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Understanding the population-level effects of vaccines has important
public health policy implications. Inferring vaccine effects from an obser-
vational study is challenging because participants are not randomized to vac-
cine (i.e., treatment). Observational studies of infectious diseases present the
additional challenge that vaccinating one participant may affect another par-
ticipant’s outcome, that is, there may be interference. In this paper recent
approaches to defining vaccine effects in the presence of interference are
considered, and new causal estimands designed specifically for use with ob-
servational studies are proposed. Previously defined estimands target coun-
terfactual scenarios in which individuals independently choose to be vacci-
nated with equal probability. However, in settings where there is interference
between individuals within clusters, it may be unlikely that treatment selec-
tion is independent between individuals in the same cluster. The proposed
causal estimands instead describe counterfactual scenarios which allow for
within-cluster dependence in the individual treatment selections. These es-
timands may be more relevant for policy-makers or public health officials
who desire to quantify the effect of increasing the proportion of vaccinated
individuals in a population. Inverse probability-weighted estimators for these
estimands are proposed. The large-sample properties of the estimators are de-
rived, and a simulation study demonstrating the finite-sample performance of
the estimators is presented. The proposed methods are illustrated by analyz-
ing data from a study of cholera vaccination in over 100,000 individuals in
Bangladesh.

1. Introduction. Inferring causal effects from an observational (i.e., nonrandomized or
nonexperimental) study is challenging because participants may select their own treatment.
Observational studies in many settings, such as infectious disease research, present the ad-
ditional challenge that one individual’s treatment may have an effect on another individual’s
outcome, that is, there may be interference (Cox (1958)). For example, whether one individ-
ual is administered a vaccine may affect whether another individual develops disease from
some infectious pathogen. In certain settings it may be reasonable to assume that individuals
can be partitioned into clusters such that there may be interference among individuals within
a single cluster yet no interference between individuals in distinct clusters. Sobel (2006)
described this assumption as “partial interference;” here, this assumption is referred to as
“clustered interference.” Clusters might entail households, classrooms, geographical areas or
other hierarchical structures. For example, in an assessment of the effect of retaining low-
achieving children in kindergarten, Hong and Raudenbush (2006) assumed no interference
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between students in different schools. Several types of treatment effects (i.e., causal esti-
mands) have been proposed for the setting where there may be clustered interference; for
example, see Halloran and Struchiner (1995), Hudgens and Halloran (2008) and Tchetgen
Tchetgen and VanderWeele (2012).

Methods have been developed for inference about these causal effects from observational
studies (Liu, Hudgens and Becker-Dreps (2016), Perez-Heydrich et al. (2014), Tchetgen Tch-
etgen and VanderWeele (2012)). One drawback of the treatment effects targeted by these
methods is that these causal estimands describe counterfactual scenarios in which individu-
als select treatment independently and with the same probability. However, in settings where
interference within clusters is plausible, it may be unlikely that treatment selection among
individuals in the same cluster is independent (Liu, Hudgens and Becker-Dreps (2016)). For
instance, suppose a public health policy maker is interested in the effect of seasonal influenza
vaccination on risk of influenza-like illness in households. In this case one might expect pos-
itive correlation between the vaccination statuses of individuals in the same household. Thus,
drawing inference to a counterfactual scenario in which individuals are administered vaccines
independently may not be of public health relevance. In this paper new causal estimands are
proposed for observational studies where there may be clustered interference; these estimands
describe counterfactual scenarios which allow for within-cluster dependence in the individual
treatment selections. The proposed estimands may be more relevant for policy makers or pub-
lic health officials who are interested in quantifying the effect of increasing the proportion of
treated individuals in a population. Papadogeorgou, Mealli and Zigler (2019) independently
developed similar estimands and methods with motivation from and applications in air pollu-
tion epidemiology.

The methods developed here are motivated by a cholera vaccine study in Matlab,
Bangladesh, which featured both an experimental and a nonexperimental component (Ali
et al. (2005, 2009)). Included in the study were 121,975 women (aged 15 years and older)
and children (aged 2–15 years) from 6,415 baris (i.e., households of patrilineally-related in-
dividuals). These individuals were eligible to participate in the experimental component of
the study, in which each individual was randomized with equal probability to one of three
treatment arms: B subunit-killed whole-cell oral cholera vaccine, killed whole-cell-only oral
cholera vaccine or placebo. Individuals who did not participate did not receive either version
of active treatment. The study collected endpoint data of cholera infection on all individuals,
even those who did not participate in the experimental component. Since participation was
not controlled by study design and nearly two-fifths of all individuals declined to participate,
there was a notable nonexperimental component to the study and potential for confounding
exists when analyzing the endpoint data.

The goal of the analysis presented here is to assess the effects of cholera vaccination while
allowing for the possibility of within-bari interference, as there is evidence that transmission
of cholera often takes place within baris (Ali et al. (2005)). Effects of vaccination due to
interference are of particular interest; for instance, does increasing the proportion of indi-
viduals vaccinated (i.e., vaccine “coverage”) within a bari lead to decreased risk of cholera
among individuals not vaccinated? Figure 1 depicts the empirical distributions of the number
of individuals and of the vaccine coverage within the baris. In Figure 1 and in the analyses
below, any individual who received at least two doses of either of the two cholera vaccines
was considered to be treated and, otherwise, was considered to be untreated (Perez-Heydrich
et al. (2014)).

The outline of the remainder of this paper is as follows. In Section 2 the potential outcomes
framework and interference are discussed. The proposed causal estimands are introduced in
Section 3. A set of assumptions sufficient for identifying the target estimands is presented in
Section 4. In Section 5 inverse probability-weighted estimators are introduced; the estima-
tors are shown in the Appendix to be consistent and asymptotically normal. Simulations in
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FIG. 1. Matlab cholera vaccine study. Left: number of individuals per cluster (bari). Right: proportion of indi-
viduals vaccinated per cluster.

Section 6 demonstrate that the proposed estimators are empirically unbiased and that Wald-
type confidence intervals attain nominal coverage levels in finite samples. Analysis of the
Bangladesh cholera vaccine study is presented in Section 7. Section 8 concludes with a dis-
cussion.

