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EMPIRICAL BAYES ANALYSIS OF RNA SEQUENCING
EXPERIMENTS WITH AUXILIARY INFORMATION

BY KUN LIANG

University of Waterloo

Finding differentially expressed genes is a common task in high-
throughput transcriptome studies. While traditional statistical methods rank
the genes by their test statistics alone, we analyze an RNA sequencing dataset
using the auxiliary information of gene length and the test statistics from a
related microarray study. Given the auxiliary information, we propose a novel
nonparametric empirical Bayes procedure to estimate the posterior probabil-
ity of differential expression for each gene. We demonstrate the advantage of
our procedure in extensive simulation studies and a psoriasis RNA sequenc-
ing study. The companion R package calm is available at Bioconductor.

1. Introduction. Consider a recent RNA sequencing (RNA-seq) study of pso-
riasis vulgaris disease in Jabbari et al. (2012), where the expression levels of
18,151 genes were measured on three pairs of lesional and nonlesional skin sam-
ples collected from three patients. Psoriasis vulgaris, or psoriasis, in short, is a
chronic autoimmune disease characterized by skin inflammation and affects 2–
4% of the population in western countries (Parisi et al. (2013)). The main objec-
tive of the study is to find the differentially expressed (DE) genes between le-
sional and nonlesional skin samples to further our understanding of the disease
mechanism. RNA-seq is the new generation of high-throughput technology that
can measure tens of thousands of gene expression levels simultaneously. Com-
pared to the microarray technology that has been in use in the past two decades,
RNA-seq provides more precise measurement of gene expression levels, especially
for genes with low or very high expression levels (Kukurba and Montgomery
(2015)). High-throughput gene expression technologies, such as microarray and
RNA-seq, are typically expensive, and the sample sizes are usually small. For ex-
ample, as of August 2017, more than 11,000 RNA-seq experiment datasets were
deposited in one of the largest gene expression databases, Gene Expression Om-
nibus (www.ncbi.nlm.nih.gov/geo), but the median sample size is only 8.

We want to detect DE genes but also need to limit the number of false positives.
The false discovery rate (FDR), which is defined as the expected proportion of
false positives, has become the common error rate to control in the literature. We
can test the differential expression of genes using the limma-voom method (Law
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FIG. 1. The scatter plot and trend of RNA-seq z-values as a function of the rank of gene coding
region length. Solid black line is the smoothing spline fit.

et al. (2014)), which computes a list of t-statistics, t1, . . . , t18,151, with 8.8 effective
degrees of freedom. Then, we could easily compute p-values from the t-statistics
and use the linear step-up procedure of Benjamini and Hochberg (1995) to con-
trol the FDR at a certain target level; we will refer to this procedure as the BH
procedure. Alternatively, we can transform the t-statistics to z-values and use the
empirical Bayes method to estimate the local false discovery rate (Lfdr) accord-
ing to the two-group model (Efron and Tibshirani (2002)). Details of the z-value
transformation can be found at the beginning of Section 2.

Much of the multiple testing literature, including the above BH procedure and
empirical Bayes approach and their variants, treat all hypotheses as exchangeable,
and all null hypotheses are considered equally likely to be true. However, we of-
ten know additional information about the tests that are potentially useful. In our
psoriasis example each hypothesis is associated with a human gene whose coding
region has a certain length. In Swindell et al. (2014), a strong gene length effect is
reported in both microarray and RNA-seq studies of psoriasis skin. Figure 1 shows
the RNA-seq z-values vs. the ranks of gene coding region length, and we also plot
the smoothing spline fit of the z-values as a solid black line. Figure 1 suggests that
the z-values tend to be more negative when the coding regions are long, especially
for the top 2,000 or so longest genes.

The gene coding region length represents a type of general covariate informa-
tion that can be used in many genetic studies. Other examples of general covari-
ate information include the minor allele frequency of single nucleotide polymor-
phisms (SNPs) in genome-wide association studies (GWAS) and the SNP-gene
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distance in expression quantitative trait loci (eQTL) mapping studies (Ignatiadis
et al. (2016)), among others.

For any given genetic study there may be previous studies conducted under
similar experimental conditions (Li and Barber (2017)) or on related diseases
(Andreassen et al. (2013)). Before the psoriasis RNA-seq study of Jabbari et al.
(2012), Gudjonsson et al. (2010) used microarrays to study the gene expression
differences between 58 pairs of lesional and nonlesional skin samples from pso-
riasis patients. The two studies are based on two different technology platforms:
microarray quantifies the gene expression level by measuring light intensities of
designed probe sets while RNA-seq counts the number of sequenced genome frag-
ments mapped to genes. Roughly, we can think the microarray platform as a tar-
geted analog approach while the RNA-seq platform offers an unbiased digital ap-
proach. The two studies also differ in their patient enrollment criteria which we
will discuss in detail in Section 4. Despite many differences between the two stud-
ies, the previous microarray study could provide useful information for our RNA-
seq study.

Among the 18,151 genes measured in the psoriasis RNA-seq study (Jabbari
et al. (2012)), only 16,493 genes can be found in the microarray study of
Gudjonsson et al. (2010) due to differences between the two platforms. Figure 2(a)
plots the RNA-seq z-values against the corresponding microarray t-statistics. In-
tuitively, we can interpret this plot as follows: the dense vertical ellipse of points
centered at (0, 0) is likely due to non-DE genes in both studies, on the other hand,
DE genes with varying effect sizes are likely to yield positively correlated z-values
and t-statistics with corresponding data points predominantly in the first and the
third quadrants. In Figure 2(b), we plot the histograms of the RNA-seq z-values
whose corresponding microarray t-statistics are less than −10 and greater than 10
in grey and light brown colors, respectively. The two conditional z-value distribu-
tions are quite different, and there are many more positive t-statistic and z-value
pairs than negative pairs. One of the main contributions of our proposed method
in Section 2 is its ability to model such changing conditional distributions. From
both Panels (a) and (b) we draw the following conclusion. Conditionally, if a gene
has a large positive t-statistic from the microarray study, then it is likely the corre-
sponding RNA-seq z-value will also be large and positive; a similar phenomenon
is true for negative pairs of t-statistics and z-values. In other words, given the mi-
croarray t-statistic, we would have more knowledge about the prior probability
of differential expression and the likely direction and strength of the differential
expression.

A natural question arises: how we can utilize the auxiliary covariate informa-
tion to improve the power of detecting DE genes? The total of 18,151 genes in
the RNA-seq study can be divided into two groups. One group contains the 16,493
genes with matching microarray data and the other consists of 1658 genes without
matches. For grouped hypotheses Efron (2008) and Cai and Sun (2009) suggest
performing separate empirical Bayes analyses in each group and thresholding the
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FIG. 2. Panel (a), scatter plot of RNA-seq z-values vs. microarray t-statistics. Panel (b), histograms
of z-values whose corresponding t-statistics are less than −10 (grey) and greater than 10 (light
brown).

posterior probabilities of the null being true across groups. The challenge lies in
estimating the posterior probabilities with potentially multiple continuous covari-
ates, and addressing this challenge is the focus of this paper.

