
The Annals of Probability
2020, Vol. 48, No. 2, 527–573
https://doi.org/10.1214/19-AOP1385
© Institute of Mathematical Statistics, 2020

AN ALMOST SURE KPZ RELATION FOR SLE AND BROWNIAN MOTION

BY EWAIN GWYNNE1,*, NINA HOLDEN2 AND JASON MILLER1,**

1Department of Mathematics, University of Cambridge, *eg558@cam.ac.uk; **jpmiller@statslab.cam.ac.uk
2Department of Mathematics, ETH Zürich, nina.holden@eth-its.ethz.ch

The peanosphere construction of Duplantier, Miller and Sheffield pro-
vides a means of representing a γ -Liouville quantum gravity (LQG) sur-
face, γ ∈ (0,2), decorated with a space-filling form of Schramm’s SLEκ ,
κ = 16/γ 2 ∈ (4,∞), η as a gluing of a pair of trees which are encoded by a
correlated two-dimensional Brownian motion Z. We prove a KPZ-type for-
mula which relates the Hausdorff dimension of any Borel subset A of the
range of η, which can be defined as a function of η (modulo time parameter-
ization) to the Hausdorff dimension of the corresponding time set η−1(A).
This result serves to reduce the problem of computing the Hausdorff dimen-
sion of any set associated with an SLE, CLE or related processes in the inte-
rior of a domain to the problem of computing the Hausdorff dimension of a
certain set associated with a Brownian motion. For many natural examples,
the associated Brownian motion set is well known. As corollaries, we obtain
new proofs of the Hausdorff dimensions of the SLEκ curve for κ �= 4; the
double points and cut points of SLEκ for κ > 4; and the intersection of two
flow lines of a Gaussian free field. We obtain the Hausdorff dimension of the
set of m-tuple points of space-filling SLEκ for κ > 4 and m ≥ 3 by computing
the Hausdorff dimension of the so-called (m − 2)-tuple π/2-cone times of a
correlated planar Brownian motion.

1. Introduction.

1.1. Overview. The Schramm–Loewner evolution (SLEκ ) [83] and related processes
such as SLEκ(ρ) [52, 65, 86] and the conformal loop ensembles (CLEκ ) [87, 90] have been an
active area of research for the last two decades. One line of research in this area has been the
confirmation of exponents computed nonrigorously by physicists in the context of discrete
models from statistical physics. Many of these exponents were derived using the so-called
KPZ relation [51], which is a nonrigorous formula, which relates exponents for statistical
physics models on random planar maps to the corresponding exponents for the model on a
Euclidean lattice, such as Z2. Exponents derived in this way are said to be obtained from
“quantum gravity methods.” This method of deriving exponents has been very successful be-
cause the computation of an exponent in many cases boils down to a counting problem which
turns out to be much easier when the underlying lattice is random (i.e., one considers a ran-
dom planar map). Perhaps the most famous example of this type are the so-called Brownian
intersection exponents, which give the exponent of the probability that k Brownian motions
started on ∂Bε(0) at distance proportional to ε from each other make it to ∂D without any
of their traces intersecting. These exponents were derived using quantum gravity methods
by Duplantier1 in [14]. The values of the Brownian intersection exponents were then verified
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mathematically in one of the early successes of SLE by Lawler, Schramm and Werner in [53–
55]. Following these works, a number of other exponents (hence also Hausdorff dimensions)
have been calculated using SLE techniques, many of which were previously predicted in the
physics literature [1, 2, 5, 39, 49, 71–73, 76, 81, 82, 85, 92–95].

Our main result is a rigorous version of the KPZ formula that relates the a.s. Hausdorff di-
mension of a set associated with space-filling2 SLEκ ′ [68], κ ′ ∈ (4,∞), to the a.s. Hausdorff
dimension of a certain Brownian motion set in the context of the so-called peanosphere con-
struction of [20], which we review below. This serves to reduce the problem of calculating
the Hausdorff dimension of any set associated with SLEκ , SLEκ(ρ) or CLEκ for κ �= 4 in the
interior of a domain to the problem of calculating the Hausdorff dimension of a certain (ex-
plicitly described) set associated with a correlated two-dimensional Brownian motion. There
are numerous formulations of the KPZ formula in the literature; see, for example, the original
physics paper [51], in addition to more recent and rigorous formulations in, for example, [3, 4,
7, 9, 20–22, 40, 78]. As explained just above, the KPZ formula is typically applied to compute
the Euclidean dimension of fractal sets, after deriving the quantum dimension heuristically
or rigorously by quantum gravity techniques. In our formulation, the quantum dimension is
explicitly given by the dimension of some Brownian motion set, hence our formula is directly
useful for computations.

To illustrate the application of our main theorem, we will obtain new proofs of the a.s.
Hausdorff dimensions of several sets, including the SLE curve for κ �= 4, the double points
of SLE, the cut points of SLE and the intersection of two flow lines of a Gaussian free field
[62, 65, 66, 68, 88]. We will also use our theorem to calculate the a.s. Hausdorff dimension of
the m-tuple points of space-filling SLEκ ′ , κ ′ ∈ (4,8), by calculating the Hausdorff dimension
of the so-called (m − 2)-tuple cone times for correlated two-dimensional Brownian motion.
The statement and the proof of the dimension result for (m − 2)-tuple cone times do not rely
on quantum gravity techniques or results in the remainder of the paper.

The main motivation of our theorem is to convert SLE dimension questions into Brownian
motion dimension questions, since these are often much easier to solve. However, the result
also works in the reverse direction. One example of a Brownian motion set whose dimension
has not yet been directly computed to our knowledge is the set of times not contained in any
left cone interval. Under the peanosphere correspondence, this set corresponds to the CLEκ ′
gasket for κ ′ ∈ (4,8), the Hausdorff dimension of which is computed in [71, 85].

In the subsequent work [26], the main theorem of the present paper (along with a theorem
of Rhodes and Vargas [78]) will be used to prove the following additional dimension formula
for SLEκ . If η is a SLEκ curve for κ ∈ (0,4), and Y is a deterministic subset of R with
Hausdorff dimension d ∈ [0,1], then it is a.s. the case that

dimH f (Y ) = 1

32κ

(
4 + κ −

√
(4 + κ)2 − 16κd

)
× (12 + 3κ +

√
(4 + κ)2 − 16κd

)
for almost every choice of conformal map f from H to a complementary connected compo-
nent of η which satisfies f (Y ) ⊂ η.

1.2. Review of Liouville quantum gravity and the peanosphere. We will now provide a
brief review of Liouville quantum gravity and the peanosphere construction which will be
necessary to understand our main result below. Suppose that h is an instance of the Gaussian

2In order to be consistent with the notation of [62, 65, 66, 68], unless explicitly stated otherwise we will assume
that κ ∈ (0,4) and κ ′ = 16/κ ∈ (4,∞).
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free field (GFF) on a planar domain D and γ ∈ (0,2). The γ -Liouville quantum gravity
(LQG) surface associated with h formally corresponds to the surface with Riemannian metric

(1) eγh(z)(dx2 + dy2),
where z = x + iy = (x, y) and dx2 +dy2 denotes the Euclidean metric on D. This expression
does not make literal sense because h takes values in the space of distributions and does
not take values at points. The area measure μh associated with (1) has been made sense of
using a regularization procedure (see, e.g., [22]), namely by taking eγh(z) dz to be the weak
limit as ε → 0 of εγ 2/2eγhε(z) dz, where hε(z) is the average of h on the circle ∂Bε(z).
One can similarly define a length measure νh by taking it to be the weak limit as ε → 0 of
εγ 2/4eγhε(z)/2 dz. We refer to μh (resp., νh) as the quantum area (resp., boundary length)
measure associated with h. Quantum boundary lengths are well defined for piecewise linear
segments [22], their conformal images and SLE type curves for κ = γ 2 [88]. The metric
space structure associated with (1) was constructed in [60, 61, 63, 64, 69] in the special case
that γ = √

8/3, in which case it is isometric to the Brownian map [56, 59]. The metric space
structure for general γ ∈ (0,2) was recently constructed in [36] (several years after this paper
first appeared on the arXiv).

One of the main sources of significance of LQG is that it has been conjectured that cer-
tain forms of LQG decorated with SLE or CLE describe the scaling limit of random planar
maps decorated with a statistical physics model after performing a conformal embedding,
where different γ values arise by considering different discrete models [22]. So far, this con-
jecture has been proven only in the case of the Tutte embedding of the γ -mated-CRT map
(a discretized version of the peanosphere) for γ ∈ (0,2) [37], in the case of the Cardy em-
bedding of uniform triangulations [45] and the case of the Poisson–Voronoi approximation
of the Brownian map [38]. However, the convergence of other random planar maps deco-
rated with a statistical physics model to LQG decorated with SLE/CLE has been proved with
respect to the peanosphere topology, which we will describe below [20, 29–31, 41, 42, 50,
57, 69, 89]. See also [32, 33] for scaling limit results for self-avoiding walk and percola-
tion, respectively, on random planar maps toward SLE-decorated

√
8/3-LQG with respect

to the Gromov–Hausdorff–Prokhorov-uniform topology, a variant of the Gromov–Hausdorff
topology for curve-decorated metric measure spaces [34].

If D, D̃ are planar domains, ϕ : D → D̃ is a conformal map, and

(2) h̃ = h ◦ ϕ−1 + Q log
∣∣(ϕ−1)′∣∣ where Q = 2

γ
+ γ

2
,

then μh(A) = μh̃(ϕ(A)) for all Borel sets A ⊆ D. The boundary length measure is similarly
preserved under such a change of coordinates. A quantum surface is an equivalence class of
pairs (D,h) where two such pairs are said to be equivalent if they are related as in (2). We
refer to a representative (D,h) of a quantum surface as an embedding of the quantum surface.

One particular type of quantum surface which will be important in this article is the so-
called γ -quantum cone. This is an infinite volume surface which is naturally parameterized
by C and is marked by two points, called 0 and ∞, neighborhoods of which respectively
have finite and infinite μh-mass. We will keep track of the extra marked points by indicating
a γ -quantum cone with the notation (C, h,0,∞). In Section 1.4.2 below, we will describe a
precise method for sampling from the law of h for a particular embedding of a γ -quantum
cone into C. This surface naturally arises, however, in the context of any γ -LQG surface
(D,h) with finite volume as follows. Suppose that z ∈ D is sampled from μh. Then the sur-
face one obtains by adding C to h, translating z to 0, and then rescaling so that μh assigns unit
mass to D converges as C → ∞ to a γ -quantum cone. That is, a γ -quantum cone describes
the local behavior of a γ -LQG surface near a typical point chosen from μh.
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As explained in [20, 88], it is very natural to decorate a γ -LQG surface with either a
SLEκ , κ = γ 2, or a SLEκ ′ , κ ′ = 16/γ 2. In the case of a γ -quantum cone (C, h,0,∞), it is
particularly natural to decorate it with the space-filling SLEκ ′ process η′ [68] where η′ is first
sampled independently of h (as a curve modulo time parameterization), then reparameterized
by quantum area so that μh(η

′([s, t])) = t − s for all s < t , and then normalized so that
η′(0) = 0. In this setting, it is shown in [20] that the pair Z = (L,R) which, for a given time
t , is equal to the quantum length of the left and right boundaries of η′, evolves as a correlated
two-dimensional Brownian motion. Since these quantum boundary lengths are in fact always
infinite, it is natural to normalize Z so that L0 = R0 = 0. By [20], Theorem 1.9 (in the case
κ ′ ∈ (4,8]) and [28], Theorem 1.1 (in the case κ ′ > 8), the variances and covariances of L

and R are given by

(3)
Var(Lt ) = a|t |, Var(Rt ) = a|t |,

Cov(Lt ,Rt) = −a cos θ |t |, θ = 4π

κ ′

with a a constant depending only on κ ′.
One of the main results of [20] is that the pair (L,R) almost surely determines the pair

consisting of the γ -quantum cone (C, h,0,∞) and the space-filling SLEκ ′ process η′. That
is, the latter is a measurable function of the former (and it is immediate from the construction
that the former is a measurable function of the latter). This is natural in the context of discrete
models [89] which can also be encoded in terms of an analogous such pair and, in fact, the
main result of [89] combined with [20] give the convergence of FK-decorated random planar
maps to CLE decorated LQG with respect to the topology in which two surfaces are close if
the aforementioned encoding functions are close. This is the so-called peanosphere topology.

As explained in Figure 1, L and R have the interpretation of being the contour functions
associated with a pair of infinite trees, and (C, h,0,∞) and η′ have the interpretation of
being the embedding of a certain path-decorated surface into C which is generated by gluing
together the pair of trees encoded by L, R [20].

We remark that the construction in [20] deals with the setting of infinite volume surfaces.
The setting of finite volume surfaces is the focus of [69] and the corresponding convergence
result in the finite volume setting is established in [31, 41, 42].

1.3. Main result. Our main result is a KPZ formula which allows one to use the rep-
resentation (L,R) of a SLE decorated quantum cone to compute Hausdorff dimensions for
SLE and related processes.

THEOREM 1.1. Let κ ′ > 4 and γ = 4/
√

κ ′. Let (C, h,0,∞) be a γ -quantum cone and
let η′ be an independent space-filling SLEκ ′ , parameterized by γ -quantum mass with respect
to h and satisfying η′(0) = 0. Assume that h has the circle average embedding (see Defini-
tion 1.6 below). Let X be a random Borel subset of C such that X is independent from h (e.g.,
X could be a set which is determined by the curve η′ viewed modulo monotone reparameter-
ization). Almost surely, for each Borel set X̂ ⊂R such that η′(X̂) = X, we have

(4) dimH(X) =
(

2 + γ 2

2

)
dimH(X̂) − γ 2

2
dimH(X̂)2.

A space-filling SLEκ ′ encodes an entire imaginary geometry of flow lines, which in turn
encodes both SLEκ and SLEκ ′-type paths and a CLEκ ′ (see [68] and Section 1.4.3 below).
The work [70] shows that the imaginary geometry framework also encodes a CLEκ . There-
fore, Theorem 1.1 reduces the computation of the dimension of any set in the interior of a
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FIG. 1. The peanosphere construction of [20] shows how to obtain a topological sphere by gluing together two
correlated Brownian excursions L,R : [0,1] → [0,∞) (A similar construction works when L, R are two-sided
Brownian motions; see [20], Section 8.2). We choose C > 0 so large that the graphs of C − L and R do not
intersect. We then define an equivalence relation on the square [0,1] × [0,C] by identifying points which lie on
the same horizontal line segment above the graph of C − L or below the graph of R; or the same vertical line
segment between the two graphs. As explained in [20], it is possible to check using Moore’s theorem [74] that
the resulting object is a topological sphere decorated with a space-filling path η′ where η′(t) for t ∈ [0,1] is the
equivalence class of (t,Rt ). The pushforward of Lebesgue measure on [0,1] induces a so-called good measure μ

on the sphere (i.e., a nonatomic measure which assigns positive mass to each open set) and η′ is parameterized
according μ-area, that is, μ(η′([s, t])) = t − s for all 0 ≤ s < t ≤ 1. In [20], the resulting structure is referred to
as a peanosphere because the space-filling path η′ is the peano curve between the continuum trees encoded by L

and R. It is shown in [20] (infinite volume case) and in [69] (finite volume case) that there is a measurable map
which associates a pair (L,R) (or equivalently the aforementioned good-measure endowed sphere together with a
space-filling path) with a LQG surface decorated with an independent space-filling SLE. That is, the peanosphere
comes equipped with a canonical embedding into the Euclidean sphere where the pushforward of μ encodes an
LQG surface and η′ is a space-filling SLE. The embedding of the trees coded by L and R correspond to trees of
flow lines with a common angle in an imaginary geometry [68]. The right side of the illustration shows a subset of
the SLE-decorated LQG surface, where the green region corresponds to points that are visited by η′ before some
time t0, and where the two trees are embeddings of the trees with contour functions L and R. The branches of these
continuum random trees correspond to the frontier of the space-filling curve at different times, and the Brownian
motions L and R encode the lengths of the left and right, respectively, frontier of the SLE curve. The right figure
illustrates the embedding of the peanosphere for the regime when κ ′ ∈ [8,∞); for κ ′ ∈ (4,8) the green region on
the right figure is not homeomorphic to H since for this range of κ ′ values, space-filling SLEκ ′ is loop-forming.

domain associated with SLEκ or CLEκ for κ �= 4 to computing the dimension of the cor-
responding set associated with the correlated Brownian motion Z. As we will discuss in
Section 1.4, it is often possible to characterize special sets associated with SLEκ and CLEκ

as time sets of Z with particular properties. Examples of such sets are:

1. SLEκ curves for κ �= 4 [5, 81],
2. double points of SLEκ ′ for κ ′ > 4 [73],
3. cut points of SLEκ ′ for κ ′ > 4 [73],
4. intersection of two GFF flow lines [73],
5. m-tuple points of space-filling SLEκ ′ for m ≥ 3 and κ ′ ∈ (4,8), and
6. CLEκ ′ gasket for κ ′ ∈ (4,8) [71, 85].

See Table 1 for a summary of these sets and their dimensions. We will use Theorem 1.1 to
calculate the Hausdorff dimension of the first five of these sets in Section 2 and in the supple-
mentary material [27]. The original proofs relied on rather technical two-point estimates for
correlations, while our formula provides alternative proofs. In cases where the Hausdorff di-
mension of the SLE set is known, Theorem 1.1 also gives the dimension of the corresponding
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TABLE 1
The sets whose dimension we compute in this paper. Each row shows a set X associated with SLE and a

corresponding Brownian motion set X̂ which is contained in (η′)−1(X). The dimensions of these sets are related
as in Theorem 1.1. See Section 2 and the supplementary material [27] for proofs that the dimensions in the table
are as claimed. The functions d0, d1 and d2 are defined by d0(κ) = 2 − 1

2κ
(ρ(κ) + κ

2 + 2)(ρ(κ) − κ
2 + 6) for

ρ(κ) = θ
π (2 − κ

2 ) − 2, d1(κ ′,m) = ((4m − 4 − κ ′(m − 2))(12 + (κ ′ − 4)m))/(8κ ′) and

d2(κ ′,m) = 1
2 − (m − 2)( κ ′

8 − 1
2 )

SLE set SLE dimH BM set BM dimH

SLEκ trace, κ ∈ (0,4) 1 + κ
8 Running infima of L or R 1

2

SLEκ ′ trace, κ ′ ∈ (4,8) 1 + κ ′
8 Ancestor free times κ ′

8

Cut points of SLEκ ′ ,
κ ′ ∈ (4,8)

3 − 3
8κ ′ Simultaneous running infima of

L and R

1 − κ ′
8

Double points of SLEκ ′ ,
κ ′ ∈ (4,8)

2 − (12−κ ′)(4+κ ′)
8κ ′ Composition of subordinators κ ′

8 − 1
2

Double points of SLEκ ′ ,
κ ′ > 8

1 + 2
κ ′ Running infima of L or R 1

2

GFF flow line intersection
with angle gap θ

d0(κ) Composition of subordinators 1
2 − ρ+2

κ

CLEκ ′ gasket, κ ′ ∈ (4,8) 2 − (8−κ ′)(3κ ′−8)
32κ ′ Times not contained in any left

π
2 -cone interval

1
2 + κ ′

16

m-tuple points of
space-filling SLEκ ′

d1(κ ′,m) (m − 2)-tuple π
2 -cone times d2(κ ′,m)

Brownian motion set. We will use this direction of Theorem 1.1 to calculate the dimension
of the Brownian motion time set corresponding to the CLEκ ′ gasket in Section 2.