2. Counterfactuals and interference. Consider a super-population of clusters of indi-
viduals. For each cluster i let Ni equal the number of individuals in the cluster which may
vary across clusters in the super-population. For example, in the cholera vaccine study clus-
ters are defined by baris, and Ni is the number of women and children living in the ith bari.
For cluster i let Ai = (Ai1,Ai2, . . . ,AiNi

) where Aij denotes the binary treatment (e.g., vac-
cination) indicator for individual j in the cluster, and Yi = (Yi1, Yi2, . . . , YiNi

) where Yij

is the outcome of interest for individual j . For example, Yij might indicate whether or not
individual j in cluster i experienced the outcome after some suitable follow-up period after
treatment exposure status was observed. In the data analysis in Section 7, Aij = 1 denotes the
individual was vaccinated against cholera (and 0 otherwise), and Yij = 1 denotes the individ-
ual who became infected with cholera within a one-year follow-up period (and 0 otherwise).

Assuming clustered interference, the potential outcome for an individual may depend on
the individual’s own treatment exposure status as well as on the treatment exposures of oth-
ers in the same cluster. However, any individual’s potential outcomes are assumed to be un-
affected by the treatment exposures of individuals in different clusters. For instance, in the
cholera study analysis women and children in one bari are assumed to be unaffected by the
vaccination of individuals in other baris. Let A(Ni) be the set of all vectors with Ni binary en-
tries such that a = (a1, a2, . . . , aNi

) ∈ A(Ni) is a vector whose entries each indicates a poten-
tial treatment status for an individual in a cluster of Ni individuals. Let Yij (a) be the potential
outcome for unit j in cluster i if, possibly counter to fact, cluster i had received a ∈ A(Ni).
In the absence of interference, Yij (a) = Yij (a

′) whenever aj = a′
j for any a, a′ ∈ A(Ni).

However, assuming no interference when interference is present may result in biased esti-
mates of causal effects. Throughout this paper interference is assumed to be absent between
individuals in different clusters, but no additional assumptions are made about the nature of
interference within clusters (such as stratified interference (Hudgens and Halloran (2008))).

3. Causal effects.

3.1. Policies of interest. Our goal is to draw inference about the difference in expected
outcomes arising from population-level policies which change the distribution of treatment.
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In particular, we are interested in assessing the effect of changes in the level of cholera vac-
cine coverage in settings such as Matlab, Bangladesh. In the absence of interference, typi-
cal treatment effect estimands compare the policy (or strategy) where all individuals receive
treatment (i.e., Ai = (1,1, . . . ,1) with probability 1) with the policy where all individuals
are not treated (i.e., Ai = (0,0, . . . ,0) with probability 1). Here, we consider more general
policies where individuals receive treatment according to some probability that, in general,
differs between individuals; such policies are sometimes referred to as “stochastic interven-
tions” (Díaz and van der Laan (2012)). This will allow comparison of the effects of different
levels of cholera vaccine coverage, for example, 30% vs. 60%.

Tchetgen Tchetgen and VanderWeele (2012) considered the stochastic intervention policy
where individuals select treatment with the same, fixed probability (e.g., 0.5). Here, we con-
sider policies where individuals may select treatment with different probabilities, conditional
on their pretreatment covariates. For example, older women may be more likely than younger
women to receive the cholera vaccine. We let α denote the marginal probability of selecting
treatment, averaged over all individuals in the population, for a particular policy. The notation
Prα(·) is used to indicate that a probability is with respect to the counterfactual scenario in
which the policy α is implemented.

3.2. Proposed estimands. For a ∈A(Ni), define ω(a,Ni,α) = Prα(Ai = a|Ni) to be the
probability under policy α that a cluster of Ni individuals experiences treatment status a. Let
Ȳi (a) = N−1

i

∑Ni

j=1 Yij (a) denote the average potential outcome in a cluster if the cluster
had been exposed to a. The expected potential outcome under α for a single cluster of Ni

individuals is defined to be Ȳi (α) = ∑
a∈A(Ni)

Ȳi(a)ω(a,Ni,α). In other words, Ȳi (α) is the
expected average potential outcome for the cluster in the counterfactual scenario in which α

is implemented.
Define the population mean outcome under α to be μ(α) = E{Ȳi (α)}, where the expected

value is taken over all clusters i in the super-population. That is, each cluster in the super-
population is effectively given equal weight in the population mean outcome. An alternative
approach would be to define population mean outcomes where each individual is given equal
weight, such that larger clusters are given proportionally more weight than smaller clusters
(Liu, Hudgens and Becker-Dreps (2016, §2)); in the special case where Ni does not vary
across clusters, these two approaches to defining the population mean outcome are equivalent.
The overall effect is defined to be OE(α,α′) = μ(α) − μ(α′) which represents the difference
in expected potential outcomes under policy α vs. policy α′. The overall effect is defined here
as a difference in mean potential outcomes but could instead be defined as a ratio or some
other contrast (Liu, Hudgens and Becker-Dreps (2016)).

In addition, it may also be of interest to consider potential outcomes among only the un-
treated individuals within a cluster. For instance, in the cholera vaccine study we are in-
terested in the effect of vaccine coverage on women and children who do not receive the
vaccine. Let Ȳi,t (a) = {∑Ni

j=1 I (aj = t)}−1 ∑Ni

j=1 Yij (a)I (aj = t) for t = 0,1. In words,

Ȳi,0(a) is the average potential outcome among the untreated individuals within the clus-
ter; likewise Ȳi,1(a) is the average potential outcome among the treated individuals within
the cluster. In the special case when a = (1 − t,1 − t, . . . ,1 − t), define Ȳi,t (a) = 0 for each
of t = 0,1. Denote the population mean potential outcomes when untreated to be μ0(α) =
E{∑a∈A(Ni)

Ȳi,0(a)ω(a,Ni,α)}. The spillover effect when untreated is defined to be the dif-
ference in population mean potential outcomes when untreated under policy α vs. α′, that is,
SE0(α,α′) = μ0(α) − μ0(α

′). Similarly, let μ1(α) = E{∑a∈A(Ni)
Ȳi,1(a)ω(a,Ni,α)}, and

define SE1(α,α′) = μ1(α) − μ1(α
′) to be the spillover effect when treated.
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3.3. Relation to previous estimands. Consider a policy in which all individuals in a clus-
ter are exposed to treatment independently with the same probability; Tchetgen Tchetgen
and VanderWeele (2012) refer to this as a “type B parameterisation.” For α ∈ [0,1], let
ωB(a,Ni,α) = ∏Ni

j=1 αaj (1 − α)1−aj denote the counterfactual probabilities under such a

type B policy. Likewise, let μB(α) = E{∑a∈A(Ni)
Ȳ(a)ωB(a,Ni,α)} be the population mean

potential outcome for a type B policy, and define the overall effect with respect to two type B
policies to be OEB(α,α′) = μB(α) − μB(α′).

