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Kinetically constrained models (KCM) are a class of interacting particle
systems which represent a natural stochastic (and nonmonotone) counterpart
of the family of cellular automata known as U -bootstrap percolation. A key
issue for KCM is to identify the divergence of the characteristic time scales
when the equilibrium density of empty sites, q, goes to zero. In (Ann. Probab.
47 (2019) 324–361; Comm. Math. Phys. 369 (2019) 761–809), a general
scheme was devised to determine a sharp upper bound for these time scales.
Our paper is devoted to developing a (very different) technique which allows
to prove matching lower bounds. We analyse the class of two-dimensional
supercritical rooted KCM and the Duarte KCM. We prove that the relaxation
time and the mean infection time diverge for supercritical rooted KCM as

e�((logq)2) and for Duarte KCM as e�((logq)4/q2) when q ↓ 0. These re-
sults prove the conjectures put forward in (European J. Combin. 66 (2017)
250–263; Comm. Math. Phys. 369 (2019) 761–809) for these models, and es-
tablish that the time scales for these KCM diverge much faster than for the
corresponding U -bootstrap processes, the main reason being the occurrence
of energy barriers which determine the dominant behaviour for KCM, but
which do not matter for the bootstrap dynamics.

1. Introduction. Kinetically constrained models (KCM) are interacting particle systems
on the integer lattice Zd , which were introduced in the physics literature in the 1980s in
order to model the liquid-glass transition (see, e.g., [14, 24] for reviews), a major and still
largely open problem in condensed matter physics [4]. A generic KCM is a continuous time
Markov process of Glauber type characterised by a finite collection of finite subsets of Zd \
{0}, U = {X1, . . . ,Xm}, its update family. A configuration ω is defined by assigning to each
site x ∈ Zd an occupation variable ωx ∈ {0,1}, corresponding to an empty or occupied site,
respectively. Each site x ∈ Zd waits an independent, mean one, exponential time and then,
iff there exists X ∈ U such that ωy = 0 for all y ∈X + x, site x is updated to occupied with
probability p and to empty with probability q = 1− p. Since each update set Xi belongs to
Zd \{0}, the constraints never depend on the state of the to-be-updated site. As a consequence,
the dynamics satisfies detailed balance w.r.t. the product Bernoulli(p) measure, μ, which is
therefore a reversible invariant measure. Hence, the process started at μ is stationary.

Both from a physical and from a mathematical point of view, a central issue for KCM
is to determine the speed of divergence of the characteristic time scales when q ↓ 0. Two
key quantities are: (i) the relaxation time Trel, that is, the inverse of the spectral gap of the
Markov generator and (ii) the mean infection time Eμ(τ0), that is, the mean over the stationary
process of the first time at which the origin becomes empty. The study of the infection time
has been largely addressed for the U -bootstrap percolation [3, 5, 7], a class of discrete cellular
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automata that can be viewed as the monotone deterministic counterpart of KCM. For the U -
bootstrap, given a set of “infected” sites At ⊂ Zd at time t , infected sites remain infected and
a site x becomes infected at time t + 1 if the translate by x of one of the update sets in U
belongs to At . Thus, if infected (noninfected) sites are regarded as empty (resp., occupied)
sites, the constraint that has to be satisfied to infect a site for the U -bootstrap is the same that
is required to update the occupation variable for the KCM.

In [19], two of the authors together with R. Morris addressed the problem of identifying
the divergence of time scales for two-dimensional KCM. The first goal of [19] was to identify
the correct universality classes, which turn out to be different from those of U -bootstrap per-
colation. Then, building on a strategy developed in [20] by two of the authors, universal upper
bounds on the relaxation and mean infection time within each class were proven and were
conjectured to be sharp up to logarithmic corrections [19]. On the other hand, concerning
lower bounds, so far the best general result is

(1.1) Trel ≥ qEμ(τ0)=�(T )

where T denotes the median infection time for the U -bootstrap process started with distribu-
tion μ (i.e., sites are initially infected independently with probability q); see [20], Lemma 4.3.
However, this lower bound is in general far from optimal. Consider, for example, the one-
dimensional East model [15] (and [13] for a review) for which a site can be updated iff its
left neighbour is empty, namely U = {{−�e1}}. As q ↓ 0, it holds

(1.2) EEast
μ (τ0)= e�((logq)2)

and the scaling holds for Trel; see [1, 8, 9] where the sharp value of the constant has been
determined. This divergence is much faster than for the corresponding U -bootstrap model,
for which it holds T = �(1/q). To understand this difference, it is necessary to recall a
key combinatorial result [25], [11], Fact 1: in order to empty the origin, the East process
has to go through a configuration with �log2(� + 1)� simultaneous empty sites in (−�,0],
where −� is the position of the rightmost empty site on (−∞,0]. This logarithmic “energy
barrier” (to employ the physics jargon) and the fact that at equilibrium typically � ∼ 1/q

yield a divergence of the time scale as q�(logq) = e�((logq)2). In turn, this peculiar scaling
is the reason why the East model has been extensively studied by physicists (see [16] and
references therein). Indeed, if we set q := e−β with β the inverse temperature, we get the so-
called super-Arrhenius divergence e(�(β2)) which provides a very good fit of the experimental
curves for fragile supercooled liquids near the glass transition [4].

In [21], together with R. Morris, we conjectured that one of the universality classes of two-
dimensional KCM, that we call supercritical rooted models, features time scales diverging as
for the East model. Our first main result (Theorem 4.2) is to establish a lower bound which
allows together with the upper bound in [19], Theorem 1 to prove this conjecture,1 namely
we prove

EU
μ(τ0)= e�((logq)2) ∀U in the supercritical rooted class

and the same result for Trel. As for the East model, this divergence is much faster than for the
corresponding U -bootstrap process which scales as T = 1/q�(1) [7]. A key input for our The-
orem 4.2 is a combinatorial result proved by one of the authors in [18] (see also Lemma 4.5

1Actually, the conjecture in [21] states that τ0 = e�((logq)2) w.h.p. when q → 0. As explained in Remark 4.6,
we can also prove this stronger result.
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in this paper) which considerably generalises to a higher dimensional and nonoriented setting
the above recalled combinatorial result for East.2

The U -bootstrap results identify another universality class, the so-called critical update
families, which display a much faster divergence. In particular, in [5] it was proven that for
this class it holds T = e(�(log)c/qα) with α a model dependent positive integer and c = 0
or c = 2. In [19], together with R. Morris, we analysed KCM with critical update families

and we put forward the conjecture that both Trel and Eμ(τ0) diverge as e�((log)c
′
/qν) with

ν model dependent and in general different from the exponent α of the corresponding U -
bootstrap process. In [19], we develop a technique to establish sharp upper bounds for these
time scales. A matching lower bound exists only for the special class of models for which
the general lower bound (1.1) is sharp, which include, for example, the 2-neighbour model.
Here, we focus on the most studied update family which does not belong to this special case,
the Duarte update family, which consists of all the 2-subsets of the North, South and West
neighbours of the origin [12]. Our second main result is a sharp lower bound on the infection
and relaxation time for the Duarte KCM (Theorem 5.1) that, together with the upper bound
in [19], Theorem 2, establishes the scaling

EDuarte
μ (τ0)= e�((logq)4/q2)

as q ↓ 0, and the same result holds for Trel. Notice that we identify also the exact power
in the logarithmic correction. Finally, notice that the divergence is again much faster than
for the corresponding U -bootstrap model. Indeed, the median of the infection time for the
U -bootstrap Duarte model diverges as T = e�((logq)2/q) when q ↓ 0 [22].

Both for Duarte and for supercritical rooted models, the sharper divergence of time scales
for KCM is due to the fact that the infection time is not well approximated by the minimal
number of updates needed to infect the origin (as it is for bootstrap percolation), but it is
instead the result of a much more complex infection/healing mechanism. In particular, vis-
iting regions of the configuration space with an anomalous amount of infection is heavily
penalised and requires a very long time to actually take place.3 The basic underlying idea is
that the dominant relaxation mechanism is an East-like dynamics for large droplets of empty
sites. For supercritical rooted models, these droplets have a finite (model dependent) size,
hence an equilibrium density qeff = q�(1). For the Duarte model droplets have a size that
diverges as �= | logq|

q
, and thus an equilibrium density qeff = q� = e−(logq)2/q . Then a (very)

rough understanding of our results is obtained by replacing q with qeff in the result for the
East model (1.2). One of the key technical difficulties to translate this intuition into a lower
bound is that the droplets cannot be identified with a rigid structure, at variance with the East
model where the droplets are single empty sites.

2. Models and notation.

2.1. Notation. For the reader’s convenience, we gather here some of the notation that we
use throughout the paper. We will work on the probability space (�,μ), where �= {0,1}Z2

and μ is the product Bernoulli(p) measure, and we will be interested in the asymptotic regime
q ↓ 0, where q = 1− p. Given ω ∈ � and 
 ⊂ Z2, we will often write ω
 or ω �
 for the
collection {ωx}x∈
 and we shall write ω
 ≡ 0 to indicate that ωx = 0 ∀x ∈
. In this case,

2The result in [18] holds also in d > 2 on a properly defined class, that is, all models which are not supercritical
unrooted (see [18] for the precise definition). Our argument immediately extends to this higher dimensional setting
yielding the same lower bound as in Theorem 4.2 for Trel and Eμ(τ0).

3Borrowing again from physics jargon, we could say that “crossing the energy barriers” is heavily penalised.
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we shall also say that 
 is empty or infected. Similarly, for ω
 ≡ 1 and in this case 
 will
be said to be occupied or healthy. We shall write Y(ω) for the set {x ∈ Z2 : ωx = 0} and we
shall say that f : � �→R is a local function if it depends on finitely many variables {ωx}x∈Z2 .
Given a site x ∈ Z2 of the form x = (a, b) with a, b ∈ Z, we shall sometimes refer to b as the
height of x. We shall also refer to a set I ⊂ Z2 of the form I = {x, x+ �ei, . . . , x+ (n− 1)�ei},
x ∈ Z2, as a (horizontal or vertical) interval of length n ∈N∗. Here, �e1, �e2 denote as usual the
basis vectors in R2. Finally, we will use the standard notation [n] for the set {1, . . . , n}.

