule in different conformations, are observed together,
without labels. The unseen molecules can usually be assumed to lie on some unknown low-
dimensional space (Katsevich, Katsevich and Singer (2015), Andén, Katsevich and Singer
(2015)). Cryo-EM observations thus fit the linearly transformed spiked model.

The noisy deconvolution problem mentioned above is also encountered in cryo-EM. The
operators Ai induce blur by convolution with a point-spread function (PSF), thus denois-
ing leads to improved 3D reconstruction (Bhamre, Zhang and Singer (2016)). The Fourier
transform of the point-spread function is called the contrast transfer function (CTF), and the
problem of removing its effects from an image is known as CTF correction.

1.1.4. Missing data. Missing data can be modeled by coordinate selection operators Ai ,
such that Ai(k, l) = 1 if the kth coordinate selected by Ai is l, and Ai(k, l) = 0 otherwise.
Thus A�

i Ai are diagonal with 0/1 entries indicating missing/observed coordinates. In the low-
noise regime, missing data in matrices has recently been studied under the name of matrix
completion (e.g., Candès and Recht (2009), Candès and Tao (2010), Keshavan, Montanari
and Oh (2009, 2010), Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright
(2011), Recht (2011), Rohde and Tsybakov (2011), Jain, Netrapalli and Sanghavi (2013)). As
we discuss later, our methods perform well in the high-noise setting of this problem.

1.2. Our contributions. Our main contribution is to develop general methods predicting
Xi in linearly transformed spiked models Yi = AiXi + εi . We develop methods that are fast
and applicable to big data, rely on weak moment assumptions, are robust to high levels of
noise, and have certain optimality properties.

Our general approach is as follows: We model Xi as random vectors lying on an unknown
low-dimensional space, Xi = ∑r

k=1 �
1/2
k zikuk for fixed unit vectors uk and mean-zero scalar

random variables zik , as usual in spiked models. In this model, the Best Linear Predictor
(BLP), also known as the Best Linear Unbiased Predictor (BLUP), of Xi given Yi is well
known (Searle, Casella and McCulloch (2009)). (The more well known Best Linear Unbiased
Estimator (BLUE) is defined for fixed-effects models where Xi are nonrandom parameters.)
The BLP depends on the unknown population principal components uk . In addition, it has a
complicated form involving matrix inversion.

Our contributions are then:

1. We show that the BLP reduces to a simpler form in a certain natural high-dimensional
model where n,p → ∞ such that p/n → γ > 0 (Section .8 in the Supplementary Material
(Dobriban, Leeb and Singer (2019))). In this simpler form, we can estimate the population
principal components using the principal components (PCs) of the backprojected data A�

i Yi
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to obtain an Empirical BLP (EBLP) predictor (a type of moment-based empirical Bayes
method), known up to some scaling coefficients. By an exchangeability argument, we show
that the optimal scaling coefficients are the same as optimal singular value shrinkage coeffi-
cients for a certain novel random matrix model (Section 2.3).

2. We derive the asymptotically optimal singular value shrinkage coefficients (Section 3),
by characterizing the spectrum of the backprojected data matrix (Section 3.1). This is our
main technical contribution.

3. We derive a suitable “normalization” method to make our method fully implementable
in practice (Section 2.4). This allows us to estimate the optimal shrinkage coefficients con-
sistently, and to use well-known optimal shrinkage methods (Nadakuditi (2014), Gavish and
Donoho (2017)). We also discuss how to estimate the rank (Section 3.4).

4. We also solve the out-of-sample prediction problem, where new Y0, A0 are observed,
and X0 is predicted using the existing data (Section 4).

5. We compare our methods to existing approaches for the special case of missing data
problems via simulations (Section 5). These are reproducible with code provided on Github
at https://github.com/wleeb/opt-pred.

2. Empirical linear prediction.

2.1. The method. Our method is simple to state using elementary linear algebra. We
give the steps here for convenience. In subsequent sections, we will explain each step, and
prove the optimality of this procedure over a certain class of predictors. Our method has the
following steps:

1. Input: Noisy linearly transformed observations Yi , and transform matrices Ai , for i =
1, . . . , n. Preliminary rank estimate r (see Section 3.4 for discussion).

2. Form backprojected data matrix B = [A�
1 Y1, . . . ,A

�
n Yn]� and diagonal normalization

matrix M̂ = n−1/2 ∑n
i=1 A�

i Ai . Form the normalized, backprojected data matrix B̃ = BM̂−1.
3. (Optional) Multiply B̃ by a diagonal whitening matrix W , B̃ ← B̃W . The definition of

W is given in Section 3.3.1.
4. Compute the singular values σk and the top r singular vectors ûk , v̂k of the matrix B̃ .
5. Compute X̂ = (X̂1, . . . , X̂n)

� = ∑r
k=1 λ̂kûkv̂

�
k .

Here λ̂k are computed according to Section 3: λ̂k = �̂
1/2
k ĉk

ˆ̃ck , where �̂k , ĉk , ˆ̃ck are esti-
mated based on the formulas given in Theorem 3.1 by plug-in. Specifically, �̂k = 1/D̂(σ 2

k ),

ĉ2
k = m̂(σ 2

k )/[D̂′(σ 2
k )�̂k], ˆ̃c2

k = m̂(σ 2
k )/[D̂′(σ 2

k )�̂k], where m̂, m̂, D̂, D̂′ are the plug-in estima-
tors of the Stieltjes-transform-like functionals of the spectral distribution, using the bottom
min(n,p) − r eigenvalues of the sample covariance matrix of the backprojected data. For
instance, m̂ is given in equation (6) (assuming p ≤ n):

m̂(x) = 1

p − r

p∑
k=r+1

1

σ 2
k − x

.

6. If whitening was performed (Step 3), unwhiten the data, X̂ ← X̂W−1.
7. Output: Predictions X̂i for Xi , for i = 1, . . . , n.

The complexity of the method is dominated by computing the singular value spectrum of
the backprojected matrix, which takes O(min(n,p)2 · max(n,p)) floating point operations.
As we will show in Section 3.3, by choosing a certain whitening matrix W , the algorithm will
only require computing the top r singular vectors and values of the backprojected data matrix,
and so can typically be performed at an even lower cost using, for example, the Lanczos
algorithm (Golub and Van Loan (2012)), especially when there is a low cost of applying the
matrix B̃ to a vector.

https://github.com/wleeb/opt-pred
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2.2. Motivation I: From BLP to EBLP. We now explain the steps of our method. We will
use the mean-squared error E‖X̂i − Xi‖2 to assess the quality of a predictor X̂i . Recall that
we modeled the signals as Xi = ∑r

k=1 �
1/2
k zikuk . It is well known in random effects models

(e.g., Searle, Casella and McCulloch (2009)) that the best linear predictor, or BLP, of one
signal Xi using Yi , is

(1) X̂BLP
i = �XA�

i

(
Ai�XA�

i + �ε

)−1
Yi.