The policies of interest in this paper include as a special case type B policies where treat-
ment exposure is uncorrelated. The estimands proposed in this paper can thus be seen as
a generalization of the type B estimands, as the type B policies describe only the limiting
counterfactual scenarios in which there is no within-cluster dependence of individual treat-
ment selections. In general, ω(a,n,α) �= ωB(a, n,α) for almost any triplet (a, n,α), and the
corresponding policies, estimands and interpretations differ. In the data analysis of the cholera
vaccine study in Section 7, estimates of the type B estimands are presented for comparison
to the estimates of the proposed estimands.

The estimands in Section 3.2 are similar to those independently proposed by Papadogeor-
gou, Mealli and Zigler (2019). However, Papadogeorgou et al. consider counterfactual scenar-
ios where each cluster’s average individual-level propensity score equals exactly α. In some
settings such a scenario may be unrealistic. For instance, it is unlikely that each cluster in the
cholera vaccine study would share the same average individual-level propensity score. The
likelihood that individuals would be vaccinated could depend on a myriad of individual level
factors (such as age, sex, etc) and one would not expect, in general, the distribution of these
individual level variables to be the same across baris. In contrast, the estimands defined in
Section 3.2 consider the less restrictive counterfactual setting where the marginal probability
of selecting treatment equals α, but any cluster’s average individual-level propensity scores
may not equal α exactly. Another difference between the estimands in Section 3.2 and those
in Papadogeorgou, Mealli and Zigler (2019) relates to how average potential outcomes are
defined. Papadogeorgou et al. first construct individual average potential outcomes by com-
puting a unit’s expected outcome under policy α, conditional on that unit’s treatment (i.e.,
conditional on Aij = a). These individual average potential outcomes are then averaged first
within and then across groups. The estimands defined in Section 3.2 are not formulated in this
manner and thus avoid avoid difficulties in interpretation that can arise when computing ex-
pected outcomes conditional on Aij = a (Eck, Morozova and Crawford (2018), VanderWeele
and Tchetgen Tchetgen (2011)).

4. Identifiability. In this section we describe a set of assumptions sufficient for identifia-
bility of the estimands defined in Section 3.2. The assumptions include a cluster level version
of the usual no unmeasured confounders assumption and a correctly specified parametric
model of the conditional distribution of treatment given covariates.

Let there be a random sample of i = 1, . . . ,M clusters, and denote by Oi = {Ni,Li,Ai, Yi}
the observed values of the random variables for cluster i, where Li = (Li1,Li2, . . . ,LiNi

) is
an Ni-vector of pretreatment variables. In general, Lij may include individual-level variables
associated with individual j , such as their age, or cluster-level variables, such as the average
age of individuals in cluster i. The ordering of individuals in each cluster is assumed to be
uninformative. As in Tchetgen Tchetgen and VanderWeele (2012) and Perez-Heydrich et al.
(2014), assume exchangeability at the cluster level conditional on the baseline variables

Yi(a) ⊥ Ai |Li,Ni for any i and any a ∈ A(Ni).

In addition, assume positivity at the cluster level

Pr(Ai = a|Li,Ni) > 0 for any a ∈ A(Ni).
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Plausibility of the exchangeability and positivity assumptions in the context of the cholera
vaccine study is discussed in Section 8.

4.1. Model for observed treatment. Following Tchetgen Tchetgen and VanderWeele
(2012), Perez-Heydrich et al. (2014) and Liu, Hudgens and Becker-Dreps (2016), assume
the following mixed effects model for treatment:

(1) L
(
Pr(Aij = 1|Li,Ni, bi)

) = β0 + β1Lij + bi,

where L is some suitable link function and bi denotes a random intercept for cluster i which
is assumed to follow distribution � with mean zero and parameter(s) σ . The random effect bi

allows for correlation in treatment selection between individuals within the same cluster. In
the cholera vaccine study analysis presented below, L is the logit link, and bi is assumed to
have a Gaussian distribution with mean zero and standard deviation σ ; this model can be fit
using the R package lme4 (Bates et al. (2015)) with glmer(data = data, formula =
Treatment ∼ Covariate + (1|ClusterID), family = “binomial”).

Under the assumed mixed model the conditional probability that a cluster’s treatment vec-
tor equals a ∈A(Ni) is

(2)

Pr(Ai = a|Li,Ni)

=
∫ Ni∏

j=1

L−1(β0 + β1Lij + b)aj
{
1 −L−1(β0 + β1Lij + b)

}(1−aj )
d�(b;σ).

This conditional probability describes the relationship between the Ni individual observed
treatments and covariates for individuals within the cluster. Unlike in the case where no in-
terference is assumed, the discrete treatment space includes 2Ni possible unique treatment
vectors for a cluster, and so (2) is a type of generalized propensity score, which we refer to
as a cluster propensity score.

4.2. Model for treatment under counterfactual policy α. In addition, assume under coun-
terfactual policy α that

L
(
Prα(Aij = 1|Li,Ni, ui)

) = γ0α + γ1αLij + ui,

where ui is mean zero with distribution � and parameter(s) φα . Analogous to (1), it follows
that the counterfactual cluster propensity score equals

Prα(Ai = a|Li,Ni)

=
∫ Ni∏

j=1

L−1(γ0α + γ1αLij + u)aj
{
1 −L−1(γ0α + γ1αLij + u)

}(1−aj )
d�(u;φα).

The parameters (β0, β1, σ ) in (2) are identifiable from the observable random variables.
However, the parameters (γ0α, γ1α,φα), counterfactual cluster propensity scores Prα(Ai =
a|Li,Ni) and counterfactual probabilities ω(a,n,α) are not identifiable without additional
assumptions. In some settings it may be reasonable to assume that particular features of the
distribution of covariates and treatment would remain the same under counterfactual policy α.
For example, we assume Pr(Li) = Prα(Li), that is, the covariate distribution is unaffected by
the policy.

Similarly, assume β1 = γ1α , that is, the conditional odds ratio of treatment for any two
individuals within a cluster is the same across the factual and counterfactual scenarios. This
assumption implies that the ranking of individuals within clusters by probability of treatment
is preserved across policies. For example, if, according to the observed treatment model, older
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women are more likely to receive cholera vaccination; then, under policy α, older women will
also be more likely to receive the cholera vaccine.