Given multiple covariates, the methods developed by Qu, Nettleton and Dekkers
(2012) and Scott et al. (2015) can be used to estimate the posterior probability of no
differential expression, but both require strong modeling assumptions. Both meth-
ods assume a constant alternative density which is not a reasonable assumption
in our psoriasis application as Figure 2 illustrates. The method of Qu, Nettleton
and Dekkers (2012) applies only to t-statistics, and they model the true null prob-
ability as an additive function of covariates. More importantly, Qu, Nettleton and
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Dekkers (2012) restrict the noncentrality parameters in the alternative t distribu-
tion to follow a normal distribution with mean zero. This assumption implies that
the alternative distribution is symmetric around zero, but Figure 2 suggests that
the DE genes are more likely to be up-regulated in lesional skin and effect sizes in
up-regulated genes are larger than in down-regulated genes. The method of Scott
et al. (2015) works with z-values and thus is not restricted to applications with t-
statistics. Furthermore, they model the covariate effect on the true null probability
through a regression framework and can model nonlinear effects through spline
basis expansion. However, it is unclear how their tuning parameters, such as the
number of knots of splines, should be chosen. Similarly, it may be possible for
Scott et al. (2015) to model interactions among covariates, but it is unclear how
to do so in practice. In their simulation study with interaction effects between co-
variates, they chose to fit an additive model to show their result is robust to model
misspecification. More critically, their implementation relies on a normal mean
model where the alternative density is a location mixture of the null Gaussian den-
sity. The normal mean model allows flexible alternative distributions which, for
example, can be asymmetric. On the other hand, the normal mean model may not
be suitable if the original test statistics do not follow the normal distribution, such
as the t-statistics in our example.

Alternatively, for a target FDR level, frequentist methods such as the BH pro-
cedure will return a list of rejections. If the same experiment is repeated many
times, frequentist methods can provide guarantees that the long-term average of
false discovery proportions will be no greater than the target level. For example,
Ignatiadis et al. (2016) control the FDR asymptotically with a single covariate by
assigning different weights to p-values. As a comparison, while frequentist meth-
ods provide binary decisions of rejection or acceptance given a target FDR level,
Bayes methods provide more detailed information of the posterior probability of
each null hypothesis being true. Furthermore, the hypotheses in our application
naturally form two groups, and it is unclear what is the best strategy to combine
frequentist results in our grouped setting.

In Section 2, we derive the optimal procedure given the covariates and propose
a novel empirical Bayes method to mimic the optimal procedure. Our proposed
method is evaluated through extensive simulation studies in Section 3. We will
return to the psoriasis example in Section 4 before we conclude with a discussion
in Section 5. All technical proofs, additional simulation and application results are
presented in the Supplementary Material (Liang (2019)). The implementation of
our method and the application data are included in the R package calm available
at Bioconductor.

2. The proposed approach. Suppose H1, . . . ,Hm are m null hypotheses of
interest, among which m0 are true nulls and m1 are alternatives with m = m0 +
m1. For the ith gene in our psoriasis example, the corresponding null hypothesis
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TABLE 1
Classification of tested hypotheses

Accept Reject Total

Null N0|0 N1|0 m0
Alternative N0|1 N1|1 m1
Total S R m

is

Hi : gene i is not differentially expressed.

The outcome of a multiple testing procedure can be summarized in Table 1.
The false discovery rate (FDR) is defined as E{N1|0/max(R,1)}, the expected

proportion of false discoveries among all rejections. A closely related quantity is
the marginal FDR (mFDR) which is defined as E(N1|0)/E(R). It can be shown
that mFDR = FDR + O(m−1/2) under independence (Genovese and Wasser-
man (2002)), that is, the mFDR is asymptotically equivalent to the FDR. An-
other related concept is the marginal false nondiscovery rate (mFNR) defined as
E(N0|1)/E(S). Though many optimality definitions are possible, we adopt the
criterion in Sun and Cai (2007) where the optimal multiple testing procedure is
defined as the one that controls mFDR at a certain level while minimizing mFNR.

2.1. Optimal procedure for multiple testing with covariates. Consider the
commonly used two-group model (Efron et al. (2001)). Suppose H1, . . . ,Hm are
m null hypotheses of interest, Y1, . . . , Ym are the corresponding test statistics and
θ1, . . . , θm are the corresponding true null indicators, that is, θi = 1 indicates Hi is
true, and θi = 0 otherwise. For i = 1, . . . ,m,{

θi ∼ Bernoulli(π0),

Yi |θi ∼ θiF0 + (1 − θi)F1,

where the θ ’s are independent and π0 is a constant true null probability. The
marginal c.d.f. of Y is F(y) = π0F0(y)+ (1−π0)F1(y) with a probability density
function (p.d.f.) of f (y) = π0f0(y)+ (1−π0)f1(y). Sun and Cai (2007) show that
the p-value based multiple testing procedures can be inefficient when the original
test statistics have directions, for example, in our psoriasis example the t-statistics
can be either positive or negative. For efficiency and convenience we will work
with z-values which can be easily transformed from the original test statistics.
More specifically, in our psoriasis example we can compute z-values as

(1) yi = �−1(
G0(ti)

)
, i = 1, . . . ,18,151,

where � is the cumulative distribution function (c.d.f.) of the standard normal dis-
tribution and G0 is the c.d.f. of t8.8 which is the t distribution with 8.8 degrees of
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freedom. This transformation is one-to-one, and we will not lose the directional in-
formation. For z-values, F0 is typically assumed to be �, the c.d.f. of the standard
normal or can be estimated empirically from data (Efron (2004)).

For any rejection region �, Efron and Tibshirani (2002) define the Bayesian
FDR as

Fdr(�) ≡ P(θ = 1|y ∈ �)

= π0F0(�)/F (�),

where F0(�) = P(y ∈ �|θ = 1) and F(�) = P(y ∈ �). Under the two-group
model it can be shown that mFDR(�) = Fdr(�). Define the local FDR (Lfdr) as

Lfdr(y) ≡ P(θ = 1|y)

= π0f0(y)/f (y).