Here, �X = ∑r
k=1 �kuku

�
k denotes the covariance matrix of one Xi , and �ε is the covariance

matrix of the noise εi . These are unknown parameters, so we need to estimate them in order
to get a bona fide predictor. Moreover, though Ai are fixed parameters here, we will take them
to be random later.

We are interested in the “high-dimensional” asymptotic regime, where the dimension p

grows proportionally to the number of samples n; that is, p = p(n) and limn→∞ p(n)/n =
γ > 0. In this setting, it is in general not possible to estimate the population covariance �X

consistently. Therefore, we focus our attention on alternate methods derived from the BLP.
The BLP involves the inverse of a matrix, which makes it hard to analyze. However, for

certain uniform models (see Section .8 in the Supplementary Material (Dobriban, Leeb and
Singer (2019)) for a precise definition), we can show that the BLP is asymptotically equiva-
lent to a simpler linear predictor not involving a matrix inverse:

X̂0
i =

r∑
k=1

η0
k

〈
A�

i Yi, uk

〉
uk.

Here η0
k are certain constants given in Section .8 in the Supplementary Material (Dobriban,

Leeb and Singer (2019)). This simple form of the BLP guides our choice of predictor when
the true PCs are not known. Let û1, . . . , ûr be the empirical PCs; that is, the top eigenvectors
of the sample covariance

∑n
i=1(A

�
i Yi)(A

�
i Yi)

�/n, or equivalently, the top left singular vec-
tors of the matrix [A�

1 Y1, . . . ,A
�
n Yn]�. For coefficients η = (η1, . . . , ηr), substituting ûk for

uk leads us to the following empirical linear predictor:

X̂
η
i =

r∑
k=1

ηk

〈
A�

i Yi, ûk

〉
ûk.

Note that, since the empirical PCs ûk are used in place of the population PCs uk , the
coefficients ηk defining the BLP are no longer optimal, and must be adjusted downwards
to account for the nonzero angle between uk and ûk . This phenomenon was studied in the
context of the ordinary spiked model in Singer and Wu (2013).

2.3. Motivation II: Singular value shrinkage. Starting with BLP and replacing the un-
known population PCs uk with their empirical counterparts ûk , we were lead to a predictor
of the form X̂

η
i = ∑r

k=1 ηk〈Bi, ûk〉ûk , where Bi = A�
i Yi are the backprojected data. Now, the

matrix X̂η = [X̂η
1 , . . . , X̂

η
n]� has the form

(2) X̂η =
r∑

k=1

ηk · Bûkû
�
k =

r∑
k=1

ηkσk(B) · v̂kû
�
k .

This has the same singular vectors as the matrix B = [B1, . . . ,Bn]� of backprojected data.
From now on, we will consider the Ai as random variables, which corresponds to an

average-case analysis over their variability. Then observe that the predictors X̂
η
i are exchange-

able random variables with respect to the randomness in Ai , εi , because they depend symmet-
rically on the data matrix B . Therefore, the prediction error for a sample equals the average
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prediction error over all Xi , which is the normalized Frobenius norm for predicting the matrix
X = (X1, . . . ,Xn)

�:

E
∥∥X̂η

i − Xi

∥∥2 = 1

n
E

∥∥X̂η − X
∥∥2
F .

Therefore, the empirical linear predictors are equivalent to performing singular value
shrinkage of the matrix B to estimate X. That is, singular value shrinkage predictors are
in one-to-one correspondence with the in-sample empirical linear predictors. Because singu-
lar value shrinkage is minimax optimal for matrix denoising problems with Gaussian white
noise (Donoho and Gavish (2014)), it is a natural choice of predictor in the more general
setting we consider in this paper, where an optimal denoiser is not known.

2.4. The class of predictors: Shrinkers of normalized, backprojected data. Motivated
by the previous two sections, we are led to singular value shrinkage predictors of the ma-
trix X. However, it turns out that rather than shrink the singular values of the matrix B of
backprojected data A�

i Yi , it is more natural to work instead with the matrix B̃ with rows
B̃i = M−1A�

i Yi , where M = EA�
i Ai is a diagonal normalization matrix. We will show later

that we can use a sample estimate of M .
The heuristic to explain this is that we can write A�

i Ai = M + Ei , where Ei is a mean
zero diagonal matrix. We will show in the proof of Theorem 3.1 that because the matrices
A�

i Ai commute, the matrix with rows EiXi/
√

n has operator norm that vanishes in the high-
dimensional limit p/n → γ . Consequently, we can write

Bi = A�
i Yi = MXi + A�

i εi + EiXi ∼ MXi︸ ︷︷ ︸
signal

+A�
i εi︸ ︷︷ ︸

noise

.

Since Xi lies in an r-dimensional subspace, spanned by u1, . . . , ur , MXi also lies in the
r-dimensional subspace spanned by Mu1, . . . ,Mur . Furthermore, A�

i εi is mean-zero and
independent of MXi . Consequently, A�

i Yi looks like a spiked model, with signal MXi and
noise A�

i εi .
Shrinkage of this matrix will produce a predictor of MXi , not Xi itself. However, multi-

plying the data by M−1 fixes this problem: we obtain the approximation

B̃i = M−1A�
i Yi ∼ Xi + M−1A�

i εi︸ ︷︷ ︸
noise

.

After this normalization, the target signal of any shrinker becomes the true signal Xi itself.
Motivated by these considerations, we can finally state the class of problems we study. We

consider predictors of the form

X̂
η
i =

r∑
k=1

ηk〈B̃i, ûk〉ûk,

where B̃i = M−1A�
i Yi , and we seek the AMSE-optimal coefficients η∗

k in the high-
dimensional limit p/n → γ ; that is, our goal is to find the optimal coefficients ηk , minimizing
the AMSE:

η∗ = arg min
η

lim
p,n→∞E

∥∥X̂η
i − Xi

∥∥2
.

We will show that the limit exists. The corresponding estimator X̂
η∗
i will be called the em-

pirical best linear predictor (EBLP). We will: (1) show that it is well-defined; (2) derive the
optimal choice of ηk ; (3) derive consistent estimators of the optimal ηk ; and (4) derive con-
sistently estimable formulas for the AMSE. As before, finding the optimal ηk is equivalent to
performing optimal singular value shrinkage on the matrix B̃ = [B̃1, . . . , B̃n]�.
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3. Derivation of the optimal coefficients. As described in Section 2, we wish to find
the AMSE-optimal coefficients ηk for predictors of the form X̂

η
i = ∑r

k=1 ηk〈B̃i , ûk〉ûk , where
B̃i = M−1A�

i Yi is the normalized, backprojected data. Equivalently, we find the optimal
singular values of the matrix with the same singular vectors as B̃ = [B̃1, . . . , B̃n]�.

