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OBJECTIVE BAYES MODEL SELECTION OF GAUSSIAN
INTERVENTIONAL ESSENTIAL GRAPHS FOR THE
IDENTIFICATION OF SIGNALING PATHWAYS!

BY FEDERICO CASTELLETTI AND GUIDO CONSONNI

Universita Cattolica del Sacro Cuore

A signalling pathway is a sequence of chemical reactions initiated by a
stimulus which in turn affects a receptor, and then through some intermedi-
ate steps cascades down to the final cell response. Based on the technique
of flow cytometry, samples of cell-by-cell measurements are collected un-
der each experimental condition, resulting in a collection of interventional
data (assuming no latent variables are involved). Usually several external in-
terventions are applied at different points of the pathway, the ultimate aim
being the structural recovery of the underlying signalling network which we
model as a causal Directed Acyclic Graph (DAG) using intervention calcu-
lus. The advantage of using interventional data, rather than purely observa-
tional one, is that identifiability of the true data generating DAG is enhanced.
More technically a Markov equivalence class of DAGs, whose members are
statistically indistinguishable based on observational data alone, can be fur-
ther decomposed, using additional interventional data, into smaller distinct
Interventional Markov equivalence classes. We present a Bayesian method-
ology for structural learning of Interventional Markov equivalence classes
based on observational and interventional samples of multivariate Gaussian
observations. Our approach is objective, meaning that it is based on default
parameter priors requiring no personal elicitation; some flexibility is however
allowed through a tuning parameter which regulates sparsity in the prior on
model space. Based on an analytical expression for the marginal likelihood
of a given Interventional Essential Graph, and a suitable MCMC scheme,
our analysis produces an approximate posterior distribution on the space of
Interventional Markov equivalence classes, which can be used to provide un-
certainty quantification for features of substantive scientific interest, such as
the posterior probability of inclusion of selected edges, or paths.

1. Introduction. In biology, a signalling pathway (or cascade) is a sequence
of chemical reactions initiated by a stimulus acting on a receptor, that is subse-
quently passed to the cell interior, and next to effector molecules, ultimately re-
sulting in a cell response. Different reagents, capable of inhibiting or activating
signalling nodes, are applied at several points of the pathway leading to distinct in-
terventional settings, which define a collection of pathways corresponding to dis-
tinct triggers. Rather than considering them in isolation, one should embed such
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pathways into a network, in order to explicate potential interactions as well as other
complexities. In this context the protein signalling study of Sachs et al. (2005) rep-
resents an important contribution. The resulting data set contains measurements of
the abundance of 11 phosphoproteins and phospholipids recorded under different
experimental settings in primary human immune system cells using flow cytome-
try.

More generally however, experimental data may contain both interventional and
observational data, the latter arising through measurements on variables without
external interventions. Data having this mixed configuration define the scope of
this paper. Specifically we consider continuous multivariate observations whose
joint distribution belongs to a graphical model, namely a family of probability
distributions satisfying conditional independencies encoded by a graph (Lauritzen
(1996)). In particular we rely on Directed Acyclic Graphs (DAGs), namely graphs
having only directed edges between pairs of vertices; see, for instance, Friedman
(2004), Shojaie and Michailidis (2009), and assume that the joint distribution of
each observation is multivariate Gaussian. Each vertex of the DAG represents a
variable in the system, and the goal is recovering the structure of the DAG which
supposedly generated the observations (structural learning). When all the vari-
ables are discrete, DAGs are often referred to as Bayesian networks.

An important issue we need to address at this stage is identifiability. If only
observational data are available, then one cannot in general distinguish between
Markov equivalent DAGs, that is distinct DAGs encoding the same set of condi-
tional independencies; see, for instance, Verma and Pearl (1991). Such DAGs can
however be collected into Markov equivalence classes, each one represented by
an Essential Graph (EG), also called Completed Partially Directed Acyclic Graph
(CPDAG); see Andersson, Madigan and Perlman (1997b) and Chickering (2002).
Structural learning then entails the identification of the underlying EG.

DAG models can be used purely to structure the joint distribution of a set of ran-
dom variables leading to inference in terms of association. Causal statements how-
ever require assumptions beyond the nature of the joint distribution (Pearl (1995)).
One possibility is to assume that the data were generated by a DAG, and that there
are no unmeasured confounders. This is a strong assumption which is required
however because graphical Markov models are not closed under marginalization
(Richardson and Spirtes (2002)). If not satisfied, it may lead to erroneous conse-
quences.

The notion of a causal DAG can be made precise by means of the “do” calculus
(Pearl (2000)) and the allied notion of interventional distribution. Notice that this
is predicated on a given DAG and represents an assumption about the behavior of
the data generating mechanism. Summaries of the interventional distribution, such
as the direct causal effect of a variable onto another can then be used. At this stage a
couple of complications arise. On the one hand a DAG is generally not identifiable
using observations alone even under the assumption of faithfulness (Spirtes, Gly-
mour and Scheines (2000)). This leads to an equivalence class of DAGs. For each
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of these a distinct interventional distribution holds: as a consequence we obtain
a collection of causal effects for the same intervention which we can try to sum-
marize in some meaningful way. Additionally and importantly, the structure of the
true underlying graph is typically unknown, and consequently one first needs to es-
timate an equivalence class and then carry out a causal analysis followed by some
summarization (e.g., establishing a lower bound on the causal effect of a variable
onto a response); this program is admirably carried out in Maathuis, Kalisch and
Biihlmann (2009).

A further possibility, which is the focus of this paper, is to assume that, besides
observational data, we also collect interventional data. We can then couple the
interventional distribution with the standard observational distribution for DAGs
to obtain the overall joint distribution for observational and interventional data
(Hauser and Biihlmann (2015)).