Throughout this paper, we will often make use of standard asymptotic notation. If f and g

are positive real-valued functions of q ∈ (0,1), then we will write f =O(g) if there exists a
constant C > 0 such that f (q)≤ Cg(q) for every sufficiently small q > 0. We will also write
f =�(g) if g =O(f ) and f =�(g) if f =O(g) and g =O(f ). All constants, including
those implied by the notation O(·), �(·) and �(·), will be such w.r.t. the parameter q .

2.2. Models. Fix an update family U = {X1, . . . ,Xm}, that is, a finite collection of fi-
nite subsets of Z2 \ {0}. Then the KCM with update family U is the Markov process on �

associated to the Markov generator

(2.1) (Lf )(ω)= ∑
x∈Z2

cx(ω)
(
μx(f )− f

)
(ω),

where f : � �→ R is a local function, μx(f ) denotes the average of f w.r.t. the variable ωx ,
and cx is the indicator function of the event that there exists X ∈ U such that X+x is infected,
that is, ωX+x ≡ 0. In the sequel, we will sometimes say that ω satisfies the update rule at x if
cx(ω)= 1.

Informally, this process can be described as follows. Each vertex x ∈ Z2, with rate one and
independently across Z2, is resampled from ({0,1},Ber(p)) iff the update rule at x was sat-
isfied by the current configuration. In what follows, we will sometimes call such resampling
a legal update or legal spin flip. The general theory of interacting particle systems (see [17])
proves that L becomes the generator of a reversible Markov process {ω(t)}t≥0 on �, with
reversible measure μ. The corresponding Dirichlet form is

D(f )= ∑
x∈Z2

μ
(
cx Varx(f )

)
,

where Varx(f ) denotes the variance of the local function f w.r.t. the variable ωx conditionally
on {ωy}y �=x . If ν is a probability measure on �, the law of the process with initial distribution
ν will be denoted by Pν(·) and the corresponding expectation by Eν(·). If ν is concentrated
on a single configuration ω, we will simply write Pω(·) and Eω(·).

Given a KCM and, therefore, an update family U , the corresponding U -bootstrap process
on Z2 is defined as follows: given a set Y ⊂ Z2 of initially infected sites, set Y(0)= Y , and
define for each t ≥ 0,

(2.2) Y(t + 1)= Y(t)∪ {
x ∈ Z2 :X+ x ⊆ Y(t) for some X ∈ U

}
.

The set Y(t) will represent the set of infected sites at time t and we write [Y ] =⋃
t≥0 Y(t)

for the closure of Y under the U -bootstrap process. We will also call T the median of the
first infection time of the origin when the process is started with sites independently infected
(healthy) with probability q (resp., p = 1− q).

3. A variational lower bound for Eμ(τ0). As mentioned in the Introduction, our main
goal is to prove sharp lower bounds for the characteristic time scales of supercritical rooted
KCM and of the Duarte KCM. Let us start by defining precisely these time scales, namely
the relaxation time Trel (or inverse of the spectral gap) and the mean infection time Eμ(τ0).



DUARTE AND SUPERCRITICAL ROOTED KCM 321

DEFINITION 3.1 (Relaxation time, Trel). Given an update family U and q ∈ [0,1], we
say that C > 0 is a Poincaré constant for the corresponding KCM if, for all local functions f ,
we have

(3.1) Varμ(f )≤ CD(f ).

If there exists a finite Poincaré constant, we then define

Trel(q,U) := inf
{
C > 0 : C is a Poincaré constant

}
.

Otherwise, we say that the relaxation time is infinite. We will drop the (q,U) notation setting
Trel := Trel(q,U) when confusion does not arise.

A finite relaxation time implies that the reversible measure μ is mixing for the semigroup
Pt = etL with exponentially decaying time auto-correlations [17].

DEFINITION 3.2 (Mean infection time, Eμ(τ0)). Let A= {ω ∈� : ω0 = 0}. Then

τ0 = inf
{
t ≥ 0 : ω(t) ∈A

}
.

Given an update family U and q ∈ [0,1], we let Eq,U
μ (τ0) be the mean of the infection time

of the origin under the corresponding stationary KCM (i.e., when the initial configuration
is distributed with Bernoulli(1 − q)). We will drop the (q,U) notation setting Eμ(τ0) :=
Eq,U

μ (τ0) when confusion does not arise.

In the physics literature, the hitting time τ0 is closely related to the persistence time, that
is, the first time that there is a legal update at the origin. All our lower bounds can be easily
extended to the persistence time.

It is known that the following inequality holds (see [19], Section 2.2):

(3.2) Eμ(τ0)≤ Trel(q,U)

q
∀q ∈ (0,1).

Therefore, we will focus on obtaining lower bounds on Eμ(τ0) and then use (3.2) to derive
the results for Trel (indeed the correction q in the above inequality is largely subdominant
w.r.t. the lower bounds we will obtain). To this aim, we establish a variational lower bound
on Eμ(τ0) (Lemma 3.3), which will be our first tool. Recall that A = {ω ∈ � : ω0 = 0} and
let HA be the Hilbert space {f ∈ L2(�,μ) : f �A= 0} with scalar product inherited from the
standard one in L2(�,μ). Let also LA be the negative self-adjoint operator on HA, whose
action on local functions is given by

LAf (ω)= 1Ac(ω)Lf (ω).

It turns out (see, e.g., [2], Section 3) that, for any local function f ∈HA and any ω ∈Ac,

Eω

(
f

(
ω(t)

)
1{τ0>t}

)= etLAf (ω).

In particular, by choosing f = 1Ac(·), one gets

Pμ(τ0 > t)=
∫

dμ(ω)1Ac(ω)etLA1Ac(ω)= 〈
1Ac, etLA1Ac

〉
,

where 〈·, ·〉 denotes the scalar product on L2(�,μ). Thus

(3.3) Eμ(τ0)=
∫ ∞

0
dt

〈
1Ac, etLA1Ac

〉≥ ∫ T

0
dt

〈
1Ac, etLA1Ac

〉 ∀T > 0.
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LEMMA 3.3. Let φ ∈HA be a local function such that μ(φ2)= 1. Then

Eμ(τ0)≥ T
∣∣μ(φ)

∣∣(∣∣μ(φ)
∣∣e−TD(φ) − (

TD(φ)
)1/2) ∀T > 0.

PROOF. Let φ ∈HA be as in the statement and write

1Ac = αφ +ψ,

where α = 〈1Ac,φ〉 = μ(φ) and 〈φ,ψ〉 = 0. Clearly, 〈ψ,ψ〉 = μ(Ac)− α2. We claim that,
for any T > 0 and any t ∈ [0, T ],
(3.4)

〈
1Ac, etLA1Ac

〉≥ α2e−TD(φ) − 2|α|(TD(φ)
)1/2

,

which, combined with (3.3), proves the lemma. To prove the claim, we write〈
1Ac, etLA1Ac

〉≥ α2〈
φ, etLAφ

〉− 2|α|∣∣〈ψ,etLAφ
〉∣∣

= α2〈
φ, etLAφ

〉− 2|α|∣∣〈ψ,
(
I− etLA

)
φ

〉∣∣(3.5)

≥ α2〈
φ, etLAφ

〉− 2|α|〈φ,
(
I− etLA

)2
φ

〉1/2
.

Above we discarded the nonnegative term 〈ψ,etLAψ〉 in the first line, we used 〈φ,ψ〉 = 0 in
the second line and appealed to the Cauchy–Schwarz inequality together with 〈ψ,ψ〉 ≤ 1 in
the third line. Let now π(dλ) be the spectral measure of −LA associated to φ (see, e.g., [23],
Chapter VII). Since μ(φ2)= 1, π(dλ) is a probability measure on [0,+∞). The functional
calculus theorem, together with the Jensen inequality and (1− e−tλ)2 ≤ tλ, implies that for
any t ∈ [0, T ],

r.h.s. (3.5)= α2
∫ ∞

0
dπ(λ)e−tλ − 2|α|

(∫ ∞
0

dπ(λ)
(
1− e−tλ)2

)1/2

≥ α2e−tDA(φ) − 2|α|(tDA(φ)
)1/2

≥ α2e−TD(φ) − 2|α|(TD(φ)
)1/2

,

where DA(φ) = 〈φ,−LAφ〉 = 〈φ,−Lφ〉 = D(φ) because φ is a local function in HA. The
claim is proved. �

The main strategy to take advantage of Lemma 3.3 for q very small is to look for a family
of local functions {φq} in HA, normalised in such a way that μ(φ2

q)= 1, determining a sharp
lower bound when inserted in the inequality of Lemma 3.3 with a proper choice of T . More
precisely, we will use the following easy corollary of Lemma 3.3.

COROLLARY 3.4 (Proxy functions). For any family of local functions {φq} in HA with
μ(φ2

q)= 1, it holds

(3.6) Eμ(τ0)=�
(
μ(φq)

4/D(φq)
)
.

PROOF. The result follows immediately using Lemma 3.3 and choosing T ≡ T (q) =
|μ(φq)|2/(16D(φq)). �

Any function φ = φq with the above properties will be called a test or proxy function and,
in the rest of the paper, we will focus on constructing an efficient test function for the so
called supercritical rooted KCM and for the Duarte KCM.
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4. Supercritical rooted KCM. In order to define the class of supercritical rooted up-
date families, we should begin by recalling the key geometrical notion of stable directions
introduced in [7]. Given a unit vector u ∈ S1, let Hu := {x ∈ Z2 : 〈x,u〉< 0} denote the dis-
crete half-plane whose boundary is perpendicular to u. Then, for a given update family U ,
the set of stable directions is

S = S(U)= {
u ∈ S1 : [Hu] =Hu

}
.