Singular value shrinkage has been the subject of a lot of recent research. It is now well
known that optimal singular value shrinkage depends on the asymptotic spectrum of the data
matrix B̃ (e.g., Nadakuditi (2014), Gavish and Donoho (2017)). We now fully characterize
the spectrum, and use it to derive the optimal singular values. We then show that by estimating
the optimal singular values by plug-in, we get the method described in Section 2.1.

3.1. The asymptotic spectral theory of the back-projected data. The main theorem char-
acterizes the asymptotic spectral theory of the normalized backprojected data matrix B̃ =
BM−1, and of the unnormalized version B = [A�

1 Y1, . . . ,A
�
n Yn]�. Our data are i.i.d. sam-

ples of the form Yi = AiXi + εi .
We assume that the signals have the form Xi = ∑r

k=1 �
1/2
k zikuk . Here uk are deterministic

signal directions with ‖uk‖ = 1. We will assume that uk are delocalized, so that |uk|∞ ≤
Cp for some constants Cp → 0 that we will specify later. The scalars zik are standardized
independent random variables, specifying the variation in signal strength from sample to
sample. For simplicity, we assume that the deterministic spike strengths are different and
sorted: �1 > �2 > · · · > �r > 0.

For a distribution H , let Fγ,H denote the generalized Marchenko–Pastur distribution in-
duced by H with aspect ratio γ (Marchenko and Pastur (1967)). Closely related to Fγ,H is
the so-called companion distribution Fγ,H (x) = γFγ,H (x) + (1 − γ )δ0. We will also need
the Stieltjes transform mγ,H of Fγ,H , mγ,H (z) = ∫

(x − z)−1 dFγ,H (x), and the Stieltjes
transform mγ,H of Fγ,H . Based on these, one can define the D-transform of Fγ,H by

Dγ,H (x) = x · mγ,H (x) · mγ,H (x).

Up to the change of variables x = y2, this agrees with the D-transform defined in Benaych-
Georges and Nadakuditi (2012). Let b2 := b2

H be the supremum of the support of Fγ,H , and
Dγ,H (b2

H ) = limt↓b Dγ,H (t2). It is easy to see that this limit is well defined, and is either
finite or +∞.

We will assume the following conditions:

1. Commutativity condition. The matrices A�
i Ai commute with each other. Equivalently,

they are jointly diagonal in some known basis. For simplicity of notation, we will assume
without loss of generality that the A�

i Ai are diagonal.
2. Backprojected noise. The vectors ε∗

i = A�
i εi have independent entries of mean zero. If

Hp is the distribution function of the variances of the entries of M−1ε∗
i , then Hp is bounded

away from zero; and Hp ⇒ H almost surely, where H is a compactly supported distribution.
3. Maximal noise variance. The supremum of the support of Hp converges almost surely

to the upper edge of the support of H .
4. Noise moments and independence. The entries of the diagonal matrices A�

i Ai are in-
dependent random variables. Moreover, recalling that we defined Ei = A�

i Ai − M , we have
the bounded moment assumptions E|ε∗

ij |6+φ < C, E|Eij |6+φ < C.
5. Signal. One of the following two assumptions holds for the signal directions uk and

signal coefficients zij :

• Polynomial moments and delocalization. Suppose E|zij |m ≤ C < ∞ for some m > 4 and
for all k

‖uk‖∞ · p(2+c)/m →a.s. 0

for some c > 0.
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• Exponential moments and logarithmic delocalization. Suppose the zij are sub-Gaussian in
the sense that E exp(t |zij |2) ≤ C for some t > 0 and C < ∞, and that for all k

‖uk‖∞ ·
√

logp →a.s. 0.

6. Generic signal. Let P be the diagonal matrix with Pjj = Var[M−1
j ε∗

ij ], where Mj are

the diagonal entries of the diagonal matrix M = EA�
i Ai . Then uj are generic with respect to

P , in the sense that there are some constants τk > 0 such that:

u�
j (P − zIp)−1uk → I (j = k) · τk · mH(z)

for all z ∈C+.

Before stating the main results, we make a few remarks on these assumptions. Assump-
tion 1 holds for many applications, as discussed in Section 1.1. However, our analysis will go
through if a weaker condition is placed on matrices A�

i Ai , namely that they are diagonally
dominant in a known basis, in the sense that the off-diagonal elements are asymptotically
negligible to the operator norm. Because it does not change anything essential in the analy-
sis, for ease of exposition we will analyze the exact commutativity condition.

The part of Assumption 2 that the entries of ε∗
i = A�

i εi are independent is easily checked
for certain problems, such as missing data with independently selected coordinates. However,
it may not always hold. For example, in the problem of CTF correction in cryo-EM (see
Section 1.1), each Ai may be one of a discrete number of different CTFs; in this case, the
assumption will not hold exactly. However, we have found in practice that the Marchenko–
Pastur law holds even in this regime. To illustrate this, in Figure 1 we plot histograms of the
sample covariance eigenvalues of simulated backprojected isotropic Gaussian noise using 30
different synthetic CTFs, generated using the ASPIRE software package (ASPIRE (2017)),
for 30 defocus values between 0.5 and 3. We plot the coefficients of the backprojected noise in
the first frequency block of a steerable basis with radial part the Bessel functions, as described
in Bhamre, Zhang and Singer (2016) and Zhao, Shkolnisky and Singer (2016). Because this
frequency block only contains 49 coefficients, the histogram we plot is for 100 draws of the
noise. We whiten the backprojected noise, so the population covariance is the identity. As is
evident from the figure, there is a very tight agreement between the empirical distribution of
eigenvalues and the Marchenko–Pastur laws.

Assumption 5 about the signals presents a tradeoff between the delocalization of the spike
eigenvectors and the moments of the signal coefficients. If a weak polynomial moment as-
sumption or order m holds for the signal coefficients zij , then it requires a delocalization at a
polynomial rate p−(2+c)/m for the spike eigenvectors. In particular, this implies that at least a
polynomial number of coefficients of uk must be nonzero, so that uk must be quite nonsparse.
In contrast, if we assume a stronger sub-Gaussian moment condition for the noise, then only
a logarithmic delocalization is required, which allows uk to be quite sparse.