The random set X does not have to be measurable with respect to the space-filling SLEκ ′ .
However, Theorem 1.1 does not hold without the hypothesis that X is independent from h.
For example, suppose we take X to be the γ -thick points of h (see [46] as well as Section 4).
The γ -quantum measure μh is supported on X [22], Proposition 3.4, so since η′ is param-
eterized by quantum mass, we have dimH(η′)−1(X) = 1. On the other hand, it is shown in
[46] that dimH X = 2 − γ 2/2, so (4) does not hold for this choice of X.

Theorem 1.1 is in agreement with the KPZ formula [51] if the “quantum dimension” of X

is defined to be twice the Hausdorff dimension of the Brownian motion set X̂.

REMARK 1.2. Theorem 1.1 only applies to sets associated with SLE and CLE in the
interior of a domain. In order to calculate the Hausdorff dimension of sets associated with
chordal or radial SLE which intersect the boundary one may apply [78], Theorem 4.1, which
implies the following one-dimensional KPZ formula. Let h be a free boundary GFF in the up-
per half-plane and let νh be the associated boundary measure. Define the quantum dimension
of a set X ⊂ [0,∞) to be

dimH(X̂), X̂ := {νh

([0, x]) : x ∈ X
}
.

Then it holds a.s. that

(5) dimH(X) =
(

1 + γ 2

4

)
dimH(X̂) − γ 2

4
dimH(X̂)2.

(The function ζ in the statement of [78], Theorem 4.1, can be obtained using the scaling
properties of the free boundary GFF and [78], Proposition 2.5.) At the end of Section 2, we
will include a short example showing how one may use this theorem, combined with results
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of [20], to obtain the Hausdorff dimension of the points where a chordal SLEκ(ρ), κ ∈ (0,8),
in H intersects the real line.

We will now discuss how our version of the KPZ formula relates to other KPZ-type for-
mulas in the literature. The results of [22] relate the expected Euclidean mass of the Eu-
clidean δ-neighborhood of a set X to the expected quantum mass of the so-called quantum
δ-neighborhood of X, which is defined in terms of Euclidean balls of quantum mass δ > 0.
The scaling exponents for these dimensions are proven to satisfy the KPZ equation. In [4, 21,
78], the authors consider a notion of quantum Hausdorff dimension in terms of the quantum
mass of Euclidean balls covering a set X and obtain KPZ formulas relating the a.s. quantum
Hausdorff dimension to the a.s. Euclidean Hausdorff dimension. The KPZ relations in the
works [4, 21, 22, 78] all rely on the Euclidean geometry, since Euclidean balls or squares are
used to cover X. In our formulation, by contrast, we obtain a cover of X by pushing forward
a cover of the time set X̂ via the curve η′, hence the quantum dimension does not rely on the
Euclidean geometry. The versions given in [9, 40] also do not rely on Euclidean geometry
because the notions of quantum dimension in these papers are defined in terms of the heat
kernel for the Liouville–Brownian motion (see [8, 24, 25, 47, 80]) and the LQG metric, re-
spectively, which are intrinsic to the LQG surface. As we shall see in Section 2, however, the
formulation considered here appears to be more amenable to explicit calculation.

1.4. Background and notation. We will now describe the basic notation and objects that
we will use throughout the paper, including quantum cones, quantum wedges and space-
filling SLEκ ′ . We refer the reader to [20, 68, 88] for more details.

1.4.1. Notation. We adopt the convention of [62, 65, 66, 68] that κ denotes a parameter
in (0,4] and κ ′ := 16/κ ∈ (4,∞). If the κ-value is not restricted to either of the two intervals
(0,4] or (4,∞), we will simply write κ . We also use the following notation.

NOTATION 1.3. If a and b are two quantities, we write a  b (resp., a � b) if there is a
constant C (independent of the parameters of interest) such that a ≤ Cb (resp., a ≥ Cb). We
write a � b if a  b and a � b.

NOTATION 1.4. If a and b are two quantities which depend on a parameter x, we write
a = ox(b) (resp., a = Ox(b)) if a/b → 0 (resp., a/b remains bounded) as x → 0 (or as
x → ∞, depending on context). We write a = o∞

x (b) if a = ox(b
s) for each s ∈ R.

Unless otherwise stated, all implicit constants in �, , and � and Ox(·) and ox(·) errors
involved in the proof of a result are required to satisfy the same dependencies as described in
the statement of the result.

1.4.2. Quantum cones and quantum wedges. Fix γ ∈ (0,2). As explained above, a γ -
LQG surface is an equivalence class of pairs (D,h), where D is a planar domain and h is an
instance of some form of the GFF on D (see, e.g., [20, 22, 88]), where two such pairs are
said to be equivalent if they are related as in (2). The surface (D,h) is equipped with a quan-
tum area measure that can be formally represented as μh = eγh(z) dz (where dz is Lebesgue
measure) as well as a quantum length measure νh = eγh(z)/2 dz (where dz is Lebesgue length
measure in the case when the boundary is a straight line), which is defined on ∂D as well
as on certain curves in the interior of D, including SLEκ -type curves for κ = γ 2 [88]. We
refer to a particular choice of equivalence class representative (D,h) as an embedding of the
quantum surface. If (D,h) and (D̃, h̃) are equivalent and ϕ : D → D̃ is the conformal map of



534 E. GWYNNE, N. HOLDEN AND J. MILLER

(2), μh̃ is almost surely the pushforward of μh under ϕ, that is, μh(A) = μh̃(ϕ(A)) for any
A ⊆ D [22], Proposition 2.1. A similar statement is true for νh.

Several types of quantum surfaces of the form (D,h, x1, . . . , xk), where x1, . . . , xk ∈ D

are additional marked points, are introduced in [20, 88]. Two such surfaces (D,h, x1, . . . , xk)

and (D̃, h̃, x̃1, . . . , x̃k) are defined to be equivalent if there exists a conformal map ϕ : D →
D̃ where h̃, h are related as in (2) and ϕ(xj ) = x̃j for each 1 ≤ j ≤ k. In this paper, we
will mainly consider α-quantum cones, α < Q, which are a one-parameter family of doubly
marked quantum surfaces homeomorphic to C. In Section 2, we will also need some theory
of quantum wedges.

Let H(C) be the Hilbert space closure modulo a global additive constant of the subspace
of functions f ∈ C∞(C) satisfying ‖f ‖2∇ := (f, f )∇ < ∞, where (f, g)∇ := (2π)−1 ∫

C ∇f ·
∇g dz for g ∈ C∞(C) for which the integral is well defined and finite. Let H1(C) ⊂ H(C) be
the subspace of functions that are radially symmetric about the origin, and let H2(C) ⊂ H(C)

be the subspace of functions (modulo of global additive constant) which have mean zero
about all circles centered at the origin. By [20], Lemma 4.9, we have H(C) = H1(C) ⊕
H2(C). Recall that a whole-plane GFF h is a modulo additive constant distribution on the
complex plane (i.e., a continuous linear functional defined on the subspace of functions f ∈
C∞

0 (C) with
∫
C f (x) dx = 0) which can be represented as h =∑n∈N αnfn, where (αn)n∈N

is a series of i.i.d. standard normal random variables, and (fn)n∈N is an orthonormal basis for
H(C).

DEFINITION 1.5. Let α ∈ (0,Q]. An α-quantum cone is the doubly marked quantum
surface (C, h,0,∞), where h = h† + h0 is a random distribution sampled as follows. The
radially symmetric function h† takes the value As on ∂Be−s (0), where As = B̃s + αs for
B̃ a standard two-sided Brownian motion, conditioned such that As ≥ Qs for s < 0. The
distribution h0 is independent of h†, and is given by the projection of a whole-plane GFF
onto H2(C).

There is a two-parameter family of embeddings of a quantum cone into (C,0,∞) (i.e.,
choices of the distribution h), corresponding to multiplication of C by a complex number.
The distribution h in Definition 1.5 is one such choice.

DEFINITION 1.6. For α ∈ (0,Q], the circle average embedding of an α-quantum cone
is the distribution h of Definition 1.5.

REMARK 1.7. One of the main reasons why we are interested in the embedding of Def-
inition 1.6 is that under this embedding, h|D agrees in law with the restriction to D of a
whole-plane GFF plus −α log | · |, with an additive constant chosen so that its circle average
over ∂D vanishes. Indeed, this is a straightforward consequence of Definition 1.5.

We refer to [20], Section 4.3, for further details regarding quantum cones.
For α ≤ Q (with Q as in (2)), an α-quantum wedge is a doubly marked quantum surface,

which is homeomorphic H. For α ∈ (Q,Q + γ
2 ) an α-quantum wedge is a Poissonian chain

of finite volume doubly-marked quantum surfaces, each of which is homeomorphic to D and
has two marked points. In the first case, we say that the quantum wedge is thick, and in the
second case it is thin. A thick wedge can be represented as a quantum surface (H, h,0,∞),
where h = h0 + h† is a decomposition of h into a distribution h0 of mean zero on all half-
circles around the origin, and a radially symmetric function h†. For an α-quantum wedge
with α ≤ Q which is parameterized by H, one possible embedding is such that the law of h†

on H ∩ ∂B(0, e−s) is identical to the function A described above in Definition 1.6, except
that B̃s is replaced by B̃2s .
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If we conformally weld the two boundaries of a quantum wedges according to quantum
boundary length, we obtain a quantum cone. Conversely, we obtain a quantum wedge if
we cut out a surface by considering an independent whole-plane SLEκ(ρ) curve, κ = γ 2,
on top of a quantum cone [20], Theorem 1.5, with ρ depending on the parameter α of the
cone. We also obtain a wedge by conformally welding together multiple wedges according
to quantum boundary length, and we obtain two independent wedges if we cut a wedge into
two or several components by a collection of SLEκ(ρ) curves for certain values of κ and ρ.
Quantum wedges and cones can be described by their weight W = W(α) (which is defined
to be W = γ (γ /2 + Q − α) for a wedge and W = 2γ (Q − α) for a cone) rather than α.
The weight of the surfaces is additive under the operations of gluing/welding and cutting as
described above.

1.4.3. Space-filling SLE. Here, we give a moderately detailed overview of the construc-
tion and basic properties of whole-plane space-filling SLEκ ′ from ∞ to ∞ for κ ′ > 4, which
was originally defined in [20], Section 1.4.1, building on the chordal definition in [68], Sec-
tions 1.2.3 and 4.3. For κ ′ ≥ 8, whole-plane space-filling SLEκ ′ from ∞ to ∞ is just a certain
curve from ∞ to ∞ which locally looks like a SLEκ ′ . For κ ′ ∈ (4,8), space-filling SLEκ ′
from ∞ to ∞ traces points in the same order as a curve which locally looks like SLEκ ′ , but
fills in the “bubbles” which it disconnects from its target point with a continuous space-filling
loop.

To construct whole-plane space-filling SLEκ ′ from ∞ to ∞, fix a deterministic countable
dense subset C ⊂ C and let ĥ be a whole-plane GFF, viewed modulo a global additive multiple
of 2πχ where χ = √

κ ′/2 − 2/
√

κ ′. It is shown in [68] that for each z ∈ C, one can make
sense of the flow lines ηL

z and ηR
z of angles π/2 and −π/2, respectively, started from z. These

flow lines are SLEκ(2 − κ) curves for κ = 16/κ ′ [68], Theorem 1.1. The flow lines ηL
z and

ηL
w (resp., ηR

z and ηR
w) started at distinct points in C eventually merge together, such that the

collection of flow lines ηL
z (resp., ηR

z ) for z ∈ C form the branches of a tree rooted at ∞.
We define a total order on C by declaring that w comes after z if and only if w lies in

a connected component of C \ (ηL
z ∪ ηR

z ) whose boundary is traced by the right side of ηL
z

and the left side of ηR
z . It can be shown using the same argument as in the chordal case [68],

Section 4.3 (or alternatively deduced from the chordal case; see [20], Footnote 4) that there
is a unique space-filling curve η′ : R→C which traces the points in C in order, is continuous
when parameterized by Lebesgue measure, and is such that (η′)−1(C) is a dense set of times.
The curve η′ does not depend on the choice of C and is defined to be whole-plane space-filling
SLEκ ′ from ∞ to ∞.

For each fixed z ∈ C, it is a.s. the case that the left and right outer boundaries of η′ stopped
at the first (and a.s. only) time τz that it hits z are given by the flow lines ηL

z and ηR
z . For

κ ′ ≥ 8, these two flow lines do not intersect so C \ η′((−∞, t]) for each time t has the
topology of the half-plane. For κ ′ ∈ (4,8), the curves ηL

z and ηR
z intersect each other so C \

η′((−∞, t]) instead consists of a string of domains with the topology of the disk, separated
by the intersection points. By [20], Footnote 4, if we condition on ηL

z and ηR
z (equivalently, on

η′((−∞, τz]) or η′([τz,∞)), then the conditional law of η′|[τz,∞) is that of a chordal SLEκ ′
from 0 to ∞ in η′([τz,∞)) if κ ′ ≥ 8; or a concatenation of independent chordal space-filling
SLEκ ′ curves in the connected components of the interior of η′([τz,∞)) if κ ′ ∈ (4,8). The
conditional law of the time reversal of η′|(−∞,τz] admits a similar description.

The curve η′ is also closely related to the SLEκ ′(κ ′ − 6) counterflow lines of ĥ from ∞ to
z for any given z ∈ C. In particular, if we parameterize η′ by capacity as seen from z, so we
skip all of the bubbles filled in by η′ before it hits z, then we a.s. recover the counterflow line
from ∞ targeted at z. The collection of all of these counterflow lines, targeted at a countable
dense set of points, forms a whole-plane branching SLEκ ′(κ ′ −6) process, which can be used
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to construct a whole-plane CLEκ ′ via a whole-plane analog of the construction in [87]. Hence
a whole-plane space-filling SLEκ ′ from ∞ to ∞ encodes a whole-plane CLEκ ′ .

1.5. Outline. Section 2 gives a number of examples of SLE sets of known Hausdorff
dimension, for which Theorem 1.1 provides an alternative derivation.

Section 3 contains various SLE and GFF estimates which we will need for the proof of
Theorem 1.1, both for the upper bound and for the lower bound. In Section 3.2, we will prove
that, with high probability, any segment of a space-filling SLEκ ′ curve of diameter ε ∈ (0,1),
contains a Euclidean ball of radius ε1+oε(1). An interesting corollary of this result is that
space-filling SLEκ ′ is a.s. locally α-Hölder continuous for any α < 1/2 when parameterized
by Lebesgue measure. In Sections 3.3 and 3.4, we will prove some estimates which give
that the quantum mass of a small Euclidean ball is unlikely to be much smaller than what is
predicted from the GFF circle average process at a nearby point.

In Section 4, we prove that the dimension of the intersection of a general Borel set A with
the α-thick points of a GFF h is a.s. equal to dimH A − α2/2. The proof is a generalization
of the argument in [46], and is used in the proof of the upper bound of Theorem 1.1.

Section 5 contains the proof of Theorem 1.1. Unlike for most Hausdorff dimension cal-
culations, the upper bound for dimH(X) is more challenging to prove than the lower bound.
Using the results of Section 3, we obtain an estimate for the diameter of η′(I ) for I ⊂ R, in
terms of diam(I ) and the thickness of the field at a point near η′(I ). This leads to an upper
bound for the dimension of the intersection of X with the α-thick points of h in terms of
dimH(X̂). Using the result of Section 4 and optimizing over α, we obtain the upper bound in
(4). The lower bound in (4) is proven via a more direct argument based on moment estimates
for the quantum measure along with the estimates of Sections 3.2 and 3.3.

In the supplementary material [27], we use Theorem 1.1 to give a proof for the Hausdorff
dimension of the set of m-tuple points of space-filling SLEκ ′ , which in the setting of Theo-
rem 1.1 correspond to the image under η′ of the so-called (m − 2)-tuple cone times of the
two-dimensional correlated Brownian motion. An m-tuple cone time can be described by a
“cone vector” in Rm+1 consisting of m cone times [23, 91] for Z and the time-reversal of Z,
where the end of one cone excursion marks the beginning of another cone excursion in the
opposite direction. We obtain the Hausdorff dimension of the set of cone vectors by standard
techniques, including a two-point estimate for correlations; then obtain the dimension of the
set of (m − 2)-tuple cone times (which is a subset of R) by projection. Our result generalizes
the result in [23], where the dimension of the set of single cone times is calculated.

Finally, in Section 6, we list some open problems related to the results of this paper.

2. Examples. In this section, we will use Theorem 1.1 to give alternative proofs of sev-
eral Hausdorff dimensions already known in the literature, in addition to a calculation of
a new Brownian motion dimension for which the corresponding SLE dimension is already
known. Throughout, we let η′ be a space-filling SLEκ ′ on top of an independent γ -quantum
cone (C, h,0,∞), κ ′ > 4. We parameterize η′ by quantum area, and let L and R denote the
left and right boundary length process, respectively, relative to time 0. Define Z = (L,R),
and recall that Z has the law of a two-dimensional Brownian motion with covariances as in
(3). Before presenting the examples, we recall the definitions of cone times, cone intervals
and cone excursions.

DEFINITION 2.1. Let α ∈ (0,2π), t ∈ R, and let �(α′) denote the unit vector in direction
α′ for any α′ ∈ (0,2π). Then t is an α-cone time of Z if there is a time s > t such that, for each
s′ ∈ [t, s], there exists rs′ ∈ [0,∞) and an angle αs′ ∈ [0, α], satisfying Zs′ = Zt + rs′�(αs′).
If we do not specify an angle α, we will assume α = π

2 , that is, a cone time is a π
2 -cone time.
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For a cone time t of Z, we define the function v by

(6) v(t) = inf{s > t : Rs < Rt or Ls < Lt }.
The interval (t, v(t)) is called a cone interval and Z|(t,v(t)) is called a cone excursion. We say
that t is a right cone time for Z if Rv(t) > Rt (equivalently, Lv(t) = Lt ), and we say that t is
a left cone time for Z if Lv(t) > Lt (equivalently, Rv(t) = Rt ).

The Hausdorff dimension of SLEκ was first calculated in [81] and [5]. For κ ∈ (0,4), we
obtain an alternative proof by using that the boundary of η′([0,∞)) has the law of a SLEκ

curve.

EXAMPLE 2.2. The Hausdorff dimension of a SLEκ curve for κ ∈ (0,4) is a.s. equal to
1 + κ

8 .