The update family U is supercritical if there exists an open semicircle in S1 that is disjoint
from S . In [7], it was proven that for each supercritical update family the median of the
infection time of the U -bootstrap processes diverges as 1/q�(1). In [21], the author R. Morris
together with two of us, conjectured that not all supercritical update families give rise to the
same scaling for KCM and that the supercritical class should be refined into two subclasses
to capture the KCM scaling as follows.

DEFINITION 4.1. A supercritical two-dimensional update family U is said to be super-
critical rooted if there exist two nonopposite stable directions in S1. Otherwise it is called
supercritical unrooted.

An example of supercritical rooted family is the two-dimensional East model, with update
family U = {{−�e1}, {−�e2}}.4 In [19], it was proved that Eμ(τ0) and Trel diverge as an inverse
power of q as q → 0 in the supercritical unrooted case, while in the rooted case it satisfies
(see [19], Theorem 1(b))

Trel ≤ eO((logq)2)

and, thanks to (3.2), the same bound holds for Eμ(τ0). Here, we prove a matching lower
bound in the rooted case.

THEOREM 4.2. Let U be a two-dimensional supercritical rooted update family. Then

Eμ(τ0)≥ e�((logq)2) as q→ 0.

Thus we prove the following.

COROLLARY 4.3. Let U be a two-dimensional supercritical rooted update family. Then

Trel(q,U)= e�((logq)2) as q→ 0.

and the same result holds for Eμ(τ0).

PROOF. The lower bound follows at once from (3.2) and Theorem 4.2. The upper bound
was proved in [19], Theorem 1(b). �

In order to prove Theorem 4.2, we will use the variational lower bound of Section 3 and
more precisely look for a proxy function φ ≡ φq satisfying the hypotheses of Corollary 3.4.
We first need to introduce the notion of a legal path in �.

4We stress that the supercritical rooted class contains also update families which do not share the special “ori-
entation” property of the East model, namely the fact that all Xi belong to a half-plane. For example, it is easy to
verify that the nonoriented update family U = {{−�e1}, {−�e2}, {(�e1, �e2)}} has exactly two stable directions, −�e1
and −�e2 and, according to our Definition 4.1, it is supercritical rooted.
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DEFINITION 4.4 (Legal path). Fix an update family U , then a legal path γ in � is a
finite sequence γ = (ω(0), . . . ,ω(n)) such that, for each i ∈ [n], the configurations ω(i−1), ω(i)

differ by a legal (with respect to the choice of U ) spin flip at some vertex v ≡ v(ω(i−1),ω(i)).
A generic ordered (along γ ) pair of consecutive configurations in γ will be called an edge.
Given a set �̂⊂� and a configuration ω, we say that there exists a legal path connecting �̂

to ω if there exists a legal path γ = (ω(0), . . . ,ω(n)) such that ω(0) ∈ �̂ and ω(n) = ω.

Let U be a supercritical rooted update family and, for n≥ 1 and κ ∈N∗, let 
n :=
n(κ)⊂
Z2 be the square centred at the origin, of cardinality (κn2n + 1)2. Let also

(4.1)

An = {
ω ∈� : (ω
n, ω̃
c

n
≡ 0) can be reached from

(ω̂
n ≡ 1, ω̂
c
n
≡ 0) by a legal path γ such that any

ω′ ∈ γ has at most n− 1 empty vertices in 
n

}
.

Recall that A = {ω ∈ � : ω0 = 0}. In [18], one of the authors established the following key
combinatorial result concerning the structure of the set An.

LEMMA 4.5 ([18], Theorem 1). There exists κ0 = κ0(U) > 0 such that, for any κ ≥ κ0
and any n ∈N∗,

An ∩A=∅.

Lemma 4.5 implies that if κ ≥ κ0, the KCM process started from any configuration with
no infection inside the region 
n, in order to infect the origin has to leave the set An by going
through its boundary set ∂An (see the proof below for a precise definition of this set). In turn,
the latter is a subset of

{ω ∈� : ∃ at least n− 1 infected vertices in 
n}.
We will therefore chose a scale n such that 2n � 1/qε , namely w.h.p. w.r.t. the reversible
measure μ there are initially no infected vertices inside 
n. Thus, starting from the (likely)
event of no infection inside the region 
n, in order to infect the origin the process has to go
through ∂An which has an anomalous amount, �(logq), of empty sites. This mechanism,
which in the physics jargon would correspond to “crossing an energy barrier” which grows
logarithmically in q , is at the root of the scaling e�(logq)2

. Let us proceed to a proof of this
result, namely to the proof of Theorem 4.2.

PROOF OF THEOREM 4.2. Fix ε < 1/2 and choose n := n(ε, q)= �ε log2(1/q)�. Then
let

φ(·) := φq(·)= 1Aε,q (·)/μ(Aε,q)1/2,

where Aε,q :=An(ε,q) with An defined in (4.1) and the constant κ that enters in this definition
chosen larger than the value κ0 of Lemma 4.5. Then Lemma 4.5 implies immediately that
φ ∈HA. Moreover, using ε < 1/2 we get

μ(φ)= μ(Aε,q)1/2 ≥ (1− q)|
n|/2 = 1− o(1),

because any configuration identically equal to one in 
n belongs to Aε,q and 22n =
O(1/q2ε). Finally, if

∂Aε,q := {
ω ∈Aε,q : ∃x ∈
n with cx(ω)= 1 and ωx /∈Aε,q

}
,
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one easily checks (see, e.g., [10], Section 3.5) that

D(φ)≤ |
n|μ(∂Aε,q)/μ(Aε,q)≤ |
n|μ(∃n− 1 zeros in 
n)/μ(Aε,q)

≤O
(|
n|n)

qn−1 = e−�((logq)2).

Thus φ satisfies all the hypotheses of Corollary 3.4 and the result follows. �

REMARK 4.6. In [21], Conjecture 2.7, it was conjectured that τ0 = e�((logq)2) w.h.p.
as q → 0 holds. Actually, we can also prove this stronger result. One bound immediately
follows using Markov inequality and our result for the mean, Corollary 4.3. The other bound
follows by using the fact that (i) the set Aε,q has μ-probability 1− o(1) (see the above proof

of Theorem 4.2) and (ii) the probability of infecting the origin before e�((logq)2) starting in
Aε,q goes to zero as q ↓ 0. The latter result is easily obtained by a union bound on times

which yields that the probability to leave Aε,q before e�((logq)2) (and, therefore, to infect the
origin, thanks to Lemma 4.5) goes to zero.

5. The Duarte KCM. In this section, we analyse the mean infection time for the Duarte
KCM. For this model, the update family U consists of the 2-subsets of the North, South and
West neighbours of the origin [12]. The infection time for the Duarte bootstrap process is
known to scale as e�((logq)2/q) [22] (see also [6] for sharp for sharp results on the critical
probability). We refer the reader to Figure 1 for a simulation of the growth of an initial
anomalous pocket of infection under the Duarte bootstrap process. Concerning the Duarte
KCM, in [19], Theorem 2 it was proved that

Trel(q,U)≤ eO((logq)4/q2) as q→ 0

and, thanks to (3.2), the same result holds for Eμ(τ0). Here, we establish a matching lower
bound.

THEOREM 5.1. Consider the Duarte KCM. Then

Eμ(τ0)≥ e�((logq)4/q2) as q→ 0.

FIG. 1. The typical spread of infection under the Duarte bootstrap process (courtesy of P. Smith). The initial
pocket of infection at the left end of the cone of infection is large enough to be able to grow while all the other
infected sites are not.
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Using (3.2), Theorem 5.1 and [19], Theorem 2, we get immediately the following corol-
lary.

COROLLARY 5.2. For the Duarte KCM, it holds

Trel(q,U)= e�((logq)4/q2) as q→ 0.

and the same result for Eμ(τ0).

Our result provides the first example of critical α-rooted KCM for which the conjecture
for the divergence of time scales that we put forward in [19], Conjecture 3(a) together with
R. Morris can be proven. Indeed, as explained in [19], the Duarte model is a 1-rooted model
and the exponent 2 that we obtain is in agreement with [19], Conjecture 3(a). In order to
prove Theorem 5.1, we will start by the variational lower bound of Section 3, as for the
supercritical rooted class. However, defining the analog of the set An together with the test
function φ satisfying the hypotheses of Corollary 3.4 is much more involved and it requires a
subtle algorithmic construction. Before explaining our construction, it is useful to make some
simple observations on how infection propagates in the Duarte bootstrap process.

5.1. Preliminary tools: The Duarte bootstrap process. Given 
 ⊂ Z2, we write ∂
 :=
∂‖
∪ ∂⊥
, where

∂‖
= {
y ∈
c : y + �e1 ∈


}
,

∂⊥
= {
y ∈
c : {y + �e2, y − �e2} ∩
 �=∅

}
.

A configuration τ ∈ {0,1}∂
 will be referred to as a boundary condition and we shall write it
as τ = (τ‖, τ⊥), where τ‖ := τ �∂‖
 and similarly for τ⊥.

DEFINITION 5.3. Given a boundary condition τ and Y ⊆
, let

Y τ (t + 1)= Y τ (t)∪ {
x ∈
 :X+ x ⊆ Y τ (t) for some X ∈ U

}
, t ≥ 0,

where Y τ (0)= Y ∪ {x ∈ ∂
 : τx = 0}. We call the process Y τ (t), t ∈N, the Duarte bootstrap
process in 
 with τ boundary condition (for shortness, the DBτ


-process), and we shall write
[Y ]τ
 for (

⋃
t≥0 Y τ (t)) ∩
. Recall also (see Section 2.2) that [Y ] is the analogous quantity

for the bootstrap process evolving on Z2.

REMARK 5.4. Notice that for the DBτ

-process the boundary condition τ does not

change in time.