As for the purely observational case, DAGs can still be partitioned into inter-
ventional Markov equivalence classes (Hauser and Biihlmann (2012)), each class
being represented by an Interventional Essential Graph (I-EG). Since the size of
an equivalence class represents a measure of complexity of causal learning (He
and Geng (2008)), it is important to emphasize that interventional Markov equiv-
alence classes are smaller than the corresponding observational classes. Accord-
ingly, identifiability of the true data generating model will be enhanced through
interventions, and this represents an important motivation for the methodology de-
veloped in this paper.

A comprehensive and rigorous treatment of joint Gaussian modeling of obser-
vational and interventional data for structural learning of I-EGs is presented in
Hauser and Biihlmann (2012) where the notion of interventional Markov equiv-
alence class and I-EG is presented together with several characterizations. Addi-
tionally they derive maximum likelihood estimators and provide algorithmic op-
erations to efficiently traverse the search space of I-EGs leading to their GIES
algorithm. The companion paper Hauser and Biihlmann (2015) proves in particu-
lar consistency of the BIC model selection procedure for the identification of the
true underlying I-EG. We refer to these two papers for a variety of technical results
on inference, model selection consistency as well as computation.

In this paper we present an objective Bayes methodology for structural learn-
ing of Gaussian I-EGs based on observational and interventional data. In this way
we are able to exhibit a measure of uncertainty for several quantities of interest
through their corresponding posterior distribution. In particular we can compute
an approximate posterior probability of specific graphical structures of interest,
as well as the posterior inclusion probability of any edge, thus providing a more
informative answer to substantive scientific queries. We build on results obtained
in Castelletti et al. (2018) for structural learning of Gaussian EGs based on ob-
servational data only, extending their methodology to manage observational and
interventional data jointly. We derive a closed-form expression for the marginal
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likelihood of an interventional essential graph, and propose an MCMC strategy to
explore the space of I-EGs.

The rest of the paper is organized as follows. In Section 2 we give a ba-
sic overview of graphical models, and discuss interventions on DAGs together
with the notion of interventional Markov equivalence as formalized in Hauser and
Biihlmann (2012). In Section 3 we present our methodology for the computation of
the marginal likelihood of an I-EG. In Section 4 we summarize the MCMC strategy
that we adopt to perform structural learning of interventional Markov equivalence
classes of DAGs. Then, we apply the proposed methodology to some simulation
settings (Section 5) and to the analysis of the protein-signaling data (Section 6).
Finally Section 7 offers a brief discussion together with possible future develop-
ments. To ease the flow of ideas, a few technical results are presented in the Sup-
plementary Material (Castelletti and Consonni (2019)).

2. Background.

2.1. Graphical models. A graph G is a pair (V, E) where V ={1,...,q} is
a set of vertices (or nodes) and £ C V x V a set of edges. Let u,v e V, u # v.
If (u,v) € E and (v,u) ¢ E we say that G contains the directed edge u — v.
If instead (u,v) € E and (v,u) € E we say that G contains the undirected edge
u — v. Two vertices u, v are adjacent if they are connected by an edge (directed
or undirected). Moreover, if u — v is in G we say that u is a neighbor of v in G.
The neighbor set of v is denoted by neg(v); the common neighbor set of # and v
is then neg(u, v) = neg(u) N neg(v). For any pair of distinct nodes u, v € V, we
say that u is a parent of v if u — v. Conversely, we say that v is a son of u. The
set of all parents of u in G is denoted by pag (u).

A graph is called directed (undirected) if it contains only directed (undirected)
edges. A sequence of distinct vertices {vg, vy, ..., vx} in G is a path from vg to
v if G contains vj_; —vj orvj_; — v; forall j =1,..., k. A path is directed
(undirected) if all edges are directed (undirected). Moreover, we say that a path is
partially directed if it contains at least one directed edge. A path such that vo = vg
is called a cycle. Let A C V. We denote with G4 = (A, E4) the subgraph of G =
(V, E) induced by A, whose edge setis E4 = EN (A x A).

An undirected (sub)graph is complete if its vertices are all adjacent. A particu-
lar class of undirected graphs is represented by decomposable graphs, also called
chordal or triangulated. An undirected graph is decomposable if every path of
length / > 4 contains a chord, that is two nonconsecutive adjacent vertices; see
Lauritzen (1996).

A graph with only directed edges is called a Directed Acyclic Graph (DAG for
short, denoted by D) if it does not contain cycles. A graph with no directed cycles
that may contain both directed and undirected edges is called a Chain Graph (CG)
or simply Partially Directed Acyclic Graph (PDAG). For a chain graph G we call
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chain component T C V a set of nodes that are joined by an undirected path. The
set of chain components of a CG is denoted by 7.

A subgraph of the form u — z <— v, where there are no edges between u and v,
is called a v-structure (or immorality). The skeleton of a graph G is the undirected
graph on the same set of vertices obtained by removing the orientation of all its
edges.

Let now D be a DAG on the set of vertices V. We denote with [D] its Markov
equivalence class, that is, the set of all DAGs with vertex set V encoding the
same conditional independencies of D. We know from Verma and Pearl (1991),
Theorem 2, that D’ € [D] if and only if D and D’ have the same skeleton and
v-structures. Moreover, the Markov equivalence class [D] can be uniquely repre-
sented by the EG D* = |J{D'|D’ € [D]}, where the union is to be interpreted over
the edge sets, so that u — v in D and v — u in D’ gives u — v in D*. An important
result of Andersson, Madigan and Perlman (1997a) is the characterization of an
EG as a CG with decomposable chain components.