Finally, suppose σ = φα . Under this assumption certain aspects of the within-cluster cor-
relation remain the same under policy α. For example, suppose L is the logit link and �

is a Gaussian distribution function. Then, model (1) is implied by the latent variable model
A∗

ij = β0 + β1Lij + bi + εij , where εij is assumed to have a logistic distribution with mean

zero and variance π2/3 and Aij = I (A∗
ij > 0). The latent variable A∗

ij can be interpreted as
an unobserved continuous variable reflecting an individual’s propensity to receive treatment.
Under this model Corr(A∗

ij ,A
∗
ik|Lij ,Lik) = (σ 2 + π2/3)−1σ 2 (Fitzmaurice, Laird and Ware

(2011, page 417)). Likewise, the counterfactual treatment model above is implied by the la-
tent variable model A∗

ij = γ0α + γ1αLij + ui + εαij , where εαij is also assumed to have a

logistic distribution with mean zero and variance π2/3, so that Corrα(A∗
ij ,A

∗
ik|Lij ,Lik) =

(φ2
α + π2/3)−1φ2

α . That is, within-cluster correlation between the latent A∗
ij ’s is the same in

the factual and counterfactual scenarios.
Under the above assumptions,

(3) α =
∫ {

N−1
i

Ni∑
j=1

∫
L−1(γ0α + β1Lij + u)d�(u;σ)

}
dFL,

so the counterfactual model’s intercept parameter γ0α and, thus, the counterfactual cluster
propensity scores are identifiable. It follows that the counterfactual probabilities ω(a,n,α)

are also identifiable from the observable data.

5. Inference. Following Tchetgen Tchetgen and VanderWeele (2012) and Perez-
Heydrich et al. (2014), consider the following inverse probability-weighted (IPW) estima-
tor of μ(α):

(4) μ̂(α) = M−1
M∑
i=1

Ȳiω(Ai,Ni, α)

Pr(Ai |Li,Ni)
,

where Ȳi = N−1
i

∑Ni

j=1 Yij . The inverse probability-weight for cluster i is the reciprocal of
the cluster propensity score; these and the counterfactual probabilities are unknown in an
observational study and must be estimated from data.

Under the assumptions in Section 4, a logistic mixed effects model is fit to the data, and the
model parameters (β0, β1, σ ) can be estimated by maximum likelihood. Then, the fitted pa-
rameters (β̂0, β̂1, σ̂ ) are substituted into (2) to obtain an estimate of each cluster’s propensity
score. For each policy α, γ̂0α solves equation (3), with FL replaced by its empirical distribu-
tion; that is, α = M−1 ∑M

i=1 N−1
i

∑Ni

j=1

∫
L−1(γ0α + β̂1Lij +u)d�(u; σ̂ ) is solved to obtain

γ̂0α . The counterfactual cluster propensity scores for cluster i and treatments a ∈ A(Ni) are
estimated by substitution, i.e.,

P̂rα(Ai = a|Li,Ni)

=
∫ Ni∏

j=1

L−1(γ̂0α + β̂1Lij + u)aj
{
1 −L−1(γ̂0α + β̂1Lij + u)

}(1−aj )
d�(u; σ̂ ).

Since the ordering of individuals in clusters is assumed to be uninformative, ω(a,n,α) =
ω(a′, n,α) whenever f (a) = f (a′) for any two a, a′ ∈ A(n) where f (a) = ∑n

j=1 aj . For
example, under this assumption a = (1,0), and a = (0,1) will occur with equal probabil-
ity under policy α in clusters of size two. Note this (mild) assumption only pertains to the
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treatment assignment mechanism under policy α, and it implies no restrictions on the interfer-
ence structure within the cluster. Let A(n, s) = {a ∈ A(n)|f (a) = s} where |A(n, s)| = (n

s

)
,

and define ω(s,n,α) = ∑
a∈A(n,s) ω(a,n,α) for s = 0,1, . . . , n. Estimate the counterfactual

probabilities for any cluster i by ω̂(Ai,Ni, α) = ( Ni

f (Ai)

)−1
ω̂(f (Ai),Ni, α), where for any

triplet (s, n,α),

(5)

ω̂(s, n,α)

=
{

M∑
i=1

I (Ni = n)

}−1 ∑
a∈A(n,s)

{
M∑
i=1

P̂rα(Ai = a|Li,Ni)I (Ni = n)

}
.

These estimates, along with the estimated cluster propensity scores, are substituted into (4)
to calculate μ̂(α). The estimators ÔE(α,α′) = μ̂(α) − μ̂(α′) can be obtained in a similar
manner. For t = 0,1, the estimators μ̂t (α) and ŜEt (α,α′) are defined similarly using the
outcomes Ȳt,i = {∑Ni

j=1 I (Aij = t)}−1 ∑Ni

j=1 Yij I (Aij = t), where Ȳt,i = 0 in the case when
Aij = 1 − t for all j = 1, . . . ,Ni .

In the Appendix these estimators are shown to be consistent and asymptotically normal
using standard large-sample estimating equation theory (Stefanski and Boos (2002)). Wald-
type confidence intervals (CIs) can be constructed using the empirical sandwich estimators
of the asymptotic variances.

The estimators described above may be computationally challenging in practice, as the
estimator ω̂(a, n,α) requires a numerical integration technique for each of the

( n
f (a)

)
vectors

in A(n, f (a)). Therefore, the following approximation is proposed to decrease computation
time. The intuition behind this approximation is to replace the summation

∑
a∈A(n,s){·} in (5)

with an estimate by randomly sampling the summands and then computing a weighted sum
of the sampled summands. For each s = 0,1, . . . , n, define A(n, s, k) to be a subset of exactly
ks,n = min{k,

(n
s

)} vectors selected in a simple random sample from A(n, s), where k > 1 is
chosen by the investigator. Now, estimate the counterfactual probabilities by ω̂(a, n,α, k) =( n
f (a)

)−1
ω̂(f (a), n,α, k), where for any triplet (s, n,α),

ω̂(s, n,α, k)

=
{

M∑
i=1

I (Ni = n)

}−1

k−1
s,n

(
n

s

) ∑
a∈A(n,s,k)

M∑
i=1

P̂rα(Ai = a|Li,Ni)I (Ni = n).

Replacing ω̂(a, n,α) in μ̂(α) with ω̂(a, n,α, k) results in an estimator which we de-
note μ̂(α, k). With analogous replacements define ÔE(α,α′, k) as well as μ̂t (α, k) and
ŜEt (α,α′, k) for t = 0,1. These estimators are evaluated in a simulation study in Section 6
and are employed in the data analysis of the cholera vaccine study in Section 7. All of the
above estimators are implemented in the R package clusteredinterference (Barkley
(2019)) which is freely provided on CRAN with an example vignette. In practice, specifica-
tion of the value of k may be a compromise between better approximation (larger k) and faster
computation (smaller k). This method may be extended by specifying different values of k

to estimate distinct counterfactual probabilities which is outlined in the Appendix. A short
discussion on estimating counterfactual probabilities under the assumption of uninformative
ordering of individuals within clusters is additionally provided in the Supplementary Material
Appendix S.1 (Barkley et al. (2020)).