Efron and Tibshirani (2002) further show that Fdr(�) = E{Lfdr(y)|y ∈ �}
which suggests an empirical FDR estimate of a set of rejections R to be∑

i:yi∈R Lfdr(yi)/|R|.
Suppose that for each hypothesis Hi , there is a p-variate vector of auxiliary

variables Xi = (Xi1, . . . ,Xip) in addition to the primary test statistic Yi where
p ≥ 1 is a positive integer. We emphasize that the auxiliary variables we study are
the test-level information, such as the gene length and microarray t-statistic, for
each gene in our psoriasis example. The test-level auxiliary information should be
distinguished from the auxiliary or covariate information at the subject or sample
level (e.g., age and sex of patients) that are commonly used in the literature, for
example, see Hummel, Meister and Mansmann (2008) and others. Under the two-
group model, which we denote as Model I, Lfdr(y) is shown to be an optimal
statistic to control mFDR while minimizing mFNR (Sun and Cai (2007)). Because
we rarely fix the covariate values before we decide which hypotheses to test, we
will treat the covariate vector X as random. Our two-group joint model for both X
and Y , denoted as Model I∗, is as follows:{

θi ∼ Bernoulli(π0),

Xi , Yi |θi ∼ θiF0 + (1 − θi)F1.

The joint p.d.f. is f (x, y) = π0f0(x, y) + (1 − π0)f1(x, y). The two-group joint
model is parallel to the basic two-group model, and we regain the exchangeability
after we jointly model the covariates and test statistic. With a slight abuse of no-
tation, here, for the sake of brevity, we reuse F0,F1, f, f0, f1 for joint c.d.f.s and
p.d.f.s instead of their marginal versions as in the two-group model. Then, the joint
local FDR can be expressed as

(2) Lfdr(x, y) = π0f0(x, y)

f (x, y)
.
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THEOREM 1. Under Model I∗ and for some constant 0 < c < 1, let �OPT =
{(x, y) : Lfdr(x, y) ≤ c} be the optimal rejection region. Then, for any rejection
region � with mFDR(�) = mFDR(�OPT), we have:

(a) F (�OPT) ≥ F(�);
(b) F1(�OPT) ≥ F1(�);
(c) mFNR(�OPT) ≤ mFNR(�).

That is, for any optimal rejection region constructed by thresholding Lfdr(x, y),
there does not exist a better rejection region in terms of the average number of
rejections, or power or mFNR than the optimal rejection region given the same
level of mFDR.

REMARK 1. Du and Zhang (2014) derive the optimal rejection region based
on bivariate p-values in their Proposition 1. Parts (a) and (b) of Theorem 1 can be
viewed as an extension of their result to general statistics and covariates. Similar
to their proposition, we can relax the condition of mFDR(�) = mFDR(�OPT) for
our parts (a) and (b) to mFDR(�) ≤ mFDR(�OPT) by finding a rejection region
�′ such that � ⊆ �′ and mFDR(�′) = mFDR(�OPT).

Theorem 1 implies that Lfdr(x, y) is the optimal statistic to rank hypotheses
for rejection. However, the Lfdr(x, y) formula in (2) is difficult to evaluate. For
example, the joint null density f0(x, y) is not easy to characterize. Furthermore,
the marginal null density of the covariate vector X, f0(x), is unknown and cannot
even be assumed to belong to a certain distribution family.

In many multiple testing applications the null distribution of the primary statis-
tic is unaffected by the covariates. In our psoriasis example the microarray data
and the gene length information exist before the data collection of the RNA-seq
study and will not affect the null distribution. In this article we assume the null
independence condition that covariates are independent of the primary statistic un-
der the null hypothesis. Under such condition f0(y) is typically known or can be
estimated. Therefore, we explore the conditional approach that characterizes the
distribution of Y given X.

If the true null probability depends on the covariates, we can formulate the fol-
lowing Model II: {

θi |Xi ∼ Bernoulli
(
π0(Xi)

)
,

Yi |θi ∼ θiF0 + (1 − θi)F1,

where π0(·) is the true null probability function of the covariates. The conditional
p.d.f. of Y given X can be written as f (y|x) = π0(x)f0(y) + (1 − π0(x))f1(y).
Model II is considered in Qu, Nettleton and Dekkers (2012) and Scott et al. (2015).
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Furthermore, if the alternative distribution also depends on the covariates, we
have Model III as follows:{

θi |Xi ∼ Bernoulli
(
π0(Xi )

)
,

Yi |θi,Xi ∼ θiF0 + (1 − θi)F1Xi
,

where F1Xi
is the covariate regulated alternative c.d.f. The conditional p.d.f. of Y

given X = x is f (y|x) = π0(x)f0(y) + (1 − π0(x))f1(y|x) where f (·|·) denotes
the conditional density. Model III is the most general model among Models I–III,
and Models I and II are special cases of Model III. Under Model III define the
conditional local false discovery rate (CLfdr) as

CLfdr(y|x) ≡ Pr(θ = 1|x, y)
(3)

= π0(x)f0(y)

π0(x)f0(y) + (1 − π0(x))f1(y|x)
.

Although CLfdr is defined conditionally on the covariate vector X, it can be
shown that CLfdr is equivalent to the joint local FDR in (2).

THEOREM 2. Under Model I∗ and the null independence condition,

Lfdr(x, y) = CLfdr(y|x).

Theorem 2 unifies the joint modeling approach and the conditional modeling ap-
proach under the null independence condition. It also indicates that, rather than
Model II, Model III is the appropriate conditional model to use.

For notation simplicity we use γ to denote the generic CLfdr(y|x), with a sub-
script for the statistic index and a superscript for the submodel index, if necessary.
Thus, γi ≡ CLfdr(Yi |Xi ). As Models I and II are special cases of Model III, the
CLfdr formula in (4) can be simplified in submodels. For example, under Model
II,

γ II
i ≡ CLfdrII(Yi |Xi )

= π0(Xi )f0(Yi)

π0(Xi )f0(Yi) + (1 − π0(Xi))f1(Yi)
.

Theorems 1 and 2 suggest the following optimal procedure: Arrange γ values
in ascending order such that γ(1) ≤ · · · ≤ γ(m). For a fixed target FDR level α,
let k = max{i : 1

i

∑i
j=1 γ(j) ≤ α}, and we reject the first k hypotheses with the

smallest γ values.
The optimal procedure is an oracle procedure because it depends on the optimal

(oracle) statistics γ ’s. To illustrate the difficulty to estimate the γ ’s, we now make
some connections with the problem of grouped hypotheses testing. If hypotheses
reside in predefined groups, then the group label can be considered as a categorical
covariate X, and, according to Cai and Sun (2009), the optimal ranking statistic can
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also be expressed in the form of CLfdr(y|x) = Pr(θ = 1|x, y). To reliably estimate
the CLfdr’s, there are presumably a limited number of groups, each of which con-
tains a large number of observations. In our case, covariates are continuous, and it
is unlikely for hypotheses to have identical covariate values. If we group hypothe-
ses by unique covariate values, each hypothesis will form a separate group with its
individual true null probability and alternative density. Therefore, the estimation
of CLfdr is much more challenging in the case of continuous covariates.