Notation warning. If τ ≡ 0 or τ ≡ 1, we shall simply replace it by a 0 or a 1 in our notation.
If instead τ is such that τ‖ ≡ 1 and τ⊥ ≡ 0, then it will be replaced by a 1,0 in the notation.

LEMMA 5.5 (Screening property). Consider a sequence of sites S := {(i, bi)}ni=1 in Z2

with bi+1 ≤ bi for all i ∈ [n− 1], and let

S+ = {
(i, j) ∈ Z2 : i ∈ [n], j > bi

}
, S− = {

(i, j) ∈ Z2 : i ∈ [n], j < bi

}
.

Let Y , Y ′ be two arbitrary subsets of Z2 such that Y ⊇ S and Y ∩ Sc+ = Y ′ ∩ Sc+. Then
[Y ] ∩ S− = [Y ′] ∩ S−. Similarly, if we assume that bi+1 ≥ bi for all i ∈ [n − 1] and we
exchange the role of S+ and S−.
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FIG. 2. The set S (black dots) and the sets S± (shaded regions). If the two initial sets Y , Y ′ of infection contain
S and differ at exactly the vertex x, it is clear that the initial discrepancy cannot influence the final infection in
S−.

PROOF. We refer to Figure 2 for a visualisation of the geometric setting. Let Y , Y ′ be as
in the statement and observe that Y(s) and Y ′(s) coincide in {v ∈ Z2 : v = (a, b), a ≤ 0} for
all s ∈N∗. Let t ∈N∗ be the first time at which there exists y ∈ S− such that either y ∈ Y ′(t)
and y /∈ Y(t) or vice versa. W.l.o.g we assume the first case. By construction, there exists
z ∈ {y± �e2, y− �e1} such that z ∈ Y ′(t − 1) and z /∈ Y(t − 1). Clearly, z cannot be of the form
z = (0, b) and, therefore, z ∈ S− ∪ S because y ∈ S−. Because of the definition of t , z /∈ S−
and z /∈ S because S ⊆ Y(s) and S ⊆ Y ′(s) for all s ∈N∗. �

LEMMA 5.6 (Monotonicity). Let 
⊆
′ be subsets of Z2.

(A) Let τ, τ ′ ∈ {0,1}∂
. If τx ≤ τ ′x for all x ∈ ∂
, then

[Y ]τ ′
 ⊆ [Y ]τ
 ∀Y ⊆
.

(B) For all Y ′ ⊆
′,[
Y ′

]0

′ ∩
⊆ [

Y ′ ∩

]0

 and

[
Y ′

]1

′ ∩
⊇ [

Y ′ ∩

]1

.

(C) Suppose that 
 and 
′ are such that ∂⊥
⊆ ∂⊥
′. Then for all Y ′ ⊆
′[
Y ′ ∩


]1,0

 ⊆ [

Y ′
]1,0

′ ∩
.

PROOF.

(A) It follows immediately from the fact that the DBτ

-process runs with more initial

infection than the DBτ ′

 -process.

(B) To prove the first inclusion, let Z = (Y ′ ∩ 
) ∪ (
′ \ 
). Clearly, [Y ′]0
′ ⊆ [Z]0
′
because Y ′ ⊆ Z. It is now sufficient to observe that, by definition,

[Z]0
′ ∩
= [
Y ′ ∩


]0

.

Similarly, one proceeds for the second inclusion with Z = Y ′ ∩
.
(C) Clearly, [Y ′ ∩
]1,0


′ ⊆ [Y ′]1,0

′ . We claim that

[
Y ′ ∩


]1,0

′ ∩
⊇ [

Y ′ ∩

]1,0

 .

That follows immediately from the assumption that ∂⊥
′ ⊇ ∂⊥
 and the fact that the vertices
of ∂‖
∩
′ (if any) are constrained to be healthy for all times under the DB

1,0

 -process while

they are unconstrained for the DB
1,0

′ -process. �
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FIG. 3. A Duarte path � (thick polygonal line) and the corresponding horizontal interval I� (dotted line).
Clearly, � ⊆ [Y ] implies that [Y ] contains the shaded region. In particular, I� ⊆ [Y ].

LEMMA 5.7 (Propagation of infection). Let I be a vertical interval, that is, I = {a, a +
�e2, . . . , a+n�e2}, a ∈ Z2, and let v = x+�e1 for some x ∈ I . Suppose that I ∪{v} ⊆ [Y ] where
Y is the initial set of infection. Then I + �e1 ⊆ [Y ]. In particular, if [Y ] contains [n] × {1} and
{1} × [m] then [n] × [m] ⊆ [Y ].

As a corollary of the above simple property, let x, y ∈ Z2 and suppose that there exists a
Duarte path � between x and y, that is, � := (x(1), . . . , x(n)) ⊆ Z2 with x(1) = x, x(n) = y

and x(i+1) − x(i) ∈ {�e1,±�e2} ∀i ∈ [n− 1]. Let also I� be the horizontal interval starting at x

and reaching the vertical line through y (see Figure 3).

COROLLARY 5.8. Suppose that � ⊆ [Y ]. Then I� ⊆ [Y ].

5.2. Algorithmic construction of the test function and proof of Theorem 5.1. Fix ε a small
positive constant that will be chosen later on and let

(5.1) �=
⌊

1

εq
log(1/q)

⌋
.

Suppose that a vertical interval I of length � is completely infected. Notice that, with μ-
probability going to 1 as q ↓ 0, there is an infected site on the vertical interval sitting on
the right, I + �e1. Therefore, thanks to Lemma 5.7, with high probability the infection can
propagate to infect I + �e1. Notice that instead the infection on I does not help infecting the
interval on its left, I − �e1. At this point, recalling the explanation given in the Introduction,
one might think that the droplets that undergo an East-like dynamics5 are the empty vertical
intervals of length at least �. However, this is far from true, since these empty intervals might
also appear (or disappear) without being facilitated by the presence of an empty interval on
their left. For example, if there is an empty interval of length �− 1 and the site just above
has the constraint satisfied, a single legal move may turn it into an empty interval of height
�. We have therefore to find a more flexible definition of the droplets respecting three key
properties: (i) East-like dynamics; (ii) disjoint occurrence under the equilibrium measure μ

and (iii) the density of droplets should scale as qeff = q�.6 Our solution to the problem is
the construction of an algorithm that sequentially searches for properly defined droplets on a
finite volume, V , containing the origin. We let

(5.2) N = ⌊
eε(logq)2/q⌋

and V := VN =
N⋃

i=1

Ci ,

5Namely, a dynamics in which droplets appear/disappear only if there is a droplet on their left, as it occurs for
the single empty sites in the one-dimensional East model.

6Indeed, since the density of droplets will play the role of the density of empty sites for East, it is natural to
expect that the lower bound obtained using the droplets will be of the form (1.2) with qeff replacing q . This in
turn yields the result of Theorem 5.1 if qeff = q�.
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FIG. 4. A sketchy drawing of the last few columns of the set V . The black dots represent sites belonging to ∂⊥V .

where

Ci = {
(i, j) ∈ Z2 : |j |< N2 − (i − 1)N

}−N �e1

as in Figure 4. In the sequel, we shall write V̄ for set V ∪ ∂⊥V and we shall refer to
C̄i := Ci ∪ ∂⊥Ci as the ith column of V̄ . By construction, the origin coincides with the mid-
point of the last column (see Figure 4). The core of our algorithmic construction (see Defini-
tion 5.10) consists in associating to each ω ∈� an element �(ω) ∈ {↓,↑}N via an iterative
procedure based on the DBτ


-process. These arrow variables are those that satisfy the three
key properties announced above, with �(ω)i =↑ corresponding to the occurrence of a droplet
in column i, and we will use them to construct an efficient test function.

DEFINITION 5.9. Given a boundary condition τ and ω ∈�, we shall say that I ⊆ V is
(ω, τ )-infectable if I ⊆ [Y(ω) ∩ V ]τV , where we recall that Y(ω) is the set of empty vertices
of ω.

Before defining the algorithm leading to the construction of an effective test function for
the Duarte KCM process, it is useful to notice two simple properties of the DBτ

V - process:

(i) Let I ⊆⋃k
i=1 Ci , k ≤ N . Then the property of being (ω, τ )-infectable for I depends

only on the infection of the pair (ω, τ ) in
⋃k

i=1 C̄i and on τ‖.
(ii) If C̄i is healthy at time t = 0 (including the contribution of τ at its top and bottom

boundary sites), then it will remain healthy at any later time.

The idea behind the algorithm is the following. It is tempting to decide that there is a
droplet/arrow in column i when column i contains an infectable vertical interval of length
at least �; indeed, this has probability close to the probability that the interval is infected,
which is q�. However, this brings on the following problem: as explained at the beginning
of Section 5.2, once such an interval I is completely infected by the bootstrap process, with
high probability the infection can propagate to I + �e1, so column i + 1 would also contain
an infectable vertical interval of length at least �, hence we would detect a second droplet in
column i + 1 even though the configuration on column i + 1 is ordinary. In order to avoid
that, before moving on to column i + 1, we heal all the infections that allowed to infect I .

DEFINITION 5.10 (The algorithm). Given ω ∈� and τ ∈ {0,1}∂V such that τ⊥ ≡ 0 and
τ‖ ≡ 1, the algorithm outputs recursively a sequence ψ(k) := (ω(k), τ (k)), k ∈ {0, . . . ,N},
where ω(k) ∈ � and τ (k) ∈ {0,1}∂V is such that τ

(k)
‖ ≡ 1. The pair ψ(0) coincides with
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(ω, τ ) and ψ(k) is obtained from ψ(k−1) by healing suitably chosen infected vertices. The
iterative step goes as follows. Fix � ∈ [N] and assume that ψ(j) has been defined for all
j = 0, . . . , k− 1, k ∈ [N]. Then:

(i) if C̄k contains an interval I of length at least � which is ψ(k−1)-infectable, we let
ξk := ξk(ω) ≤ k be the largest integer such that, by removing all the empty vertices of the
pair ψ(k−1) contained in

⋃ξk−1
i=1 C̄i , the above property still holds. We then set both ω(k) and

τ (k) identically equal to one (i.e., with no infection) on C̄ξk
, . . . , C̄k and equal to ω(k−1) and

τ (k−1) elsewhere;
(ii) if not, we set ψ(k) =ψ(k−1).