Papadogeorgou, Mealli and Zigler (2019) consider IPW estimators similar in form to μ̂(α)

and μ̂t (α) which are also based on mixed effect propensity score models as in Sections 4.1–
4.2. Their IPW estimators of the average potential outcome, when an individual is untreated
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under policy α, differ in that the numerator includes an estimator of Prα(Ai = a|Aij =
0,Li,Ni), whereas the numerator of μ̂t (α) includes an estimator of Prα(Ai = a|Li,Ni)

(namely, ω̂(Ai,Ni, α)). This dissimiliarty is due to the differences in the target estimands,
as discussed in Section 3.3. Papadogeorgou et al. also use large-sample estimating equation
theory to establish consistency and asymptotic normality of their estimators.

6. Simulations. A simulation study was carried out on 1000 datasets to demonstrate the
finite-sample performance of the proposed estimators. To generate each dataset, the following
steps were carried out for each of i = 1, . . . ,M = 125 clusters:

I The number of individuals in the cluster Ni was simulated such that Pr(Ni = 8) = 0.4,
Pr(Ni = 22) = 0.35, and Pr(Ni = 40) = 0.25.

II Covariates for each individual j = 1, . . . ,Ni in cluster i were simulated to be Lij1 ∼
N(40,5) and Lij2 ∼ N(Xi,0.2), where Xi ∼ N(6,1) was a cluster-level random variable.

III Treatment status Aij for each individual j in cluster i was simulated from a Bernoulli
distribution with mean Pr(Aij = 1|Lij , bi) = L−1(β0 + β1Lij1 + β2Lij2 + bi) where bi ∼
N(0, σ ) was a cluster-level random intercept and (β0, β1, β2, σ ) = (0.75,−0.015,−0.025,

0.75).
IV The outcome Yij for each individual j in cluster i was simulated from a Bernoulli

distribution with mean Pr(Yij = 1|Ai,Lij ) = L−1(0.1 − 0.05Lij1 + 0.5Lij2 − 0.5Aij +
0.2g(Ai,−j ) − 0.25Aijg(Ai,−j )), where the function g(Ai,−j ) = (Ni − 1)−1 ∑

j ′ �=j Aij ′ .

A logistic mixed effects model was fit with a random intercept for cluster and main ef-
fects for L1 and L2, that is, the propensity score models were correctly specified. Such a
model could be fit with lme4::glmer() (Bates et al. (2015)) using arguments formula
= A ∼ L1 + L2 + (1|Cluster) and family = "binomial". To determine the
performance of the estimators that use the greatest degree of subsampling approximation,
k = 1 was chosen. The asymptotic variance of the estimators was estimated with the empir-
ical sandwich variance estimator as described in the Appendix, from which Wald-type 95%
CIs were constructed.

True values of the estimands for policies α ∈ {0.4,0.5,0.55} were determined empirically
using the same data generating process outlined above in steps I–II and analogues to steps III–
IV. The process is described here briefly, with more details provided in the Supplementary
Material Appendix S.2 (Barkley et al. (2020)). For each α, γ0α was determined by solving (3)
with FL approximated by its empirical distribution over 107 clusters. Then, the counterfac-
tual probabilities ω(a,n,α) were determined by generating treatment vectors under policy α

for 108 clusters, replacing β0 in step III with γ0α . An empirical comparison of true values of
ω(a,n,α) arising from this simulation study and the true values of ωB(a, n,α) for the type B
policies is provided in Figure S.1 in the Supplementary Material Appendix S.2 (Barkley et
al. (2020)). Next, potential outcomes were generated for 108 clusters via the causal model
analogous to the regression model specified in step IV. These potential outcomes were com-
bined with the counterfactual probabilities to determine the true values of μ(α), OE(α,α′),
and μt(α) and SEt (α,α′) for t = 0,1.

The IPW estimates from each dataset were compared to the true estimand values deter-
mined above; a summary of these results is presented in Table 1. The average bias of the
estimators was negligible. The average of the estimated asymptotic standard errors was ap-
proximately equal to the empirical Monte Carlo standard error. The Wald-type 95% CIs con-
tained the true parameter values for approximately 95% of the simulated datasets. Thus, the
estimators performed well in this simulation study.
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TABLE 1
Summary of results from simulation study described in Section 6. “Truth” denotes the true value of the estimand
targeted by the estimator; “Bias” denotes the average bias of the IPW estimates over the 1000 datasets; “Cov%”

denotes the empirical coverage of Wald-type 95% CIs; “ASE” denotes the average of the estimated sandwich
standard errors times 100; “ESE” denotes the empirical standard error times 100; “SER” denotes the ratio of

ASE divided by ESE; α1 = 0.4, α2 = 0.5 and α3 = 0.55

Estimator Truth Bias Cov% ASE ESE SER

μ̂(α1, k = 1) 0.662 −0.003 94.3% 1.88 1.84 1.02
μ̂(α2, k = 1) 0.651 0.000 95.5% 1.63 1.53 1.06
μ̂(α3, k = 1) 0.645 0.001 96.4% 1.65 1.55 1.07
ÔE(α2, α1, k = 1) −0.011 0.003 97.2% 1.08 0.96 1.13
ÔE(α3, α1, k = 1) −0.017 0.004 97.4% 1.44 1.34 1.08
ÔE(α3, α2, k = 1) −0.006 0.001 97.4% 0.53 0.44 1.21

μ̂0(α1, k = 1) 0.712 −0.002 95.2% 2.10 2.02 1.04
μ̂0(α2, k = 1) 0.711 −0.001 95.7% 2.15 2.02 1.07
μ̂0(α3, k = 1) 0.709 −0.001 95.3% 2.46 2.35 1.05
ŜE0(α2, α1, k = 1) −0.001 0.001 95.8% 1.33 1.20 1.11
ŜE0(α3, α1, k = 1) −0.003 0.001 94.7% 1.93 1.86 1.04
ŜE0(α3, α2, k = 1) −0.002 0.000 94.8% 0.79 0.72 1.10