This assumption is similar to the incoherence condition from early works on matrix com-
pletion (e.g., Candès and Recht (2009), etc.). Later works have shown that some form of
recovery is possible even if we do not have incoherence (e.g., Koltchinskii, Lounici and
Tsybakov (2011)). However, in our case, complete sparsity of order one (i.e., only a fixed
number of nonzero coordinates) seems impossible to recover. Indeed, suppose the rank is one
and u = (1,0, . . . ,0). Then, all information about u and z is in the first coordinate. In our
sampling model, we observe a fixed fraction q of the coordinates, and we can have q < 1.
Thus, for the unobserved coordinates, there is no information about the zi . Therefore, with
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FIG. 1. Histograms of empirical eigenvalues of whitened, backprojected noise using 30 CTFs, plotted against
the Marchenko–Pastur density for different aspect ratios γ .

the current random sampling mechanism, we think that accurate estimation is not possible
for fixed sparsity.

Assumption 6 generalizes the existing conditions for spiked models. In particular, it is easy
to see that it holds when the vectors uk are random with independent coordinates. Specifically,
let x be a random vector with iid zero-mean entries with variance 1/p. Then Ex�(P −
zIp)−1x = p−1 tr(P − zIp)−1. Assumption 6 requires that this converges to mH(z), which
follows from Hp ⇒ H . However, Assumption 6 is more general, as it does not require any
kind of randomness in uk .

Our main result in this section is the following.

THEOREM 3.1 (Spectrum of transformed spiked models). Under the above conditions,
the eigenvalue distribution of B̃�B̃/n converges to the general Marchenko–Pastur law Fγ,H

a.s. In addition, for k ≤ r , the kth largest eigenvalue of B̃�B̃/n converges, λk(B̃
�B̃)/n → t2

k

a.s., where

(3) t2
k =

⎧⎪⎨
⎪⎩

D−1
γ,H

(
1

�k

)
if �k > 1/Dγ,H

(
b2
H

)
,

b2
H otherwise.
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Moreover, let ûk be the right singular vector of B̃ corresponding to λk(B̃
�B̃). Then

(u�
j ûk)

2 → c2
jk a.s., where

(4) c2
jk =

⎧⎪⎪⎨
⎪⎪⎩

mγ,H (t2
k )

D′
γ,H (t2

k )�k

if j = k and �k > 1/Dγ,H

(
b2
H

)
,

0 otherwise.

Finally, let Zj = n−1/2(z1j , . . . , znj )
�, and let Ẑk be the kth left singular vector of B̃ .

Then (Z�
j Ẑk)

2 → c̃2
jk a.s., where

(5) c̃2
jk =

⎧⎪⎪⎨
⎪⎪⎩

mγ,H (t2
k )

D′
γ,H (t2

k )�k

if j = k and �k > 1/Dγ,H

(
b2
H

)
,

0 otherwise.

The proof is in Section .1 in the Supplementary Material (Dobriban, Leeb and Singer
(2019)). While the conclusion of this theorem is very similar to the results of Benaych-
Georges and Nadakuditi (2012), our observation model Yi = AiXi + εi is entirely different
from the one in that paper; we are addressing a different problem. Moreover, our technical
assumptions are also more general and more realistic, and only require finite moments up to
the sixth moment, unlike the more stringent conditions in previous work. In addition, we also
have the result below, which differs from existing work.

For the un-normalized backprojected matrix B , a version of Theorem 3.1 applies mutatis
mutandis. Specifically, we let Hp be the distribution of the variances of A�

i εi . We replace
Ip with M in the assumptions when needed, so we let τk = limn→∞ ‖Muk‖2, and νj =
Muj/‖Muj‖. Then the above result holds for B , with �k replaced by τk�k , and uj replaced
by νj . The proof is identical, and is also presented in Section .1 in the Supplementary Material
(Dobriban, Leeb and Singer (2019)).

3.2. Optimal singular value shrinkage. Theorem 3.1 describes precisely the limiting
spectral theory of the matrix B̃/

√
n. Specifically, we derived formulas for the limiting cosines

ck and c̃k of the angles between the top r singular vectors of B̃/
√

n and X/
√

n, and the rela-
tionship between the top singular values of these matrices.

It turns out, following the work of Gavish and Donoho (2017) and Nadakuditi (2014), that
this information is sufficient to derive the optimal singular value shrinkage predictor of X. It
is shown in Gavish and Donoho (2017) that λ∗

i = �
1/2
k ckc̃k , under the convention ck, c̃k > 0.

Furthermore, the AMSE of this predictor is given by
∑r

k=1 �k(1 − c2
k c̃

2
k). We outline the

derivation of these formulas in Section .11 in the Supplementary Material (Dobriban, Leeb
and Singer (2019)), though the reader may wish to refer to Gavish and Donoho (2017) for a
more detailed description of the method, as well as extensions to other loss functions.

We next show how to derive consistent estimators of the angles and the limiting singular
values of the observed matrix. Plugging these into the expression λ∗

i = �
1/2
i ci c̃i , we imme-

diately obtain estimators of the optimal singular values λ∗
i . This will complete the proof that

the algorithm given in Section 2.1 solves the problem posed in Section 2.4 and defines the
EBLP.

3.2.1. Estimating �k , ck and c̃k . To evaluate the optimal λ∗
i , we estimate the values of

�k , ck , and c̃k using Theorem 3.1 whenever �k ≥ b2
H (that is, if the signal is strong enough).

From (3), we have the formula �k = 1/Dγ,H (t2
k ) where tk is the limiting singular value of the

observed matrix B̃/
√

n. We also have the formulas (4) and (5) for ck and the c̃k .



OPTIMAL PREDICTION 501

We will estimate the Stieltjes transform mγ,H (z) by the sample Stieltjes transform, defined
as

(6) m̂γ,H (z) = 1

p − r

p∑
k=r+1

1

λk − z
,

where the sum is over the bottom p − r eigenvalues λk of B̃�B̃/n. It is shown by Nadakuditi
(2014) that m̂γ,H is a consistent estimator of mγ,H , and that using the corresponding plug-in
estimators of mγ,H , Dγ,H and D′

γ,H , we also obtain consistent estimators of �k , ck , and c̃k .

3.2.2. Using M̂ in place of M . To make the procedure fully implementable, we must be
able to estimate the mean matrix M = EA�

i Ai . If M is estimated from the n i.i.d. matrices
A�

i Ai by the sample mean M̂ = n−1 ∑n
i=1 A�

i Ai , we show that multiplying by M̂−1 has
asymptotically the same effect as multiplying by the true M−1, assuming that the diagonal
entries of M are bounded below. This justifies our use of M̂ .

LEMMA 3.2. Suppose that the entries Mi of M are bounded away from 0: Mi ≥ δ for
some δ > 0, for all i. Let M̂ = n−1 ∑n

i=1 A�
i Ai . Then

lim
p,n→∞n−1/2∥∥BM−1 − BM̂−1∥∥

op = 0.