2.2. Nonparametric estimation of CLfdr. We propose to estimate both π0(·)
and f1(·|·) nonparametrically. As directly estimating π0(·) or f1(·|·) at each data
point is not feasible, a reasonable approach is to borrow strength from neighbors by
assuming that π0(·) and f1(·|·) are gradually changing with respect to the covariate
vector X.

Because it is difficult to simultaneously estimate π0(·) and f1(·|·), we will ap-
proach the problem in a step-wise fashion. The basic idea is to explore the hierar-
chy of models I–III. First, Model I is a special case of Model II, and both models
assume a common f1(·) which can be estimated relatively easily from the simpler
Model I. By fixing f1(·), we can estimate π0(·) under Model II which in turn is
a special case of Model III. Finally, fixing π0(·), we can estimate f1(·|·) under
Model III. We now describe these three steps in details.

Step 1: Estimation of f1(·) under Model I. We start with a global true null prob-
ability estimate π̂0. The choice of π0-estimator necessarily depends on the data
generation process that leads to the original primary statistics. For example, if
the primary statistics are z-values generated from the normal means model (Efron
(2004), Jin (2008)), the consistent estimator of Jin and Cai (2007) would be a good
candidate. For more discussions of π0-estimators, see Remark 2. The overall den-
sity f can be estimated by regular kernel density estimator, and

(4) γ̂ I
i = π̂0f0(Yi)

f̂ (Yi)
.

That is, the posterior probability of Yi coming from the alternative can be estimated
as 1 − γ̂ I

i , i = 1, . . . ,m. Then, we simply estimate f1(·) through a weighted kernel
method with weights proportional to the values of (1 − γ̂ I

i ). More specifically, let
Kh(·) = h−1K(·/h) where K is a smooth and symmetric univariate kernel density
function. The functional form of the kernel is not crucial for either the density
estimation here or the conditional density estimation later, and we will use the
Gaussian kernel hereafter. Furthermore,

f̂1(y) ≡ f̂1h1(y) =
m∑

i=1

wiKh1(Yi − y),

where wi = (1 − γ̂ I
i )/

∑m
j=1(1 − γ̂ I

j ). The bandwidth h1 is chosen using Silver-
man’s “rule of thumb” (Silverman (1986)).
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REMARK 2. Most π0-estimators are p-value based. Under independence and
mild dependence conditions the conservative π0-estimator of Liang and Nettleton
(2012) can be used. Under moderate to strong dependence conditions, according
to their simulation results, Blanchard and Roquain (2009) recommend the Storey-
α estimator. Other π0-estimators with good theoretical or empirical properties can
also be used, such as Langaas, Lindqvist and Ferkingstad (2005), Meinshausen
and Rice (2006) and Patra and Sen (2016), among many others.

Step 2: Estimation of π0(·) under Model II. To estimate π0(·), we use an EM-
like algorithm with initial values π̂

(0)
0 (Xi) = π̂0, i = 1, . . . ,m. In the E-step we

compute

γ̂
II(l)
i = π̂

(l)
0 (Xi )f0(Yi)

π̂
(l)
0 (Xi)f0(Yi) + (1 − π̂

(l)
0 (Xi ))f̂1(Yi)

,

where l indicates the lth iteration.
In the M-step we model π0(·) nonparametrically through low-rank thin plate

regression splines (Wood (2003, 2017)) where the rank is chosen by general-
ized cross-validation (Craven and Wahba (1975)). Ideally, we want the average
of π̂

(l+1)
0 (Xi) values to match our initial π̂0 to stabilize the global π0 between iter-

ations and preserve good statistical properties of the initial π̂0. In practice, it may
not be the case, and we take a simple approach to shift the values of π̂

(l+1)
0 (Xi )

such that their average would equal to the initial π̂0. We call this the backfitting
step because it is similar to the backfitting algorithm for additive models. More
specifically, let ζ = 1

m

∑m
i=1 π̂

(l+1)
0 (Xi) − π̂0, and π̂

(l+1)
0 (Xi ) = π̂

(l+1)
0 (Xi ) − ζ . If

after backfitting, some values of π̂
(l+1)
0 (Xi) are outside of [0,1], then the adjust-

ment can be done on the logit scale.
Then we iterate between the E and M steps until the change in likelihood be-

tween two consecutive iterations is less than a certain threshold, and our CLfdr
estimate for the ith observation under Model II is

(5) γ̂ II
i = π̂0(Xi )f0(Yi)

π̂0(Xi )f0(Yi) + (1 − π̂0(Xi))f̂1(Yi)
.

REMARK 3. The EM-like algorithm is in a similar spirit to the algorithm in
Young and Hunter (2010) under the mixture of regression models. We do not as-
sume linear regression components in our model, and we also have the extra back-
fitting step. This is because the alternative density f1 is estimated based on the
initial π̂0 in Step 1, and the backfitting step is merely enforcing self-consistency.
If f1 is completely known, the backfitting step becomes unnecessary.

REMARK 4. Other nonparametric regression methods, such as local polyno-
mial regression, can be used in the M-step as well. Though it is unlikely, if some
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π̂
(l+1)
0 (Xi ) values fall outside of [0,1], we set them to their nearest bound of 0 or

1. Alternatively, we can use nonparametric regression on the logit scale, similar to
Qu, Nettleton and Dekkers (2012). However, we prefer our method because, first of
all, it is more challenging to select tuning parameters and perform the backfitting
step on the logit scale. Secondly, as Section 5.10 of Wasserman (2006) indicates,
fitting the nonparametric logistic model or local linear model yields very similar
results in practice.

Step 3: Estimation of f1(·|·) under Model III. To estimate f1(·|·), we combine
the double kernel idea from the conditional density literature (Rosenblatt (1969))
and the posterior probability weighting idea from Step 1,

f̂1h(y|x) = f̂1(x, y)

f̂1(x)

=
∑m

i=1 wiKh3(Xi − x)Khy (Yi − y)∑m
i=1 wiKh3(Xi − x)

,

where Kh3(x) = ∏p
j=1 Kh3j

(xj ) and wi = (1 − γ̂ II
i )/

∑m
j=1(1 − γ̂ II

j ).
The bandwidth vector h = (h31, . . . , h3p,hy) is chosen by cross-validation to

minimize the following error measure. Similar to Fan and Yim (2004) and Hall,
Racine and Li (2004), we define the integrated squared errors as

ISE =
∫ [

f̂1h(y|x) − f1(y|x)
]2

g(x) dxdy

=
∫

f̂ 2
1h(y|x)g(x) dxdy − 2

∫
f̂1h(y|x)f1(y|x)g(x) dxdy

+
∫

f 2
1 (y|x)g(x) dxdy

= I1 + I2 + I3,

where g(·) is the marginal density for x.
Note that I3 does not depend on h and will be ignored afterwards. The first term

I1 can be estimated by Î1 = 1
m

∑m
i=1

∫
f̂ 2

1h,−i (y|Xi ) dy where f̂ 2
1h,−i (y|x) is the

leave-one-out estimate of the conditional density based on {(Xj , Yj ), j 
= i}. It can
be shown that