μ̂1(α1, k = 1) 0.573 0.007 94.2% 3.04 3.09 0.99
μ̂1(α2, k = 1) 0.581 0.004 95.0% 2.25 2.24 1.01
μ̂1(α3, k = 1) 0.582 0.001 95.3% 2.10 2.07 1.01
ŜE1(α2, α1, k = 1) 0.008 0.003 94.9% 1.51 1.46 1.04
ŜE1(α3, α1, k = 1) 0.009 0.005 95.2% 2.02 1.98 1.02
ŜE1(α3, α2, k = 1) 0.002 0.002 96.4% 0.65 0.57 1.13

7. Analysis of cholera vaccine study in Matlab, Bangladesh. The Matlab cholera vac-
cine study was analyzed using the proposed methods. The identifiability assumptions dis-
cussed in Section 4 were assumed. The IPW estimators were computed with k = 3, and
Wald-type CIs were constructed from the empirical sandwich variance estimator. Following
VanderWeele and Shpitser (2011) and Perez-Heydrich et al. (2014), pretreatment variables
were considered for inclusion in the treatment model if they possibly caused cholera in-
fection, study participation or both. These variables included individual age (centered, in
decades) and distance from bari to the nearest river (in kilometers). Average age within the
bari (centered, in decades) was also considered, thus potentially allowing the treatment of
individuals to depend on baseline covariates of other individuals in the same bari. Candi-
date models were compared by evaluating predictive accuracy using leave-cluster-out cross-
validation (Chen, Zeng and Wang (2015)). Each candidate logistic mixed effects model was
fit using some combination of linear, quadratic or interaction terms for the pretreatment vari-
ables. The model selected for this analysis performed as well as or better than other candidates
and included a linear term for distance, linear and quadratic terms for age, and an interac-
tion term between linear distance and linear age; see Supplementary Material Appendix S.3
(Barkley et al. (2020)). The Tchetgen and Coull (2006) test yielded p = 0.051, suggesting
the random effect distribution might be non-Gaussian. However, removal of five small baris
(each with 15 individuals or less and no treated individuals) yielded p = 0.15, indicating
adequate fit when excluding these few baris. Similarly, removing 10 of the baris (out of the
6415 total) yielded p = 0.40. Inferences about the overall and spillover effects of the cholera
vaccine were nearly identical when these baris were excluded; see Figures S.4, S.5 and S.6
in the Supplementary Material Appendix (Barkley et al. (2020)). The variance component
of the random intercept was estimated to be σ̂ = 0.93 with 95% CI (0.90, 0.95) calculated
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FIG. 2. Estimates of the population mean estimands from the analysis of the Matlab cholera vaccine study. The
light green diamonds indicate μ̂(α, k = 3). The dark blue circles indicate μ̂0(α, k = 3), and the light pink squares
indicate μ̂1(α, k = 3). The dark brown ×’s indicate μ̂B(α) which target the type B estimands from Tchetgen
Tchetgen and VanderWeele (2012). All estimates are multiplied by 1000.

via profile likelihood using lme4::confint.merMod() (Bates et al. (2015)), indicating
correlation between individual treatment statuses within clusters.

Figure 2 depicts point estimates of the population mean estimands over policies ranging
from α = 0.2 to α = 0.6. Estimates are presented in units of one case of cholera infection
per 1000 individuals per year. Estimates of μ1(α) were relatively invariant to α, suggesting
minimal spillover effects when an individual is vaccinated. In contrast, estimates of μ0(α)

decreased noticeably as α increased, suggesting a protective spillover effect when an individ-
ual is not vaccinated. The estimates of μ(α) similarly suggest lower risk of cholera infection
at the population level for policies with greater levels of vaccine coverage.

Overall effect estimates and corresponding 95% CIs are depicted in Figure 3. Nega-
tive effects are favorable, corresponding to a reduction in cholera infections. For example,
ÔE(0.45,0.3, k = 3) = −1.2 (95% CI −1.8,−0.7), indicating a protective effect of policy
α = 0.45 compared to α = 0.3. In particular, we expect 1.2 fewer cases of cholera per 1000
person-years if there is 45% vaccine coverage compared to 30% vaccine coverage.

Estimated spillover effects are depicted in Figure 4. The estimates of ŜE1(α,α′, k = 3)

were approximately zero; the CIs included zero for almost all contrasts shown, indicating
mostly negligible spillover effect, if any, among treated individuals within clusters. However,
ŜE0(α,α′, k = 3) was negative for α > α′ and positive for α < α′, and all of the CIs excluded
zero. Thus, there is evidence of a protective effect of policies with higher probability of
treatment exposure conferred to individuals who did not themselves obtain treatment.

Figures 2 and 3 also depict point estimates of the type B estimands and corresponding
95% CIs, computed using the R package inferference (Saul and Hudgens (2017)) based
on the same logistic mixed effects propensity score model employed with the proposed es-
timators. Relative to the estimates of the proposed estimands, the estimates of the type B
estimands were smaller with corresponding 95% CIs that often included zero. For example,
ÔEB(0.2,0.5) = 0.7 (95% CI −0.3,1.7), while ÔE(0.2,0.5, k = 3) = 3.0 (95% CI 1.6,4.3).
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FIG. 3. Estimated overall effects from the analysis of the Matlab cholera vaccine study for selected contrasts.
The diamonds and light green lines indicate the point estimates and 95% CIs from ÔE(α,α′, k = 3). The ×’s and
dark brown lines indicate the point estimates and 95% CIs from ÔEB(α,α′) which target the type B estimands
from Tchetgen Tchetgen and VanderWeele (2012). All estimates are multiplied by 1000.

Thus, inferences based on the type B estimands tended to underestimate the population-level
utility of cholera vaccination compared to results based on the proposed estimands.

8. Discussion. Drawing causal inference from observational data when interference may
be present poses several challenges, including defining the causal effects of interest. Pro-
posed in this paper are causal estimands for use in observational studies when clustered in-
terference is plausible. The proposed causal effects are contrasts in mean potential outcomes
arising from different policies that change the distribution of treatment. IPW estimators were
proposed and shown to be consistent and asymptotically normal under certain identifying
assumptions, and empirical sandwich estimators were derived for the asymptotic variance of

FIG. 4. Estimated spillover effects from the analysis of the Matlab cholera vaccine study for selected contrasts.
The circles and dark blue lines indicate the point estimates and 95% CIs from ŜE0(α,α′, k = 3). The squares and
light pink lines indicate the point estimates and 95% CIs from ŜE1(α,α′, k = 3). All estimates are multiplied by
1000.
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the estimators. The IPW estimators performed well in finite samples with minimal bias, and
the Wald-type confidence intervals attained nominal coverage levels. These methods were
illustrated in an analysis of a large cholera vaccine study, providing evidence that increasing
the proportion of individuals vaccinated reduces cholera infections.