See Section .10 in the Supplementary Material (Dobriban, Leeb and Singer (2019)) for
the proof. Note that the condition of this lemma are violated only when the entries of M can
be arbitrarily small; but in this case, the information content in the data on the correspond-
ing coordinates vanishes, so the problem itself is ill-conditioned. The condition is therefore
reasonable in practice.

3.3. Prediction for weighted loss functions: Whitening and big data. In certain appli-
cations, there may be some directions that are more important than others, whose accurate
prediction is more heavily prized. We can capture this by considering weighted Frobenius
loss functions ‖X̂i − Xi‖2

W = ‖W(X̂i − Xi)‖2, where W is a positive-definite matrix. Can
we derive optimal shrinkers with respect to these weighted loss functions?

The weighted error can be written as ‖X̂i − Xi‖2
W = ‖W(X̂i − Xi)‖2 = ‖ŴXi − WXi‖2.

In other words, the problem of predicting Xi in the W -norm is identical to predicting WXi

in the usual Frobenius norm. Because the vectors WXi lie in an r-dimensional subspace
(spanned by Wu1, . . . ,Wur ), the same EBLP method we have derived for Xi can be applied
to prediction of WXi , assuming that the technical conditions we imposed for the original
model hold for this transformed model. That is, we perform singular value shrinkage on the
matrix of transformed observations WB̃i .

To explore this further, recall that after applying the matrix M−1 to each vector A�
i Yi ,

the data matrix behaves asymptotically like the matrix with columns Xi + ε̃i , for some noise
vectors ε̃i that are independent of the signal Xi . The observations WM−1A�

i Yi are asymp-
totically equivalent to WXi + Wε̃i . If we choose W to be the square root of the inverse
covariance of ε̃i , then the effective noise term Wε̃i has a identity covariance; we call this
transformation “whitening the effective noise”.

One advantage of whitening is that there are closed formulas for the asymptotic spikes
and cosines. This is because the Stieltjes transform of white noise has an explicit closed
formula; see Bai and Silverstein (2009). To make sense of the formulas, we will assume that
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the low-rank model WXi satisfies the assumptions we initially imposed on Xi ; that is, we
will assume

(7) WXi =
r∑

k=1

�̃
1/2
k z̃ikũk,

where the zik are i.i.d. and the ũk are orthonormal. With this notation, the empirical eigenval-
ues of WB̃�B̃W/n converge to

λk =
⎧⎪⎨
⎪⎩

(�̃k + 1)

(
1 + γ

�̃k

)
if �̃k >

√
γ ,

(1 + √
γ )2 otherwise

while the limit of the cosine of the angle between the kth empirical PC ûk and the kth popu-
lation PC uk is

(8) c2
k =

⎧⎪⎨
⎪⎩

1 − γ /�̃2
k

1 + γ /�̃k

if �̃k >
√

γ ,

0 otherwise

and the limit of the cosine of the angle between the kth empirical left singular vector v̂k and
the kth left population singular vector vk is

(9) c̃2
k =

⎧⎪⎨
⎪⎩

1 − γ /�̃2
k

1 + 1/�̃k

if �̃k >
√

γ ,

0 otherwise.

These formulas are derived in Benaych-Georges and Nadakuditi (2012); also see Paul
(2007).

Following Section 3.2, the W -AMSE of the EBLP is
∑r

k=1 �̃k(1 − c2
k c̃

2
k). Since the pa-

rameters �̃k , ck and c̃k are estimable from the observations, the W -AMSE can be explicitly
estimated.

Using these formulas makes evaluation of the optimal shrinkers faster, as we avoid estimat-
ing the Stieltjes transform from the bottom p − r singular values of B̃ . Using whitening, the
entire method only requires computation of the top r singular vectors and values. Whitening
thus enables us to scale our methods to extremely large datasets.

3.3.1. Estimating the whitening matrix W . In the observation model Yi = A�
i Xi + εi , if

the original noise term εi has identity covariance, that is �ε = Ip , then it is straightforward
to estimate the covariance of the “effective” noise vector ε̃i = M−1A�

i εi , and consequently

to estimate the whitening matrix W = �
−1/2
ε̃

.
It is easy to see that A�

i εi has covariance M = E[A�
i Ai], which is diagonal. Then the

covariance of ε̃i is M−1MM−1 = M−1, and W = M1/2. As in the proof of Lemma 3.2, W

can be consistently estimated from the data by the sample mean
∑n

i=1(A
�
i Ai)

1/2/n.

3.4. Selecting the rank. Our method requires a preliminary rank estimate. Our results
state roughly that, after backprojection, the linearly transformed spiked model becomes a
spiked model. So we believe we may be able to adapt some popular methods for selecting the
number of components in spiked models. There are many such methods, and it is not our goal
to recommend a particular one. One popular method in applied work is a permutation method
called parallel analysis (Buja and Eyuboglu (1992), Dobriban (2017)), for which we have
proposed improvements (Dobriban and Owen (2019)). For other methods, see Kritchman
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and Nadler (2008), Passemier and Yao (2012), and also Yao, Zheng and Bai ((2015), Chapter
11), for a review.

If the method is strongly consistent, in the sense that the number of components is almost
surely correctly estimated, then it is easy to see that the entire proof works. Specifically, the
optimal singular value shrinkers can be obtained using the same orthonormalization method,
and they can also be estimated consistently. Thus, for instance the methods from Passemier
and Yao (2012), Dobriban and Owen (2019) are applicable if the spike strengths are suffi-
ciently large.

4. Out-of-sample prediction. In Section 3, we derived the EBLP for predicting Xi

from Yi = AiXi + εi , i = 1, . . . , n. We found the optimal coefficients ηk for the predictor∑r
k=1 ηk〈B̃i, ûk〉ûk , where the ûk are the empirical PCs of the normalized back-projected

data B̃i = M̂−1A�
i Yi .

Now suppose we are given another data point, call it Y0 = A0X0 + ε0, drawn from the
same model, but independent of Y1, . . . , Yn, and we wish to predict X0 from an expression of
the form

∑r
k=1 ηk〈B̃0, ûk〉ûk .

At first glance, this problem appears identical to the one already solved. However, there
is a subtle difference: the new data point is independent of the empirical PCs û1, . . . , ûr . It
turns out that this independence forces us to use a different set of coefficients ηk to achieve
optimal prediction.