PROOF. Let κ ′ := 16/κ . If we stop the space-filling SLEκ ′ process η′ upon reaching 0,
the boundary of the already traced region is given by two flow lines of a whole-plane GFF
with angle gap π ; see [20], Footnote 4. The marginal law of each of these flow lines is that
of a whole-plane SLEκ(2 − κ); see [68], Theorem 1.1. If η′ is parameterized by quantum
mass, the times at which η′ traces the left and right boundaries of η′([0,∞)) correspond
exactly to the running infima of the left and right boundary length processes L and R, re-
spectively, relative to time 0. This time set has Hausdorff dimension 1/2 [75], Theorem 4.24.
Combining with Theorem 1.1, we see that a whole-plane SLEκ(2 − κ) curve a.s. has Haus-
dorff dimension 1 + κ

8 . In fact, the same argument shows that a.s. every nontrivial segment
of a whole-plane SLEκ(2 − κ) curve has Hausdorff dimension 1 + κ

8 . By local absolute con-
tinuity of SLEκ(2 − κ) and SLEκ away from the self-intersection times of the former [86],
equation (9), an ordinary radial or whole-plane SLEκ also has a.s. Hausdorff dimension 1+ κ

8 ,
and using local absolute continuity again [86], Theorems 3 and 6, we deduce the same result
for ordinary chordal SLEκ . �

The Hausdorff dimension of SLEκ ′ , κ ′ ∈ (4,8), is obtained by using that SLEκ ′ corre-
sponds to the so-called ancestor free times (t (s))s≥0 of Z. A time s ≥ 0 is ancestor-free if it
is not contained in any π/2-cone interval for Z which is contained in [0,∞). In other words,
s is ancestor-free if there is no t ∈ [0, s) such that Lu ≥ Lt and Ru ≥ Rt for all u ∈ (t, s].

EXAMPLE 2.3. The Hausdorff dimension of a SLEκ ′ curve for κ ′ ∈ (4,8) in C or in a
domain whose boundary has dimension at most 1 + κ ′

8 is a.s. equal to 1 + κ ′
8 .

PROOF. Consider the space-filling SLEκ ′ η′ described above. Let (t (s))s≥0 denote the
inverse of the local time at the ancestor-free times of (L,R) relative to t = 0, as described in
[20], Section 1.4.2. Conditioned on η′([0,∞)), the law of (η′(t (s)))s≥0 is that of a concate-
nation of independent SLEκ ′(κ ′/2 − 4;κ ′/2 − 4) processes in each of the bubbles (connected
components of the interior) of η′([0,∞)); see [20], Lemma 10.4. For any such bubble D, let
Dn ⊂ D consist of the points in D at distance at least 1/n from ∂D. By local absolute conti-
nuity [86], a.s. the intersection of the SLEκ ′(κ ′/2−4;κ ′/2−4) with Dn for sufficiently large
n has the same Hausdorff dimension as the intersection of an ordinary SLEκ ′ curve with a
subdomain at positive distance from the boundary of its domain. Since ∂D has Hausdorff di-
mension 1+ 2

κ ′ < 1+ κ ′
8 by Example 2.2, it follows that it is sufficient to prove that the image

of (η′(t (s)))s≥0 has dimension 1 + κ ′
8 . By [20], Proposition 1.13, the processes (Lt(s))s≥0

and (Rt(s))s≥0 are independent κ ′/4-stable processes. Hence the range of (Lt(s),Rt(s))s≥0
has dimension κ ′/4; see the discussion right after [77], Theorem 1.2. Kaufman’s theorem
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FIG. 2. Illustration of Examples 2.3 and 2.4. The figure shows the west-going (resp., east-going) flow line from
the origin in red (resp., blue), and the region η′((−∞,0]) is shown in green. The counterflow line (η′(t (s)))s≥0,
whose marginal law is a whole-plane SLEκ ′(κ ′ − 6), is shown in black. The cut points of the counterflow line are
contained in the set of points where the west-going flow line from the origin hits the east-going flow line from the
origin on the left side. These points of intersection correspond to simultaneous running infima of L and R relative
to time 0.

[75], Theorem 9.28, implies that the corresponding time set for (L,R) has dimension κ ′/8.
An application of Theorem 1.1 completes the proof. �

The dimension of the cut points and double points of SLEκ ′ for κ ′ ∈ (4,8) were first
calculated in [73]. Recall that the set of cut points of a curve η is the set {η(t) : t ∈
(0,∞), η((0, t)) ∩ η((t,∞)) = ∅}. The set of local cut points of a curve η parameterized
by R+ is the set {η(t) : t > 0,∃s > 0, η((t − s, t)) ∩ η((t, t + s)) = ∅}. The set of cut points
of η′|[t,∞) for t ∈ R is contained in the set of points where the left and the right boundaries
of η′([t,∞)) meet in the manner described in Figure 2, which in turn corresponds to the set
of times when both L and R are at a simultaneous running infimum relative to time t .

EXAMPLE 2.4. The Hausdorff dimension of the sets of cut points and local cut points of
a chordal, radial or whole-plane SLEκ ′ for κ ′ ∈ (4,8) are each a.s. equal to 3 − 3

8κ ′.

PROOF. Let (t (s))s≥0 be defined as in the proof of Example 2.3. Let η̂′ be the curve
from ∞ to 0 which is equal to the time-reversal of (η′(t (s)))s≥0, which has the law of a
whole-plane SLEκ ′(κ ′ − 6); see Section 1.4.3 and [68], Theorem 1.20.

We will first prove that the set of local cut points of η̂′ a.s. has dimension 3 − 3κ ′/8. The
set of local cut points of η̂′ is contained in the union over all t ∈ Q ∩ [0,∞) of the set of
points where the left boundary of η′([t,∞)) hits the right boundary of η′([t,∞)) on the left
side (except for the point η′(t) itself) and contains this set for t = 0. By countable stability
of Hausdorff dimension and translation invariance, it suffices to show that the dimension of
the set of points where the left and right boundaries of η′([0,∞)) intersect in this manner a.s.
has dimension 3 − 3κ ′/8.

The preimage of this set under η′ (parameterized by quantum area) is equal to the set of
times when the correlated Brownian motions L and R attain a simultaneous running infimum
relative to time 0. A simultaneous running infimum of L and R is the same as a π/2-cone time
t for the time-reversal of (L,R) with the property that 0 is contained in the corresponding
cone interval. By [23], Theorem 1 (cf. the proof of [20], Lemmas 8.5), it follows that the
Hausdorff dimension of this set of times is a.s. 1 − κ ′/8; in fact, the same is a.s. true of its
intersection with [0, s] for any s > 0. By applying Theorem 1.1, we obtain that the dimension
of this set of intersection points of the boundaries of η′|[0,∞), and hence also the set of local
cut points of η̂′, is given by 3 − 3κ ′/8; in fact the same is a.s. true for the set of local cut
points of every nontrivial segment of η̂′.
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We will now argue by local absolute continuity that the a.s. dimension of the set of local cut
points of whole-plane, chordal, or radial SLEκ ′ is the same as the a.s. dimension of the set of
local cut points of η̂′. We have local absolute continuity of the curves when we do not consider
points at which the curves hit their domain boundary or their past [86], and to conclude it is
sufficient to argue that the cut point dimension of the curves does not decrease if we remove
points of this kind. Choral SLEκ ′ a.s. does not have global cut points which intersect the
domain boundary, since the left boundary of the SLEκ ′ has the law of a SLEκ(κ −4;κ/2−2)

[68], Theorem 1.4, which implies by [13], Lemma 15, that the left boundary of the SLEκ ′
a.s. does not hit the right domain boundary. It follows from reversibility [62, 66] and the
domain Markov property that chordal SLEκ ′ cannot have any local cut points which are also
multiple-points or which intersect the domain boundary. By local absolute continuity, the
same result follows for the radial and whole-plane cases, that is, a radial or whole-plane
SLE does not have cut points which are also multiple-points or which intersect the domain
boundary. The curve η̂′ can have a local cut point which is also a multiple point, but by local
absolute continuity with respect to ordinary SLEκ ′ away from the times it interacts with its
force point, it has to wrap around the origin between the first time it hits the point and the
time when it has a local cut point there, so since any nontrivial segment of η̂′ has the same
local cut point dimension of 3 − 3κ ′/8, the set of local cut points of this kind does not have
a larger dimension than the set of local cut points which are not multiple points.

We now argue that the dimension of the set of global cut points is also a.s. equal to 3 −
3κ ′/8. By the conformal Markov property and transience of SLEκ ′ , for any t0 ∈R and ε > 0,
if we condition on the initial segment η̃′|t≤t0 of a chordal, radial or whole-plane SLEκ ′ curve
η̃′, the global cut points for η̃′|t≤t0 which lie at distance at least ε from η̃′(t0) will be global
cut points for η̃′ with positive probability. This implies that for any ζ > 0 the global cut points
of η̃′ have dimension at least 3 − 3

8κ ′ − ζ with positive probability. Here, we subtract a small
parameter ζ since the dimension of the cut points of η̃′([0, t0]) might be slightly larger than
the dimension of the cut points of η̃′([0, t0]) \ Bε(η̃

′(t0)). By scale invariance, for (say) a
chordal SLEκ ′ in H from 0 to ∞ and for any r > 0, the probability that the intersection of the
set of global cut points of the curve with Br(0) has dimension ≥ 3 − 3

8κ ′ − ζ , is independent
of r . If ĥ is a GFF whose imaginary geometry counterflow line [65] is our given SLEκ ′ curve,
then the sigma algebra

⋂
r>0 σ(ĥ|Br(0)) is trivial (see, e.g., [65], Proposition 3.2).

Since the chordal SLEκ ′ is locally determined by ĥ this implies that the global cut point
dimension is ≥ 3 − 3

8κ ′ − ζ almost surely. Sending ζ → 0 we get that the global cut point
dimension of a chordal SLEκ ′ is 3 − 3

8κ ′. A similar argument using GFF tail triviality works
in the case of whole-plane SLE, and the radial case follows from the whole-plane case. �

EXAMPLE 2.5. The Hausdorff dimension of the double points of SLEκ ′ is a.s. equal to

(7) 2 − (12 − κ ′)(4 + κ ′)
8κ ′ for κ ′ ∈ (4,8) and 1 + 2

κ ′ for κ ′ ≥ 8.

PROOF. For κ ′ ≥ 8, the set of double points of SLEκ ′ has the same dimension as the
boundary of η′([0,∞)), since, conditioned on η′((−∞,0]), (η′(t))t≥0 has the law of a
chordal SLEκ ′ . It follows that the set of double points has dimension 1 + 2/κ ′, since the
left and right boundaries of η′([0,∞)) marginally each have the law of a whole-plane
SLEκ(2 − κ) from 0 to ∞, κ = 16/κ ′.

Now assume κ ′ ∈ (4,8). We advise the reader to look at the left part of Figure 3 while
reading the proof. Let U be a connected component of C \ η′((−∞,0]), chosen in a manner
which does not depend on h, and let z1 (resp., z2) be the first (resp., last) point on ∂U visited
by η′ after time 0. Recall from Section 1.4.3 that the conditional law given η′((−∞,0]) of
the segment of η′ contained in U is that of a space-filling chordal SLEκ ′ from z1 to z2. Let
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FIG. 3. The left and right figure illustrate Example 2.5 and Example 2.7, respectively. Both figures illustrate η′
stopped at time zero, with the region η′((−∞,0]) shown in green. For κ ′ ∈ (4,8), the SLEκ ′ double points have
the same Hausdorff dimension as the points of intersection between the chordal SLEκ ′ η̂′ in U and the left frontier
of η′((−∞,0]). The intersection points between the two GFF flow lines on the right figure are calculated by using
that the gray region between the curves is a thin quantum wedge.

η̂′ be the curve obtained by skipping the bubbles filled in by this segment of η′, which is
an ordinary SLEκ ′ from z1 to z2 in U (the curve η̂′ can be obtained by skipping the times
contained in reverse π/2-cone excursions; see right before Example 2.8 for the definition).

Since η̂′ is obtained by skipping the bubbles filled in by η′ during a certain interval of times,
we find that if s1 < s2 are such that z0 := η̂′(s1) = η̂′(s2), then there exists t0 ∈ Q ∩ [0,∞)

such that the following is true. There is a connected component Ut0 of C \η′((−∞, t0]), such
that if τt0 is the first time that η̂′ enters Ut0 , then s1 < τt0 < s2 and z0 is a point of intersection
between the chordal SLEκ ′ in the bead Ut0 and the boundary of the domain (in particular, Ut0

is the connected component of U \ η̂′([0, τt0]) with z2 on its boundary). Furthermore, there is
a closed arc of ∂Ut0 containing the initial point η̂′(τt0) such that every intersection point of the
chordal SLEκ ′ with this arc is a double point of η̂′; the reason this property does not hold for
all intersection points between the chordal SLEκ ′ and ∂Ut0 is that some of these intersection
points will be contained in ∂U .

Since η′(· − t0)
d= η′ modulo rotation and scaling [20], Theorem 1.9, to show that the

double point dimension of η̂′ is a.s. given by (7), it suffices to show that the dimension of the
intersection of η̂′ with any nontrivial arc of ∂U containing z1 is a.s. given by (7).

Let ψ : [0,∞) → C be the parameterization of the left boundary of η′((−∞,0]) with
ψ(0) = 0 and such that for each 0 ≤ u < v we have that the quantum length of the segment
from ψ(u) to ψ(v) is equal to v − u. Let a > 0 be such that ψ(a) is where the left boundary
of η′((−∞,0]) first hits ∂U . Let ϕ : R×[0, π] → U be the unique conformal transformation
which takes −∞ (resp., +∞) to the initial (resp., terminal) point of η̂′ such that the field
ĥ = h◦ϕ+Q log |ϕ′| on R×[0, π] has the horizontal translation chosen so that the supremum
of its projection onto the space of functions which are constant on vertical lines is hit at
u = 0. For each M ∈ R, let AM = ψ−1(η̂′ ∩ ϕ((−∞,M] × {π})). Let (L̃t , R̃t )t∈R be the
time-reversal of (Rt ,Lt )t∈R, so (L̃t , R̃t )t∈R is the pair of Brownian motions encoding the
time-reversal of η′ on top of the independent quantum cone. If we define

X̂ =
{
t ≥ 0 : R̃t = inf

s∈[0,t] R̃s, ϕ
−1(η̂′(t)

) ∈ (−∞,M] × {π}
}

then η′(X̂) = ψ(AM).
We claim that for any M > 0 the law of the set AM − a is absolutely continuous with

respect to the law of the range of a stable subordinator of index κ ′/4 − 1 stopped at some
positive time. To see this, we first describe the law of the triple (U,h|U, η̂′) viewed as a
curve-decorated quantum surface (i.e., modulo conformal maps). Let UQ be the first bead of
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η′([0,∞)) such that the sum of the quantum masses of the previous beads (including UQ)
is at least 1 and let η̂′

Q be the associated chordal SLEκ ′ curve between its marked points.
Since UQ is chosen in a manner which does not depend on the particular embedding of the
quantum surface parametrized by η′([0,∞)) into C, it follows that the conditional law of
the curve-decorated quantum surface (UQ, h|UQ, η̂′

UQ) given its quantum area and boundary

length is that of a single bead of a weight-2−γ 2/2 quantum wedge decorated by an indepen-
dent chordal SLEκ ′ curve between its marked points. Since U is independent from h, it a.s.
holds with positive conditional probability given η′ (viewed modulo monotonte parametriza-
tion) and (U,h|U, η̂′) that (UQ, η̂′

Q) = (U, η̂′). Hence the law of (U,h|U, η̂′) is absolutely
continuous with respect to the law of (UQ, h|UQ, η̂′

UQ).
The law of the left and the right boundary length process for η̂′ when η̂′ is parameterized

by quantum natural time and run until it exits ϕ((−∞,M] × [0, π]) is absolutely continuous
with respect to a κ ′/4-stable Lévy process with only negative jumps stopped at a certain time
by the preceding paragraph, [20], Corollary 1.19, and since when mapping U to the strip as
above, the law of the restriction of the field to (−∞,M] × [0, π] is absolutely continuous

with respect to the analogous restricted field for a thick quantum wedge of weight 3γ 2

2 − 2
[20], Section 4.4 and Footnote 1. Hence our claim follows by [10], Lemma VIII.1.

The set of times t ≥ 0 when R̃t = infs∈[0,t] R̃s has the law of the range of a stable subor-
dinator of index 1/2. Hence the law of X̂ is absolutely continuous with respect to the law of
the range of the composition of two (not necessarily independent) subordinators of index 1/2
and κ ′/4 − 1, respectively. By the uniform dimension transformation result for subordinators
[43], Theorem 4.1, a.s. dimH(X̂) = κ ′/8 − 1/2. By Theorem 1.1, a.s. the dimension of the
intersection of η̂′ with any nontrivial segment of ∂U is given by (7). Recalling the argument
at the beginning of the proof, a.s. the set of double points of η̂′ is a.s. given by (7). Since
chordal SLEκ ′ a.s. does not have any boundary double points [73], Remark 5.3, the double
point dimension for other types of SLEκ ′ is obtained via local absolute continuity, as in the
preceding examples. �

The dimension of the intersection points of two GFF flow lines (in the sense of [65]) was
first obtained in [73], Theorem 1.5. In our calculation below, we assume the flow lines are
generated from the same GFF as η′, and we assume without loss of generality that the first
flow line is given by the right boundary of η′([0,∞)). As we will explain just below, we can
sample from the law of the flow line intersection points by considering a Bessel process Y

which encodes the quantum wedge which lies between the two flow lines. The Bessel process
Y that we consider has a different dimension than the Bessel process in [20], Section 4.4,
since the excursions of Y encode quantum boundary lengths rather than quantum areas. We
derive the dimension of Y in the following lemma.

LEMMA 2.6. Let W be a (thin) quantum wedge of weight W ∈ (0, γ 2/2). There is a
Bessel process Y of dimension d = 4W/γ 2 with the following property. The ordered sequence
of quantum disks of W correspond to the ordered sequence of the excursions of Y from 0,
and the right quantum boundary length of each quantum disk is identical to the length of the
corresponding excursion of Y from 0.

PROOF. By [20], Definition 4.15, W is a Poissonian chain of beads, corresponding to the
ordered sequence of excursions from 0 of a Bessel process Ỹ of dimension d̃ = 1 + 2W/γ 2,
such that each surface can be parameterized as follows. Let S = R × [0, π], and for each
excursion e of Ỹ , let (S, he) be a parameterization of the corresponding bead of W . The
distribution he is given by he = h† + h0, where h†((t, u)) = X̃e

t for all (t, u) ∈ S , X̃e
t is

equal to the reparameterization of 2γ −1 log(e) to have quadratic variation 2dt , and h0 is
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independent of h† and equal in law to the projection of a free boundary GFF onto the space of
distributions with mean 0 on each vertical line. Let a = W/γ −γ /2. If we take the horizontal
translation so that X̃e reaches its supremum at t = 0, then by [20], Propositions 3.4 and
3.5, Remark 3.7, we have X̃e

t = B̃
e,1
2t + at for t ≥ 0, and X̃e

t = B̃
e,2
−2t − at for t < 0, where

B̃e,1 and B̃e,2 are two independent Brownian motions started from b̃e := 2γ −1 log(sup(e)),
conditioned on X̃e

t ≤ b̃e for all t ∈ R. (We note that since a < 0, this conditioning can be
made sense of as in [20], Remark 4.4.)

The conditional expectation of the right quantum boundary length of (S, he) given (X̃e
t )t∈R

is proportional to

(8)
∫
R

exp
(
γ X̃e

t /2
)
dt = 4

∫
R

exp
(
γXe

t

)
dt,

where Xe
t = B

e,1
2t + 2at for t ≥ 0 and Xe

t = B
e,2
−2t − 2at for t < 0, and Be,1 and Be,2 are

two independent Brownian motions started from be := b̃e/2, conditioned on Xe
t ≤ be for all

t ∈ R.
We will argue that we obtain a Bessel process of dimension d := 2d̃ − 2 = 4W

γ 2 if we
reparameterize exp(γXe

t /2) to have quadratic variation 2dt for each e, and concatenate the
resulting excursions in the order given by Ỹ . By (8) and [20], Remark 4.16, this will imply
that the collection of conditional expected right boundary lengths of W , given the projection
of each he onto the space of functions that are constant on {t} × [0, π] for all t ∈ R, has the
law of the excursion lengths of a Bessel process of dimension d . By the same argument as in
the proof of [20], Proposition 4.18, this implies that there is a d-dimensional Bessel process
Y such that the length of an excursion e is equal to the actual quantum boundary length of
the corresponding surface, hence we can conclude the proof of the lemma.