The policy effects considered here may be more relevant in public health settings such
as infectious disease research because within-cluster characteristics are incorporated into the
proposed estimands. To reduce the burden of infectious diseases through vaccination pro-
grams, it is important to consider the “ecological circumstances” of the disease (Ali et al.
(2009)). Previously proposed type B estimands define treatment effects in the counterfactual
scenario where individuals are independently exposed to treatment. However, scenarios in
which treatment exposures are correlated may represent more relevant ecological circum-
stances. Aside from controlled trials, in general one might expect treatment correlation in
settings where interference is present. Indeed, the cholera vaccine study analysis in Section 7
indicates strong evidence of treatment correlation within clusters. Unlike the type B esti-
mands, the proposed causal estimands instead describe counterfactual scenarios which allow
for within-cluster dependence in the individual treatment selections. Likewise, the proposed
estimands preserve the conditional odds ratio of treatment for any two individuals within
the same cluster. By incorporating these within-cluster features, inferences targeting the pro-
posed estimands may be of greater relevance to public health investigators and policy-makers
concerned with controlling the spread of infectious disease in a particular population.

An appealing aspect of IPW estimators is that no outcome modeling is required and no
assumptions are stipulated regarding the interference structure within clusters. On the other
hand, consistency of IPW estimators is, in general, dependent on the correct specification
of the treatment model. The estimators presented here also require that the model for the
counterfactual distribution of treatment is correctly specified. Therefore, in applications it will
be important to evaluate model fit. For the cholera vaccine analysis presented in Section 7,
model fit was assessed via predictive accuracy using leave-cluster-out cross-validation and
the Tchetgen and Coull (2006) test of the Gaussian random effect assumption. Fortunately,
inferences from generalized linear mixed effects models tend to be robust to misspecification
of the random effect distributional assumption (McCulloch and Neuhaus (2011)).

An alternative approach, which could potentially be pursued in future research, would be to
use nonparametric methods to improve robustness to misspecification of the treatment model.
However, such an approach may impede identifiability of the target causal estimands without
further untestable identifying assumptions. In addition, that the treatment vector Ai can take
on a large number of discrete possible values may pose difficulty if a nonparametric approach
is considered. For example, if Ni = 20, then there are greater than 106 possible realizations
of Ai . Thus, applying existing multi-class classifiers in this setting may be challenging.

Another limitation of the proposed methods is the computational difficulty due to a large
number of nuisance parameters, depending on the joint distribution of (Ai,Ni). Future work
may consider reducing the number of nuisance parameters, perhaps through approximating
the counterfactual treatment distribution. Future research may also consider assuming differ-
ent structures of interference to better align with the epidemiology of cholera; for example,
see Ali et al. (2018).

Typical of methods for drawing causal inference from observational data, the approach
here relies on exchangeability and positivity assumptions. Within the context of the cholera
vaccine study analysis, exchangeability assumes the cholera potential outcomes to be inde-
pendent of vaccination status conditional on the baseline covariates age and distance from
the bari to the nearest river. Because participants in the experimental component of the study
were randomized to vaccine or not, the exchangeability assumption should hold if the po-
tential outcomes are conditionally independent of individuals’ decisions to participate in the
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randomized trial given age and distance to the nearest river. These covariates were selected
on the basis of earlier analyses of these data by Perez-Heydrich et al. (2014) suggesting age
and distance may both be common causes of study participation and cholera infection.

The positivity assumption might be considered reasonable in the cholera vaccine study, as
all women and children in Matlab were invited to participate in the vaccine trial. However, if
certain subgroups of women or children would under no circumstances be willing to receive
the cholera vaccine, then the positivity assumption would be violated. The high number of
baris with no individuals vaccinated displayed in the right panel of Figure 1 is suggestive of
this possibility, although most of these baris tended to be small with no or few individuals
participating in the trial. In the absence of interference, possible positivity violations can give
rise to extreme weights. The IPW estimators considered here can be viewed as weighted
averages of the observed outcomes with weights ω̂(Ai,Ni, α)/P̂r(Ai |Li,Ni). For the cholera
vaccine study analysis, extreme weights were not observed. For example, for α = 0.5, the
median and maximum weights were 0.9 and 4.6, respectively; by comparison, estimates of
the type B estimands had median and maximum weights 1.1 and 8.5. Similar results were
obtained for α = 0.4 and α = 0.6. See Figure S.3 in the Supplementary Material Appendix
(Barkley et al. (2020)).

While this work is motivated by infectious disease research, it is applicable in many other
areas in which interference may be present. By defining causal effects of population-level
interventions (Westreich (2017)) in the presence of interference, the proposed estimands may
have greater practical utility and be more relevant to investigators and policy-makers.

APPENDIX

The IPW estimators introduced in Section 5 of the main paper are shown to be consistent
and asymptotically normal using standard large-sample estimating equation theory or “M-
estimation” (Stefanski and Boos (2002)). Presented for illustration below is a simple example
where each cluster has exactly n individuals, and at least one cluster i ≤ M is observed to
experience treatment f (Ai) = s for each s = 0,1, . . . , n. Let ωα = (ω(0, n,α), . . . ,ω(n −
1, n,α)) be the ordered vector of the possibly unique counterfactual probabilities excepting
ω(n,n,α); the law of total probability implies that ω(n,n,α) = 1 − ∑n−1

s=0 ω(s,n,α). Let
θα = (β0, β1, σ, γ0α,ωα,μ(α)) be the ordered vector of all parameters to estimate. Next,
estimating functions corresponding to each element of θα are introduced.

Estimating functions for the parameters ν = (β0, β1, σ ) in the mixed treatment model are
the score functions of the log likelihood. Let ψν = (ψβ0,ψβ1,ψσ )ᵀ be a column vector de-
noting these estimating functions. For β1, the estimating function is

ψβ1(Oi; θα) = ∂

∂β1
log

{
Pr(Ai |Li,Ni)

}
,

where Pr(Ai |Li,Ni) is given in (2) of the main text. For γ0α , define the estimating function

ψγ0α
(Oi; θα) =

{
N−1

i

Ni∑
j=1

∫
L−1(γ0α + β1Lij + bi) d�(bi;σ)

}
− α.