THEOREM 2.1 (Andersson, Madigan and Perlman (1997a), Theorem 4.1). A
graph G = (V, E) is the EG D* for some DAG D with vertex set V if and only if
G satisfies the following four conditions:

(i) GisaCG;
(i1) for each chain component T € T the subgraph G is a decomposable UG,
(iii) G has no flags (no induced subgraphs of the form u — v — z);
(iv) each directed edge u — v contained in G is strongly protected (as illus-
trated in Definition 3.3 of Andersson, Madigan and Perlman (1997a)).

2.2. Interventions on DAGs. In this section we introduce interventions on
DAGs and summarize the main results about interventional Markov equivalence
developed by Hauser and Bithlmann (2012).

LetYy, ..., Y, be asetof random variables from which we collect n multivariate
observations yq,...,y,, D= (V, E) a DAG. As we associate each variable Y; to
a vertex in D, we constrain the distribution of each y; by the edges in D. We then
write

(D o =11 FOilYpapii)
jev

where pap(j) is the set of parents of node j in D. Let now I C V and Y; =
{Y;, j € I} the corresponding subset of random variables. Following Pearl (2000),
an intervention on / is defined as the action of setting or forcing Y7 to the value of
arandom variable U; with density £ () such that Uy is independent of Y, for each
J €pap(l). We call I an infervention target. For a given DAG D, an intervention
on [ destroys the original dependence between the intervened variable Y; and its
parents in D and leads to the definition of intervention graph.
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FIG. 1. A DAG D and the intervention DAG D%} for the target 1 = {2}.

DEFINITION 2.1 (Hauser and Biihlmann (2012), Defn. 5). LetD = (V, E) be
a DAG, I C V an intervention target. We call intervention graph of D the DAG
DI = (v, E"), with ET := {(u,v) : (u,v) € E,v ¢ I}.

In the following we assume for simplicity single node interventions, thatis || =
1, which is also the case of the Sachs data. For example, in Figure 1 we have a
DAG D and, given the target I = {2}, the corresponding intervention DAG D%},
obtained by removing all edges u — 2. The post-intervention joint distribution of

(Y1,...,Yy)|Y; < Uj is then obtained using the truncated factorization
2) for QY <UD =[] fOilypapiy) - fOD-
J#1

With I = @ (no interventions) and using the convention fpa(y|Yy < Up) =
fp(y), equation (2) reduces to equation (1), which holds in the observational set-
ting.

A crucial aspect of (2) is that the manipulated variable and its parents are now
marginally independent. This feature can be exploited if a post-intervention sam-
ple is available and provided faithfulness is assumed—that is, any conditional in-
dependence relation in the joint distribution is entailed by the factorization (1)—in
order to orient undirected edges of an EG. One approach is presented in He and
Geng (2008). They first estimate an EG based on observational data, and then
carry out an independence test between the intervened variable and its parents us-
ing interventional data, whose outcome in turn determines the orientation of edges
connecting node I, as well as other edges whose reverse orientation creates v-
structures or cycles. For instance, suppose an undirected edge / — j occurs in the
estimated essential graph. Then I — j can be oriented as / < j if the interventional
sample suggests Y; 1L Y; (because the arrow would drop in the ensuing interven-
tion DAG; see Definition 2.1), otherwise it is oriented as / — j (because the ar-
row would remain in the ensuing intervention DAG). Given the newly determined
EG one can sequentially apply the same principle using further interventions until
eventually all edges are oriented, so that the EG becomes a DAG. This method,
called active learning, proceeds in stages and is especially suited from an experi-
mental design perspective, where at each stage one should determine what is the
best course of action in terms of the variables to intervene upon.
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An alternative approach followed by Hauser and Biihlmann (2015)—as well as
ourselves—jointly models all the data (observational and interventional) simulta-
neously. The goal however is the same, that is making edges distinguishable so that
they can be oriented given interventional data. However in this setting the goal is
achieved through a characterization of the model space which incorporates upfront
the information originating from the collection of intervention targets, and is en-
capsulated in the notion of interventional Markov equivalence class; see below for
details.

Consider now a set of intervention targets Z = {I,k =1, ..., K}, also called
a family of targets. In particular, we say that 7 is conservative if for each j € V
there is at least one I € Z such that j #£ Ix; see Hauser and Biihlmann (2012) for a
detailed discussion about the importance of such property. Each target is then asso-
ciated to a density f;(-) assigned to Y;,. We also assume Uy, independent of Uj, ,
for each h # k. We know that two DAGs D; and D, are (observationally) Markov
equivalent if fp, () and fp,(-) encode the same conditional independencies (Sec-
tion 2.1). Markov equivalence with respect to a family of intervention targets 7
states that D1 and D, are interventionally Markov equivalent if fDII(-) and fDé ()
encode the same conditional independencies for each / € Z. Theorem 2.2 provides
a graphical criterion to establish if D and D, are Markov equivalent under the
conservative family of targets 7.

THEOREM 2.2 (Hauser and Biithlmann (2012), Theorem 10). Let D; and D,
be two DAGs and I a conservative family of targets. Then, Dy and D, are 1-
Markov equivalent (D1 ~1 Dy) if foreach I € L, Dll and Dé have the same skele-
ton and v-structures.

Let now [D]z be the Z-Markov equivalence class of D, that is the set of all
DAGs that are Z-Markov equivalent to D. An important consequence of Theo-
rem 2.2 is that interventions based on a conservative family of targets define a
finer partition of DAGs into equivalence classes; see also Hauser and Biihlmann
(2012) for details. For instance, in Figure 2 we have a Markov equivalence class
with three Markov equivalent DAGs, D1, D,, D3. However, under the family of
targets Z = {@, {2}}, D3 is not Z-Markov equivalent to D; and D;.
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FIG. 3. An EG G and two T-EGs 7G| and 7G> for T ={@, {2}}. G is the representative of the
Markov equivalence class {D1, D>, D3} in Figure 2 which is partitioned into two Z-Markov equiva-
lence classes: {D1, D;} represented by 7G| and {D3} represented by 7G, = Ds3.