By [20], Proposition 3.4, Lemma 3.6, and Remark 3.7, we would obtain a Bessel process of
dimension d by the above procedure, given that the collection of maxima be of the processes
Xe

t has the right law, since we know that the drift ±2a of Xe
t corresponds to a Bessel process

of dimension d; see [20], Table 1.1. Given an excursion e define ẽ∗ := sup(e), and note that
e∗ := (̃e∗)1/2 is the maximum of the excursion obtained by reparameterizing exp(γXe

t /2). By
[20], Remark 3.7, the law of ẽ∗ can be described by considering a Poisson point process of
intensity ds ⊗ ud̃−3 du, where ds and du denote Lebesgue measure on R+. A realization of
the Poisson point process is a collection of points (s, ẽ∗), where the second coordinate gives
the maximum value of a Bessel excursion, and the Bessel excursions are ordered chronolog-
ically by the first coordinate. The collection of points (s, e∗) = (s, (̃e∗)1/2) has the law of a
Poisson point process of intensity proportional to ds ⊗ u2d̃−5 du = ds ⊗ ud−3 du, hence our
wanted result follows. �

EXAMPLE 2.7. Let θ1, θ2 ∈ R and suppose that θ := θ1 − θ2 ∈ (0, π]. Consider two flow
lines ηθi

, i ∈ {1,2}, of a whole-plane GFF ĥ, started from z ∈ C (in the sense of [68]). If
θ ∈ (0, πκ

4−κ
∧ π ] the Hausdorff dimension of ηθ1 ∩ ηθ2 is a.s. given by

2 − 1

2κ

(
ρ + κ

2
+ 2
)(

ρ − κ

2
+ 6
)
,

where ρ = θ(2 − κ/2)/π − 2. If κ ≤ 2 and θ ∈ [ πκ
4−κ

,π], the flow lines a.s. do not intersect.

PROOF. We refer to the right part of Figure 3 for an illustration. By [68], Theorem 1.1,
ηθ1 has the law of a whole-plane SLEκ(2 − κ). By [68], Theorem 1.11, the conditional law
of ηθ2 given ηθ1 is that of a chordal SLEκ(ρ1;ρ2) from 0 to ∞ in C\ηθ1 , where ρi = Wi − 2,
W1 = θ(2 − γ 2/2)/π ≥ 0, W2 = W − W1 ≥ 0 and W = 4 − γ 2. Note that ρ1 = ρ, with ρ
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as defined in the statement of the example. Let (C, h,0,∞) be a weight-W quantum cone
(equivalently, a γ -quantum cone) independent of ηθi

, i ∈ {1,2}, and assume w.l.o.g. that
z = 0. By [20], Theorem 1.2, the quantum surface W1 (resp., W2) having ηθ1 as left (resp.
right) boundary and ηθ2 as right (resp., left) boundary, is a quantum wedge of weight W1 (resp.
W2). If κ ≤ 2 and θ ∈ [ πκ

4−κ
,π], W1 and W2 are thick wedges, implying that ηθ1 ∩ ηθ2 = {0}.

Assume κ > 2 or θ /∈ [ πκ
4−κ

,π]. By Lemma 2.6, there is a Bessel process B̂ of dimension
d = 4W1/γ

2, such that the ordered lengths of its excursions from 0, are identical to the
ordered sequence of the right boundary lengths of the bubbles. By the comment right after
[11], Proposition 2.2, there is a subordinator S1 of index α1 = 1 − d/2 such that the zero set
of B̂ is equal to its range.

Let η′ be a whole-plane space-filling SLEκ ′ from ∞ to ∞ as above. The right boundary
of η′([0,∞)) has the law of a SLEκ(2 − κ), so we can assume w.l.o.g. that ηθ1 is equal to the
right boundary of η′([0,∞)).

Let X̂ ⊂ [0,∞) be the set of times that η′|[0,∞) visits a point in ηθ1 ∩ ηθ2 for the first time.
Note that η′|[0,∞) visits a point in ηθ1 exactly when R is equal to its running infimum since
time zero, and η′ visits a point in the intersection ηθ1 ∩ ηθ2 when the additional condition
−Rt ∈ S1(R+) holds. Hence,

dimH(Zt )t∈X̂ = dimH
{
(Lt ,Rt ) : −Rt ∈ S1

(
R+),Rt = inf

0≤s≤t
Rs

}
.

The set of times t where Rt = inf0≤s≤t Rs , is equal to the range of a stable subordinator
S2 of index α2 = 1/2, such that S2(x) is the first time that Rt hits −x, for any x ≥ 0. It
follows that X̂ = S2(S1(R+)). By [43], Theorem 4.1, it holds a.s. that dimH(X̂) = α1α2 =
1/2 − W2/γ

2 = 1/2 − (ρ + 2)/κ . Applying Theorem 1.1 completes the proof. �

In our final application of Theorem 1.1, we will use the theorem in the reverse direction as
compared to the examples above. We use the dimension of the CLEκ ′ gasket determined in
[71, 85] for κ ′ ∈ (4,8) to calculate the dimension of times not contained in any left π/2-cone
intervals for a correlated Brownian motion. Recall that a left (resp., right) π/2-cone interval
for Z|[0,∞) is a time interval (s, t) ⊂ [0,∞) such that Ru ≥ Rs and Lu ≥ Ls for all u ∈ (s, t),
and such that Rs = Rt (resp., Ls = Lt ). Furthermore, a reverse π/2-cone interval for Z|[0,∞)

is a time interval (s, t) ⊂ [0,∞) such that (−t,−s) is a cone interval for the time-reversal
(Z−t )t≤0 of Z.

EXAMPLE 2.8. Let κ ′ ∈ (4,8). Consider (Zt )t≥0 and let X̂ be the set of times that are
not contained in any left cone intervals, that is,

(9) X̂ = [0,∞)\{u ≥ 0 : ∃ left cone interval (s, t),0 ≤ s < t, s.t. u ∈ (s, t)
}
.

Then dimH(X̂) = 1
2 + κ ′

16 .

PROOF. It is sufficient to consider a reverse right cone interval (t1, t2), 0 < t1 < t2 < ∞,
and prove that the set

X̂′ := (t1, t2)\{u ∈ (t1, t2) : ∃ a reverse left cone interval

(s1, s2) ⊂ (t1, t2) s.t. u ∈ (s1, s2)
}

satisfies dimH(X̂′) = 1
2 + κ ′

16 . This is sufficient by invariance in law under time-reversal of
Brownian motion, since any compact subset of [0,∞) is a.s. contained in some reverse right
π/2-cone interval (possibly starting before time 0), and since the interval [0,∞) a.s. contains
some reverse right π/2-cone interval by [23]. As mentioned in Section 1.4, η′ encodes a
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whole-plane CLEκ ′ . The interior U of the image of the reverse right cone interval (t1, t2)

under η′ is a “bubble” disconnected from ∞ by η′, with the boundary traced in the clockwise
direction by η′. The restriction of the CLEκ ′ to U has the law of a CLEκ ′ in U . It follows from,
for example, [35, 71, 87] that the interiors of the outermost CLEκ ′ loops in U associated with
the space-filling SLEκ ′ η′ correspond to outermost reverse left cone excursions of Z|[t1,t2].
The gasket of the CLEκ ′ in U is the set of points in U not contained in the interiors of any
of these loops. The result now follows from Theorem 1.1, since we know by [71, 85] that the
CLEκ ′ gasket a.s. has dimension 2 − (8 − κ ′)(3κ ′ − 8)/(32κ ′). �

The final example in this section will be an application of [78], Theorem 4.1, to calculate
the Hausdorff dimension of the points of intersection between the real line and a chordal
SLEκ(ρ), κ > 0, in the upper half-plane where ρ is in the range of values in which the
process does not fill the boundary. This Hausdorff dimension was first obtained in [2] for the
special case ρ = 0 and κ > 4, and the formula was proved for general values of ρ and κ in
[73], Theorem 1.6. Our main result Theorem 1.1 cannot be used in this setting, since it only
applies to SLE and CLE sets in the interior of a domain.

EXAMPLE 2.9. Let κ > 0, κ �= 4, and ρ ∈ (−2∨(κ
2 −4), κ

2 −2), and consider a SLEκ(ρ)

η on H from 0 to ∞ with force-point at 0+. Almost surely,

dimH(η ∩R+) = 1 − 1

κ
(ρ + 2)

(
ρ + 4 − κ

2

)
.

PROOF. First, we consider the case κ > 4, hence we will write κ ′ instead of κ and η′
instead of η. Let η′ be a chordal SLEκ ′ curve from 0 to ∞ in H on top of an independent

quantum wedge (H, h,0,∞) of weight 3γ 2

2 − 2 + γ 2

4 ρ. Let D be the open subset of H which
is between the right boundary of η′ and [0,∞). By [20], Theorem 1.16, (D,h,0,∞) has the

law of a thin quantum wedge of weight W = γ 2 − 2 + γ 2

4 ρ. Defining X̂ ⊂ [0,∞) by X̂ :=
{ν([0, x]) : x ∈ η′ ∩ R+} it follows by Lemma 2.6 and [11], Proposition 2.2, that X̂ has the
law of the range of a stable subordinator of index κ ′/4 − 1 − ρ/2, hence dimH(X̂) = κ ′/4 −
1 − ρ/2. An application of (5) completes the proof. Note that we may apply this formula to
the field h since, if h is given the circle-average embedding, say, then the restriction of h to
any subdomain of H bounded away from 0, ∞, and ∂D∩H is mutually absolutely continuous
with respect to the corresponding restriction of a free boundary GFF on H normalized to have
average zero on ∂D∩H.

We proceed by the exact same argument when κ ∈ (0,4), except that we apply [20], Theo-
rem 1.2, instead of [20], Theorem 1.16. Alternatively, we may obtain this dimension by using
the result for κ ′ > 4 and SLE duality [13, 65, 68, 96, 97]. �

3. SLE and GFF estimates. In this section, we will prove various estimates for space-
filling SLE and for GFFs which we will need in the sequel.

3.1. Space-filling SLE absorbs a ball with positive probability. Throughout this subsec-
tion, we fix κ ′ > 4 and let η′ be a whole-plane space-filling SLEκ ′ from ∞ to ∞, param-
eterized by Lebesgue measure and satisfying η′(0) = 0. Our goal is to prove the following
lemma which (together with a multiscale argument) will be used in the next subsection to
argue that η′ is very unlikely to travel a long distance without absorbing a large Euclidean
ball (see Lemma 3.6). Define

(10) Tρ := inf
{
t ≥ 0 : η′([0, t]) �⊂ Bρ(0)

} ∀ρ > 0.

The main result of this subsection is the following lemma.
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FIG. 4. Illustration of the proof of Lemma 3.1. We seek to show that η′ absorbs the ball Bδε(zε) for some
δ = δ(κ ′) > 0 (not shown) before exiting B1+ε(0). To do this, we study the conformal map fε : C \ KT1 → D
taking zε to 0 and η′(T1) to 1. The set U∗ is a neighborhood of a path from 0 to 1 in D whose preimage under
fε is contained in Vε ⊂ B1+ε(0) (in the figure, f −1

ε (U∗) is contained in Bε/2(zε), but in general it might just
be disconnected from ∞ by KT1 ∪ Bε/2(zε)). Consider the flow lines started from a point near zε which form
the left and right boundaries of η′ at the time when it hits this point. These flow lines and their images under
fε are shown in orange and purple. In the case when fε(x

L) and fε(x
R) are at macroscopic distance from 1

(left and middle panels), we can use a local absolute continuity argument to show that with uniformly positive
conditional probability given η′|[0,T1], the orange and purple flow lines in the middle figure together with ∂D form
a pocket contained in U∗ which itself contains fε(Bδε(zε)). The preimage of this pocket under fε is contained
in η′([T1, T1+ε ]). If instead fε(x

L) and fε(x
R) are very close to 1 (as shown in the right panel), we instead

need to grow flow lines started from fε(x
L) and fε(x

R) (dark green and brown), which can equivalently be
described as small segments of fε(η

L
0 \ η′([0, T1])) and fε(η

R
0 \ η′([0, T1])). If only one of fε(x

L) or fε(x
R)

is very close to 1, we only need to grow a single extra flow line. On a uniformly positive probability event, if we
map the complementary connected component containing 0 of the green and brown flow lines to D, the images of
the tips will be at uniformly positive distance from 1. This gives us a configuration which looks like the one in the
middle figure, which allows us to argue that with uniformly positive probability, the union of all 4 flow lines in the
right panel and ∂D forms a pocket surrounding fε(Bδε(zε)). The preimage of this pocket under fε will again be
contained in η′([T1, T1+ε ]).

LEMMA 3.1. There are constants δ,p ∈ (0,1) depending only on κ ′ such that the fol-
lowing is true. For any ε ∈ (0,1), it a.s. holds with conditional probability at least p given
η′|[0,T1] that η′([T1, T1+ε]) contains a ball of radius at least δε.

The proof of Lemma 3.1 proceeds via a combination of elementary complex analysis and
facts from imaginary geometry [62, 65, 66, 68]. See Figure 4 for an illustration and outline
of the proof.

We remark that in the case when κ ′ ∈ (4,8], one can give a somewhat simpler argument
(which does not directly use imaginary geometry). The reason is that in this case, the time
reversal of η′|[0,∞) traces points in the same order as the associated SLEκ ′(κ ′ − 6) curve
started from ∞, and the time reversal of this curve is also a SLEκ ′(κ ′ −6) [68], Theorem 1.20.
So, we can reduce our problem to proving that if η′

0 is a SLEκ ′(κ ′ −6) from 0 to ∞, then with
uniformly positive conditional probability given η′

0 up to the first time it exits D, it holds that
η′

0 forms a bubble which contains a ball of radius δε before exiting B1+ε(0). This statement
can be proven using basic complex analysis plus the Markov property of SLEκ ′(κ ′ − 6) and
[73], Lemma 2.4. However, this alternative argument does not work in the case when κ ′ > 8
since in this case the whole-plane SLEκ ′(κ ′ − 6) is not reversible. In fact, the marginal law
of η′|[0,∞) is not that of a SLEκ ′(ρ) for any choice of ρ. So, we instead need to control this
curve using interior flow lines of a GFF (which form its left and right boundaries).

We now proceed with the proof of Lemma 3.1. First, we introduce some notation. For
t ≥ 0, let Kt be the hull generated by η′([0, t]), that is, the union of η′([0, t]) and the set of
points which it disconnects from ∞ (this hull is just η′([0, t]) if κ ′ ≥ 8).
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Following [65], we define the constants

(11) κ := 16

κ ′ , χ := 2√
κ

−
√

κ

2
, λ := π√

κ
, λ′ := π√

κ ′ .

We also let ĥ be the whole-plane GFF viewed modulo a global additive multiple of 2πχ

which is used to construct η′ as in Section 1.4.3. For z ∈ C, we let ηL
z (resp., ηR

z ) be the flow
line of ĥ started from z with angle π/2 (resp., −π/2), so that a.s. ηL

z and ηR
z are the left and

right boundaries of η′ at the first time it hits z.
The set ∂η′([0, T1]) can be divided into four distinguished arcs, which we denote as fol-

lows:

• AL (resp., AR) is the arc of ∂KT1 traced by ηL
0 (resp., ηR

0 ).

• A
L

(resp., A
R

) is the arc of ∂KT1 not traced by ηL
0 or ηR

0 which lies to the left (resp., right)
of η′(T1).

Using the notation (10), we define the σ -algebra

F1 := σ
(
η′|[0,T1], ĥ|η′([0,T1])

)
.

LEMMA 3.2. The set η′([0, T1]) is a local set for ĥ in the sense of [84], Lemma 3.9. In
particular, the boundary data for the conditional law of h|C\KT1

given F1 on each of the arcs

AL, AR , A
L

, and A
R

coincides with the boundary data of the corresponding flow line of ĥ

(i.e., it is given by flow line boundary conditions as described in [68], Figure 9).

PROOF. We first check that η′([0, T1]) is a local set for ĥ. By [84], Lemma 3.9, condition
1, it suffices to show that for each deterministic open set U ⊂ C, the event {η′([0, T1]) ∩ U �=
∅} is a.s. determined by h|C\U . For z ∈ C, let SL

z (resp., SR
z ) be the first time that the flow

line ηL
z (resp., ηR

z ) enters U . Since flow lines are local sets, each η
q
z ([0, S

q
z ]) for q ∈ {L,R}

and z ∈ C is a.s. determined by h|C\U . Since the outer boundary of η′ at the first time it hits
any given rational z ∈ C is equal to ηL

z ∪ ηR
z , we see that a.s. η′([0, T1]) intersects U if and

only if there is a z ∈ Q \ D such that ηL
z merges into ηL

0 ([0, SL
0 ]) before time SL

z ; and the
same is true with “R” in place of “L”. This latter event is a.s. determined by h|C\U .

By [84], Lemma 3.11 (applied to the local sets η′([0, T1]) and ηL
z , ηR

z for z ∈ Q) and the
known boundary data for interior flow lines of a whole-plane GFF [68], Theorem 1.1, we
obtain the claimed description of the boundary data for the conditional law of ĥ given F1.

�

Let zε be the point of ∂B1+ε/4(0) closest to η′(T1) and let fε : (C∪{∞})\KT1 →D be the
conformal map which takes zε to 0 and η′(T1) to 1. Let Vε be the union of Bε/2(zε) \ ∂KT1

and the set of points which it disconnects from ∞ in C\KT1 . Then ∂KT1 ∩∂Vε is a connected
arc of ∂KT1 . Let IL (resp., IR) be the subarc of ∂KT1 ∩ ∂Vε lying to the left (resp., right) of
η′(T1) as viewed from η′(T1), looking out from D. Note that IL (resp., IR) need not be part
of the left (resp., right) outer boundary of KT1 if all of this left (resp., right) outer boundary
is part of ∂Vε .

There is a universal constant q ∈ (0,1/2) such that conditional on η′|[0,T1], a Brownian
motion started from zε has probability at least q to exit B3ε/8(zε) at a point outside of
B3ε/8(zε)∩D, then make a counterclockwise loop around Bε/4(zε) before reentering Bε/4(zε)

or leaving Bε/2(zε). If it does so, then such a Brownian motion first hits KT1 at a point of IL

before exiting Vε . Symmetrically, Brownian motion started from zε has conditional probabil-
ity at least q to first hit KT1 at a point of IR before exiting Vε .
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From the above estimates and the conformal invariance of Brownian motion, we infer that
there is a universal constant c0 ∈ (0,1) such that each point of fε(C\ (Bε/2(zε)∪KT1)) lies at
distance at least c0 from 0 and each of the arcs fε(I

L) and fε(I
R) of ∂D has Euclidean length

at least c0. In fact, the probability that a Brownian motion started from 0 hits any given ball of
radius c centered at a point of D\Bc0(0) before exiting D tends to 0 as c → 0, uniformly over
all possible choices of center for the ball. Hence the estimate of the first paragraph implies
that we can find a universal constant c ∈ (0, c0/2] and a random path α in D from 0 to 1 such
that Bc(α) ⊂ fε(Vε).