For each ω(s,n,α) ∈ ωα , define the estimating function

ψω(s,n,α)(Oi; θα) =
{ ∑

a∈A(n,s)

Prα(Ai = a|Li,Ni) − ω(s,n,α)

}
I (Ni = n),

and let ψωα = (ψω(0,n,α),ψω(1,n,α), . . . ,ψω(n−1,n,α))
ᵀ. For the target estimand, define

ψμ(α)(Oi; θα) = Ȳiω(Ai,Ni, α)

Pr(Ai |Li,Ni)
− μ(α),
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where ω(Ai,Ni,α) = ( Ni

f (Ai)

)−1
ω(f (Ai),Ni, α) and where Pr(Ai |Li,Ni) is the propensity

score for the cluster as in (2) of the main text.
Let ψθα = (ψν,ψγ0α

,ψωα ,ψμ(α))
ᵀ, and let q = |θα| be the number of parameters to esti-

mate. The estimator θ̂α can be expressed as a solution to the following system of estimating
equations:

M∑
i=1

ψθα(Oi; θα) =
M∑
i=1

⎡⎢⎢⎣
ψν(Oi; θα)

ψγ0α
(Oi; θα)

ψωα(Oi; θα)

ψμ(α)(Oi; θα)

⎤⎥⎥⎦ = 0q×1.

To show that μ(α) is the solution to
∫

ψμ(α)(O|θα) dFO(O) = 0, note∫
ψμ(α)(O|θα) dFO(O) = E

{ ∑
a∈A(N)

Ȳ(a)ω(a,N,α)

Pr(A = a|L,N)
I (A = a)

}
− μ(α)

= EL,N

[ ∑
a∈A(N)

{
EA,{Y (a)}|L,N

(
Ȳ(a)ω(a,N,α)

)
×EA,{Y (a)}|L,N

(
I (A = a)

Pr(A = a|L,N)

)}]
− μ(α)

= E

{ ∑
a∈A(N)

Ȳ(a)ω(a,N,α)

}
− μ(α);

the first term in the last statement equals μ(α) by definition, and so μ(α) solves the equation∫
ψμ(α)(O; θα) dFO(O) = 0. Since ψν are simply the score functions,

∫
ψν(O; θα) dFO(O)

= 0|ν|×1. Note that the right side of (3) in the main text equals α + ∫
ψγ0α

(O; θα) dFO(O),
so γ0α solves

∫
ψγ0α

(O; θα) dFO(O) = 0. Finally,
∫

ψω(s,n,α)(O; θα) dFO(O) = 0 fol-
lows from ω(a,n,α) = EL{Prα(A = a|L,N = n)}. Combining these results shows that∫

ψθα(O; θα) dFO(O) = 0q×1.

From Stefanski and Boos (2002), θ̂α
p−→ θα and

√
M(θ̂α − θα)

d−→ N(0,�α), where
�α = U−1

α Wα(U−1
α )ᵀ for Uα = E{−ψ̇θα (O; θα)} and Wα = E{ψθα(O; θα)⊗2}. Consis-

tent estimators for Uα and Wα are Ûα = M−1 ∑M
i=1{−ψ̇θα (Oi; θα)|

θα=θ̂α
} and Ŵα =

M−1 ∑M
i=1{ψθα(Oi; θ̂α)⊗2}. The empirical sandwich variance estimator �̂α = Û−1

α ×
Ŵα(Û−1

α )ᵀ is consistent for �α , and so V̂ar(μ̂(α)) = M−1[�̂α][q,q] approximates the vari-
ance of μ̂(α) for large M , where [�̂α][q,q] is the bottom-right element of �̂α .

An analogous approach is described for ÔE(α,α′, k), where it is now necessary to estimate
γ0α′ and ωα′ as well. Let θα,α′ = (ν, γ0α, γ0α′,ωα,ωα′,OE(α,α′)) be the ordered vector of all
parameters to estimate. For each ω(s,n,α) ∈ ωα , define the estimating function

ψk,ω(s,n,α)(Oi; θα,α′)

=
{
k−1
s,n

(
n

s

) ∑
a∈A(n,s,k)

Prα(Ai = a|Li,Ni) − ω(s,n,α)

}
I (Ni = n),

and let ψk,ωα = (ψk,ω(0,n,α),ψk,ω(1,n,α), . . . ,ψk,ω(n−1,n,α))
ᵀ. For the target estimand, define

ψOE(α,α′)(Oi; θα,α′) = Ȳi{ω(Ai,Ni,α) − ω(Ai,Ni,α
′)}

Pr(Ai |Li,Ni)
− OE

(
α,α′).

It is easily shown that
∫

ψOE(α,α′)(O; θα,α′) dFO(O) = 0 using a proof analogous to the one
for ψμ(α) presented above. In a similar manner, that

∫
ψk,ω(s,n,α)(O; θα,α′) dFO(O) = 0 fol-

lows directly from
∫

ψω(s,n,α)(O; θα) dFO(O) = 0. Finally, let ψk,θα,α′ = (ψν,ψγ0α
,ψγ0α′ ,
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ψk,ωα ,ψk,ωα′ ,ψOE(α,α′))ᵀ. Then, θα,α′ solves
∫

ψk,θα,α′ (O; θα,α′) dFO(O) = 0q ′×1, θ̂α,α′

solves
∑M

i=1 ψk,θα,α′ (Oi; θα,α′) = 0q ′×1 for q ′ = |θα,α′ | and the above results follow.

The difference in ÔE(α,α′) and ÔE(α,α′, k) arises solely from the estimating func-
tions used for the counterfactual probabilities, that is, ψωα and ψk,ωα , respectively. When( n
�n/2

) ≤ k, then A(n, s) = A(n, s, k) for all s, and ψωα is equivalent to ψk,ωα . As mentioned
in the main text, one could use different values of k for distinct estimating equations. For
example, one could estimate ω(s,n,α) with ψk,ω(s,n,α) and ω(s′, n′, α) with ψk′,ω(s′,n′,α),
where ω(s,n,α) �= ω(s′, n′, α) and k �= k′, and the above results would still apply.
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SUPPLEMENTARY MATERIAL

Supplement to “Causal inference from observational studies with clustered interfer-
ence, with application to a cholera vaccine study” (DOI: 10.1214/19-AOAS1314SUPP;
.pdf). This document contains: a short discussion on estimating counterfactual probabilities,
detailed instructions for empirically determining the true values of the estimands in the sim-
ulation study presented in the main paper, model fit statistics for several models considered
for the main data analysis, a comparison of the IPW weights for the proposed and the type B
estimators, and comparisons of results for the full dataset vs. those after removing several
baris.
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