2.2.1. Interventional essential graphs. As for the observational case (Sec-
tion 2.1), each interventional Markov equivalence class can be uniquely repre-
sented by a special CG called Interventional Essential Graph (Z-EG).

DEFINITION 2.2 (Hauser and Biihlmann (2012), Defn. 11). Let D be a DAG
and 7 a conservative family of targets. The Z-essential graph of D is defined as

76(D) = UD*e[D]I D*.

Figure 3 shows the EG G representing the Markov equivalence class {D1, D>,
D5} of Figure 2 and the Z-EGs 7G1, 7G> for the two Z-Markov equivalence classes
{D1, D>} and {D3}. Clearly, 1G(D) = 7G(D*) for each D* € [D]z. In the sequel
we often use G to identify an Z-EG without making explicit its originating DAG
and family of targets Z. The following theorem gives the characterization of an
Z-EG.

THEOREM 2.3 (Hauser and Biihlmann (2012), Theorem 18). Let D be a DAG
on the set of vertices V and I a conservative family of targets. A graph G is the
T-essential graph of D if and only if:

(1) G is a chain graph;
(ii) for each chain component t € T, G; is chordal,
(iii) G has no induced subgraphs of the form u — v — z (flags);
(iv) every arrow u — v is strongly L-protected (as illustrated in Definition 14
of Hauser and Biihlmann (2012));
(v) G has no line u — v for which there exists some I € T such that |I N
{u,v}|=1.

Recall that a chordal graph (also called decomposable) can be uniquely repre-
sented through its set of separators and cliques, which are denoted by C and S,
respectively; see, for instance, (Lauritzen (1996), p. 18). While Conditions (i), (ii),
(iii) are the same as in Theorem 2.1, Condition (iv) is a natural extension of the
corresponding one. Condition (v) is instead specific to the interventional setting
and of particular interest for this work. It says that, given a family of targets Z,
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each Z-EG g is such that it has no chain components containing nodes on which
at least one intervention was performed together with nodes on which no interven-
tions were made.

3. Gaussian interventional essential graphs. In this section we focus on
Gaussian interventional essential graphs. The objective is the computation of the
marginal likelihood of an Z-EG given a collection of (observational and) inter-
ventional data. Results are based on the marginal likelihood of Gaussian models
obtained by adopting the notion of Fractional Bayes Factor. Please refer to the
Supplementary Material for a concise background on such results.

3.1. Likelihood and prior factorization. In the interventional setting of Sec-
tion 2.2 a dataset consists of a collection of multivariate observations each one
associated to an intervention target. More specifically, we assume to have, for
each target Iy € Z n'® i.i.d. g-variate observations from the sampling distribu-
tion of (Y1,..., Yy)|Yy, < Uy, collected in the n®, g ) matrix Yk =yk, By row-
binding the matrices Y k I € T, we then obtain the (n, q) data matrix Y, where
n=yy n®  Recall from Theorem 2.3 that an Z-EG G is a CG with set of chain
components 7. Therefore, according to Andersson, Madigan and Perlman (2001),
we can write the factorization

3) fo¥10g) =[] fo. (Y |Ypag (o) Og,),
teT

where Y, denotes selected columns of the data matrix ¥ corresponding to the
subset T C V. @g is instead a global parameter indexing the graphical model G
and ®g, a local parameter for chain component 7.

For a given family of targets Z, let S, be the set of all Z-EGs on ¢ nodes. As
a consequence of Condition (v) in Theorem 2.3 we have that each Z-EG G € &,
contains a chain component T = [ for each Iy € Z. Hence, we can write

fa. (Y]HYf)ag(r)’ 0g1) if Iy #t,

(4) fo. (YEIYE, ). ©g,)=1" .
717 pag(7) fgf (yl;“/,l;) if Ik =1,

where Y’; denotes columns indexed by 7 of Y*. The first case of equation (4) is
the usual factorization for G; which holds for all those observations Y’; such that
I # 7, that is when no interventions are performed on chain component I = 7.
The second case corresponds instead to the (intervention) density fg, (-), where the
intervention on I destroys the original dependence between node [ = 7 and its
parents. Moreover, W; is a parameter modelling the effect of the intervention on
chain component 7, while @, is the chain component parameter of the conditional
distribution of those observations not arising from an intervention on t. Implicitly
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we assume that 8 does not depend on ;. Assuming now yq, ..., y, independent
we can write each term in (3) as

fgr (YT |Ypag (t)» Ggr)

kil #t k:ly=t

= fo (ViV} 06,) - T] o (719%).
k:ly=t

being Y¥ a (n}, |t|) matrix collecting all the observations Y'§ such that I # 7. We
assume that the prior on ®¢ factorizes as

(6) p(©g) =[] r(®g,).

teT
while for each chain component parameter ®¢, we assume g, a priori indepen-
dent of ¥¥, for all k. Hence, we obtain

(7 p(®©g,) =p®g,) - [] p(¥h).

k=t

which extends the assumption of global parameter independence (Cowell et al.
(1999)) to an interventional setting.