We call this the problem of out-of-sample prediction, and the optimal predictor the out-of-
sample EBLP. To be clear, we will refer to the problem of predicting Y1, . . . , Yn as in-sample
prediction, and the optimal predictor as the in-sample EBLP. We call (Y1,A1), . . . , (Yn,An)

the in-sample observations, and (Y0,A0) the out-of-sample observation.
One might object that solving the out-of-sample problem is unnecessary, since we can

always convert the out-of-sample problem into the in-sample problem. We could enlarge the
in-sample data to include Y0, and let ûk be the empirical PCs of this extended data set. While
this is true, it is often not practical for several reasons. First, in on-line settings where a
stream of data must be processed in real-time, recomputing the empirical PCs for each new
observation may not be feasible. Second, if n is quite large, it may not be viable to store all
of the in-sample data Y1, . . . , Yn; the r vectors û1, . . . , ûr require an order of magnitude less
storage.

In this section, we will first present the steps of the out-of-sample EBLP. Then we will
provide a rigorous derivation. We will also show that the AMSEs for in-sample and out-of-
sample EBLP with respect to squared W -norm loss are identical, where W is the inverse
square root of the effective noise covariance. This is a rather surprising result that gives
statistical justification for the use of out-of-sample EBLP, in addition to the computational
considerations already described.

4.1. Out-of-sample EBLP. The out-of-sample denoising method can be stated simply,
similarly to the in-sample algorithm in Section 2.1. We present the steps below.

1. Input: The top r in-sample empirical PCs û1, . . . , ûr . Estimates of the eigenvalues
�̂1, . . . , �̂r and cosines ĉ1, . . . , ĉr . An estimate �̂ε̃ of the noise covariance �ε̃ of the nor-
malized backprojected noise vectors ε̃i = M−1A�

i εi . The diagonal matrix M̂−1 which is the
inverse of an estimate of the covariance matrix of the noise εi , and an out-of-sample obser-
vation (Y0,A0).

2. Construct the vector B̃0 = M̂−1A�
0 Y0.

3. Compute estimators of the out-of-sample coefficients η1, . . . , ηr . These are given by

the formula η̂k = �̂k ĉ
2
k

�̂k ĉ
2
k+d̂k

, where d̂k = û�
k �̂ε̃ûk .

4. Output: Return the vector X̂0 = ∑r
k=1 η̂k〈B̃0, ûk〉ûk .
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4.2. Deriving out-of-sample EBLP. We now derive the out-of-sample EBLP described
in Section 4.1. Due to the independence between the (Y0,A0) and the empirical PCs ûk , the
derivation is much more straightforward than was the in-sample EBLP. Therefore, we present
the entire calculation in the main body of the paper.

4.2.1. Covariance of M−1A�
i Yi . Let B̃i = M−1A�

i Yi = M−1DiXi + M−1A�
i εi , with

Xi = ∑r
j=1 �

1/2
j zijuj and Di = A�

i Ai . Let Ri = Xi + M−1A�
i εi = Xi + ε̃i ; so B̃i = Ri +

EiXi , with Ei = Ip − M−1A�
i Ai .

Observe that

Cov(B̃i) = Cov(Ri) + Cov(EiXi) +ERi(EiXi)
� +E(EiXi)

�Ri

and also that

ERi(EiXi)
� = EXiX

�
i Ei +Eε̃iX

�
i Ei = 0

since EEi = 0 and Eεi = 0, and they are independent of Xi ; similarly E(EiXi)
�Ri = 0 as

well. Consequently,

Cov(B̃i) = Cov(Ri) + Cov(EiXi).

Let cj = EE2
ij . Then

E(EiXi)(EiXi)
� =

r∑
j=1

�
1/2
j

⎛
⎜⎜⎜⎜⎝

c1u
2
j1

c2u
2
j2

. . .

cpu2
jp

⎞
⎟⎟⎟⎟⎠

which goes to zero in operator norm as n,p → ∞, by the incoherence property of the uk’s,
and because cj are uniformly bounded under the assumptions of Theorem 3.1. Therefore,
‖�

B̃
− (�X + �ε̃)‖op → 0.

4.2.2. Out-of-sample coefficients and AMSE. We will compute the optimal (in sense of
AMSE) coefficients for out-of-sample prediction. We have normalized, back-projected ob-
servations B̃i = M−1DiXi + ε̃i , with Xi = ∑r

j=1 �
1/2
j zijuj and ε̃i = M−1A�

i εi .
We are looking for the coefficients η1, . . . , ηr so that the estimator

(10) X̂
η
0 =

r∑
j=1

ηj 〈B̃0, ûj 〉ûj

has minimal AMSE. Here, ûj are the empirical PCs based on the in-sample data (Y1,A1), . . . ,

(Yn,A1) (that is, the top r eigenvectors of
∑n

j=1 B̃iB̃
�
i ), whereas (Y0,A0) is an out-of-sample

datapoint.
It is easily shown that the contribution of ηk to the overall MSE is

�k + η2
kE

(
û�

k B̃0
)2 − 2ηk�

1/2
k Ez0k

(
û�

k B̃0
)(

û�
k uk

)
.

It is also easy to see that the interaction terms obtained when expanding the MSE vanish.
To evaluate the quadratic coefficient above, first take the expectation over Y0 and A0 only,

which gives

E0
(
û�

k B̃0
)2 = û�

k �
B̃
ûk ∼ û�

k

(
r∑

j=1

�juju
�
j + �ε̃

)
ûk

∼ �kc
2
k + û�

k �ε̃ûk.
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Note that when the original noise εi is white (i.e., �ε = Ip), we can estimate dk ≡
û�

k �ε̃ûk using the approximation �ε̃ ∼ M−1, as in Section 3.3.1. Defining the estimator
d̂k = û�

k M−1ûk (or û�
k M̂−1ûk , where M̂ = ∑n

i=1 A�
i Ai/n), we therefore have |d̂k −dk| → 0.

Now turn to the linear term. We have û�
k B̃0 = ∑r

j=1 �
1/2
j z0j û

�
k M−1D0uj + û�

k ε0; using

E[M−1D0] = Ip and using the almost sure convergence results, it follows after some simple

calculation that �
1/2
k E[z0kû

�
k B̃0û

�
k uk] → �kc

2
k . Consequently, the mean-squared error of the

out-of-sample predictor (as a function of ηk) is asymptotically equivalent to

r∑
k=1

{
�k + η2

k

(
�kc

2
k + dk

) − 2ηk�kc
2
k

}
.

This is minimized at η∗
k = �kc

2
k

�kc
2
k+dk

and the MSE is asymptotically equivalent to

r∑
k=1

(
�k − �2

kc
4
k

�kc
2
k + dk

)
.

This finishes the derivation of the optimal coefficients for out-of-sample prediction.

4.3. The whitened model. Following the approach described in Section 3.3, we can
optimally predict X0 using the W -loss, for any positive semi-definite matrix W . This is
equivalent to performing optimal prediction of the signal WX0 based on the observations
WB̃0 = WM−1D0X0 + Wε̃0 in the usual Frobenius sense.