Let U be the collection of all simply connected open subsets of D which take the form
U = Bc/100(β) for β a simple piecewise linear path from 0 to 1 in D whose linear segments
all connect nearest neighbor points (c/50)Z2 (by slightly shrinking c, we can assume without
loss of generality that 1/c is an integer, so that 1 ∈ (c/50)Z2). Then U is a finite set and there
a.s. exists U∗ = Bc/100(β∗) ∈ U with U∗ ⊂ Bc(α) ⊂ fε(Bε/2(zε) \ KT1).

By the Koebe quarter theorem, |f ′
ε(zε)| � ε−1, with universal implicit constant, so by the

Koebe growth theorem f −1
ε (Bc/1010(0)) contains Bδε(zε) for a universal choice of δ ∈ (0,1).

Hence it suffices to show that Bc/1010(0) is contained in fε(η
′([T1, T1+ε])) with uniformly

positive conditional probability given η′|[0,T1].
Recall the imaginary geometry parameters from (11). Let ĥε := ĥ ◦ f −1

ε − χ arg(f −1
ε )′,

so that ĥε is similar to a GFF on D with Dirichlet boundary data determined by the images

of the distinguished arcs AL, AR , A
L

and A
R

under fε (this boundary data is described in
Lemma 3.2) except that it possesses a singularity at fε(∞).

Let ĥU∗
ε be a GFF on U∗ with Dirichlet boundary data which coincides with that of ĥ∗

ε on
∂U∗ ∩ ∂D and whose boundary data on ∂U∗ \ ∂D is 0. As we will see, the laws of ĥε and
ĥU∗

ε are mutually absolutely continuous on subsets of U∗ at positive distance from ∂U∗ \ ∂D.
Recalling that U∗ = Bc/100(β∗) for the piecewise linear curve β∗, we define

(12) Ur∗ := Brc/100(β∗) ∀r ∈ (0,1].
LEMMA 3.3. Let ĥε (resp., ĥU∗

ε ) be the harmonic part of ĥε |U∗ (resp., ĥU∗
ε ). For r ∈

(0,1), the conditional laws of ĥε |Ur∗ and ĥU∗
ε |Ur∗ given F1 ∨ σ (̂hε, ĥ

U∗
ε ) are a.s. mutually ab-

solutely continuous. Furthermore, if M = Mr is the Radon–Nikodym derivative of the former
with respect to the latter, then there is a ξ = ξ(κ ′, r) > 0 such that E(M−ξ |F1) is bounded
above by a deterministic constant depending only on κ ′ and r .

PROOF. Set r ′ = (1 + r)/2. Also let φ be a smooth bump function which equals 1 on
Ur∗ and 0 on C \ Ur ′

∗ , chosen in a manner which depends only on U∗ and r . The proof of
[65], Proposition 3.4 (applied to the zero-boundary parts of ĥε |U∗ and ĥU∗

ε ) shows that if we
condition on F1 ∨ σ (̂hε, ĥ

U∗
ε ) then the conditional law of ĥε |Ur∗ is absolutely continuous with

respect to the conditional law of ĥU∗
ε |Ur∗ , with Radon–Nikodym derivative given by

M := E
[
exp
((

ĥU∗
ε − ĥU∗

ε , g
)
∇ − 1

2
(g, g)∇

)∣∣ĥU∗
ε

∣∣
Ur∗ ,F1 ∨ σ

(̂
hε, ĥ

U∗
ε

)]
,

where g := φ(̂hε − ĥU∗
ε ) and (·, ·)∇ denotes the Dirichlet inner product. By Jensen’s inequality

applied to the convex function x �→ x−ξ (in order to pass the exponent inside the conditional
expectation given ĥε |Ur∗ ) and since (ĥU∗

ε − ĥU∗
ε , g)∇ is Gaussian with variance (g, g)∇ under

the conditional law given F1 ∨ σ (̂hε, ĥ
U∗
ε ),

E
[
M−ξ |F1 ∨ σ

(̂
hε, ĥ

U∗
ε

)]
≤ E
[
exp
(
−ξ
(
ĥU∗

ε − ĥU∗
ε , g
)
∇ + ξ

2
(g, g)∇

)∣∣F1 ∨ σ
(̂
hε, ĥ

U∗
ε

)]

= exp
(

ξ2 + ξ

2
(g, g)∇

)
.

(13)
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Since φ and all its derivatives vanish on ∂U∗ \ ∂D and ĥU∗
ε − ĥε is harmonic and vanishes

on ∂U∗ ∩ ∂D, a short computation using integration by parts shows that

(g, g)∇ =
∫
U∗

(
1

2
�
(
φ(w)2)− φ(w)�φ(w)

)(̂
hU∗

ε (w) − ĥε(w)
)2

dw


∫
U∗

(̂
hU∗

ε (w) − ĥε(w)
)2

dw

(14)

with the implicit constant depending only on φ, and hence only on U∗ and r . By [65],
Lemma 6.4 (applied to the conditional field given F1), for each w ∈ Ur ′

∗ the conditional
law given F1 of each of ĥε(w) and ĥU∗

ε (w) is Gaussian with variance bounded above by a
universal constant and mean bounded above in absolute value by a constant depending only
on κ ′ and r (for this latter statement, we use that the boundary data for each of ĥε and ĥU∗

ε

is bounded). From this and Jensen’s inequality applied to the exponential function, we infer
that the conditional expectation given F1 of the right side of (13) is a.s. finite and bounded
above by a constant depending only on U∗, κ ′, and r provided ξ is chosen sufficiently small
depending only on U∗, κ ′, and r . Since there are only finitely many possible realizations
U ∈ U of U∗, we obtain the statement of the lemma by taking a minimum over all such U .

�

PROOF OF LEMMA 3.1. Let xL (resp., xR) be the a.s. unique point of AL ∩ A
L

(resp.,

AR ∩ A
R

) and with U
1/2∗ as in (12) let

Hε := {fε

(
xL), fε

(
xR) /∈ ∂U1/2∗

}⊂ F1.

On Hε , the conditional law given F1 of the auxiliary GFF ĥU∗
ε depends only on the choice of

U∗ (i.e., the boundary data of ĥε does not depend on F1).
Let η̂L,U∗

ε (resp., η̂R,U∗
ε ) be the flow line of ĥU∗

ε started from −c/500 with angle π/2
(resp., −π/2), as in [68], Theorem 1.1. We stop η̂L,U∗

ε (resp., η̂R,U∗
ε ) at the first time it hits

fε(A
L

ε ) ∩ ∂U∗ (resp., fε(A
R

ε ) ∩ ∂U∗). Let GU∗
ε be the event that the region whose boundary

is formed by the left side of η̂L,U∗
ε , the right side of η̂R,U∗

ε , and ∂D∩ ∂U∗ contains Bc/1010(0)

and is contained in U
1/2∗ . By [68], Lemma 3.9, applied to η̂L,U∗

ε and then [73], Lemma 2.5,
applied to the conditional law of η̂R,U∗

ε given η̂L,U∗
ε , we infer that a.s. P(GU∗

ε |F1) > 0 on
Hε . Since this conditional probability depends only on U∗ on Hε and there are only finitely
many possible choices of U∗, we can find a p0 ∈ (0,1) depending only on κ ′ such that a.s.
P(GU∗

ε |F1)1Hε ≥ p01Hε .
To transfer this to an estimate for ĥε (rather than for ĥU∗

ε ), let η̂L
ε (resp., η̂R

ε ) be the flow
line of ĥε started from −c/500 with angle π/2 (resp., −π/2), stopped at the first time it hits

fε(A
L
ε ∪ A

L

ε ) (resp., fε(A
R
ε ∪ A

R

ε ), if this time is finite. Equivalently, η̂L
ε = fε ◦ ηL

f −1
ε (−c/500)

,

stopped at the first time it hits merges into the left boundary of η′([0, T1]); and similarly for
η̂R

ε . Let Gε be the event that η̂L
ε and η̂R

ε are contained in U
1/2∗ ; and the region whose boundary

is formed by the left side of ηL,U∗
ε , the right side of ηR,U∗

ε and ∂D∩ ∂U∗ contains Bc/1010(0).
We will now deduce from the previous two paragraphs and Lemma 3.3 that there is a

p ∈ (0,1), depending only on κ ′, such that a.s. P(Gε |F1)1Hε ≥ p1Hε . To see this, define the
harmonic parts ĥε , ĥU∗

ε and the Radon–Nikodym derivative M as in Lemma 3.3 (the latter
with r = 1/2). Since P(GU∗

ε |F1)1Hε ≥ p01Hε , there is a p1 = p1(κ
′) ∈ (0,1) such that it a.s.

holds with conditional probability at least p1 given F1 that

P
(
GU∗

ε |F1 ∨ σ
(̂
hε, ĥ

U∗
ε

))
1Hε ≥ p11Hε .
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Since E(M−ξ |F1) is bounded above by a constant depending only on κ ′, we can find b > 0
depending only on κ ′ such that with conditional probability at least 1 − p1/2 given F1, it
holds that

P
(
M ≥ b|F1 ∨ σ

(̂
hε, ĥ

U∗
ε

))
1Hε ≥ (1 − p1/2)1Hε .

Since flow lines are determined locally by the field, on Hε it holds with conditional probabil-
ity at least p1/2 given F1 that

P
(
Gε |F1 ∨ σ

(̂
hε, ĥ

U∗
ε

))= E
(
M1

G
U∗
ε

|F1 ∨ σ
(̂
hε, ĥ

U∗
ε

))≥ 1

2
bp1.

Taking expectations conditional on F1 proves our claim with p = bp2
1/4.

Since U∗ ⊂ fε(Bε/2(zε)\D), it follows from the definition of space-filling SLE that on Gε

the region in the definition of Gε is contained in the interior of fε(η
′([T1, T1+ε]). Since we

have chosen δ > 0 so that Bδε(zε) ⊂ f −1
ε (Bc/1010(0)), we infer from the preceding paragraph

that P(Fε |F1)1Hε ≥ p1Hε .
It remains to treat the case when Hε does not occur. The idea is to extend KT1 by growing

small segments of ηL
0 and ηR

0 , beyond the ones contained in η′([0, T1]), to get a larger hull
for which an analog of Hε occurs. See the right panel of Figure 4 for an illustration. For
simplicity, suppose that Hε does not occur and that both fε(x

L) and fε(x
R) are contained

in ∂U
1/2∗ (the case when only one of these points is contained in ∂U∗ is treated similarly by

extending only one flow line instead of two). Let η̊L
ε (resp., η̊R

ε ) be the flow line of ĥε started
from xL (resp., xR) with angle π/2 (resp., −π/2) targeted at −1, say, and let S̊L

ε (resp.,
S̊R

ε ) be its exit time from Bc/100(1) ⊂ U∗. Note that by uniqueness of flow lines (cf. [65],
Theorem 2.4) η̊L

ε |[0,SL
ε ] is an initial segment of fε(η

L
0 \ KT1) and similarly with “R” in place

of “L.” Let D̊ be the connected component containing 0 of D \ (η̊L
ε ([0, S̊L

ε ]) ∪ η̊R
ε ([0, S̊R

ε ])).
Fix a small constant a > 0, to be chosen later, and let E̊ε be the event that the harmonic

measure from 0 in D̊ of each of the left side of η̊L
ε ([0, SL

ε ]) and the right side of η̊R
ε ([0, S̊R

ε ]) is
at least a. Using Lemma 3.3 and two applications of [73], Lemma 2.4 (which we emphasize
does not depend on the particular location of the force points) and a similar argument to the
one above, we infer that there is a universal choice of a > 0 and a universal constant q̊ ∈ (0,1)

such that P(E̊ε |F1) ≥ q̊ a.s. on the event {fε(x
L), fε(x

L) ∈ ∂U
1/2∗ }.

Let f̊ε : D̊ → D be the conformal map which fixes 0 and such that f̊ −1
ε (1) is equal to 1

if κ ′ ≥ 8 or to the last (in chronological order along either curve) intersection point of the
right side of η̊L

ε |[0,S̊L
ε ] and the left side of η̊R

ε |[0,S̊R
ε ] if κ ′ ∈ (4,8). Also let h̊ε := ĥε ◦ f̊ −1

ε −
χ arg(f −1

ε )′. The field h̊ε has the same boundary data along the image of the left side of

η̊L
ε ([0, SL

ε ]) as it does along A
R

ε , and similarly with “R” in place of “L.”
If we apply exactly the same argument as in the case when Hε occurs but with the field

h̊ε in place of the field ĥε , then pull back to D̊, we find that that after possibly shrinking p it
a.s. holds with conditional probability at least p given F1 that the interior flow lines η̂L

ε and
η̂R

ε defined above merge into η̊L
ε ([0, S̊L

ε ]) and η̊R
ε ([0, S̊R

ε ]), respectively, before leaving U∗
and the region enclosed by these 4 flow lines run up to the merging time contains Bc/1010(0).
By definition of space-filling SLE, on this event this region is contained in fε(η

′([T1, Tε]).
Hence a.s. P(Fε |F1) ≥ p, as required. �

3.2. Continuity estimates for space-filling SLE. The goal of this subsection is to prove
that it is unlikely that a space-filling SLEκ ′ travels a long distance without filling in a big ball.
More precisely, we have the following.
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PROPOSITION 3.4. Let η′ be a space-filling SLEκ ′ from ∞ to ∞ in C. For r ∈ (0,1),
R > 0 and ε > 0, let Eε = Eε(R, r) be the event that the following is true. For each δ ∈ (0, ε]
and each a < b ∈R such that η′([a, b]) ⊂ BR(0) and diamη′([a, b]) ≥ δ1−r , the set η′([a, b])
contains a ball of radius at least δ. Then

lim
ε→0

P(Eε) = 1.

Proposition 3.4 yields as a corollary the optimal Hölder exponent for η′ when it is param-
eterized by Lebesgue measure.

COROLLARY 3.5. Let η′ be a space-filling SLEκ ′ from ∞ to ∞ in C, parameterized by
Lebesgue measure. Almost surely, η′ is locally Hölder continuous with any exponent < 1/2,
and is not locally Hölder continuous with any exponent > 1/2.

PROOF. Since η′ is parameterized by Lebesgue measure, we always have diamη′([a,

b]) ≥ 2π−1/2(b − a)1/2, so η′ cannot be Hölder continuous for any exponent > 1/2.
Conversely, it suffices to prove the Hölder continuity of the restriction of η′ to

(η′)−1(BR(0)) for some fixed R > 0. Also fix r > 0. By Proposition 3.4, it is a.s. the
case that for sufficiently small δ > 0 and each a < b ∈ R such that η′([a, b]) ⊂ B2R(0)

and diamη′([a, b]) ≥ δ1−r , the set η′([a, b]) contains a ball of radius at least δ, whence
b−a ≥ πδ2. Hence for sufficiently small δ, it holds that whenever a, b ∈ (η′)−1(BR(0)) with
a < b and b − a ≤ π1/2δ, we have diamη′([a, b]) ≤ δ(1−r)/2. This proves the desired Hölder
continuity. �

The key input in the proof of Proposition 3.4 is the following estimate, which is an easy
consequence of the results of Section 3.1.

LEMMA 3.6. Let η′ be a whole-plane space-filling SLEκ ′ from ∞ to ∞ with any choice
of parameterization. For z ∈ C, let τz be the first time η′ hits z and for ρ ≥ 0 let τz(ρ) be
the first time after τz at which η exits Bρ(z). For ε ∈ (0,1), let Eε

z (ρ) be the event that
η′([τz, τz(ρ)]) contains a Euclidean ball of radius at least ερ. There are constants a0, a1 > 0
depending only on κ ′ such that for each ρ > 0 and each ε ∈ (0,1),

P
(
Eε

z (ρ)c
)≤ a0e

−a1/ε.

PROOF. Fix C > 1 to be chosen later, depending only on κ ′. For ε ∈ (0,1), let Nε :=
�(Cερ)−1� and for k ∈ {1, . . . ,Nε}, let ρε(k) := kCερ. For k ∈ {2, . . . ,Nε}, let Fε

z (k) be
the event that η′([τz(ρ

ε(k − 1)), τz(ρ
ε(k))]) contains a ball of radius at least ερ. Then⋃Nε

k=2 Fε
z (k) ⊂ Eε

z (ρ).
By Lemma 3.1 and scale and translation invariance of the law of whole-plane SLEκ ′ , if we

choose C > 1 sufficiently large and p ∈ (0,1) sufficiently small, depending only on κ ′, then
for k ∈ {1, . . . ,Nε − 1},
(15) P

(
Fε

z (k + 1)
∣∣η′∣∣[0,τ ε

z (ρε(k))]
)≥ p.

Multiplying this estimate over all k ∈ {1, . . . ,Nε − 1} gives

P
(
Eε

z (ρ)c
)≤ (1 − p)Nε−1 ≤ a0e

−a1/ε

for an appropriate choice of a0, a1 > 0 as in the statement of the lemma. �

We now want to extract Proposition 3.4 from Lemma 3.6. For ε > 0 and ρ > 0, let

(16) Sε(ρ) := Bρ(0) ∩ (εZ2).
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Lemma 3.6 tells us that with high probability, each segment of the space-filling SLEκ ′ curve
η′ which has diameter at least ε1−r and which starts from the first time η′ hits a point of Sε(ρ)

contains a ball of radius at least ε. However, it is still possible that there exists a segment of
η′ contained in BR(0) for R < ρ which has diameter > ε1−r , fails to contain a ball of radius
ε, and fails to contain any point of Sε(ρ). In the remainder of this subsection, we will rule
out this possibility.

To this end, we will view the space-filling SLEκ ′ curve η′ as being coupled with a whole-
plane GFF h, defined modulo a global additive multiple of 2πχ , as in [68]. For z ∈ C, let
η±

z be the flow lines of h started from z with angles ∓π/2. By (the whole-plane analog
of) the construction of space-filling SLEκ ′ in [68], the flow lines η±

z form the left and right
boundaries of η′ stopped at the first time it hits z.

LEMMA 3.7. Suppose we are in the setting described just above. Fix R > 0. For ρ > R,
let F̃ (ρ) = F̃ (ρ,R) be the event that the following is true. For each ε ∈ (0,1), there exists
z0,w0 ∈ Sε(ρ) \ BR(0) such that the flow lines η−

w0
and η−

z0
and the flow lines η+

z0
and η+

w0
merge and form a pocket containing BR(0) before leaving Bρ(0). Then for each fixed R > 0,
we have P(F̃ (ρ)) → 1 as ρ → ∞.

PROOF. Let tR (resp., t ′R) be the first time η′ hits (resp., finishes filling in) BR(0). For
ρ1 > ρ0 > R, let τρ0 be the first time η′ hits Bρ0(0) and let σ

ρ1
ρ0 be the first time after τρ0 at

which η′ leaves Bρ1(0). Since η′ is a.s. continuous and a.s. hits every point of C, it follows
that there a.s. exists a random ρ1 > ρ0 > R such that the following is true:

1. τρ0 < tR < t ′R < σ
ρ1
ρ0 .

2. η′([τρ0, tR]) and η′([t ′R,σ
ρ1
ρ0 ]) each contain a ball of radius 1.