3.2. Marginal likelihood. Under the assumptions of Section 3.1 the marginal
likelihood of the Z-EG G given the data Y can be computed as

mg) =TT [ fo.VelW o). ©6,)0(O5,) dOg,
teT
(8)
=[] ma. ¥l ¥pagr))-
teT

From Theorem 2.3 recall that each G; is a decomposable (chordal) graph (possibly
made up by a single node). Let C; be its set of (maximal) cliques and S; the
corresponding set of separators; see also Lauritzen (1996). Then

nCeCT mg, (Yc | X¢)
l_[SeSr mg, (Y c|X¢) ’

9) mg,(Y¢|X:)=

where X; =Y pag(r) and

(10) mg, (Y 1c1Xo) =mg, (Y5 1X5) - [] ma.(¥%),
k:l =t

where J C t refers to a generic clique or separator of G.
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Let Z be a family of targets, G an Z-EG. For each observation (row) y;_ in )
we assume

—1
(11) Ja. (y:'irly?ipag(t)’ ogz) ZMT|(y?<,r|“T + ny;'k,pag(r)’ Sng )’

independently with respect to i, where a; + I'; y} pag(7) denotes the conditional

mean, & = — e, o(1) I'; is the matrix of regression parameters and 2g,
the conditional precision matrix; see also Castelletti et al. (2018). Now, letting

1 ol
12 xF_ = , B,=|_%|,
( ) 0T |:y;k,pag(t):| T |:r;|':|
we can write
(13) Fou 371V pag o> 06.) = Niei (37 | B %7 1)

Please observe that the matrix B, consists of unconstrained component since the
Z-EG G has no flags (Condition (iii) of Theorem 2.3). In matrix normal notation
we can write

(14) fo.(YEIY o0y, 02) = Nag 1o (Y51 X5 B, Ls, 2;)),
being
.
X7
X7 = :
X e

Consonni, La Rocca and Peluso (2017) derive a formula to compute the marginal
likelihood of a decomposable UG allowing for the presence of covariates, by
adopting an objective Bayes approach based on the notion of fractional Bayes fac-
tor; see also the Supplementary Material (Castelletti and Consonni (2019), Section
1). Their approach relies on the methodology for prior construction introduced by
Geiger and Heckerman (2002). According to this method, it is sufficient to specify
a prior distribution under any complete DAG model (that is when g, is uncon-
strained) which is used to compute the corresponding marginal likelihood given
the data Y ;. The marginal likelihood of any graphical model G, with g Markov
w.r.t. a decomposable graph can be derived automatically. Such methodology is
then extended in Castelletti et al. (2018) to the EG setting. Formally, to compute
each term mg_ (Y, |Ypag(,)) in (8) we need a formula for the marginal likelihood of
a Gaussian multivariate regression model; see (14). Moreover, because of assump-
tion (7), we can specify priors separately for each chain component 7. Let £,
denote the precision matrix of the variables in T under a complete (unconstrained)
graph. Assuming the default prior on (B, ),

ap—|t|-1

5) p(Br, Q) o |R:] 2,
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the fractional marginal likelihood for model (14) restricted to the subset J C 7 is
obtained as

— 7 *_ —
(”?_”3)‘” F 7 (uD |‘]|+n'[ |Pag(f)| 1)
’ ap— ng—|pag(t)|—
I'yi( 0= )
(16) ]
|J|(aD—\J|+n§) ok
n 2 AxT Ax ,__ 0
0
X (l’l_*> |EJ,‘[E],T} :

where we will set, in general, ap = |t| — 1 according to Geisser and Cornfield
(1963); see also the Supplementary Material (Castelletti and Consonni (2019),
Section 1.1). We focus now on the densities fgI (-) of formula (5). Assuming for
each ylf"r in y’j,

(17) fo. kW) = N(EIEE (65) 7).
we obtain
(18) fo. (YE1E) = Ny (Y185 T, (65) 7).

where glff = (3’;, ¢’r‘) is the chain component parameter modelling the effect of the
intervention with target I on the chain component t and

k k
0 =1,w&;,

being 1,4 the unit vector of length n®_ Starting from the default prior for

(8%, 95,

ak -2
k ok k|2
p(af’¢f)oc‘¢f| : ’
we obtain (see Supplementary Material, Section 1.3)
®
. a0 ® e +;z 1)
mg (Yo) =) 7 —p

r(eeta =t
(19) ® k)
apn’+n
n(k) D =70 ngk)_ngc)
0 )\ —
X (m) (),

nr

where sgk) = :’(:ki (elgkt) )2, el.(’kf) = yl(fr - j}f and y* is the sample mean of y*. There-

fore, the overall marginal likelihood of a given Z-EG G can be recovered comput-
ing each term mg, (Y ; -|X) in (10) using (16) and (19). These are combined in
(9) to obtain mg, (Y ;| X ;) and finally mg(Y) according to (8).
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4. MCMC algorithms. It is well known that the number of EGs grows super-
exponentially in the number of nodes and then an exhaustive enumeration of all
possible EGs on g nodes is feasible only for small values of ¢; see, for instance,
Gillispie and Perlman (2002). The same happens in the Z-EG space which is
generally larger than the corresponding EG space. Hence, model selection of Z-
EGs requires the adoption of MCMC algorithms. In Castelletti et al. (2018) an
MCMC on the EG space is implemented using the Markov chain on (observa-
tional) Markov equivalence classes of DAGs proposed by He, Jia and Yu (2013).
Similarly, we construct an MCMC on interventional Markov equivalence classes
of DAGs, which is resumed in Section 2 of the Supplementary Material. The out-
put of Algorithm 1 (Supplementary Material, Section 2) consists of a collection of
T-EGs (G, ..., GD}. Typically this is used to approximate the posterior distri-
bution across models or equivalently to estimate posterior model probabilities. The
number of visits of each model over the total number of iterations 7 is generally
used as such approximation. Moreover, we can approximate the marginal posterior
probability of inclusion of u — v as

Pusv¥)= > p@GlY)