REMARK 5.11. Clearly, the above construction depends on the initial ω and we shall
sometimes write ψ(k)(ω) to outline this dependence.

DEFINITION 5.12 (Droplets and their range). Given k such that ψ(k)(ω) �= ψ(k−1)(ω),
we define the droplet Dk(ω) and the range rk(ω) of the kth column in ω as the set

⋃k
i=ξk

C̄i

and the integer k − ξk(ω), respectively. If instead ψ(k)(ω) = ψ(k−1)(ω), we let Dk(ω) = ∅
and rk(ω)= 0.

Observe that, by construction,

(5.3) ψ(j)(ω) �
V̄ \⋃j

i=1 Di(ω)
=ψ(0)(ω) �

V̄ \⋃j
i=1 Di(ω)

.

DEFINITION 5.13 (The mapping �). Having defined the sequence {ψ(k)}Nk=1, we set

�(ω)k =
{↑ if ψ(k)(ω) �=ψ(k−1)(ω),

↓ otherwise,

and N↑(ω)= #{i ∈ [N] : �(ω)i =↑}.
REMARK 5.14. Suppose that ω, ω′ are such that they coincide over the first i columns.

Then �(ω)k =�(ω′)k for all k ∈ [i].
In the sequel, two events will play an important role. The first one, B1(n), collects all the

ω′s whose image �(ω) has more than n up-arrows, with n ∈ [N]:
(5.4) B1(n)= {

ω ∈� : N↑(ω)≥ n
}
.

The event B2(n), again with n ∈ [N], collects instead all the ω ∈ � such that there exists n

consecutive ↓-columns which are traversed by an infectable Duarte path. More precisely, for
1≤ i < j ≤N , let

(5.5) Vi,j =
j⋃

k=i

Ck

and let

(5.6) B2(n)= ⋃
j−i≥n−1

( j⋂
k=i

{
ω ∈� : �(ω)k =↓}∩ Gi,j

)
,

where

(5.7)
Gi,j = {

ω ∈� : ∃ a Duarte path � from Ci to Cj such that

� ⊆ [
Y(ω)∩ Vi,j

]1,0
Vi,j

}
.

We are now ready to define our test function.
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DEFINITION 5.15 (The test function). Let I0 = {(0, k) : |k| ≤ �} and

n1 = ε(logq)2/2q, n2 = 1/q6(5.8)

where ε is the same as in the definition of N (5.2). Let also

�↓ = {
ω ∈� :�(ω)= (↓, . . . ,↓)

}
,

�g =�↓ ∩ {ω ∈� : ωI0 = 1},
Aε,q :=AN,�,n1,n2

= {
ω ∈� : ∃ a legal path γ connecting �g to (ωV , ω̃V c ≡ 0)

s.t. γ ∩B1(n1 − 1)=∅ and γ ∩B2(n2 − 1)=∅
}
,

(5.9)

where legal paths have been defined in Definition 4.4 and, for any B ⊂�, we set γ ∩ B =∅
iff none of the configurations of the path γ belongs to B. Then we choose as a test function

φ(·) := φq(·)= 1Aε,q (·)/μ(Aε,q)1/2.

The rest of the paper is devoted to prove that (i) φ satisfies the key hypothesis of Corol-
lary 3.4, namely φ ∈ HA and (ii) φ is an efficient proxy function, namely the bound (3.6)
prove the sharp lower bound of Theorem 5.1. More precisely, we need to prove the following
key propositions.

PROPOSITION 5.16. There exists ε0 > 0 such that, for all ε ∈ (0, ε0) there exists qε small
enough such that, for all q ∈ (0, qε),

Aε,q ∩A=∅.

In particular, φ ∈HA.

PROPOSITION 5.17. There exists ε0 > 0 such that, for all ε ∈ (0, ε0),

μ(φ)≥ qO(1) and D(φ)≤ e−�(log(q)4/q2) as q→ 0.

Once the above propositions are proven, the main result of this section easily follows.

PROOF OF THEOREM 5.1. The result follows at once using Propositions 5.16 and 5.17,
together with the general lower bound on Eμ(τ0) given in (3.6). �

Let us start with an easy result which will be used in the proof of both propositions.

LEMMA 5.18 (Disjoint occurrence of the droplets). For any ω ∈ � and any k �= j ,
Dk(ω)∩Dj(ω)=∅.

PROOF. Let k1, . . . , kν be the labels of the columns which are of type ↑ in �(ω) (for all
the other columns the droplets are the empty set). Using property (ii) of the DBτ

V -process,
Dkν (ω) cannot contain a column which is healthy for the pair ψ(kν−1) because any infection
to the left of a healthy column cannot cross the healthy column itself. On the other hand, all
the columns of the droplets Dk1, . . . ,Dkν−1 are healthy for ψ(kν−1). Thus Dkν ∩Dkj

=∅ for
all j ∈ [ν − 1]. The same reasoning applies to all the other droplets. �
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5.3. East-like motion of the arrows and proof of Proposition 5.16. Let

A� = {ω ∈� : ωI+0
≡ 0} ∪ {ω ∈� : ωI−0

≡ 0},
where I±0 = {(0,±1), . . . , (0,±�)}. Then it holds

LEMMA 5.19. If Aε,q ∩A �=∅, then there exist ω ∈ A� and a legal path γ connecting
�g to ω such that γ ∩Bi (ni)=∅, i = 1,2.

PROOF. Fix ω ∈Aε,q ∩A, recall Definition 5.15 and let γ̃ be a legal path connecting �g

to (ωV , ω̃V c ≡ 0) such that γ̃ ∩ B1(n1 − 1) =∅ and γ̃ ∩ B2(n2 − 1) =∅. W.l.o.g., we can
assume that γ̃ ends as soon as the origin is infected. It is easy to verify that γ̃ must be able to
sequentially infect (and possibly heal later on) the ordered vertices of either I+0 starting from
(0, �) or those of I−0 starting from (0,−�). For simplicity, we assume that the first option
holds and we let γ be the path obtained from γ̃ by deleting all the transitions in which a
vertex of I+0 is healed.

By construction, the final configuration of γ belongs to A�. Moreover, γ is a legal path
because at each step the infection in the last column of V is larger than or equal to the
infection of the corresponding step of γ̃ . Finally, the restriction to C1, . . . ,CN−1 of any step of
γ coincides with the same restriction of the appropriate step of γ̃ . Using that γ̃ ∩B1(n1−1)=
∅ and γ̃ ∩B2(n2 − 1)=∅, we deduce that γ ∩B1(n1)=∅ and γ ∩B2(n2)=∅. �

The above lemma says that, if there exists a configuration in �g for which we can infect the
origin performing a legal path never crossing either B1(n1−1) or B2(n2−1), then necessarily
there exists a legal path never crossing either B1(n1) or B2(n2) and connecting a configuration
ω with all columns being ↓ to a configuration ω with a ↑ in the N th column. In order to
conclude that Aε,q ∩A=∅, and thus prove our Proposition 5.16, we will now show that the
existence of a legal path with the above properties is impossible. It is here that the East-like
motion of the droplets emerges and plays a key role. Recall the definitions (5.2), (5.8) and
let m = 4n1n2 and, for simplicity, let us suppose that m divides N . We partition [N ] into
M = N/m disjoint consecutive blocks {Bi}Mi=1 of equal cardinality and, with a slight abuse
of notation, we identify the columns

⋃
k∈Bi

Ck with the block Bi itself. Given ω ∈�, we write

ηi(ω) := 1{∀j∈Bi : �(ω)j=↓},

and we denote by η(ω) the collection {ηi(ω)}Mi=1.

CLAIM 5.20. Given a legal path γ with the properties stated in Lemma 5.19, it is pos-
sible to construct a path ϕ(γ ) := (η(0), . . . , η(k)) in the space {0,1}M with the following
properties:

(1) η
(0)
i = 1 for all i ∈ [M] and η

(k)
M = 0,

(2) #{i ∈ [M] : ηi = 0} ≤ n1 for all η ∈ ϕ(γ ),
(3) for any edge (η, η′) of ϕ(γ ), the configuration η′ differs from η in exactly one coordi-

nate. Moreover, if the discrepancy between η and η′ occurs at the ith coordinate and i �= 1,
then ηi−1 = 0.

REMARK 5.21. The path ϕ(γ ) for the coarse-grained variables {ηi}Mi=1 can be viewed
as a legal path for the one-dimensional East model on [M] (see, e.g., [13]).

The proof of our Proposition 5.16 then follows by using this connection with the East
model, our choices (5.2), (5.8) of the parameters N , n1, n2 and the combinatorial result for
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the East model [11, 25] that we explained in the Introduction. More precisely, we have the
following.

PROOF OF PROPOSITION 5.16. In [11], it was proved that a path like ϕ(γ ) above exists
iff n1 ≥ log2(M + 1). With our choice (5.8) of the scaling as q → 0 of n1, n2, N , the latter
condition becomes

n1 ≥ 1

log 2

(
1+ o(1)

)
ε(logq)2/q, as q→ 0,

violating our choice n1 = ε(logq)2/2q . Thus ϕ(γ ) cannot exist as well as the path γ . �

We are therefore left with proving Claim 5.20. To this aim, we start by stating two prepara-
tory results, Lemma 5.22 and Lemma 5.23, which will be the key ingredients for the proof of
Claim 5.20.

LEMMA 5.22. For any ω ∈ Bc
2(n2), the maximum range of a droplet of ω is n2 − 1.