For this choice of ρ0, ρ1 and any ε ∈ (0,1), there exists z0 ∈ Sε(ρ1) ∩ η′([τρ0, tR]) and w0 ∈
Sε(ρ1) ∩ η′([t ′R,σ

ρ1
ρ0 ]). By the construction of space-filling SLE, the pocket formed by the

flow lines η±
z0

and η±
w0

stopped at the first time they merge is precisely the set of points traced
by η′ between the first time it hits z0 and the first time it hits w0. Since η′([ττ0, σ

ρ1
ρ0 ]) ⊂

Bρ1(0) and η′([tR, t ′R]) ⊃ BR(0), it follows that this pocket contains BR(0) and is contained
in Bρ1(0). Since ρ1 is a.s. finite, it follows that P(ρ1 < ρ) → 1 as ρ → ∞. The statement of
the lemma follows. �

LEMMA 3.8. Suppose we are in the setting described just above Lemma 3.7. Fix R > 0.
For ε ∈ (0,1) and ρ > R, let Pε(ρ) be the set of complementary connected components of⋃

z∈Sε(ρ)

(
η+

z ∪ η−
z

)
which intersect BR(0). For r ∈ (0,1), let Ẽε(ρ) = Ẽε(ρ;R, r) be the event that
supP∈Pε(ρ) diamP ≤ ε1−r . Also let F̃ (ρ) be defined as in Lemma 3.7. Then for each fixed
ρ > R, we have

P
(
Ẽε(ρ)c ∩ F̃ (ρ)

)≤ ρ2o∞
ε (ε)

at a rate depending only on R.

PROOF. The proof given here is more or less implicit in the proof of continuity of space-
filling SLE in [68], Section 4.3, but we give a full proof for completeness. See Figure 5 for
an illustration.

For ρ > R and z ∈ Bρ(0), let Ẽz
ε (ρ) be the event that the following is true. There exists

w ∈ Sε(ρ) such that w �= z and the curve η−
z hits (and subsequently merges with) η−

w on
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FIG. 5. An illustration of the proof of Lemma 3.8. On the event F̃ (ρ), there exists points z0 and w0 in the lattice
Sε(ρ) such that the flow lines η±

z0
and η±

w0
intersect at points shown in orange to form a pocket P0 which separates

BR(0) from ∂Bρ(0). Also shown are four points z1, z2, z3, z4 ∈ Sε(ρ) and three pockets P1,P2,P3 ∈ Pε(ρ)

formed by the flow lines started at these points. Flow lines η−
zi

for i ∈ {1, . . . ,4} are shown in red, and flow lines

η+
zi

are shown in blue. The points where two of these flow lines merge are shown in orange. The pockets P1 and
P2 are of the type with boundary arcs traced by four flow lines started from two points and the pocket P3 is of the
type with boundary arcs traced by two flow lines started from a single point.

its left side before leaving ∂Bε1−r /8(z); and the same is true with η+
z in place of η−

z and/or
“right” in place of “left.” Let

Ẽ ′
ε(ρ) := ⋂

z∈Sε(ρ)

Ẽz
ε (ρ).

By [68], Proposition 4.14,3 we have P(Ẽz
ε (ρ)c) = o∞

ε (ε), so by the union bound, P(Ẽ ′
ε(ρ)) =

1 − ρ2o∞
ε (ε). Hence to complete the proof it suffices to show that Ẽ ′

ε(ρ) ∩ F̃ (ρ) ⊂ Ẽε(ρ).
We first argue that on F̃ (ρ), the boundary of each P ∈ Pε(ρ) is entirely traced by curves

η±
z for z ∈ Sε(ρ). To see this, let z0,w0 ∈ Sε(ρ) be as in the definition of F̃ (ρ) and let P0 be

the pocket formed by η±
z0

and η±
w0

surrounding BR(0). Then for z /∈ Bρ(0), the flow lines η±
z

cannot cross ∂P0 without merging into η±
z0

, hence cannot enter BR(0) without merging into
flow lines η±

z for z ∈ Sε(ρ).
Now suppose Ẽ ′

ε(ρ) ∩ F̃ (ρ) occurs and P ∈ Pε(ρ). We must show diamP ≤ ε1−r . Since
F̃ (ρ) occurs, ∂P consists of either two arcs traced by a pair of flow lines η−

z and η+
z for some

z ∈ Sε(ρ); or four arcs traced by η±
z and η±

w for some z,w ∈ Sε(ρ).
Suppose first that we are in the latter case, that is, that there exists z,w ∈ Sε(ρ) with the

property that ∂P contains nontrivial arcs traced by the left side of η−
z , the right side of η+

z ,
the right side of η−

w and the right side of η+
w . Let I−

z be the arc of ∂P traced by the left side of

3The statement of [68], Proposition 4.14, does not specify the side at which the merging occurs, but the proof
shows that we can require the merging to occur on a particular side of the curve.
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η−
z . The curve η−

z cannot hit η−
v for any v ∈ Sε(ρ) on its left side before η−

z finishes tracing
I−
z (otherwise part of this arc I−

z would lie on the boundary of a pocket other than P ). The
same is true if we replace η−

z with one of the other three arcs of ∂P in our description of ∂P .
Since Ẽz

ε (ρ) ∩ Ẽw
ε (ρ) occurs, each of these four arcs has diameter at most 1

4ε1−r . Therefore,
diamP ≤ ε1−r . By a similar argument, but with only two distinguished boundary arcs instead
of four, we obtain diamP ≤ ε1−r in the case when ∂P is traced by a pair of flow lines η−

z

and η+
z for z ∈ Sε(ρ). Thus Ẽ ′

ε(ρ) ∩ F̃ (ρ) ⊂ Ẽε(ρ), as required. �

PROOF OF PROPOSITION 3.4. Fix r ′ ∈ (0, r). For ε ∈ (0,1), let kε be the smallest k ∈N
such that 2−k ≥ ε. Let E1

ε be the event that the following is true. For each k ≥ kε and each

z ∈ S2−k (2R) (defined as in (16)), the event E2−kr′
z (2−k(1−r ′)) of Lemma 3.6 occurs (i.e., with

2−k(1−r ′) in place of ρ and 2−kr in place of ε). By Lemma 3.6 and the union bound, we have

P
(
E1

ε

)= 1 − o∞
ε (ε).

Fix ρ > R to be chosen later and define the event F̃ (ρ) as in Lemma 3.7 and the events
Ẽε(ρ) as in Lemma 3.8, the latter with r ′ in place of r . Also let Pε(ρ) be the set of pockets
as defined in Lemma 3.8. Let

E2
ε (ρ) :=

∞⋃
k=kε

Ẽ2−k (ρ).

By Lemma 3.8, the union bound and the argument given just above, we have

P
(
E1

ε ∩ E2
ε (ρ) ∩ F̃ (ρ)

)= P
(
F̃ (ρ)
)− ρ2o∞

ε (ε).

Since P(F̃ (ρ)) → 1 as ρ → ∞ (by Lemma 3.7), to complete the proof of the proposition it
suffices to show that E1

ε ∩ E2
ε (ρ) ⊂ Eε for each choice of ρ > R and each sufficiently small

ε ∈ (0,1).
To this end, suppose E1

ε ∩ E2
ε (ρ) occurs and we are given δ ∈ (0, ε] and a < b ∈ R such

that η′([a, b]) ⊂ BR(0) and diamη′([a, b]) ≥ δ1−r . Let t∗ be the smallest t ∈ [a, b] such that
diamη′([a, t∗]) ≥ 1

2δ1−r . Let kδ be the largest k ∈ N such that 2−k ≥ δ. Since Ẽ2−kδ (ρ) occurs
with r ′ in place of r , it follows that for sufficiently small ε, the set η′([a, t∗]) is not contained
in any single pocket in P2−kδ (ρ). Whenever η′ exits a pocket in P2−kδ (ρ), it hits a point
z ∈ S2−kδ (2R) for the first time. Hence there exists t∗∗ ∈ [a, t∗] and z ∈ S2−kδ (2R) such that
η′ hits z for the first time at time t∗∗. The set η′([t∗∗, b]) has diameter at least 1

2δ1−r . Since
E2−kδ (z) occurs, it follows that this set contains a ball of radius δ. Thus η′([a, b]) contains a
ball of radius δ, which concludes the proof. �

REMARK 3.9. If we use some additional facts about space-filling SLE which are proven
in [44], our proof yields a more quantitative version of Proposition 3.4, namely that

(17) P
(
Ec

ε

)= o∞
ε (ε) as ε → 0,

that is, this probability decays faster than any positive power of ε. Indeed, by [44], Proposi-
tion 6.2, and scale invariance there exists some ξ = ξ(κ) > 0 such that if η′ is parameterized
by Lebesgue measure with η′(0) = 0 then for R > 0,

(18) P
(
BR(0) �⊂ η′([−C,C])) C−ξ ∀C > 0,

with the implicit constant independent of C. We claim that this estimate implies that the
conclusion of Lemma 3.7 (for fixed choice of R) can be improved to

(19) P
(
F̃ (ρ)
)≤ ρ−2ξ+oρ(1).
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It is immediate from Lemma 3.6 that except on an event of probability o∞
C (C) as C → ∞,

the set η′([−2C,2C]) is contained in BC1/2+oC(1) (0). By (18), the set η′([−C,C]) contains
BR(0) except on an event of probability OC(C−ξ ). By Lemma 3.6 and the translation invari-
ance of η′ parameterized by Lebesgue measure [44], Lemma 2.3, each of η′([C,2C]) and
η′([−2C,−C]) contains a ball of radius 1 with high probability. Taking C = ρ2+oρ(1) and
the points z0,w0 ∈ Sε(ρ) in Lemma 3.7 to be contained in these balls of radius 1 yields (19).
We now obtain (17) by taking ρ = ε−N for large N ∈ N and using (19) instead of Lemma 3.7
in the above proof of Proposition 3.4.

3.3. Estimate for the quantum measure. The following lemma will reduce the problem
of estimating the γ -quantum measure of a quantum cone (i.e., the quantum surface appearing
in Theorem 1.1) to the problem of estimating the quantum measure induced by a whole-plane
Gaussian free field.

LEMMA 3.10. Let α < Q and let h be the circle-average embedding of an α-quantum
cone (Definition 1.6). Also let h̃ be a whole-plane GFF normalized so that its circle average
over ∂D is 0. There exists c > 0 depending only on α and γ and a coupling of h and h̃ such
that h − h̃ is a.s. a continuous function on C \ {0} and for each R > 1 and each M > 1,

(20) P
(

sup
z∈BR(0)\B1/R(0)

∣∣(h − h̃)(z)
∣∣> M

)
 e−cM

with the implicit constant depending only on R, α, and γ .

Note that if h and h̃ are coupled as in the statement of the lemma, the γ -quantum area
measures μh and μh̃ are a.s. mutually absolutely continuous on BR(0) \ B1/R(0) and the
estimate (20) implies that the Radon–Nikodym derivative satisfies

(21) P
(

sup
z∈BR(0)\B1/R(0)

∣∣∣∣ 1γ log
dμh

dμh̃

(z)

∣∣∣∣> M

)
 e−cM.

PROOF OF LEMMA 3.10. For r > 0, let hr(0) and h̃r (0) be the circle averages of h

and h̃, respectively, over ∂Br(0). By Definition 1.5, the laws of h − h|·|(0) and h̃ − h̃|·|(0)

agree. Furthermore, these distributions are independent from h|·|(0) and h̃|·|(0), respectively.
The law of h̃e−s (0) for s ∈ R is that of a standard linear two-sided Brownian motion [22],
Proposition 3.2. The law of he−s (0) − αs for s ≥ 0 is that of a standard linear Brownian
motion and its law for s < 0 is that of a standard linear Brownian motion conditioned on
the event that he−s (0) − αs ≥ Qs. It follows that we can couple h and h̃ in such a way that
h − h|·|(0) = h̃ − h̃|·|(0) and a.s. hr(0) − h̃r (0) = α log r−1 for r < 1. Henceforth assume h

and h̃ are coupled in this way. We need to bound supr∈[1,R] |hr(0) − h̃r (0)|.
By standard estimates for Brownian motion, we have P(supr∈[1,R] |h̃r (0)| > M)  e−cM

for every choice of c > 0. By [20], Remark 4.4, we can express the law of he−s (0) − αs for
s ≤ 0 as follows. Let B be a standard linear Brownian motion and let τ be the largest t > 0
for which Bt + (Q − α)t = 0 (which is a.s. finite). If we set B̂t := Bt+τ + (Q − α)(t + τ),

then {B̂−s}s≤0
d= {he−s (0) − αs}s≤0. By the reflection principle, the Gaussian tail bound and

the union bound, for T > 0 we have

P(τ > T ) ≤ P
(∃t > T such that |Bt | > (Q − α)t

) e−(Q−α)2T/2.

Consequently, we have

P
(

sup
t∈[0,logR]

∣∣Bt+τ + (Q − α)(t + τ)
∣∣> M

)
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≤ P
(

sup
t∈[0, 1

2 (Q−α)−1M]
|Bt | > M/2

)
+ P
(
τ >

1

2
(Q − α)−1M − logR

)

 e−cM

for c > 0 as in the statement of the lemma. By combining this with our above description of
the law of {he−s (0) − αs}s≤0 and the triangle inequality, we obtain (20). �

In the remainder of this section, we will prove several estimates for the quantum measure
induced by a whole-plane GFF. The estimates of this section will be used in conjunction with
Proposition 3.4 and Lemma 3.10 to estimate the size of the preimage of the set X under η′ in
the proof of Theorem 1.1.

LEMMA 3.11. Let h be a whole plane GFF. Let h be the harmonic part of h|D. For each
r ∈ (0,1) and each ρ ∈ (0,1), we have

(22) P
(

sup
z∈Bρ(0)

∣∣h(z) − h(0)
∣∣≥ r log ε−1

)
= o∞

ε (ε).

PROOF. Let ρ′ := 1+ρ
2 . By the mean value property of harmonic functions,

sup
z∈Bρ(0)

∣∣h(z) − h(0)
∣∣ ∫

Bρ′ (0)

∣∣h(w) − h(0)
∣∣dw,

with the implicit constants depending only on ρ. By Jensen’s inequality, for each p > 0 we
have

sup
z∈Bρ(0)

ep|h(z)−h(0)| ≤ c0

∫
Bρ′ (0)

epc1|h(w)−h(0)| dw

for constants c0 and c1 depending only on ρ. By [65], Proposition 6.4, for each w ∈ Bρ′(0),
h(w) − h(0) is a centered Gaussian with variance bounded above by a constant depending
only on ρ. Hence for each p > 0,

E
(
c0

∫
Bρ′ (0)

epc1|h(w)−h(0)| dw

)
< ∞.

By applying the Chebyshev inequality and letting p → ∞, we infer (22). �

LEMMA 3.12. Fix r > 0 and R > 1. Let h be a whole-plane GFF, let μh be its γ -
quantum are measure, and let (hε) be its circle average process. For each z ∈ C, each ε ∈
(0,1), and each δ ∈ (0,1),

(23) P
(
μh

(
Bε(z)

)
< δε2+ γ 2

2 eγhε(z)
)= o∞

δ (δ),

at a rate depending only on r and R.

PROOF. The estimate (23) is independent of the choice of additive constant for h, can
assume without loss of generality that h is normalized so that the circle average h1(0) is
equal to 0. Fix z ∈ C. For ε ∈ (0,1), let φε

z (w) := εw + z be an affine map which takes D to
Bε(z) and let h̃ε

z := h ◦ φε
z . By [22], Proposition 2.1, we have

(24) μh

(
Bε(z)

)= μh̃ε
z+Q log ε

(
B1(0)

)= ε2+ γ 2

2 μh̃ε
z

(
B1(0)

)
.
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By translation and scale invariance h̃ε
z has the law of a whole plane GFF, modulo additive

constant. The circle average of h̃ε
z at ∂D is equal to hε(z). To see this, we observe that the

former circle average is equal to the conditional mean of h̃ε
z evaluated at 0, given its values

outside of D. By conformal invariance of harmonic functions and of the zero-boundary GFF,
this equals the conditional mean of h at z given its values outside Bε(z), which equals hε(z).

Hence the field ĥε
z := h̃ε

z − hε(z) agrees in law with h (not just modulo additive constant),
and by (24), we have

(25) μh

(
Bε(z)

)= eγhε(z)ε2+ γ 2

2 μĥε
z

(
B1(0)

)
.

It remains to argue that μĥε
z
(B1(0)) is unlikely to be small; equivalently, μh(B1(0)) is unlikely

to be small. To see this, let h be the conditional mean of h given its values outside D and let
ḣ := h|D − h. Then ḣ is a zero-boundary GFF on D which is conditionally independent from
h given h|C\D, and we have

(26) μh(D) ≥ μḣ

(
B1/2(0)

)
exp
(
−γ sup

w∈B1/2(0)

∣∣h(w)
∣∣).

By [22], Lemma 4.5,

(27) P
(
μḣ

(
B1/2(0)

)
< δ1/2)= o∞

δ (δ).

Since h(0) = h1(0) = 0, Lemma 3.11 implies

(28) P
(
exp
(
−γ sup

w∈B1/2(0)

∣∣h(w)
∣∣)< δ1/2

)
= o∞

δ (δ).

By (26), (27) and (28), we obtain P(μh(D) < δ) = o∞
δ (δ). By (25), it follows that (23) holds.

�

3.4. Circle average continuity. In this subsection, we will prove various results which
says that the circle average of a whole-plane GFF around a small circle or the quantum mass
of a small ball is unlikely to differ too much from the value we would expect given the circle
average around a larger circle centered at a nearby point. We start with a basic continuity
estimate for the circle average.

LEMMA 3.13. Fix ρ > R > 0. Suppose that either h is a zero-boundary GFF on Bρ(0)

or h is a whole-plane GFF. Let (hε) be the circle average process of h. There a.s. exists a
modification of hε (still denoted by hε) such that the following is true. For r > 0 and C > 1,
let C̃(C) = C̃(C,R, r) be the event that

(29)
∣∣hε(z) − hε′

(
z′)∣∣≤ C

|(z, ε) − (z′, ε′)|(1−r)/2

ε1/2

for each ε, ε′ ∈ (0,1] with 1
2 ≤ ε/ε′ ≤ 2 and each z, z′ ∈ BR(0). Then P(C̃(C)) → 1 as C →

∞.

PROOF. The statement for the case of a zero-boundary GFF on Bρ(0) follows from [46],
Proposition 2.1 (cf. the proof of [67], Proposition 8.4). In particular, for such a zero-boundary
GFF we have P(

⋃
C>1 C̃(C)) = 1. If h is a whole-plane GFF, then the law of h|BR(0) is

mutually absolutely continuous with respect to the law of a zero-boundary GFF on Bρ(0)

restricted to BR(0) (see, e.g., [65], Proposition 3.2). Hence P(
⋃

C>1 C̃(C)) = 1 in this case,
so P(C̃(C)) → 1 as C → ∞. �

We henceforth assume that we have replaced (hε) with a modification as in Lemma 3.13.
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LEMMA 3.14. Fix ρ > R > 1 and r ∈ (0,1). Let h be either a zero-boundary GFF
on Bρ(0) or a whole-plane GFF and let (hε) be the circle average process for h. Define
the events C̃(C) = C̃(C,R, r) as in Lemma 3.13. For each a > 0, each c > 0, and each
z,w ∈ BR(0) with |z − w| ≤ cε, we have

P
(∣∣hε(w) − hε1−r (z)

∣∣≥ a log ε−1, C̃(C)
) ε

a2
2r

with the implicit constant depending only on c, C, R and r .