GeS,y

| ¢ ®
~ _ZHM—YU(Q ! )7
Tt:l

(20)

where S, is the class of Z-EGs containing the directed edge u — v (recall that
an undirected edge u — v is equivalent to u — v and v — u) and [,,_,,, is the indi-
cator function taking value 1 if and only if G® contains u — v. We can also use
these probabilities to summarize the MCMC output with a single model estimate.
In model selection of EGs (Castelletti et al. (2018)) we adopt the so-called pro-
Jjected median probability graph model. This is constructed by including all edges
u — v such that p,_,,(Y) > 0.5 (median probability graph model) and then con-
structing any consistent extension of the completely partially directed graph thus
obtained. The final output is then the EG representing the Markov equivalent class
of such consistent extension; see Castelletti et al. (2018) for details. The use of the
projected median probability graph model in the EG setting does not introduce any
discretion because all consistent extension belong to the same Markov equivalence
class and so the resulting EG is unique. This is not guaranteed in general in the Z-
EG context. To obtain a point estimate which summarizes our MCMC output we
then proceed as follows.

Starting from the median probability graph model, which may contain both di-
rected and undirected edges, we first obtain a directed version (DAG). Specifically,
we first take all the directed edges in G. Then, for each undirected edge u — v in G
we take ¥ — v if and only if p,,—,(Y) > py—,(Y). Finally, from the DAG D thus
obtained, we construct the corresponding Z-EG, that is the representative of the
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interventional equivalence class of D. We call again such result projected median
probability (graph) model.

The median probability model specifies a threshold for edge inclusion k = 0.5.
Alternatively, it is possible to choose k by looking at the expected false discov-
ery rate (FDR) (Benjamini and Hochberg (1995)). Set for simplicity p,—,(¥) =
Pu—v; Then, the expected FDR for a given threshold k € (0, 1) can be defined as

Zthzl Zu;ﬁv(l — Pu—s)(pu—sv = k)
2321 Zu;ﬁv I pu—sv=k)

being I the indicator function. FDR (k) is an increasing function of k. Hence, one
can select k so that the expected FDR is below a desired level, typically 0.05. See
also Peterson, Stingo and Vannucci (2015) for the adoption of the FDR in multiple
Gaussian graphical model selection.

1) FDR(k) =

’

5. Simulations. In this section we apply our methodology, named Objective
Bayes Interventional Essential graph Search (OBIES), on a few simulation scenar-
ios. Please refer to the Supplementary Material for additional results and compar-
isons with the benchmark GIES method (Hauser and Biihimann (2012)) not shown
here for brevity.

5.1. Data generation and scenarios. We construct a collection of simulation
scenarios by varying the number of nodes ¢ € {10, 20, 40}, the number of obser-
vational data n9 € {100, 200, 500, 1000} and the proportion of intervened nodes
p €{0,0.2,0.4,0.8}. For each target of intervention /i, we then set the number of
interventional data as n® (g, n%) = ngq /100. Under each scenario characterized
by (g, n?, p), 40 datasets, corresponding to 40 true DAGs, are generated. Each
dataset, which contains both observational and interventional data, is obtained as
follows.

For a given g, we randomly generate a topologically ordered DAG D with prob-
ability of edge inclusion pedge = 3/(2g — 2) (Peters and Biihlmann (2014)). The
DAG thus obtained is the responsible of a data generating process and implies the
set of equations

(22) Yij=pn;j+ Z Br,iYik+eij,
kepap(j)

fori =1, ...,ng, j=1,...,q, where ¢; ; ~ N0, ajz) and Y; ; are independent
with respect to i. For each j we fix u; =0 and sz = 1, while regression co-
efficients B, ; are uniformly chosen in the interval [—1, —0.1]U [0.1, 1]; see also
Peters and Biihlmann (2014). An observational dataset of size n? is then generated
accordingly.

Next, for a given p (proportion of intervened nodes) we randomly sample with-
out replacement [pg] nodes in {1, ..., g} which represents intervention targets of
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size one, I, ..., I}pq). Under each I; we first obtain the corresponding interven-
tion DAG D’k (see Section 2.2) which implies the set of equations

wit+ > BiYikt+e; if j# L
(23) Y, j= kepap(j)
dj +eij if j = I,

fori=1,...,n%, j=1,...,¢q, where again &ij ~N(O,aj2), € ~N(O,¢JZ-)
and Y; ; are independent with respect to i. For each j we fix §; =0 and (/5]2. =0.1.

n® interventional data are then generated accordingly.

Let S, be the set of all Z-EGs on g nodes. According to our MCMC algorithm
(Supplementary Material, Section 2.2), we can also fix the maximum number of
edges in the Z-EG space to a small multiple of the number of nodes ¢, rq (He, Jia
and Yu (2013)), so that sparsity can be introduced to improve structural learning og
T-EGs. Specifically we choose r = 2, that is we require that the number of edges
is not higher than 2 the number of nodes. We highlight that such threshold is well
above the number of edges expected in the true DAG in each simulation scenario
(7.5, 15 and 30 edges, respectively, for 10, 20 and 40 nodes). For each scenario,
we use few pilot runs to choose the number of iterations as well as the initial
burn-in period. We then fix T = {25,000, 50,000, 100,000} for ¢ = {10, 20, 40},
respectively.