I2 = −2
∫

f̂1h(y|x)
f1(y|x)

f (y|x)
f (y|x)g(x) dxdy

= −2
∫

f̂1h(y|x)
1 − γ

1 − π0(x)
f (x, y) dxdy,

where the last step can be derived from (4). This suggests the following estimator

Î2 = −2
1

m

m∑
i=1

1 − γ̂ II
i

1 − π̂0(Xi)
f̂1h,−i (Yi |Xi).
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Finally, we update the estimate of π0(·) with f̂1(·|·), similar to what is done in
Step 2. In principle, we could iterate the estimation of π0(·) and f1(·|·) until some
convergence criterion is satisfied. However, we found that more iterations do not
necessarily lead to significant improvement of model fitting, and we update the
estimate of π0(·) one time only after the estimation of f1(·|·) for computational
efficiency. The final CLfdr estimate is

(6) γ̂i = π̂0(Xi)f0(Yi)

π̂0(Xi)f0(Yi) + (1 − π̂0(Xi ))f̂1(Yi |Xi )
.

3. Simulation study. We evaluate the performance of different procedures
with a single covariate and multiple covariates. Throughout this section the results
are based on 400 replications and, by default, we set the target FDR level at 0.1.
All procedures assume that a z-value follows N(0,1) when the corresponding null
hypothesis is true.

3.1. Candidate procedures. We consider the following procedures:
ORC: The oracle procedure where CLfdr values are computed using the true

parameters.
CLfdr: Our procedure that mimics the ORC by using the optimal procedure

with γ̂ values estimated as in (6) under Model III. By default, we estimate the
initial π0 by π̂RB

0 using the right-boundary (RB) procedure (Liang and Nettleton
(2012)). If data are generated according to the normal mean model, we instead
estimate π0 by π̂ JC

0 using the method proposed in Jin and Cai (2007).
Lfdr: The optimal procedure proposed by Sun and Cai (2007) when covariates

are ignored. More specifically, we use the optimal procedure with the γ̂ I
i values

from (4) with π̂0 = π̂ JC
0 as suggested by Sun and Cai (2007).

FDRreg: The FDR regression procedure proposed by Scott et al. (2015) which
is implemented in the FDRreg R package v0.2 from GitHub (github.com). We
used the recommended default method which estimates the alternative density by
predictive recursion (Newton (2002), Martin and Tokdar (2012)). As in the simu-
lation of Scott et al. (2015), we expanded each covariate in B-spline basis with five
equally spaced knots.
BH-RB: The adaptive BH procedure with π0 estimated by π̂RB

0 . This procedure
is one of the most powerful adaptive procedures that controls the FDR in finite
samples (MacDonald, Liang and Janssen (2019)).

3.2. Multiple covariates. For illustration purposes we focus on the setting
where the covariates are bivariate (p = 2). More specifically, we simulated co-
variates Xi1 and Xi2 independently from Unif[−1,1]. We set m =20,000 which is
similar to the number of tests in our psoriasis application.
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3.2.1. Set 1: Normal mean model. We set the true null probability function
π0(x) = 0.6+0.3(1−ω)(x2

1 +x2
2 −2/3)−0.375ωx1x2 where the average true null

probability is 0.6 and similar to the estimate in our application in Section 4. The
term x2

1 + x2
2 − 2/3 represents the additive effect of x1 and x2, and the term x1x2

represents the interaction effect between x1 and x2. We let ω = 0,0.25,0.5,0.75
and 1 to represent different proportions of interaction effects. The multiplying con-
stants before the additive and interaction effects are set such that they have similar
contributions to the variation of true null probabilities when ω = 0.5. We simu-
lated the z-values under the normal mean model. Under true nulls, Yi ∼ N(0,1).
Under the alternatives, Yi ∼ N(μ,1), and μ = −1.5 with probability 1+x1x2

2 and
μ = 3 otherwise. The signal effect size is stronger on the positive side (μ = 3) than
on the negative side (μ = −1.5) to mimic the situation in our psoriasis example.
As for the other settings, the graphical illustrations of the π0(·) and f1(·|·) can be
found in Section 2 of the Supplementary Material (Liang (2019)).

Figure 3(a) plots the average realized FDR as a function of ω. The FDR lev-
els of FDRreg can be slightly inflated while the FDR levels of other methods are
close to or below the target level. Figure 3(b) shows the power relative to the ora-
cle procedure. CLfdr is more powerful than Lfdr and BH-RB because CLfdr
can utilize the changing π0(·) and f1(·|·) information. When ω = 0, FDRreg is
slightly more powerful than CLfdr, which can be attributed to FDRreg’s larger
and slightly liberal realized FDR level. As ω increases, the relative power of FDR-
reg is decreasing at a faster rate than CLfdr because the estimation accuracy of
π0(·) by FDRreg is deteriorating as the strength of interaction effects increases.
Figure 3(c) plots the mean square error (MSE) of π0 estimates on log 10 scale.
As ω increases, the MSE of FDRreg steadily deteriorates to the levels of constant
π0-estimators of Lfdr and BH-RB. That is, although the power loss of FDRreg
may not seem significant due to a large proportion of strong signals (μ = 3), the
estimated π0(·) could be far from the truth.

3.2.2. Set 2: Two-sample t-statistic. In Sets 2–4 we simulated data to mimic
microarray or RNA-seq studies where the number of subjects is typically small
while the number of genes is large. More specifically, for each of the m =20,000
genes we compare the expression levels of n Treatment group subjects to n Con-
trol group subjects, which are generated independently from N(μ,1) and N(0,1),
respectively. We set n = 5 such that the resulting regular two-sample t-statistics
have degrees of freedom of 2n − 2 = 8, which is close to the degrees of freedom
in our psoriasis example. We set the group difference μ = 0 if the null hypothesis
is true.

In Set 2 the true null probability function is the same as in Set 1. When the
null hypothesis is false, we set μ = −1 with probability 2+x1+x2

4 and μ = 2 with

probability 2−x1−x2
4 . The z-values can be computed from the t-statistics as in our

psoriasis example.
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FIG. 3. Simulation results for simulation Set 1 (left column) and Set 2 (right column). First row,
realized FDR; second row, power relative to ORC; third row, mean squared error of π0(·) on log 10
scale.
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From Figure 3(d) FDRreg can have 40–50% inflation in realized FDR levels
while the FDR levels of other methods are close to or below the target level. Both
FDRreg and Lfdr rely on the normal mean model, which assumes both true null
and alternative z-values follow the normal distribution. In most applications the
original test statistics may not be normal and need to be transformed to z-values.
In our psoriasis example the true null t-statistics follow a central t distribution,
and the corresponding z-values follow N(0,1). However, under the alternative
hypothesis, the t-statistics follow noncentral t distribution and remain nonnormal
after the transformation. The π̂ JC

0 estimator used in Lfdr requires the variances
of alternative statistics to be no less than the null variance while FDRreg further
restricts the alternative variance to be exactly the same as the null variance. Such
strong model assumptions under the alternative can lead to liberal π0 estimates
and the loss of FDR control, and a similar loss of FDR control for FDRreg is also
reported in Ignatiadis et al. (2016). Lfdr is relatively robust to the violation of the
normal mean model, and the realized FDR levels of Lfdr is below the target level
in this setting.