PROOF. Let ω ∈ � such that there exists j ∈ [N ] with rj (ω) ≥ n2. Denote i = ξj (ω).
By the definition of ξj (ω) = i, C̄j contains an interval I of length at least � which is

ψ(j−1)-infectable by the empty sites in
⋃j

k=i C̄k , but not by the empty sites in
⋃j

k=i+1 C̄k .
Definition 5.9 implies that any ψ(j−1)-infectable site is in V , hence I ⊆ Cj . Furthermore,
for all k ∈ {i, . . . , j − 1}, �(ω)k =↓ (since thanks to Lemma 5.18 the droplets are dis-
joint), so by (5.3) ψ(j−1) and ψ(0) coincide on

⋃j
k=i C̄k . Therefore, I is ψ(0)-infectable

by the empty sites in
⋃j

k=i C̄k , but not by the empty sites in
⋃j

k=i+1 C̄k . We deduce that

I ⊆ [Y(ω)∩Vi,j ]1,0
Vi,j

, but I � [Y(ω)∩Vi+1,j ]1,0
Vi+1,j

, see (5.5) for the definition of Vi,j . Thus,

there exists z ∈ Cj such that z ∈ [Y(ω) ∩ Vi,j ]1,0
Vi,j
\ [Y(ω) ∩ Vi+1,j ]1,0

Vi+1,j
. Hence z cannot be

initially empty for the Duarte bootstrap process in Vi,j ; otherwise, it would also be empty for
the process in Vi+1,j , hence the process in Vi,j infects z with an update rule, so there exist
z′ ∈ {z − �e1, z ± �e2} in [Y(ω) ∩ Vi,j ]1,0

Vi,j
\ [Y(ω) ∩ Vi+1,j ]1,0

Vi+1,j
. We can iterate, creating a

Duarte path in [Y(ω) ∩ Vi,j ]1,0
Vi,j
\ [Y(ω) ∩ Vi+1,j ]1,0

Vi+1,j
. There can be only a finite number

of iterations because there is a finite number of sites in Vi,j , so we will stop, and the site
at which we stop has to be initially empty for the process in Vi,j , but not for the process in
Vi+1,j , therefore, it is in C̄i . This implies the Duarte path can reach Ci . Consequently, there
is a Duarte path in [Y(ω) ∩ Vi,j ]1,0

Vi,j
\ [Y(ω) ∩ Vi+1,j ]1,0

Vi+1,j
going from Ci to Cj . We deduce

that there exists a Duarte path in [Y(ω)∩Vi,j−1]1,0
Vi,j−1

from Ci to Cj−1, which is Gi,j−1. Since
(j − 1)− i ≥ n2 − 1, ω ∈ B2(n2). �

The next lemma is the basic technical step connecting the evolution of the coarse-grained
variables {�(ω)i}Ni=1 under the Duarte KCM process to an East-like process. Given ω ∈
� and x ∈ V , let ωx denote the configuration ω flipped at x. We say that x is ψ(k)(ω)-
unconstrained (or infectable in one step) if ∃X ∈ U such that X + x is infected for the pair
(ω(k), τ (k)).

LEMMA 5.23 (East-like motion of the arrows). Fix ω ∈� and let x ∈ Cj . Then:

(a) Suppose that x is ψ(0)(ω)-unconstrained. Then �(ωx) �=�(ω) implies that j > 1 and
�(ω)j−1 =↑;
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(b) For i > j suppose that �(ω)i =↑, �(ωx)i =↓ and that Di(ω) � ∈x. Then there exists
k such that C̄k ⊆Di(ω) \ C̄i and �(ωx)k =↑, �(ω)k =↓.

PROOF. (a) If j = 1, then clearly �(ωx) = �(ω) because x is ψ(0)(ω)-unconstrained.
Consider now the case j �= 1 and assume that �(ω)j−1 =↓. We want to prove that in this
case �(ωx)=�(ω) if x is ψ(0)(ω)-unconstrained.

By construction, the restriction to the first j − 1 columns of ψ(k)(ωx) and ψ(k)(ω) coin-
cide for all k ∈ [j − 1] and, as a consequence, �(ω)k =�(ωx)k ∀k ∈ [j − 1]. Let k∗(ω)=
min{k ≥ j : �(ω)k =↑} and similarly for ωx . Using (5.3) together with �(ω)j−1 =↓, for all
i = j − 1, . . . , k∗(ω) − 1 the restriction of ψ(i)(ω) to the columns C̄j−1, . . . , C̄N coincides
with the same restriction of the original pair ψ(0)(ω). In particular, the fact that x is ψ(0)(ω)-
unconstrained implies that x is also ψ(k∗(ω)−1)(ω)-unconstrained, analogously for the config-
uration ωx . Clearly, k∗(ωx)≥ k∗(ω). If not, starting from the infection of ψ(j−1)(ω), we can
first make a transition to ψ(j−1)(ωx) by legally flipping ωx and from there infect an interval
of length at least � of C̄k∗(ωx) to make it of type ↑, a contradiction with the definition of k∗(ω).
By exchanging the role of ω, ωx , we conclude that k∗(ωx)= k∗(ω). Thus �(ω)k =�(ωx)k
for all k = 1 . . . , k∗(ω) and, a fortiori, for all k > k∗(ω).

(b) By assumption, the restriction of ω, ωx to Di(ω) coincide. If �(ωx)k =↓ for all the
columns in Di(ω), then ψ(i−1)(ω) = ψ(i−1)(ωx) on the set Di(ω) implying that �(ωx)i =
�(ω)i . Thus there exists a column C̄k ⊆Di(ω) \ C̄i such that �(ωx)k =↑ and (by the defini-
tion of Di(ω)) �(ω)k =↓. �

COROLLARY 5.24. Fix ω ∈ � and let x ∈ Cj . Let also rx∞ = maxi max(ri(ω), ri(ω
x))

and suppose that �(ω)i =↑, �(ωx)i =↓, with i − j ≥m(rx∞ + 1),m ∈N∗. Then

#
{
k ∈ {j, . . . , i} : �(ω)k =↑}+ #

{
k ∈ {j, . . . , i} : �(

ωx)
k =↑

}≥m.

PROOF. By construction, Di(ω) � ∈x. Lemma 5.23 part (b) guarantees that there exists
a column C̄k ⊆ Di(ω) \ C̄i such that �(ω)k =↓ and �(ωx)k =↑. We can then iterate by
exchanging the role of ω, ωx and replacing i with, for example, the largest of the labels k

above. In conclusion, every rx∞ + 1 steps we are guaranteed to find a discrepancy between
�(ω) and �(ωx) and the result follows. �

We are now ready to conclude the proof of Claim 5.20.

PROOF OF CLAIM 5.20. To prove the claim, let γ = (ω(0), . . . ,ω(n)) and let us consider
the sequence {η(ω(j))}nj=0. The path ϕ(γ ) = (η(0), . . . , η(k)) is then defined recursively by

setting η(0) := η(ω(0)) and η(j) := η(ω(ij )), where ij =min{i > ij−1 : η(ω(i)) �= η(j−1)} with
i0 = 0, and by stopping the procedure as soon as the set {η ∈ {0,1}M : ηM = 0} is reached
(φ(γ ) is then a function of γ ). In other words, we only keep the elements of the sequence
η(ω(j)), j = 0, . . . , n, which change w.r.t. the previous element. Property (1) of ϕ(γ ) follows
immediately from the fact that γ starts in �↓ and ends in A�. Property (2) follows from the
fact that γ ∩B1(n1)=∅. We now verify the key property (3).

Let (η, η′) be an edge of ϕ(γ ) and let (ω,ω′) be the edge of γ such that η(ω) = η and
η(ω′) = η′. By construction, �(ω) �= �(ω′). Let also x ∈ Ca be such that ω′ = ωx and say
that a belongs to j th block. Clearly, ηi = η′i for all i < j . Moreover, Lemma 5.22 and Corol-
lary 5.24 imply that �(ω)v =�(ω′)v for all v ∈⋃

i≥j+2 Bi (if j + 2≤N ), since otherwise
either ω or ω′ would have at least �m/2(rx∞ + 1)� ≥ �m/2n2� = 2n1 up-arrows, contradict-
ing the assumption γ ∩ B1(n1)=∅. In particular, ηi = η′i for all i ≥ j + 2. To complete our
analysis, we distinguish between two cases.
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(1) a > 1. In this case, x must be ψ(0)(ω)-unconstrained and part (a) of Lemma 5.23
together with �(ω) �=�(ω′) implies that �(ω)a−1 =�(ωx)a−1 =↑. If a is not the beginning
of the block Bj then, by definition, ηj = η′j = 0. Thus η, η′ must differ exactly in the (j +
1)th-block and they are both equal to zero in the previous one as required. If a is the beginning
of the j th block, then necessarily j > 1. Moreover, �(ω)a−1 = �(ωx)a−1 =↑ implies that
ηj−1 = η′j−1 = 0. By the same reasoning as before, using Corollary 5.24 and Lemma 5.22
(recall that ω ∈ Bc(n2)), we get that �(ω)v =�(ω′)v for all v ∈⋃

i>j Bi . Thus ηi = η′i for
all i �= j and ηj−1 = η′j−1 = 0 as required.

(2) a = 1. Again Corollary 5.24 guarantees that �(ω)i =�(ωx)i for all i ∈⋃N
j=2 Bj so

that ηb = η′b for all b ≥ 2. �

5.4. Density of droplets and proof of Proposition 5.17. The core of the proof of Propo-
sition 5.17 consists in bounding from above the probabilities of the events B1, B2 defined in
(5.4), (5.6). The first key bound is Lemma 5.25 that says that the probability that the DB

1,0
V -

process restricted to an arbitrary number of consecutive columns of V is able to infect any
given interval of the last column of length � is e−�((logq)2/q). The second key ingredient is
Lemma 5.27 that bounds from above the probability of the event B2(n2 − 1). Before stating
the lemmas, we need some additional notation.