5.2. Results. In the following we report a few simulation results from the ap-
plication of OBIES to the scenarios of Section 5.1. To understand how much in-
terventions can improve the identifiability of the true DAG generating model, we
measure the Structural Hamming Distance (SHD), defined as the number of edge
insertions, deletions or flips needed to transform the estimated Z-EG into the true
DAG. In this way, under each setting defined by ¢, the benchmark of our compar-
ison is represented by the same set of (40) true DAGs. In Figure 4 we report the
boxplots of the SHD values over the 40 replicates under the simulation settings
defined by ¢,n? and p. For each ¢ and n? we observe that as the proportion of
intervened nodes p increases, the SHDs between estimated graph and true DAG
become smaller. Moreover, such reduction is all the more effective as n? (and so
n') grows. As ¢ increases, modelling jointly observational and interventional data
produced under p = 0.2 results in a substantial reduction of the SHDs with respect
to the true DAG if compared to the scenario p = 0. With reference to the g =20
setting, we observe that interventions on the 40% of nodes randomly chosen are
sufficient to strongly reduce the uncertainty around the true DAG estimate, espe-
cially for large sample sizes. In Table 1 we also report summary statistics (mean
and standard deviation) of the SHDs represented in Figure 4.

6. Protein-signaling data. In this section we apply OBIES to the protein-
signaling data set of Sachs et al. (2005). As mentioned, data consist of a collection
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FI1G. 4. Simulations. Structural Hamming distances between the estimated Z-EG and the true
DAG, over 40 datasets, for number of nodes q € {10, 20,40}, number of observational data
n9 e {100, 200, 500, 1000} and proportion of intervened nodes p € {0,0.2,0.4,0.8}.
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TABLE 1
Mean (standard deviation) of the structural Hamming distances between OBIES estimate and true
DAG over 40 data sets for number of nodes q € {10, 20, 40}, n9 ¢ {100, 200, 500, 1000} and
p€1{0,0.2,0.4,0.8}

n? =100 n% =200 n? =500 7% = 1000
qg=10
p=0 6.78 (3.69) 5.78 (3.58) 5.20 (3.32) 5.08 (3.25)
p=0.2 3.70 (2.03) 3.35 (1.90) 3.17 2.31) 2.88 (2.21)
p=04 3.10 (1.85) 2.17 (1.74) 2.13 (1.51) 1.50 (1.13)
p=0.8 2.08 (1.83) 1.88 (1.45) 1.27 (1.72) 0.45 (0.71)
q=20
p=0 11.07 3.11) 9.57 (2.16) 8.40 (2.09) 8.00 (2.04)
p=02 5.47 (2.72) 4.80 (2.43) 3.70 (1.91) 3.05 (1.52)
p=04 4.25 (2.06) 3.25 (1.75) 1.32 (1.27) 1.32 (0.98)
p=038 3.27 (1.72) 1.48 (1.34) 1.35 (1.58) 1.25 (1.12)
q =40
p=0 21.75 (3.30) 18.75 (2.93) 16.45 (2.43) 15.35 (3.37)
p=02 13.18 (3.74) 11.97 (3.48) 12.07 (3.27) 9.98 (3.30)
p=04 8.40 (3.49) 8.00 (3.54) 7.12 (4.77) 6.38 (3.73)
p=0.8 4.10 (2.28) 3.83 (2.43) 2.67 (2.77) 2.23 (2.08)

of observations measured under different experimental conditions and then from
our perspective can be considered as purely interventional. In the original work
of Sachs et al. (2005) the objective was to infer a single DAG, whilst Friedman,
Hastie and Tibshirani (2008) used the same dataset to learn a single undirected
graph. Moreover, Luo and Zhao (2011) proposed a Bayesian hierarchical model
for “causal inference among proteins from interventional data”. More recently,
Peterson, Stingo and Vannucci (2015) analysed the same dataset from a multiple
graphs perspective, that is inferring an undirected graph for each experimental
condition, allowing for the possibility of shared structural features among graphs.

6.1. Data set. The data set, provided as a supplement to Sachs et al. (2005),
is based on simultaneous measurements of multiple phosphorylated proteins and
phospholipid components in individual primary human immune system cells. Ob-
servations are obtained from intracellular multicolor flow cytometry, which allows
for simultaneous measurements in individual cells, thus resulting in a large sample
of observations. Measurements of ¢ = 11 phosphorylated proteins and phospho-
lipids are collected after a series of stimulatory cues and inhibitory interventions
obtained from the administration of reagents, each one being the responsible of
the perturbation of a signaling node. In addition, some interventions affect recep-
tor enzymes instead of (measured) signalling molecules, which would require the
introduction of latent (unobserved) variables. However by removing such obser-
vations the dataset becomes purely interventional, because each of the remaining
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TABLE 2
Intervention targets and sample sizes for the seven datasets included in the study

k 1 2 3 4 5 6 7
I Akt PKC; PIP2 Mek Akty PKC, PKA
n® 911 723 810 799 848 913 707

5,711 multivariate observations was produced by coercing the value of some vari-
ables in the system. We then include in our study seven datasets, each containing
observations measured under the same experimental condition. In Table 2 we re-
port, for each dataset Y*, the corresponding intervention target I; and sample size.
Please observe that different reagents can perturb the same signalling node. In par-
ticular, for each node Akt and PKC, two interventions were performed, which we
denote by adding a subscript (1 or 2).

6.2. Model searching and results. We apply OBIES to learn the structure of
an Z-EG from the dataset Y = {Yl, e, Y7}; see Table 2. The corresponding con-
servative family of intervention targets is

T = {Akty, PKCq, PIP2, Mek, Akty, PKC;, PKA}.

We perform structural learning of interventional essential graphs focusing on the
Z-EG space S}, with sparsity parameter r = 2, which corresponds to a maximum
number of edges of 22. We then run T = 10 iterations of Algorithm 1 (Supple-
mentary Material, Section 2.2) with a burn-in period of 2 x 10*. As the result, we
start reporting in Figure 5 the heat map with the marginal posterior probabilities
of edge inclusion.