Among all methods that maintain FDR control, the order of their power is the
same as in Set 1. From Figure 3(f) FDRreg has the worst MSE of π0 estimates
mainly due to its large negative bias in overall π0, which is around −0.18 across
different values of ω.

Technically, the method proposed by Qu, Nettleton and Dekkers (2012) can
be applied in this simulation setting with t-statistics. However, because the effect
sizes under the alternative are not generated from the zero-mean normal distribu-
tion as assumed in Qu, Nettleton and Dekkers (2012), their method’s realized FDR
levels can more than double the target FDR level, and their results are not shown
here.

3.2.3. Set 3: t-statistic with varying effect sizes. In Set 3 we study the impact
of effect size. The set up is the same as Set 2 with n subjects in each of Treat-
ment and Control group. The true null probability π0(x) = 0.6 + 0.08(x1 + x2) +
0.2x1x2, a mixture of additive and interaction effects. When the null hypothesis
is false, we set μ = −τ with probability 3+2x1+x2

6 and μ = τ with probability
3−2x1−x2

6 , where the signal effect size τ = 1,1.25,1.5,1.75, and 2 to represent
moderate to strong signals.

Figure 4(a) plots the average realized FDR as a function of τ . The realized
FDR levels of FDRreg can be inflated more than 30% over the target FDR level,
and Lfdr can have at most 10% inflation in realized FDR levels. Similar to Set
2, the inflated FDR levels of FDRreg and Lfdr are due to the violation of the
normal mean model, and Lfdr is less sensitive to such violation than FDRreg.
Only CLfdr and BH-RB maintain FDR control, and CLfdr is more powerful
than BH-RB by utilizing the information in changing π0(·) and f1(·|·).
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FIG. 4. Simulation results for simulation Set 3 (left column) and Set 4 (right column). First row,
realized FDR; second row, power relative to ORC.

3.2.4. Set 4: Dependent t-statistic with varying effect sizes. Here, we investi-
gate the performance of various methods under dependence. The data are gener-
ated similar to Set 3, except we form random blocks of genes of size 20 within null
genes and alternative genes, respectively. Within each block gene expressions have
an autoregressive order 1 (AR1) correlation structure with the correlation of ρ|i−j |
between the ith and j th elements. We set ρ = −0.8 so that we have both positive
and negative correlations of varying magnitude within each block to mimic the
genetic correlations within biological pathways.

The realized FDR and relative power are plotted in Figure 4 Panels (c) and (d),
and results are very similar to that of Set 3. We also tried a larger magnitude of
correlation (ρ = −0.9) and larger block size (50), and the results are not signifi-
cantly different from this setting. The results in Set 4 suggest that CLfdr is robust
to the correlation structure that is common in gene expression studies.

Here we briefly summarize the simulation results for multiple covariates. FDR-
reg can have significantly inflated FDR levels when the original test statistics are
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not z-values. Among procedures that maintain proper FDR control, CLfdr is the
most powerful procedure, and its power stays the closest to ORC.

3.3. Single covariate. Here, we focus on the settings with a single covariate
(p = 1). Throughout the single covariate simulation settings we generated data
under the normal mean model, where Yi ∼ N(0,1) under true nulls, and the co-
variate Xi ∼ Unif[0,1], i = 1, . . . ,m, and we set m = 10,000. We also considered
two other methods that can only handle a single covariate. We will compare our
method with the independent hypothesis weighting (IHW) method proposed by
Ignatiadis et al. (2016), which is implemented in the IHW R package v1.0.2 from
Bioconductor (bioconductor.org). On the other hand, the procedure proposed by
Ferkingstad et al. (2008) cannot be compared due to its tendency to abort with
running errors which were also observed in Ignatiadis et al. (2016).

3.3.1. Set 5: Varying π0(·) only. We generated data under Model II where only
the true null probability is allowed to change with the covariate while the alterna-
tive density remains constant. More specifically, we set π0(x) = 0.8 + δ sin(2πx)

where δ = 0,0.05,0.1,0.15, and 0.2. The alternative density is constant and sym-
metric with Yi ∼ N(μ,1) and μ = 3 or −3 with equal probabilities. When δ > 0,
the true null probability follows a full cycle of the sine function, and the magnitude
of change increases with δ. When δ = 0, the true null probability is constant, and
the model degenerates to Model I.

Figure 5(a) shows the bias of realized FDR as a function of δ. The FDR levels
of ORC are very close to the nominal level with little bias. IHW is the most conser-
vative method, and the FDR levels of other methods are close to the target level.
Figure 5(b) shows the power relative to the oracle procedure as a function of δ, and
we can roughly divide all procedures into three groups: CLfdr and FDRreg can
fully adapt to varying π0(·) and achieve almost the same power of ORC; Lfdr and
BH-RB assume constant π0 and lose power as δ increase; IHW is the least power-
ful method mainly because its conservativeness. IHW can partially adapt to vary-
ing π0(·) by dividing p-values into bins according to their corresponding covariate
values and assigning different weights to different bins. Through this weighting
scheme, IHW adapts to changing π0(·) in a piecewise constant fashion, and its
power is less affected by the changing δ than Lfdr and BH-RB. As the alterna-
tive density is constant and symmetric, Lfdr doesn’t hold any power advantage
over p-value based procedure like BH-RB, and their minor difference can only be
explained by their different overall π0-estimators.

We emphasize that CLfdr performs similarly as ORC, even though the true
model is Model II and CLfdr is overfitting the simulated data with Model III.
This is achieved through the automatic bandwidth selection described in Step 3.
Across all replications in this set, the median of the bandwidth values for the co-
variate X is about 80. With the covariate X ranging between 0 and 1, the large
bandwidth values effectively smooth out the covariate and lead to an estimation of
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FIG. 5. Simulation results for simulation Sets 5–7. Left column: realized average FDR. Right col-
umn: power relative to ORC. Reference line for target FDR levels, dotted line.
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the common alternative density. That is, the cross-validation method we employ
in Step 3 automatically over-smooths irrelevant covariates. This phenomenon is
similar to what has been observed in Hall, Racine and Li (2004) when choosing
smoothing parameters for the conditional overall density while ours is for the con-
ditional alternative density. Even when δ = 0 and the true model is Model I, the
performance of CLfdr stays close to that of ORC, indicating the robustness of our
estimating procedures when the model is overspecified.