We can always transform the data so that the effective noise Wε̃ = WM−1A�
0 ε̃0 has iden-

tity covariance; that is, take W = �
−1/2
ε̃

.

In this setting, the parameters û�
k W�

−1/2
ε̃

W ûk = û�
k ûk = 1, and so dk = 1. Consequently,

the limiting AMSE is

(11)
r∑

k=1

(
�̃k − �̃2

kc
4
k

�̃kc
2
k + 1

)
,

where �̃k are the eigenvalues of the whitened model WXi , assuming the model (7). Using the
formulas (8) and (9) for ck and c̃k as functions of �̃k , it is straightforward to check that formula
(11) is equal to

∑r
k=1 �̃k(1− c2

k c̃
2
k), which is the in-sample AMSE with W -loss; we will show

this in Section .12 in the Supplementary Material (Dobriban, Leeb and Singer (2019)). That
is, the AMSE for whitened observations are identical for in-sample and out-of-sample EBLP.

Thus, we state the following theorem.

THEOREM 4.1 (Out-of-sample EBLP). Suppose our observations have the form Yi =
AiXi + εi , i = 1, . . . , n, under the conditions of Theorem 3.1, and suppose in addition that
(7) holds, with W = �

−1/2
ε̃

and ε̃i = M−1A�
i εi .

Given an out-of-sample observation Y0, A0, consider a predictor of X0 of the form (10).
Then, for the optimal choice of ηk , the minimum asymptotic out-of-sample MSE achieved by
this predictor in �

−1/2
ε̃

-norm equals the corresponding expression for in-sample MSE.
Thus, asymptotically, out-of-sample denoising is not harder than in-sample denoising.

The remainder of the proof of Theorem 4.1 is contained in Section .12 in the Supplemen-
tary Material (Dobriban, Leeb and Singer (2019)).
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5. Matrix denoising and missing data. A well-studied problem to which our analysis
applies is the problem of missing data, where coordinates are discarded from the observed
vectors. Here the operators Di = A�

i Ai place zeros in the unobserved entries.
Without additive noise, recovering the matrix X = [X1, . . . ,Xn]� is known as matrix com-

pletion, and has been widely studied in statistics and signal processing. There are many meth-
ods with guarantees of exact recovery for certain classes of signals (Candès and Recht (2009),
Candès and Tao (2010), Jain, Netrapalli and Sanghavi (2013), Keshavan, Montanari and Oh
(2010), Recht (2011)).

Many methods for matrix completion assume that the target matrix X is low-rank. This is
the case for the linearly transformed model as well, since the rows X�

i of X all lie in the r-
dimensional subspace spanned by u1, . . . , ur . In the linearly transformed model, the low-rank
target matrix X is itself random, and the analysis we provide for the performance of EBLP is
dependent on this random structure.

Our approach differs from most existing methods. Our methods have the following advan-
tages:

1. Speed. Typical methods for matrix completion are based on solving optimization prob-
lems such as nuclear norm minimization (Candès and Recht (2009), Candès and Tao (2010)).
These require iterative algorithms, where an SVD is computed at each step. In contrast, when
an upper bound on the rank of the target matrix is known a priori our methods require only one
SVD, and are thus much faster. Some of the methods for rank estimation in the spiked model
discussed in Section 3.4, such as Dobriban and Owen (2019) and Kritchman and Nadler
(2008), require only one SVD as well; we believe that these methods can be adapted to the
linearly transformed spiked model, though this is outside the scope of the current paper.

2. Robustness to high levels of noise. Most matrix completion methods have guarantees of
numerical stability: when the observed entries are accurate to a certain precision, the output
will be accurate to almost the same precision. However, when the noise level swamps the
signal, these stability guarantees are not informative. While many matrix completion methods
can be made more robust by incorporating noise regularization, EBLP is designed to directly
handle the high-noise regime. In Section 5.1, we show that our method is more robust to noise
than regularized nuclear norm minimization.

3. Applicability to uneven sampling. While many matrix completion methods assume that
the entries are observed with equal probability, other methods allow for uneven sampling
across the rows and columns. Our method of EBLP allows for a different probability in each
column of X. In Section 5.1.2, we compare our method to competing methods when the
column sampling probabilities exhibit varying degrees of nonuniformity. In particular, we
compare to the OptShrink method for noisy matrix completion (Nadakuditi (2014)), which
is nearly identical to EBLP when the sampling is uniform, but is not designed for uneven
sampling. We also compare to weighted nuclear norm minimization, designed to handle the
uneven sampling.

4. Precise performance guarantees. Our shrinkage methods have precise asymptotic per-
formance guarantees for their mean squared error. The errors can be estimated from the ob-
servations themselves.

In addition to these advantages, our method has the seeming shortcoming that unlike many
algorithms for matrix completion, it never yields exact recovery. However, our methods lead
to consistent estimators in the low-noise regime. In our model low noise corresponds to large
spikes �. It is easy to see that taking � → ∞ we obtain an asymptotic MSE of E‖Xi − X̂i‖2 =
O(1), whereas E‖Xi‖2 = �. Thus the correlation corr(X̂i,Xi) → 1 in probability, and we get
consistent estimators. Thus we still have good performance in low noise.
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5.1. Simulations. In this section, we illustrate the finite-sample properties of our pro-
posed EBLP with noise whitening. We compare this method to three other methods found
in the literature. First is the OptSpace method of Keshavan, Montanari and Oh (2010). This
algorithm is designed for uniform sampling of the matrix and relatively low noise levels, al-
though a regularized version for larger noise has been proposed as well (Keshavan and Mon-
tanari (2010)). As we will see, OptSpace (without regularization) typically performs well in
the low-noise regime, but breaks down when the noise is too high. We use the MATLAB code
provided by Sewoong Oh on his website http://swoh.web.engr.illinois.edu/software/optspace/
code.html. We note that, like EBLP, OptSpace makes use of a user-provided rank.

The second method is nuclear norm-regularized least squares (NNRLS), as described in
Candès and Plan (2010). In the case of uniform sampling, we minimize the loss function
1
2‖X − Y‖2 + w · ‖X‖∗, where ‖ · ‖∗ denotes the nuclear norm and X denotes the vector
of X’s values on the set of observed entries . Following the recommendation in Candès
and Plan (2010) we take w to be the operator norm of the pure subsampled noise term;
that is, w = ‖E‖, where E is the matrix of noise. With this choice of parameter, when
the input data is indistinguishable from pure noise the estimator returned is the zero matrix.
When the noise is white noise with variance σ 2, then w = σ(

√
p + √

n)
√||/(pn) at noise

variance σ 2. If the noise is colored, we determine w by simulation; we note that the Spectrode
method of Dobriban (2015) might offer an alternative means of determining w. To solve the
minimization, we use the accelerated gradient method of Ji and Ye (2009).