Given 1≤ i ≤ j ≤N , let 
=⋃j
k=i Lk , where, for each k = i, . . . , j , Lk ⊇ Ck is a (finite)

interval of {(k −N,j) : j ∈ Z}. Let also I ⊆ Cj be an interval of length � and τ ∈ {0,1}∂
 a
boundary condition. The basic event that we will consider is

Oτ

(I )= {

ω ∈� : I ⊆ [
Y(ω)∩


]τ



}
,

where we recall Y(ω) is the set of infected vertices of ω. Notice that Oτ

(I ) is an increasing

event (i.e., its indicator function is an increasing function) w.r.t. the partial order: ω ≺ ω′ iff
ω′x ≤ ωx ∀x. Our first main lemma reads as follows.

LEMMA 5.25 (Density of up-arrows). Choose the basic scales N , �, n1, n2 as in (5.1),
(5.2) and (5.8). Then there exists c > 0 such that, for any ε > 0 sufficiently small and any
1≤ i ≤ j ≤N ,

max
I

μ
(
O1,0

Vi,j
(I )

)≤ e−c(logq)2/q as q→ 0,

where Vi,j =⋃j
k=i Ck .

PROOF. Fix 1≤ i ≤ j ≤N together with an interval I ⊂ Cj of length � and let


1,j =
j⋃

i=1

{
(i, k) : |k|< N2}−N �e1.

We first claim that

μ
(
O1,0

Vi,j
(I )

)≤ μ
(
O1,0

V1,j
(I )

)≤O
(
1/q2)

μ
(
O1


1,j
(I )

)
as q→ 0.(5.10)

The first inequality follows from (C) in Lemma 5.6. To prove the second one, let G =⋂j−1
k=1 Gk , where Gk denotes the event that there is an empty site within the first �N/3�

sites and within the last �N/3� sites of Ck . Then, for any choice of the constant ε appearing
in (5.1), (5.2) and (5.8),

(5.11) μ
(
Gc)≤ 2N(1− q)

N
3 −1 = o(1) as q→ 0.
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For any ω ∈G and any boundary condition τ for V1,j such that τ ≡ 0 on ∂⊥Cj and τ‖ ≡ 1,
the screening property and translation invariance imply that [Y(ω) ∩ V1,j ]τV1,j

∩ Cj does not
depend on τ . Hence,

(5.12) O1,0
V1,j

(I )∩G=Oτ
V1,j

(I )∩G.

Choose τ equal to one everywhere except for ∂⊥Cj where it is equal to zero. Using the FKG
inequality and (5.12),

μ
(
O1,0

V1,j
(I )

)≤ μ
(
O1,0

V1,j
(I ) |G)= μ

(
Oτ

V1,j
(I ) |G)

≤ (
1+ o(1)

)
μ

(
Oτ

V1,j
(I )

)
.

We now observe that, starting from Y(ω), we can construct the set [Y(ω) ∩ V1,j ]τV1,j
∩ Cj

as follows. We first output the set [Y(ω) ∩ V1,j−1]1V1,j−1
and we let τ̄ ∈ {0,1}∂Cj be such

that τ̄⊥ ≡ 0 and {x ∈ ∂‖Cj : τ̄x = 0} = [Y(ω) ∩ V1,j−1]1V1,j−1
∩ ∂‖Cj . Then we output the set

[Y(ω)∩ Cj ]τ̄Cj
which clearly coincides with [Y(ω)∩ V1,j ]τV1,j

∩ Cj .
Monotonicity and a moment of thought imply that if we repeat the above construction with

V1,j−1, Cj replaced by 
1,j−1, {(j −N,k) : |k|< N2} and Y(ω) replaced by Y(ω) ∪ ∂⊥Cj ,
then the final infection in Cj cannot decrease. Hence

μ
(
Oτ

V1,j
(I )

)≤ μ
(
O1


1,j
(I ) | ω∂⊥Cj

≡ 0
)≤ μ

(
O1


1,j
(I )

)
/q2,

and (5.10) follows.
Let now T (U) be the median of the infection time of the origin (or of any other vertex

of Z2 because of translation invariance) for the Duarte bootstrap process in Z2 started from
Y(ω) where ω has law μ, and write

(5.13) p(N,�) :=max
j≤N

max
I

μ
(
O1


1,j
(I )

)
,

where maxI is taken over all intervals I ⊂ Cj of length �.

CLAIM 5.26. If ε < 1/4 then, for all q small enough,

(5.14) p(N,�)≥ e
− 1

16q
log(q)2

,

implies

T (U)≤O
(
N3)

e
1

16q
log(q)2

.

Before proving the claim, we conclude the proof of Lemma 5.25. It follows from the main
result of [6] together with a standard (and straightforward) argument that

T (U)≥ e(1−o(1)) log(q)2/8q as q→ 0,

implying that for all q small enough

p(N,�)≤ e
− 1

16q
log(q)2

,

if ε < 1/48. �

PROOF OF THE CLAIM. In the sequel, it will help to refer to Figure 5 as a visual guide
for the various definitions. Fix q arbitrarily small and let j be such that there exists an interval
I ⊂ Cj of length � such that

(5.15) μ
(
O1


1,j
(I )

)≥ e
− 1

16q
log(q)2

.



DUARTE AND SUPERCRITICAL ROOTED KCM 337

FIG. 5. A subset of the collection of boxes 
(i) forming Mt . On the last column of 
1,j , the two intervals

Î ⊃ I . The little gray dots denote suitable sparse single infected sites, one for each relevant column, and they
have been drawn only for the initial and final stage of the infection process. The large gray dots on the right
boundary of 
(ν) represent a shifted copy of I which is infected by the DB1


(ν) -process. This infected interval
propagates to the right until reaching the first site of the empty upward stair (black dots). At this stage, the interval
grows vertically by one unit. This process continues until the interval has become a shifted copy of the interval Î .
The latter interval is able to continue moving to the right until infecting the interval Î .

Using the symmetry w.r.t., the horizontal axis we can assume that xI , the lowest site of
I , has nonpositive height. Write 
(i) := 
1,j − ij �e1 and let Mt = ⋃t

i=0 
(i), where t =
10�max(p(N, �)−1,8/q4)�. We shall define two increasing events G1,G2 ⊂ �, depending
only on ω �Mt , such that:

(a) if ω ∈ G1 ∩ G2 then the Duarte bootstrap process in Z2 is able to infect xI within time
(2t + 1)j (2N2 − 1).

(b) μ(Gk) > 3/4, k = 1,2.

Using the FKG inequality, μ(G1 ∩ G2)≥ μ(G1)μ(G2) > 1/2. Hence

T (U)≤ (2t + 1)j
(
2N2 − 1

)≤ 60N3e
1

16q
log(q)2

.

In order to define G1, G2, let Î ⊃ I be the interval of Cj of length �1/q3� and whose lowest
site is xI . Then

G1 = {∀k ∈ [j t], the interval Î − (k − 1)�e1 contains an empty vertex
};

G2 = {∃k ∈ [j t] : the DB1
Mt

-process starting from Y(ω)∩Mt

is able to infect Î − k�e1
}
.

We now verify properties (a) and (b) above. We observe that the event G2 guarantees that
there exists a leftmost interval of the form Î − k�e1 which is infected by the Duarte bootstrap
process within time (t + 1)j (2N2 − 1).7 The event G1, together with the definition of the
Duarte update family U , makes sure that the infection of Î − k�e1 gets propagated forward to
Î − (k−1)�e1, . . . , until it reaches the original interval Î in at most tj (2N2−1) steps. Hence,
within time (2t + 1)j (2N2 − 1) the vertex xI becomes infected and (a) follows.

It remains to verify (b). The union bound over k gives that for any ε > 0,

μ
(
Gc

1
)≤ j t (1− q)�1/q3� ≤ e−�(1/q2) as q→ 0,

using (5.14) and j ≤N .

7The worst case is when sites are infected one by one.
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In order to bound from below μ(G2), write

ν :=min
{
max

{
k ∈ [t/2, t] : the event O1


(k)(I − kj �e1) occurs
}
,∞}

,

and let F =⋂3
i=1 Fi where, on the event {ν <+∞}:

– F1 = {ν ≤ t};
– F2 = {∀k ∈ [�2/q4�] the interval I − νj �e1 + k�e1 contains an empty vertex};
– F3 = {∃ an upward empty stair of n= �1/q3� sites belonging to the first �2/q4� columns

of Mt immediately to the right of 
(ν), that is, a sequence (x1, . . . , xn) of empty sites of
the form xm = (jm,hI +m), where hI is the height of the uppermost site of I and {jm}nm=1
is a strictly increasing sequence}.
We begin by observing that F ⊆ G2. In fact, F1 guarantees the right amount of infection

of the last column of 
(ν) under healthier boundary condition than those required by G2.
F2 ensures that such an infection propagates over to the first �2/q4� columns to the right
of 
(ν) while F3 guarantees that each time the infection meets an empty site of the upward
stair it grows vertically by one unit (see Figure 5). Since the stair contains �1/q3� sites,
the �2/q4�th-column of Mt to the right of 
(ν) contains an infected interval which is the
appropriate horizontal translation of the interval Î and the inclusion F ⊆ G2 follows.

Conditionally on {ν = k}, the events F2, F3 coincide with two increasing events depending
only on sites to the right of 
(k). Hence, using the FKG inequality,

μ(G2)≥ μ(F)= ∑
k∈[t/2,t]

μ(ν = k)μ(F2 ∩F3 | ν = k)

≥ ∑
k∈[t/2,t]

μ(ν = k)μ(F2 | ν = k)μ(F3 | ν = k).