3.3.2. Set 6: Varying f1(·|·) only. We set the true null probability to be
constant at 0.8. The conditional alternative density is a mixture of two densi-
ties with mixing proportion depending on the covariate: Yi ∼ N(μ,1) and μ ∼
xN(2,0.332)+ (1−x)N(−2,0.332) where the effect sizes μ’s are generated from
a mixture of two normal distributions. We evaluate all procedures at varying target
FDR levels between 0.05 and 0.3.

Figure 5(c) shows the realized FDR as a function of the target FDR level α.
IHW is the most conservative procedure, and FDR levels of all other procedures
are reasonably close to the target FDR levels. From Figure 5(d), CLfdr dominates
all other procedures in terms of power because CLfdr is the only method that
can adapt to the changing alternative distribution. The power differences between
CLfdr and other procedures decrease as the target FDR level increases. This is
simply because the relaxation of the target FDR level leads to fewer unrejected
alternatives and there is less room for power improvement.

3.3.3. Set 7: Varying π0(·) and f1(·|·). We set π0(x) = 0.4 + 0.5 sin(πx) with
the conditional alternative density f1(y|x) = xN(−μ,1) + (1 − x)N(μ,1). We
consider effect sizes μ = 1.5,2,2.5 and 3 to represent moderate to strong signals.

From Figure 5(e), FDRreg can slightly lose FDR control while the FDR levels
of other procedures are close to or below the nominal level. Figure 5(f) shows
the relative power as a function of μ: CLfdr stays closest to ORC and dominates
all other procedures; FDRreg can adapt to varying π0(·) and has the second best
power; IHW and the methods that ignore the covariate, Lfdr and BH-RB, are the
least powerful. The relative power differences between CLfdr and other methods
increase as the effect size μ decreases. This is because the additional information
from varying π0(·) and f1(·|·) becomes more important when signals are weak.

To evaluate the ability to rank the false null hypotheses ahead of the true nulls,
we draw the partial receiver operating characteristic (ROC) curves of all proce-
dures in Figure 6 for μ = 1.5, where the curves are separated the most. BH-RB
and Lfdr have almost identical ROC curves, so only the ROC curve of BH-RB
was plotted to avoid overlap. According to Theorems 1 and 2, CLfdr should be the
best ranking statistics, and ORC and CLfdr are superior to other procedures. IHW
performs the worst among procedures that take the covariate into account, possibly
because of its inefficiency due to binning and the use of p-values. Not surprisingly,
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FIG. 6. Partial ROC curves for simulation Set 7 with μ = 1.5.

BH-RB and Lfdr perform the worst overall because they cannot utilize the covari-
ate information. Without considering the covariate, the overall alternative density
is symmetric in this set, and there is no difference between BH-RB and Lfdr in
terms of ranking ability.

Here, we summarize the simulation results for a single covariate in Sets 5–7.
CLfdr is the most powerful procedure, and its power stays closest to ORC. IHW
is the most conservative and least powerful procedure. We repeated Sets 5–7 with
a small number of tests (m < 1000), which is also a common case in scientific
experiments. The FDR levels of CLfdr can be slightly inflated, but the maximum
inflation is less than 10% at the nominal FDR level of 0.1. On the other hand,
FDRreg can be significantly liberal with its highest FDR inflation over 50% in
Set 7. For details see Section 3 of the Supplementary Material (Liang (2019)).

4. Application. We now return to the application introduced in Section 1.
Recall that three pairs of lesional and nonlesional skin samples were compared
in the RNA-seq study of psoriasis in Jabbari et al. (2012), and the read count
data can be downloaded from the recount2 project (Collado-Torres et al. (2017))
with accession number SRP016583. There are 18,151 genes that have at least one
nonzero count across all samples. We analyzed RNA-seq data using the limma-
voom method (Law et al. (2014)) which returns a t-statistic for each gene. We
choose the limma-voom method because it has been shown to have better FDR
control than competing methods for small sample size experiments such as ours;
see simulation results in Law et al. (2014) and Benidt and Nettleton (2015). The
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effective degrees of freedom is 8.8, similar to the degrees of freedom used in sim-
ulation Sets 2–4. The primary statistics of z-values were transformed from the
t-statistics as in (1).

For each gene, the length of the coding region in the number of nucleotides
(len) can also be obtained from the recount2 project. In RNA-seq the longer genes
tend to have a higher number of observed counts and better power to detect dif-
ferential expression (Oshlack and Wakefield (2009)). Furthermore, a related study
using microarray has been conducted by Gudjonsson et al. (2010) with 58 pairs of
lesional and nonlesional skin samples, and the dataset is publicly available in the
Gene Expression Omnibus with accession number GSE13355. Only 16,493 genes
out of 18,151 can be found in the microarray study because of the design of the
microarray. We analyzed microarray data using the limma method Smyth (2004)
and obtained t-statistics for the 16,493 genes, and we will denote the microarray
t-statistics as tval.

There could be scientific interest to perform a meta-analysis to identify genes
that are DE in both RNA-seq and microarray studies because of their shared study
design of paired lesional and nonlesional skin. However, meta-analysis across dif-
ferent technology platforms can be challenging. As only some of the microarray-
measured genes are also measured via RNA-Seq, it is unclear what to do with
the genes measured only via RNA-Seq. Even for the genes that are measured
on both technology platforms, there could be systematic differences in their DE
statuses and effect sizes. Skin samples from the two studies went through differ-
ent biochemical processing protocols, and resulting data were subject to different
statistical normalization steps before statistical analysis. Furthermore, microar-
ray only measures expression levels of specific parts of genes that are designed
on microarray chips, and microarray measurement may not be reliable for genes
whose expression levels are either too high or low (Kukurba and Montgomery
(2015)). Finally, the patient enrollment criteria show marked differences between
the two studies. Patients in Jabbari et al. (2012) showed moderate-to-severe psoria-
sis (>10% skin affected) and had been off treatment for at least four weeks before
sample collection. On the other hand, Gudjonsson et al. (2010) enrolled all pso-
riasis patients with >1% affected skin and only required one week off-treatment
before the sample collection. Considering the systematic differences between the
two studies, we decide to treat the microarray results as potentially biased and
noisy auxiliary information to enhance our analysis of the current RNA-seq data.

In our model fitting we used the normalized ranks of tval and len as our
covariates, because on the original scale, both covariates have a few extreme values
which make the estimation of local conditional density difficult. More specifically,
we define the two covariates as x1 = rank(tval)/m and x2 = rank(len)/m. This
transformation is a one-to-one monotone transformation, and the covariates have
the interpretation of the quantile of the original covariates.