We can use such information to construct the median probability graph model,
by including those edges whose probability of inclusion is greater than 0.5. Al-
ternatively, we can compute for a grid of thresholds k € (0, 1) the expected false
discovery rate FDR(k) as defined in equation (21) and then choose the maximum
value of k such that FDR (k) < 0.05. In doing so, we obtain the threshold for edge
inclusion k* = 0.434. The corresponding Z-EG estimate is then constructed ac-
cordingly. We observe that the resulting graph of Figure 6 is an Z-EG and then no
projection to the Z-EG space is required; see also Section 4.

Being fully Bayesian, our OBIES method also provides a measure of uncer-
tainty around graphical features of interest. In addition to the probabilities of edge
inclusion (Figure 5), we also show in Figure 7 the trace plot of the number of
edges in the Z-EGs visited by the MCMC, together with the corresponding fre-
quency distribution. Such result can be also used as a graphical diagnostic for the
convergence of our algorithm. Other diagnostic tests based on multiple chains are
reported in the Supplementary Material.

Finally, we compare OBIES estimate of Figure 6 with the Greedy Interventional
Equivalence Search method (Hauser and Bithimann (2012)). GIES is computed
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FI1G. 5. Protein-signaling data. Heat map with marginal posterior probabilities of edge inclusion
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for three different optimization criteria: the Bayesian Information Criterion (GIES
0) and the Extended Bayesian Information Criterion with tuning coefficient y €
{0.5, 1} (GIES 0.5 and GIES 1, respectively); see also Foygel and Drton (2010).
Results with Z-EG estimates are reported in Figure 8. It appears that the tuning
parameter y can be used to intensify sparsity of the resulting graph. If compared
with the GIES 0, our OBIES estimate of Figure 6 exhibits 10 edges in common.

() ()
I\
@\@ = (=)

FI1G. 6.  Protein-signaling data. OBIES estimate obtained from the FDR criterion.
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FIG. 7. Protein-signaling data. Trace plot of the number of edges in the Z-EGs visited by the
MCMC (left panel) and corresponding frequency distribution (right panel).

The main difference is the presence in our OBIES estimate of two additional edges,
PKC — Mek and P38 — Mek, the former being better supported (probability of
inclusion 68%) while the latter (44%) is only marginal greater than the selected
threshold for edge inclusion k* = 0.434.

7. Discussion. In this article we presented an objective Bayes method for
model determination of Gaussian DAGs in the presence of (observational and)
interventional data. Specifically, we derived a closed formula for the marginal like-
lihood of an Interventional Essential Graph (I-EG) and then proposed an MCMC
scheme for structural learning of Markov equivalence classes of DAGs. We illus-
trated through simulations that our Objective Bayes Interventional Essential graph
Search (OBIES) method is competitive with the benchmark Greedy Interventional
Equivalence Search (Hauser and Biihlmann (2012)) if the goal is model selection,
that is to produce a single model estimate. Moreover, because of its Bayesian na-
ture, OBIES also provides a coherent measure of uncertainty of graphical features
of interest, such as the posterior inclusion probability of a specific edge.

FI1G. 8. Protein-signaling data. Estimated Z-EG under GIES 0 (y = 0), GIES 0.5 (y =0.5) and
GIES 1 (y =1).
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Our method does not focus on parameter inference or prediction which however
are required for the calculation of Bayesian goodness of fit measures based on pos-
terior predictive model checks (Gelman, Meng and Stern (1996)). Sampling from
the posterior predictive distribution of Gaussian DAG-models is possible using
DAG-Wishart priors (Cao, Khare and Ghosh (2019)) coupled with techniques sim-
ilar to those developed in this paper. We have carried out predictive model checks
in this framework obtaining more than satisfactory results which we do not report
here for lack of space. Finally, we highlight that our method for model choice,
based on marginal likelihoods (equivalently Bayes factors relative to a benchmark
model), takes directly care of goodness of fit and complexity (Hoijtink (2013)).
In other words, the model we single out as most promising has already passed a
selection procedure which accounts for its ability to fit the data.

Randomized intervention experiments can be used to improve the identifiability
of the true data generating model (He and Geng (2008)). By enlarging the family
of intervention targets, one can in principle reduce each (observational) Markov
equivalence class to a single DAG, because all edges that are undirected in the
original essential graph become directed. Ideally, one could pursue this goal by
means of a small number of interventions selected according to an optimal exper-
imental plan. Such active learning of signaling networks is pursued in Ness et al.
(2017) and is currently under investigation by the Authors of this paper.

The protein-signaling dataset in Sachs et al. (2005) was collected under nine
distinct experimental conditions, each corresponding to an intervention on some
variables, either observable or latent. We analysed all the observations correspond-
ing to an intervention on a single observable variable jointly assuming a unique
graphical generating structure, namely an interventional Essential Graph. On the
other hand, Peterson, Stingo and Vannucci (2015) approached the problem from a
multiple-graphs perspective. Specifically, they allow each interventional dataset to
have its own underlying graphical structure (an undirected graph). Then they an-
alyzed the collection of datasets jointly by relating graphs across groups through
a suitable Markov random field prior which encourages common edges to exploit
potential shared features, as well as a spike-and-slab prior on the parameters that
measure network relatedness. More recently, Tan et al. (2017) applied multiple
Gaussian graphical models based on G-Wishart priors to metabolic association
networks, using a logistic regression structure to link probability of edge inclu-
sions among graphs.

SUPPLEMENTARY MATERIAL

Objective Bayes model selection of Gaussian interventional essential graphs
for the identification of signaling pathways (DOI: 10.1214/19-A0AS1275SUPP;
.pdf). Additional material is provided in the Supplement (Castelletti and Consonni
(2019)). This includes some theoretical results on fractional marginal likelihoods
for Gaussian models, a detailed treatment of the MCMC algorithm here adopted,
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further simulation results and some diagnostics for the convergence of the MCMC
on the protein-signaling dataset.
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