When the sampling probabilities differ across the columns of X, we compare to a weighted
nuclear norm minimization. This minimizes the loss function 1

2‖X − Y‖2 + w · ‖XCi‖∗,
where C is the diagonal matrix with entries Cii = √

p
i
, and pi is the probability that column

i is sampled. Again, we choose w so that if there is no signal (i.e., X = 0), then the zero
matrix is returned. This method has been widely studied (Srebro and Salakhutdinov (2010),
Negahban and Wainwright (2011), Klopp (2014), Chen et al. (2015)).

The third method is OptShrink (Nadakuditi (2014)). OptShrink assumes the sampling of
the matrix is uniform; when this is the case, the method is essentially identical to EBLP
without whitening. However, for nonuniform sampling we find the EBLP outperforms Opt-
Shrink, especially as the noise level increases. In Section 5.1.3, we also compare EBLP with
whitening to OptShrink (which does not perform whitening) with colored noise; we find that
whitening improves performance as the overall noise level increases. When using EBLP and
OptShrink with data that is not mean zero, we estimate the mean using the available-case
estimator, and subtract it before shrinkage.

In Section 5.1.4, we compare in-sample and out-of-sample EBLP. We demonstrate a very
good agreement between the RMSEs, as predicted by Thm. 4.1, especially at high sampling
rates.

In Sections 5.1.1, 5.1.2 and 5.1.3, we used the following experimental protocol. The sig-
nals Xi are drawn from a rank 10 model, with eigenvalues 1,2, . . . ,10, and random mean.
Except for Section 5.1.1, the PCs u1, . . . , u10 were chosen to span a completely random 10-
dimensional subspace of R300. We used the aspect ratio γ = 0.8, corresponding to a sample
size of n = 375. The random variables zik were taken to be Gaussian, as was the additive
noise. The matrices Ai are random coordinate selection operators, with each coordinate cho-
sen with a given probability. When each entry of the matrix has probability δ of being se-
lected, we will call δ the sampling rate.

We measure the accuracy of a predictor X̂ of the matrix X using the root mean squared
error, defined by ‖X̂ −X‖F /‖X‖F . For each experiment, we plot the RMSEs of the different
algorithms for forty runs of the experiment at increasing noise levels σ . The code for these
experiments, as well as a suite of MATLAB codes for singular value shrinkage and EBLP,
can be found online at https://github.com/wleeb/opt-pred.

http://swoh.web.engr.illinois.edu/software/optspace/code.html
https://github.com/wleeb/opt-pred
http://swoh.web.engr.illinois.edu/software/optspace/code.html
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FIG. 2. Log-RMSEs against log-noise for matrix completion. Each plot shows a different amount of sparsity in
the PCs u1, . . . , u10.

5.1.1. Sparsity of the PCs. We compare the matrix completion algorithms when the PCs
u1, . . . , u10 have different amounts of sparsity. We say that a vector is m-sparse if only
m coordinates are nonzero; we consider the cases where all the PCs are 10-sparse, p/4-
sparse, p/2-sparse, and dense. We show the results in Figure 2. Note that EBLP outperforms
OptSpace and NNRLS at high noise levels, while it does worse than OptSpace at low noise
levels in all sparsity regimes, and worse than both competing methods at low noise levels
when the PCs are sparse.

5.1.2. Uneven sampling. In this experiment, each coordinate is assigned a different prob-
ability of being selected, where the probabilities range linearly from δ to 1 − δ for δ ∈ (0,1).
In addition to NNRLS and OptSpace, we also compare EBLP to OptShrink (Nadakuditi
(2014)), which assumes uniform sampling. We show the results in Figure 3. With uniform
sampling, the two procedures are nearly identical. However, EBLP performs better when the
sampling is nonuniform.

5.1.3. Colored noise. We use colored noise whose covariance has condition number
κ > 1. The noise covariance’s eigenvalues increase linearly with the coordinates while hav-
ing overall norm p = 300. In each experiment, the noise is then multiplied by σ to increase
the overall variance of the noise while maintaining the condition number. We subsample uni-
formly with probability 0.5. Again, we compare EBLP with whitening to NNRLS, OptSpace,
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FIG. 3. Log-RMSEs against log-noise for matrix completion. Each plot shows a different unevenness of sampling
across the coordinates, with sampling probabilities ranging linearly from δ to 1 − δ.

and OptShrink (which does not whiten). We show the results in Figure 4. We observe that at
high noise levels, EBLP with whitening outperforms OptShrink, while OptShrink performs
better at low noise levels; and this effect increases with larger κ .

5.1.4. In-sample vs. out-of-sample EBLP. In this experiment, we compare the perfor-
mance of in-sample and out-of-sample EBLP. Theorem 4.1 predicts that asymptotically, the
MSE of the two methods are identical. We illustrate this result in the finite-sample setting.

We fixed a dimension p = 500 and sampling rate δ, and generated random values of n > p

and � > 0. For each set of values, we randomly generated two rank 1 signal matrices of size
n-by-p, Xin and Xout, added Gaussian noise, and subsampled these matrices uniformly at
rate δ to obtain the backprojected observations B̃in and B̃out. We apply the in-sample EBLP
on B̃in to obtain X̂in, and using the singular vectors of B̃in, we apply the out-of-sample EBLP
to B̃out to obtain X̂out.

In Figure 5, we show scatterplots of the RMSEs for the in-sample and out-of-sample data
for each value of n and �. We also plot the line x = y for reference. The errors of in-sample
and out-of-sample EBLP are very close to each other, though the finite sample effects are
more prominent for small δ.

6. Conclusion. In this paper, we considered the linearly transformed spiked model, and
developed asymptotically optimal EBLP methods for predicting the unobserved signals in
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FIG. 4. Log-RMSEs against log-noise for matrix completion. Each plot shows a different condition number κ of
the noise covariance matrix, reflecting different amounts of heterogeneity in the noise.

the commutative case of the model, under high-dimensional asympotics. For missing data,
we showed in simulations that our methods are faster, more robust to noise and to unequal
sampling than well-known matrix completion methods.

There are many exciting opportunities for future research. One problem is to extend our
methods beyond the commutative case. This is challenging because the asymptotic spectrum
of the backprojected matrix B becomes harder to characterize, and new proof methods are
needed. Another problem is to understand the possible benefits of whitening. We saw that
whitening enables fast optimal shrinkage, but understanding when it leads to improved de-
noising remains an open problem.
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