PROOF. If z,w ∈ BR(0) with |z − w| ≤ cε and C̃(C) occurs, then∣∣hε1−r (z) − hε1−r (w)
∣∣ 1.

For t > 0, let Bt := he−t ε1−r (w) − hε1−r (w). By the calculations in [22], Section 3.1, B is a
standard linear Brownian motion. Therefore,

P
(∣∣hε(w) − hε1−r (w)

∣∣≥ a log ε−1 − C
)= P
(|Br log ε−1 | ≥ a log ε−1 − C

) ε
a2
2r .

We conclude by means of the triangle inequality. �

LEMMA 3.15. Let ρ > R > 0. Let h be either a zero-boundary GFF on Bρ(0) or a
whole-plane GFF and let (hε) be the circle average process for h. For r ∈ (0,1/2) and
ε ∈ (0,1), let Cε = Cε(R, r) be the event that the following is true. For each δ ∈ (0, ε] and
each z,w ∈ BR(0) with |z − w| ≤ 2δ, we have∣∣hδ(w) − hδ1−r (z)

∣∣≤ 3
√

10r log δ−1.

For each r ∈ (0,1/2), we have P(Cε) → 1 as ε → 0.

PROOF. Fix C > 1 and define the event C̃(C) = C̃(C,R, r) as in Lemma 3.13. By
Lemma 3.14, for each z,w ∈ BR(0) with |z − w| ≤ 6δ,

(30) P
(∣∣hδ(z) − hδ1−r (w)

∣∣≥ √
10r log δ−1, C̃(C)

) δ5

with the implicit constant depending only on C, R and r . Choose a finite collection Sδ of

at most Oδ(δ
− 2

1−r ) points in BR(0) such that for each z ∈ BR(0), there exists z′ ∈ Sδ with

|z − z′| ≤ δ
1

1−r . On C̃(C), for such a z and z′ we have∣∣hδ(z) − hδ

(
z′)∣∣≤ C,

∣∣hδ1−r (z) − hδ1−r

(
z′)∣∣≤ C.

By (30) and the union bound, on C̃(C) it holds except on an event of probability  δ (implicit
constant depending only on C, R and r) that∣∣hδ(z) − hδ1−r (w)

∣∣≤ √
10r log δ−1

whenever z,w ∈ Sδ with |z − w| ≤ 6δ. By the triangle inequality, whenever this is the case
and δ is sufficiently small (depending on r and C), we have

(31)
∣∣hδ(w) − hδ1−r (z)

∣∣≤ 2
√

10r log δ−1

whenever z,w ∈ BR(0) with |z−w| ≤ 2δ. For δ > 0, let C′
δ be the event that this last statement

holds, so that

(32) P
((
C′

δ

)c
, C̃(C)

) δ.
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Fix a sequence (ζn) decreasing to 0 such that

(33)

lim
n→∞

(ζn − ζn+1)
(1−r)/2

ζ
1/2
n+1

= lim
n→∞

(ζ 1−r
n − ζ 1−r

n+1 )(1−r)/2

ζ
(1−r)/2
n+1

= 0 and
∞∑

n=1

ζn < ∞,

for example, ζn = n−q for appropriate q > 1, depending on r . For ε ∈ (0,1), let nε be the
greatest integer n such that ζn ≥ ε1−r . By (32) and the union bound,

lim inf
ζ→0

P

(
C̃(C) ∩

∞⋂
n=nε

C′
ζn

)
= P
(
C̃(C)
)− oε(1).

Since P(C̃(C)) → 1 as C → ∞ (by Lemma 3.13), it suffices to show that for sufficiently
small ε > 0,

(34) C̃(C) ∩
∞⋂

n=nε

C′
ζn

⊂ Cε.

To see this, suppose given δ ∈ (0, ε] and each z,w ∈ BR(0) with |z − w| ≤ 2δ. Let nδ be
chosen so that δ ∈ [ζnδ+1, ζnδ ]. By our choice of (ζn), on C̃(C), we have∣∣hδ(w) − hζnδ

(w)
∣∣≤ Coε(1),

∣∣hδ1−r (z) − h
ζ 1−r
nδ

(z)
∣∣≤ Coε(1).

By (31) with ζnδ in place of δ, along with the triangle inequality, we obtain (34). �

PROPOSITION 3.16. Let ρ > R > 1. Suppose that either h is zero-boundary GFF on
Bρ(0) or a whole-plane GFF. Let (hε) be the circle average process for h and let μh be its
γ -quantum area measure. There is a function ψ : (0,∞) → (0,∞) with limr→0 ψ(r) = 0,
depending only on γ , such that the following holds. For r ∈ (0,1/2), and ε ∈ (0,1), let Gε =
Gε(R, r) be the event that the following is true. For each δ ∈ (0, ε] and each z,w ∈ BR(0)

with |z − w| ≤ δ, we have

μh

(
Bδ(w)

)≥ δ2+ γ 2

2 +ψ(r)eγ h
δ1−r (z).

Then P(Gε) → 1 as ε → 0.

PROOF. For C > 1, define the event C̃(C) = C̃(C,R, r) as in Lemma 3.13. Define the
event Cε = Cε(R, r) as in Lemma 3.15. Also fix a sequence ζn → 0 satisfying (33).

Fix p > 1. For n ∈ N, choose a finite collection Sn of at most On(ζ
−2p
n ) points in BR(0)

such that each point of BR(0) lies within distance ζ
p
n of some point in Sn. For ε ∈ (0,1), let

nε be the greatest integer n such that ζn ≥ ε1−r and let

Dε :=
∞⋂

n=nε

⋂
z∈Sn

{
μh

(
Bζn(z)

)≥ ζ
2+ γ 2

2 +r
n eγhζn(z)}.

By Lemma 3.12 and the union bound, we have P(Dε) → 1 as ε → 0.
Since

P
(
C̃(C) ∩ Cε ∩Dε

)→ 1

as ε → 0 and then C → ∞, it suffices to show that if p is sufficiently large and ε is sufficiently
small (depending on p), then

C̃(C) ∩ Cε ∩Dε ⊂ Gε
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for an appropriate choice of ψ(r) depending only on r and γ . To this end, suppose that
C̃(C) ∩ Cε ∩ Dε occurs and we are given δ ∈ (0, ε] and z,w ∈ AR with |z − w| ≤ δ. By
definition of C̃(C) and by (33), if p is chosen sufficiently large, depending only on r and the
choice of sequence (ζn), we can find nδ ∈N∩ [nε,∞) and w′ ∈ Snδ such that

δ/2 < ζnδ < δ,
∣∣w′ − w

∣∣≤ ζp
nδ

< δ − ζnδ and∣∣hδ1−r (z) − h
ζ 1−r
nδ

(z)
∣∣≤ Coε(1).

By the definitions of Cε and Dε , we therefore have

μh

(
Bδ(w)

)≥ μh

(
Bζnδ

(
w′))� δ2+ γ 2

2 +re
γ hζnδ

(w′) ≥ δ2+ γ 2

2 +r+5γ
√

10re
γ h

ζ
1−r
nδ

(z)

� δ2+ γ 2

2 +r+5γ
√

10reγ h
δ1−r (z),

with the implicit constants depending on C but tending to C-independent constants as ε → 0.
This proves the statement of the lemma in the case of a whole-plane GFF with ψ(r) slightly
larger than r + 5γ

√
10r . �

4. Intersection of the thick points of a GFF with a Borel set. Let h be a GFF on a
domain D ⊂ C and let (hε) be its circle average process. Recall that for α ≥ 0, a point z ∈ D

is called an α-thick points of h provided

lim
ε→0

hε(z)

log ε−1 = α.

Let T α
h be the set of α-thick points of h. Also let

T̂ α
h :=
{
z ∈C : lim inf

ε→0

hε(z)

log ε−1 ≥ α

}
.

Thick points are introduced and studied in [46].4 In particular, it is proven in [46], Theo-
rem 1.2, that a.s. dimH(T α

h ) = 2 − α2/2. In this section, we will adapt the proof of [46],
Theorem 1.2, to obtain a generalization of this fact which gives the a.s. dimension of the
intersection of T α

h with a general Borel set. The lower bound from this result will be needed
in the proof of the upper bound in Theorem 1.1.

THEOREM 4.1. Let D ⊂ C be a simply connected domain and let h be a zero-boundary
GFF on D. Also let A ⊂ D be a deterministic Borel set. If 0 ≤ α2/2 ≤ dimH A, then almost
surely

dimH
(
T α

h ∩ A
)= dimH

(
T̂ α

h ∩ A
)= dimH A − α2

2
.

If α2/2 > dimH A, then a.s. T α
h ∩ A = T̂ α

h ∩ A =∅.

By [12], Theorem B.2.5, for each d < dimH(A), there exists a closed set A′ ⊂ A with
dimH(A′) ≥ d . Hence we can assume without loss of generality that A is closed. We make
this assumption throughout the remainder of this section.

Before we commence with the proof of Theorem 4.1, we observe that dimH(T α
h ∩ A) and

dimH(T α
h ∩ A) are each a.s. equal to a constant.

4The authors of [46] use a different normalization of the GFF from the one used in this paper, so our α-thick

points are the same as their α2/2-thick points.
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LEMMA 4.2. Suppose we are in the setting of Theorem 4.1. There are deterministic
constants a, â ≥ 0 such that dimH(T α

h ∩ A) = a and dimH(T α
h ∩ A) = â a.s.

PROOF. Let {fj } be an orthonormal basis for the Hilbert space closure for the Dirichlet
inner product on the set of compactly supported smooth functions in D, with each fj smooth
and compactly supported. We can write h =∑∞

j=1 ajfj , where the aj ’s are i.i.d. standard
Gaussians. Permuting a finite number of coefficients in this series expansion does not affect
whether a given point is an α-thick point for h, nor does it affect the dimension of T α

h ∩ A or
T̂ α

h ∩ A. By the Hewitt–Savage zero-one law, we obtain the statement of the lemma. �

4.1. Upper bound. In this subsection, we will prove the upper bound in Theorem 4.1. It
is clear that T α

h ⊂ T̂ α
h , so we only need to prove an upper bound on the dimension of T̂ α

h ∩A.
To do this, we will need a couple of basic lemmas.

LEMMA 4.3. Suppose we are in the setting of Theorem 4.1. Fix α ∈ (0,2] and r > 0.
Almost surely, there exists a random ε = ε(α, r) > 0 such that the following is true. If we set

Aα,r :=
{
z ∈ A : hε(z)

log ε−1 ≥ α − r ∀ε ∈ (0, ε]
}

then dimH Aα,r ≥ dimH(T̂ α
h ∩ A) − r .

PROOF. We have

T̂ α
h ∩ A ⊂

∞⋃
n=1

{
z ∈ A : hε(z)

log ε−1 ≥ α − r ∀ε ∈ (0,1/n]
}

so the statement of the lemma follows from countable stability of Hausdorff dimension. �

LEMMA 4.4. Fix r ∈ (0,1/2), ρ > R > 0 and α > 0. Let h be a zero-boundary GFF on
Bρ(0). For ε ∈ (0,1) and z ∈ BR(0), let Eα,r

ε (z) be the event that there is a w ∈ Bε(z) such
that hε(w) ≥ (α − r) log ε−1. Also let Cε = Cε(R, r) be the event of Lemma 3.15. Then for
each ε̃ ≥ ε, we have

(35) P
(
Eα,r

ε (z) ∩ Cε̃

) ε
α2
2 +or (1),

with the implicit constant and the or(1) independent of ε and uniform for z ∈ BR(0).

PROOF. By definition of Cε̃ , if Eα,r
ε (z) ∩ Cε̃ occurs, then

hε1−r (z) ≥ (α − r − 3
√

10r) log ε−1.

Since hε1−r (z) is Gaussian with variance log ε−(1−r) +Oε(1), statement of the lemma follows
from the Gaussian tail bound. �

PROOF OF THEOREM 4.1, UPPER BOUND. By conformal invariance (see [46], Sec-
tion 4), we can assume without loss of generality that D = Bρ(0) for some ρ > 0. By
countable stability of Hausdorff dimension, we can assume without loss of generality that
A ⊂ BR(0) for some R ∈ (0, ρ). Fix r ∈ (0, α ∧ 1/2) and p ∈ (0,1). Let ε = ε(α, r) > 0
and Aα,r be as in Lemma 4.3. By the defining property of Aα,r , we can find a deterministic
ε0 ∈ (0,1) such that with probability at least 1 − p, we have ε ≥ ε0, in which case

(36) hε(z) ≥ (α − r) log ε−1 ∀ε ∈ (0, ε0] ∀z ∈ Aα,r .
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Let Fα,r be the event that (36) holds, so that P(Fα,r ) ≥ 1 − p.
By the definition of Hausdorff dimension, for each β > dimH A and each k ∈ N, we can

find a countable collection of balls {B
ε
j
k

(z
j
k )}j∈N of radius ε

j
k ≤ ε0 ∧ 2−k such that

A ⊂
∞⋃

j=1

B
ε
j
k

(
z
j
k

)
and

∞∑
j=1

(
ε
j
k

)β ≤ 2−k.

By the definition of Aα,r , if B
ε
j
k

(z
j
k ) ∩ Aα,r �= ∅ and the event Fα,r of (36) occurs, then the

event E
α,r

ε
j
k

(z
j
k ) of Lemma 4.4 occurs.

By Lemma 4.4, for each ξ > 0,

(37) E

(
1C2−k ∩Fα,r

∞∑
j=1

(
ε
j
k

)ξ1
(B

ε
j
k

(z
j
k )∩Aα,r �=∅)

)
≤

∞∑
j=1

(
ε
j
k

)ξ+α2/2+or (1)

with C2−k = C2−k (R, r) as in Lemma 3.15. If ξ > β − α2/2, then for sufficiently small r , this
sum is ≤ 2−k . Since P(C2−k ) → 1 as k → ∞, if Fα,r occurs then it is a.s. the case that for
infinitely many k, we have

∞∑
j=1

(
ε
j
k

)ξ1
(B

ε
j
k

(z
j
k )∩Aα,r �=∅)

≤ 2−k/2.

Therefore, dimH Aα,r ≤ β − α2/2 a.s. on Fα,r . Since p can be made arbitrarily close to 0,
a.s.

dimH
(
T̂ α

h ∩ A
)≤ dimH Aα,r + r ≤ β − α2/2 + r.

Upon letting β → dimH A and r → 0 we get dimH(T̂ α
h ∩ A) ≤ dimH(A) − α2/2. If

dimH(A) − α2/2 < 0, then for β sufficiently close to dimH(A) and r sufficiently small,
the sum (37) is ≤ 2−k/2 when ξ = 0. Hence it is a.s. the case that on Fα,r , it holds for arbi-
trarily large k that none of the balls B

ε
j
k

(z
j
k ) intersect Aα,r . Therefore, Aα,r = ∅ a.s., so by

Lemma 4.3 we have T̂ α
h ∩ A = ∅ a.s. �

4.2. Lower bound. In this subsection, we will prove the lower bound in Theorem 4.1.
It suffices to prove the lower bound for dimH(T α

h ∩ A). By considering the intersection
of A with a dyadic square and rescaling, we can assume without loss of generality that
A ⊂ [0,1]2 ⊂ D. We make this assumption in addition to the assumption that A is closed
throughout the remainder of this section.

Fix α > 0. We make the following definitions (as in [46], Section 3.2). For n ∈ N, let
εn := 1/n! and tn := logn!. Define the following events for each ε > 0, z ∈ D and n, j ∈ N:

Ez,j :=
{

sup
ε∈[εj+1,εj ]

∣∣hε(z) − hεj
(z) − α

(
log ε−1 − log ε−1

j

)∣∣,
≤
√

log ε−1
j+1 − log ε−1

j

}
,

(38)

Fz,j := {∣∣hε(z) − hεj
(z)
∣∣≤ log ε−1 − log ε−1

j + 1 ∀ε ≤ εj

}
,(39)

En(z) := Fz,n+1 ∩
n⋂

j=1

Ez,j .(40)

For n ∈ N, divide [0,1]2 into ε−2
n squares of side length εn, which intersect only along

their boundaries. Let D̃n be the set of points in [0,1]2 which are centers of these squares and



562 E. GWYNNE, N. HOLDEN AND J. MILLER

for z ∈ D̃n, let Sn(z) be the square of side length εn centered at z. Let Dn be the set of z ∈ D̃n

such that Sn(z) ∩ A �= ∅ and let D∗
n be the set of those z ∈ Dn for which En(z) occurs. We

define the α-perfect-points by

(41) Pα = Pα(h,A) :=⋂
k≥1

⋃
n≥k

⋃
z∈D∗

n

Sn(z).

It is shown in [46], Lemma 3.2, that Pα ⊂ T α
h a.s. Since we have assumed that A is closed,

we a.s. have

(42) Pα ⊂ T α
h ∩ A.

We next need estimates for the probabilities of the events En(z).

LEMMA 4.5. For z ∈ D̃n and n ∈ N, we have

P
(
En(z)

)≥ εα2/2+on(1)
n

with the on(1) uniform for z ∈ D̃n.

PROOF. Since t �→ he−t (z) evolves as a standard linear Brownian motion, [46], Lemma
A.3, applied with T = log ε−1

j+1 − log ε−1
j implies that for each z ∈ D̃n and j ∈ N, we have

P(Ez,j ) ≥ (εj+1/εj )
α2/2+oj (1).

Furthermore, we have P(Fj (z)) � 1. By the Markov property,

P
(
En(z)

)= P
(
Fn+1(z)

) n∏
j=1

P(Ez,j ) ≥ ε
α2/2+on(1)
n+1 = εα2/2+on(1)

n .
�

The following is a restatement of [46], Lemma 3.3.

LEMMA 4.6. There is a constant C > 0 depending only on D and α such that the fol-
lowing is true. For each l ∈ N, each z,w ∈ [0,1]2 with w ∈ Sl(z) \ Sl+1(z), and each n ≥ l,

P
(
En(z) ∩ En(w)

)≤ Clβ
−α2/2
l ε

−α2/2
l P

(
En(z)

)
P
(
En(w)

)
,

where

βl =
l∏

k=1

e
1
2
√

log k.

REMARK 4.7. In the setting of Lemma 4.6, we have εl = |z − w|1+o|z−w|(1) and βl =
|z − w|o|z−w|(1), so the estimate of Lemma 4.6 can be restated as

P(En(z) ∩ En(w))

P(En(z))P(En(w))
≤ |z − w|−α2/2+o|z−w|(1)

with the o|z−w|(1) depending only on z and w.

PROOF OF THEOREM 4.1, LOWER BOUND. Fix d ∈ (0,dimH(A)). By Frostman’s
lemma [75], Theorem 4.30, there exists a Borel probability measure μ on A such that

(43)
∫
A

∫
A

1

|x − y|d dμ(x) dμ(y) < ∞.
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We extend μ to C by setting μ(B) = μ(B ∩ A) for each Borel set B ⊂ C. From (43), we
obtain that for any a, b ≥ 0 with a + b ≤ d ,∫

A

∫
A

1

|x − y|d dμ(x) dμ(y)

= ∑
z �=w∈Dn

∫
Sn(z)

∫
Sn(w)

1

|x − y|d dμ(x) dμ(y)

+ ∑
z∈Dn

∫
Sn(z)

∫
Sn(z)

1

|x − y|d dμ(x) dμ(y)

� ∑
z �=w∈Dn

|z − w|−a
∫
Sn(z)

∫
Sn(w)

1

|x − y|b dμ(x) dμ(y)

+ ∑
z∈Dn

ε−a
n

∫
Sn(z)

∫
Sn(z)

1

|x − y|b dμ(x) dμ(y).