A union bound gives that, uniformly in k ∈ [t/2, t],
μ

(
Fc

2 | ν = k
)≤ ⌈

2/q4⌉
(1− q)� ≤ ⌈

2/q4⌉
q1/ε(1+ o(1)

)= o(1),

if ε < 1/4. Using the fact that X(ω) :=min{i ≥ 1 : ω(i,+1) = 0} is a geometric random vari-
able of parameter q , it is easy to check that

μ
(
Fc

3 | ν = k
)≤ P

(
n∑

i=1

Xi >
⌈
2/q4⌉)

,

where {Xi}ni=1 are i.i.d. copies of X. A standard exponential Markov inequality with λ= αq ,
α ∈ (0,1), gives

(5.16)

P

(
n∑

i=1

Xi >
⌈
2/q4⌉)

≤ e−λ�2/q4�(E(
eλX))n

≤
(

e−2α

(1− α)(1+ o(1))

)1/q3

< (1− α/2)1/q3
,

for α small enough. In conclusion, if ε < 1/4,

μ(G2)≥ (
1− o(1)

)
μ(F1)

≥ (
1− o(1)

)(
1− (

1−μ
(
O1


1,j
(I )

))t/2)≥ (
1− o(1)

)(
1− e−4)

because of (5.15) and our choice of t . That concludes the proof of property (b). �

We now turn to the second basic lemma. Recall the definition (5.6) of the event B2.
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LEMMA 5.27. Choose the basic scales N , �, n1, n2 as in (5.1), (5.2) and (5.8). Then,
for ε small enough,

(5.17) μ
(
B2(n2 − 1)

)≤ e−�(1/q5) as q→ 0.

PROOF. Call Hi,j the event
⋂j

k=i{ω ∈� : �(ω)k =↓}∩Gi,j , where Gi,j has been defined
in (5.7). Clearly,

μ
(
B2(n2 − 1)

)≤ ∑
i,j

j−i≥n2−2

μ(Hi,j )≤N2 max
i,j∈[N]

j−i≥n2−2

μ(Hi,j ),

and it is enough to prove that

(5.18) max
i,j∈[N]

j−i≥n2−2

μ(Hi,j )≤ e−�(1/q5).

For this purpose, we first describe one important implication of the event Hi,j .

CLAIM 5.28. For any ω ∈ Hi,j , there exists h ∈ Z satisfying |h| ≤ N2 − (j − 1)N +
(j − i)�, such that

Ch :=
( j⋃

k=i

{
(k −N,h)

})∩ Vi,j ⊆ [
Y(ω)∩ Vi,j

]1,0
Vi,j

.

Moreover, Ch has length at least (j − i)(1− o(1))≥ n2(1− o(1)) as q→ 0.

PROOF OF THE CLAIM. Given ω ∈Hi,j let � = (x(1), . . . , x(n))⊆ [Y(ω)∩Vi,j ]1,0
Vi,j

be a
Duarte path from Ci to Cj . Since �(ω)k =↓ for all k ∈ {i, . . . , j} necessarily the cardinality
of � ∩ Ck is at most � for all k ∈ {i, . . . , j}. Therefore, the height h of x(1) satisfies

|h| ≤N2 − (j − 1)N + (j − i)�,

which, in turn, implies that the corresponding interval Ch has length greater than the largest
integer m such that

N2 − (i − 1)N −mN ≥N2 − (j − 1)N + (j − i)�.

Using that m+ 1 violates the above inequality, we get

m≥ (j − i)(1− �/N)− 1≥ (
1− o(1)

)
n2.

The fact that Ch ⊆ [Y(ω)∩ Vi,j ]1,0
Vi,j

follows from Corollary 5.8. �

It is now easy to complete the proof of the lemma. As in the proof of Claim 5.26 and using
a union bound over the possible value of the variable h of the claim, with probability larger
than

1− 2N2e−�(qn2) ≥ 1− e−�(1/q5),

every interval Ch as above with |h| ≤N2− (j −1)N+ (j − i)� meets an empty upward stair,
that is, a sequence (x1, . . . , x�) of empty sites belonging to the first n2/2 columns crossed by
Ch and such that xm = (jm,h+m) with jm < jm+1 for all m ∈ [�]}. If Ch is also infected,
then the presence of the above empty stair implies that there exists i ≤ k ≤ i + 2

3n2 and a

vertical interval I ⊆ Ck of length at least � such that I ⊆ [Y(ω)∩Vi,j ]1,0
Vi,j

. The latter property
implies that �(ω)k =↑. Hence μ(Hi,j ) satisfies (5.18) uniformly in j − i ≥ n2 − 2. �
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5.5. Completing the proof of Proposition 5.17. Recall Definition 5.15 of the test function
φ and of the events �g , �↓ and Aε,q . Notice that �g ∩ B2(n2 − 1)c ⊆Aε,q and that �↓ is a
decreasing event. Using Lemma 5.27, we get

μ(φ)≥ μ(Aε,q)≥ μ
(
�g ∩B2(n2 − 1)c

)
≥ μ(�↓)μ

( ∏
|k|≤�

ω(0,k) = 1
)
−μ

(
B2(n2 − 1)

)

≥ μ(�↓)(1− q)2�+1 − e−�(1/q5) ≥ qO(1)μ(�↓)− e−�(1/q5),

where in the third inequality we used the FKG inequality. Using Lemma 5.25 and a union
bound,

μ(�↓)≥ 1−μ

(
N⋃

j=1

⋃
I∈Ij (�)

O1,0
V1,j

(I )

)

≥ 1− 4e−(c−5ε)(logq)2/q = 1− o(1)

if ε is small enough, where we let Ij (�) be the family of intervals of the j th column whose
length is at least �. In conclusion, μ(φ)≥ qO(1) for ε small enough.

We now turn to bound from above the Dirichlet form D(φ). By definition, writing A ≡
Aε,q for notation convenience,

D(φ)= ∑
x∈Z2

μ
(
cx Varx(φ)

)= ∑
x∈V

μ
(
cx Varx(φ)

)

= μ(A)−1q(1− q)
∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx /∈A} + cx(ω)1{ω/∈A}1{ωx∈A}

)

≤ μ(A)−1
∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx /∈A}

)
,

where we used the fact that φ depends only on {ωx}x∈V in the second equality and made
the change of variable ω→ ωx in the term cx(ω)1{ω/∈A}1{ωx∈A} in the inequality. Next, we
observe that

(5.19)

∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx /∈A}

)

≤ ∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx∈Ac,ωx∈B2(n2−1)c}

)+ ∑
x∈V

μ(1{ωx∈B2(n2−1)})

≤ ∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx∈Ac,ωx∈B2(n2−1)c}

)

+ |V |((1− q)/q
)
μ

(
B2(n2 − 1)

)
≤ ∑

x∈V

μ
(
cx(ω)1{ω∈A}1{ωx∈Ac,ωx∈B2(n2−1)c}

)+ e−�(1/q5),

where in the last inequality we used Lemma 5.27 and the bound |V | ≤ 2N3 ≤ eO((logq)2/q).
Given x ∈ V , let ω ∈A be such that cx(ω)= 1 and ωx ∈Ac ∩B2(n2 − 1)c and recall that

N↑(ω) counts the number of up-arrows in �(ω). We claim that N↑(ωx)≥ n1 − 1. To prove
the claim, let γ be a legal path connecting �g to (ωV , ω̃V c ≡ 0) such that γ ∩ Bi (ni − 1)=
∅, i = 1,2 and let γ x be the path connecting �g to (ωx

V , ω̃V c ≡ 0) obtained by adding to
γ the transition (ωV , ω̃V c ≡ 0)→ (ωx

V , ω̃V c ≡ 0). The path γ x is legal because γ is legal
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and cx(ω)= 1. Moreover, γ x ∩ B2(n2 − 1)=∅ because ωx /∈ B2(n2 − 1). The assumption
ωx ∈Ac implies that γ x ∩B1(n1− 1) �=∅. Using γ ∩B1(n1− 1)=∅ the latter requirement
becomes N↑(ωx)≥ n1 − 1 and the claim follows.

In conclusion,∑
x∈V

μ
(
cx(ω)1{ω∈A}1{ωx∈Ac,ωx∈B2(n2−1)c}

)≤ ∑
x∈V

μ
(
N↑

(
ωx)≥ n1 − 1

)

≤ |V |((1− q)/q
)
μ

(
N↑(ω)≥ n1 − 1

)
.

We finally bound from above μ(N↑(ω)≥ n1 − 1) using Lemma 5.25. Given n≥ n1 − 1 and
E = {j1 < · · ·< jn}, ji ∈ [N ], let NE be the event that �(ω)j =↑ if j ∈ E and �(ω)j =↓
otherwise. By construction,

μ(NE)≤ μ

(
n⋂

k=1

Q1,0
Vjk−1+1,jk

)
≤

(
max
i≤j

μ
(
Q1,0

Vi,j

))n
,

where j0 := 0 and

Q1,0
Vi,j
= {∃I ∈ Ij (�) such that I ⊆ [

Y(ω)∩ Vi,j

]1,0
Vi,j

}
,

where we recall that Ij (�) is the family of intervals of the j th column whose length is at least
�. Lemma 5.25 together with a union bound over I ∈ Ij (�) give

max
i≤j

μ
(
Q1,0

Vi,j

)≤max
i≤j

∑
I∈Ij (�)

μ
(
I ⊆ [

Y(ω)∩ Vi,j

]1,0
Vi,j

)

≤ 4N4 max
i≤j

max
I∈Ij (�)

μ
(
I ⊆ [

Y(ω)∩ Vi,j

]1,0
Vi,j

)≤ e−(c−4ε)(logq)2/2q .

In conclusion, for any ε small enough,

μ
(
N↑(ω)≥ n1 − 1

)≤ N∑
n=n1−1

(
N

n

)
e−(c−4ε)n(logq)2/2q

≤
N∑

n=n1−1

(
Ne−(c−4ε)(logq)2/2q)n

≤ e−ε�((logq)4/q2),

because of the choice of n1 = ε(logq)2/2q . In conclusion, the right-hand side of (5.19) is
smaller than e−ε�((logq)4/q2) and the proof of Proposition 5.17 is complete.
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