Hence for any such a and b,∑
z �=w∈Dn

|z − w|−a
∫
Sn(z)

∫
Sn(w)

1

|x − y|b dμ(x) dμ(y)

+ ∑
z∈Dn

ε−a
n

∫
Sn(z)

∫
Sn(z)

1

|x − y|b dμ(x) dμ(y)  1.

(44)

For n ∈ N, define a measure νn on A by

dνn(x) = ∑
z∈Dn

1En(z)1Sn(z)(x)

P(En(z))
dμ(x).

Observe that

E
(
νn(A)

)= ∑
z∈Dn

μ
(
Sn(z)
)= μ(A) = 1.

By Lemmas 4.5 and 4.6,

E
(
νn(A)2)= ∑

z �=w∈Dn

P(En(z) ∩ En(w))

P(En(z))P(En(w))
μ
(
Sn(z)
)
μ
(
Sn(w)

)+ ∑
z∈Dn

μ(Sn(z))
2

P(En(z))

 ∑
z �=w∈Dn

μ(Sn(z))μ(Sn(w))

|z − w|α2/2+o|z−w|(1)
+ ∑

z∈Dn

μ(Sn(z))
2

ε
α2/2+on(1)
n

.

By (44) applied with b = 0, this is bounded above by an n-independent constant provided
d − α2/2 > 0.

Similarly, for b > 0 we have

E
(∫

A

∫
A

1

|x − y|b dνn(x) dνn(y)

)

= ∑
z �=w∈Dn

P(En(z) ∩ En(w))

P(En(z))P(En(w))

∫
Sn(z)

∫
Sn(w)

1

|x − y|b dμ(x) dμ(y)

+ ∑
z∈Dn

1

P(En(z))

∫
Sn(z)

∫
Sn(z)

1

|x − y|b dμ(x) dμ(y)
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 ∑
z �=w∈Dn

|z − w|−α2/2+o|z−w|(1)
∫
Sn(z)

∫
Sn(w)

1

|x − y|b dμ(x) dμ(y)

+ ∑
z∈Dn

ε−α2/2+on(1)
n

∫
Sn(z)

∫
Sn(z)

1

|x − y|b dνn(x) dνn(y).

By (44), this is bounded above by an n-independent constant provided b < d − α2/2. It
follows from the usual argument (see the proof of [46], Lemma 3.4) that for such a b, it holds
with positive probability that we can find a weak subsequential limit ν of the measures νn

such that ν is supported on Pα , ν(Pα) > 0 and∫
Pα

∫
Pα

1

|x − y|b dν(x) dν(y) < ∞.

By (42) and [75], Theorem 4.27, it holds with positive probability that dimH(A ∩ T α
h ) ≥

b. By Lemma 4.2, this probability is in fact equal to 1 for each b < d − α2/2. Therefore,
dimH(A ∩ T α

h ) ≥ d − α2/2. �

5. Proof of Theorem 1.1.

5.1. Upper bound. In this subsection, we will prove the upper bound in Theorem 1.1.

PROOF OF THEOREM 1.1, UPPER BOUND. We start with some reductions. By the count-
ably stability of Hausdorff dimension, we can assume without loss of generality that a.s.
X ⊂ BR(0) \ B1/R(0) for some deterministic R > 0. By Lemma 3.10, we can couple h

with a whole-plane GFF h̃ normalized so that its circle average over ∂D is 0 in such a
way that the γ -quantum area measures μh and μh̃ are a.s. mutually absolutely continu-
ous on BR(0) \ B1/R(0), with Radon–Nikodym derivative bounded above and below by
(random) positive constants. In such a coupling, it holds that for each interval I ⊂ R with
η′(I ) ⊂ BR(0) \ B1/R(0) that |I | � μh̃(η

′(I )) with random but I -independent implicit con-
stants. In particular, dimH(η′)−1(X) is unchanged if we parameterize η′ by μh̃ instead of
μh. Hence we can assume that h is a whole-plane GFF normalized so that its circle average
over ∂D is 0, instead of the circle average embedding of a γ -quantum cone. We make this
assumption throughout the remainder of the proof.

Let α ∈ (0,2] and r ∈ (0,1/2). By [65], Proposition 3.2, the law of the restriction of h to
BR(0) is absolutely continuous with respect to the law of the corresponding restriction of a
zero-boundary GFF h0 on B2R(0), minus a random constant C equal to the circle average of
h0 over ∂D. Since the set X is independent from h + C, it follows from Theorem 4.1 and
Lemma 4.3 that we can find a random set Xα,r ⊂ X and a random ε > 0 such that a.s.

(45) dimH Xα,r ≥ dimH X − α2

2
− r

and a.s.

hε(z) + C ≥ (α − r) log ε−1 ∀ε ∈ (0, ε] ∀z ∈ Xα,r .

By decreasing ε, we can arrange that in fact

(46) hε(z) ≥ (α − r) log ε−1 ∀ε ∈ (0, ε] ∀z ∈ Xα,r .

Now let X̂ ⊂ R be as in the theorem statement for our given choice of X. We will prove
an upper bound for dimH(Xα,r ) in terms of dimH(X̂). Let

X̂α,r := (η′)−1(
Xα,r)∩ X̂.
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For ε > 0, let Eε = Eε(R, r) and Gε = Gε(R, r) be defined as in Propositions 3.4 and 3.16,
respectively. Also let

Sε :=
{

sup
z∈BR(0)

h1(z) ≤
√

log ε−1
}
.

Note that P(Eε ∩ Gε ∩ Sε) → 1 as ε → 0.
By the definition of Hausdorff dimension, for each ζ > 0, we can find a countable collec-

tion Iζ of intervals of length at most ζ , each of which contains a point of X̂α,r , such that

(47) X̂α,r ⊂ ⋃
I∈Iζ

I and
∑
I∈Iζ

diam(I )dimH(X̂)+r ≤ ζ.

We claim that on Eε ∩ Gε ∩ Sε , there a.s. exists a random ζ0 > 0 such that for each ζ ∈
(0, ζ0] and each choice of X̂ ⊂R and cover Iζ as above that

(48) diamη′(I ) ≤ diam(I )(2+γ 2/2−γα)−1+or (1) ∀I ∈ Iζ ,

with the or(1) deterministic and independent of I . Indeed, let ε be as in (46) and set ζ0 =
ε ∧ ε3. Suppose Eε ∩ Gε ∩ Sε occurs, ζ ∈ (0, ζ0], X̂ and Iζ are as above, and I ∈ Iζ . Let
δI := diamη′(I ) ∧ ε2. By definition of Eε , we can find z ∈ Xα,r and w ∈ η′(I ) ∩ BδI

(z) such
that B

δ

1
1−r
I

(w) ⊂ η′(I ). By definition of Gε , we have

μh

(
η′(I )
)≥ δ

2+ γ 2

2 +or (1)

I eγ hδI
(z).

Since z ∈ Xα,r , (46) and (48) imply that if ζ ≤ ζ0, then eγhδI
(z) ≥ δ

−γα+γ r
I . Hence for such a

ζ , we have

μh

(
η′(I )
)≥ δ

2+ γ 2

2 −γα+or (1)

I .

Since η′ is parameterized by quantum mass, we infer that

diam(I ) ≥ δ
2+ γ 2

2 −γα+or (1)

I .

Since diam(I ) ≤ ζ 1/2, this implies (48).
By (47), {η′(I ) : I ∈ Iζ } is a cover of Xα,r . Moreover, if we are given r ′ > 0 and we choose

r > 0 sufficiently small, depending only on r ′, then for ζ ∈ (0, ζ0] we have by (47) and (48)
that ∑

I∈Iζ

(
diamη′(I )

)(dimH(X̂)+r ′)(2+ γ 2

2 −γα) ≤ ζ.

Hence for such a choice of r , whenever Eε ∩ Gε ∩ Sε occurs it holds for every choice of X̂ as
in the theorem statement that

dimH
(
Xα,r)≤ (dimH(X̂) + r ′)(2 + γ 2

2
− γα

)
.

By letting ε → 0, we infer that this relation holds a.s. for every choice of X̂ simultaneously.
By (45), it is a.s. the case that for each choice of X̂ as in the theorem statement, we have

dimH(X) ≤ (dimH(X̂) + r ′)(2 + γ 2

2
− γα

)
+ α2

2
+ r.

The right side is minimized when r = r ′ = 0 by taking α = γ dimH(X̂). Since r is arbitrary
and r ′ can be made as small as we like by shrinking r , this yields the upper bound in (4). �



566 E. GWYNNE, N. HOLDEN AND J. MILLER

5.2. Lower bound. We will prove the lower bound in Theorem 1.1 by covering X with
balls B of radius εB , such that

∑
B εd

B is small for some d > dimH(X). We obtain a cover
of the time set X̂ by considering the preimages of these balls under η′. The length of the
intervals covering X̂ is estimated by considering the quantum mass of the balls in our cover
via the circle average process, and by bounding the number of time intervals corresponding
to each ball in the cover of X. The proof also relies on Proposition 3.4, Lemma 3.11 and [79],
Theorem 2.11.

LEMMA 5.1. For each R > 1, r ∈ (0,1), z ∈ BR(0), ε̃ > 0 and ε > 0, the ball Bε1−r (z)

can be written as a union of sets of the form η′(I ) which intersect only along their bound-
aries, where I is an interval that is not contained in any larger interval I ′ satisfying
η′(I ′) ⊂ Bε1−r (z). On the event Eε̃1−r = Eε̃1−r (r,R) of Proposition 3.4, the number of such
sets that intersect Bε(z), is bounded above by ε−3r for all sufficiently small ε, that is, for
ε < ε(r, ε̃).

PROOF. On Eε̃1−r , every time interval I of the form above with η′(I ) ∩ Bε(z) �= ∅ and

ε > 0 sufficiently small satisfies Area(η′(I )) ≥ (ε1−r − ε)
2

1−r = ε2+or (1). Since η′(I ) ⊂
Bε1−r (z) and Bε1−r (z) has area ε2−2r = ε2+or (1), the lemma follows. The exact exponent
−3r is obtained by dividing the area of Bε1−r (z), by the bound for the area of η′(I ). �

LEMMA 5.2. Let h be a whole-plane GFF normalized such that h1(0) = 0, and let R > 0
and z ∈ BR(0). For 0 ≤ β < 4

γ 2 and ε ∈ (0,1), we have

E
[
μh

(
Bε(z)

)β]≤ εf (β)+oε(1),

where f (β) = (2 + γ 2

2 )β − γ 2

2 β2 and the oε(1) depends on α, β and R, but not on z.

PROOF. Defining φε
z (w) = εw + z, we have h ◦ φε

z = ḣ + h, for ḣ a zero-boundary GFF
in B2(0) and h harmonic in B2(0) and independent of ḣ. As explained after (24) the average
of h around ∂B2(0) is equal to the circle average h2ε(z). By the coordinate change formula
for quantum surfaces, we have

E
(
μh

(
Bε(z)

)β)
= ε(2+γ 2/2)βE

(
μḣ+h

(
B1(0)

)β)
≤ ε(2+γ 2/2)βE

(
eγβh2ε(z) × μḣ

(
B1(0)

)β × sup
w∈B1(0)

eγβ(h(w)−h2ε(z))
)
.

Let r > 0, and define the event Ar,ε by

Ar,ε =
{

sup
w∈B1(0)

eγ (h(w)−h2ε(z)) > ε−r
}

By Lemma 3.11, we have P(Ar,ε) = o∞
ε (ε). Since h2ε(z) is Gaussian with variance at most

(1 + oε(1)) log ε−1, for each β̃ > 0 we have

(49) E
(
eβ̃h2ε(z)

)= ε− 1
2 β̃2+oε(1).
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By [79], Theorem 2.11, μḣ(B1(0)) has finite moments of all orders < 4/γ 2. Choose pj > 1,
j = 1,2,3,4, such that βp2 < 4

γ 2 and
∑4

j=1 p−1
j = 1. By Hölder’s inequality,

E
(
eγβh2ε(z) × μḣ

(
B1(0)

)β × sup
w∈B1(0)

eγβ(h(w)−h2ε(z))1Ar,ε

)
≤ E
(
eγβp1h2ε(z)

)p−1
1 ×E

(
μḣ

(
B1(0)

)βp2
)p−1

2

×E
(

sup
w∈B1

eγβp3(h(w)−h2ε(z))
)p−1

3 × P(Ar,ε)
p−1

4

≤ ε− 1
2 γ 2β2p1+oε(1)P(Ar,ε)

p−1
4

= o∞
ε (ε),

which implies

E
(
μh

(
Bε(z)

)β)≤ ε(2+γ 2/2−r)βE
(
εγβh2ε(z)μḣ

(
B1(0)

)β)+ o∞
ε (ε)

= ε(2+γ 2/2−r)β− 1
2 γ 2β2+oε(1)

by independence of ḣ and h2ε . �

We are now ready to prove the lower bound of our main theorem.

PROOF OF THEOREM 1.1, LOWER BOUND. As in the proof of the upper bound in Sec-
tion 5.1, we can assume without loss of generality that X ⊂ BR(0) \ B1/R(0) for some fixed
R > 0 and we can replace h with a whole-plane GFF normalized so that its circle average
over ∂D is 0.

If dimH(X) = 2, the lower bound clearly holds, so we assume dimH(X) < 2. Let β0 ∈
[0, 4

γ 2 ) be the (random) solution of dimH(X) = f (β0), and let β ∈ (β0,
4
γ 2 ). Then choose

some d ∈ (dimH(X), f (β)), and some r > 0 satisfying

(50) d < −3r + (1 − r)f (β).

Then choose a sequence {δn}n∈N, such that δn ∈ (0,1) for each n and
∑∞

n=1 δr
n < ∞. Since

d > dimH(X), we can find, for each n ∈N, a random collection of balls Bn, measurable with
respect to σ(X) and covering X, such that∑

B∈Bn

εd
B < δn,

where εB denotes the radius of B . For any B ∈ Bn, let I(B) denote the set of intervals
I as defined in Lemma 5.1, such that η′(I ) intersects B , and let B ′ be the ball of radius
ε1−r
B centered at the same point as B . Let ε̃ > 0, and assume without loss of generality that

εB < ε(r, ε̃) for all B ∈ Bn and n ∈ N as defined in Lemma 5.1. Define the random variable
Zn by

Zn = 1E
ε̃1−r

∑
B∈Bn

∑
I∈I(B)

|I |β,

where Eε̃1−r = Eε̃1−r (r,R) is the event of Proposition 3.4. By using
∑

I∈I(B) |I | ≤ μ(B ′) and

|I(B)| < ε−3r
B , we have

Zn ≤ 1E
ε̃1−r

∑
B∈Bn

ε−3r
B μ
(
B ′)β.
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It follows from Lemma 5.2 and (50) that for all sufficiently large n,

E(Zn|X) ≤ ∑
B∈Bn

ε
−3r+(1−r)f (β)+on(1)
B ≤ ∑

B∈Bn

εd
B < δn.

By Chebyshev’s inequality, P(Zn > δ1−r
n ) ≤ δr

n, so by the Borel–Cantelli lemma the event
{Zn > δ1−r

n } happens at most finitely often almost surely. It follows that Zn → 0 almost
surely, and by letting ε̃ → 0 and using Proposition 3.4, a.s.

lim
n→∞

∑
B∈Bn

∑
I∈I(B)

|I |β = 0.

This completes the proof, since
⋃

B∈Bn,I∈I(B) I is a cover of any set X̂ as in the theorem
statement. �

6. Open questions. In this section, we will list some open problems relating to the re-
sults of this paper.

1. Let Z be a correlated Brownian motion as in (3), run for positive time, and let X̂ be
the set of times t ≥ 0 which are not contained in any left cone interval for Z. The Hausdorff
dimension of X̂ is computed in a very indirect manner in Example 2.8. Can one obtain this
dimension directly? If so, one would obtain a new proof of the dimension of the gasket of
CLEκ ′ for κ ′ ∈ (4,8).

2. Let κ ′ ∈ (4,8) and let � be a CLEκ ′ in a simply connected domain D ⊂ C. We define
the thin gasket of � is to be the set T of points in D which are not disconnected from ∂D by
any loop in �. Equivalently, T is the closure of the union of the outermost outer boundaries
of the CLE loops, where the outer boundary of a loop � is the boundary of the set of points
disconnected from ∂D by �. The thin gasket differs from the ordinary gasket of [71, 85] in
that the ordinary gasket includes points which are disconnected from ∂D by some loop in
� but which are not actually surrounded by this loop. What is the a.s. Hausdorff dimension
of T ?

One can make a reasonable guess as to what this dimension should be, as follows. Suppose
we take as our ansatz that the quantum scaling exponent � of T in the KPZ formula is a linear
function of κ ′. This assumption seems reasonable, as it is satisfied with T replaced by the
ordinary gasket, the SLEκ ′ or SLE16/κ ′ curve, and the double and cut points of SLE. By
SLE duality, as κ ′ → 8, the outer boundaries of CLE loops start to look like SLE2 curves.
Therefore, we should expect dimH T → 5/4 as κ ′ → 8. On the other hand, as κ ′ → 4, the
thin gasket starts to look like the ordinary gasket, so by the results of [76, 85], we should
expect dimH T → 15/8 as κ ′ → 4. These guesses lead to the prediction that � = κ ′

16 which,
in turn, by the KPZ formula this yields the prediction 5

32(16 − κ ′) for the dimension.
In the peanosphere setting, consider the restriction of the whole-plane CLEκ ′ associated

with the curve η′ to some bubble U disconnected from ∞ by η′. This restriction has the law
of a CLEκ ′ in U and its thin gasket can be described by an explicit (but rather complicated)
functional of the Brownian motion Z = (L,R). Such a description is implicit in [35] since
this paper describes the set of points disconnected from ∂U by each CLEκ ′ loop in U . One
could obtain dimH T by computing the Hausdorff dimension of this Brownian motion set
and applying Theorem 1.1. Alternatively, one could attempt to make rigorous an argument of
the sort given in [20], Appendix B. As a third possibility, one could take a direct approach,
possibly using imaginary geometry [62, 65, 66, 68] to regularize the events in the two-point
estimate as in [39, 73].
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3. Can one describe various multifractal quantities associated with the SLEκ curve in
terms of the Brownian motion Z = (L,R) in the peanosphere construction of [20], such as
the multifractal spectrum [15, 39], the winding spectrum [17, 18], various notions of higher
multifractal spectra [16], the multifractal spectrum at the tip [49], the optimal Hölder expo-
nent [48, 58] or the integral means spectrum [6, 39]? If so, can these quantities be computed
using Theorem 1.1 or some variant thereof?
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SUPPLEMENTARY MATERIAL

The Hausdorff dimension of multiple-points of space-filling SLE (DOI: 10.1214/19-
AOP1385SUPP; .pdf). For m ≥ 3 and κ ′ ∈ (4,8), we determine the Hausdorff dimension of
the m-tuple points of space-filling SLEκ ′ .
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