Naturally, we divide the total of 18,151 genes into two groups. One group con-
tains the 16,493 genes with matching microarray data and another group of 1658
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FIG. 7. Panel (a), contour plot of true null probabilities for psoriasis data. Panel (b), scatter plot
of additional discoveries of CLfdr comparing to BH-RB. x1 is the normalized rank of microarray
t-statistic, and x2 is the normalized rank of gene length.

genes without matches. At first, we will analyze the 16,493 shared genes with
tval and len as covariates. The z-values are assumed to follow a standard nor-
mal distribution under the null hypothesis of no differential expression, and we
estimated the true null probability as π̂RB

0 = 0.6. Figure 7(a) shows the contour
plot of the estimated true null probabilities from our method. The contour plot
shows a complex surface of the true null probabilities, suggesting that the additive
model may not be suitable. As midrange of x1 values correspond to small absolute
values of tval, the contour plot indicates that a gene is most likely to be non-DE
if the corresponding |tval| is small and its coding region is short.

Finally, we plot the density histograms of z-values grouped according to 3-
quantiles of covariate values in Figure 8. The number of genes in each combina-
tion is denoted as n in the upper part of each panel. The estimated null densities
are plotted as solid black curves, and the estimated alternative densities are plotted
as blue dashed curves. From top to bottom, the alternative density is clearly shift-
ing from the negative side to the positive side as tval increases. The impact of
gene length is most evident on the true null probability and is highly dependent on
tval: when tval is positive (the bottom row), there is little gene length effect; on
the other hand, when tval is negative (the top row), longer genes are more likely
to be down-regulated. This observation suggests strong interaction between tval
and len. We performed an informal test of additivity with the estimated CLfdr val-
ues as responses and compared the additive model versus the nonadditive model.
We obtained a p-value < 0.001 against the null hypothesis that additive model is
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FIG. 8. Density histograms of z-values across covariate value combinations in psoriasis data.

adequate, and this result also suggests the strong interaction effect between co-
variates. In general, the additivity assumption and the constant alternative density
assumption may not hold in real applications. In Section 4 of the Supplementary
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TABLE 2
The number of rejections

FDR CLfdr BH-RB BH

0.1 5,620 3,035 1,836

Material (Liang (2019)), we reanalyze the neural synchrony dataset from Scott
et al. (2015) to demonstrate the violations of these two assumptions.

For the group of 1658 genes without matching microarray gene measurements,
we analyzed them with only the gene length covariate and obtained CLfdr estimate
for each gene. To combine results from two groups, we can rank the genes by their
CLfdr estimates across groups and choose a rejection threshold according to the
optimal procedure in Section 2.1. According to Cai and Sun (2009), this is the
optimal combining strategy when hypotheses are grouped.

For comparison, we consider the following procedures: BH, the linear step-up
procedure proposed by Benjamini and Hochberg (1995), and BH-RB, the adaptive
BH procedure. In Section 1 we cast doubt about the suitability of FDRreg and
the method of Qu, Nettleton and Dekkers (2012) to our psoriasis dataset, and here
we provide more concrete evidence. First, their assumption of constant alternative
density is clearly violated according to Figures 2 and 8. Furthermore, in addition
to the inadequacy of the additive model, the zero-mean normal model of noncen-
trality parameters in Qu, Nettleton and Dekkers (2012) implies that the alternative
distribution and the overall distribution are symmetric around zero. However, there
are 142 z-values > 4 but only 20 z-values < −4, and the p-value from a equal
probability Binomial test is almost zero (< 2 × 10−16). Similarly, FDRreg imple-
ments the normal mean model which can be problematic for z-values derived from
t-statistics as illustrated in our simulation Sets 2–4.

Table 2 shows the number of rejections at the target FDR level of 0.1. Our
CLfdr is the most powerful one and followed by BH-RB and BH. Figure 7(b)
shows the scatter plot of the covariate values for the additional discoveries made
by CLfdr comparing to BH-RB. The data points in Panel (b) show an impres-
sive matching pattern with the contour plot in Panel (a), and it is evident that the
additional discoveries are concentrated in the low true null probability area. As
expected from our theoretical and simulation results, CLfdr promotes the signif-
icances of those genes that are more likely to be DE according to their covariate
values.

In real applications we usually do not know the true statuses of null hypotheses.
After an extensive search of the literature, we found a closely related subsequent
study of psoriasis by Tsoi et al. (2015), where 27 pairs of lesional and nonlesional
skin samples were measured by RNA-seq. The patient enrollment criteria of the
new study are very similar to those of the microarray study and are therefore less
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stringent than those of our psoriasis study. Despite their differences, the new study
still has a reference value because of the similarities between the two studies, such
as the same technology platform and the same study design of paired skin sam-
ples. We again analyzed the new RNA-seq data using the limma-voom method
and obtained the p-values of the rejected 5,620 genes at FDR level of 0.1 using
CLfdr in our current study. Treating all p-values larger than 0.5 as coming from
true null hypotheses, we can estimate the proportion of the true null hypotheses
among these 5,620 genes as 8.1% by using the π0-estimator proposed in Storey,
Taylor and Siegmund (2004). This estimate suggests that our CLfdr method in-
creases the power by utilizing the covariate information while maintaining proper
FDR control.

Our empirical Bayes method also provides for each gene the estimate of the
posterior probability of no differential expression. To control the FDR at the 0.1
level, the average CLfdr estimate of rejected 5,620 genes is no greater than 0.1.
However, the highest CLfdr estimate of these 5,620 genes can be as large as 0.32
which implies some rejected genes may have about one in three chance to be non-
DE. This illustrates the drawback of controlling the FDR at a target level which
allows hypotheses with high CLfdr to be rejected. As suggested by Efron (2007),
we would advocate a more sensible rejection threshold of CLfdr ≤ 0.1 or 0.2,
depending on the desired stringency.

Among the genes that are declared significant by our method but not by BH-RB
or BH, Interferon Regulatory Factor 7 (IRF7) offers an interesting example. By
the RNA-seq data of Jabbari et al. (2012) alone, the p-value for IRF7 is 0.059,
barely missing the typical single hypothesis cutoff of 0.05. Its significance will be
even lower after multiplicity adjustment. On the other hand, our method estimates
its CLfdr as 0.01 which means IRF7 is very likely to be DE. Our CLfdr estimate
for IRF7 is primarily influenced by its corresponding microarray t-statistic from
Gudjonsson et al. (2010), which is 23.8 with about 61 degrees of freedom and
leads to a p-value of 2×10−32. This microarray t-statistic translates to x1 = 0.995,
and the coding region length of IRF7 is 2628 nucleotide bases and corresponds to
x2 = 0.209. From Figure 7 Panel (a) it can be seen that the covariate values of IRF7
lead to a small prior probability of IRF7 being non-DE. Furthermore, the z-value
of IRF7 is 1.89 which indicates potentially up-regulated gene expression levels in
lesional skin. This is in agreement with the perceived alternative distribution con-
ditional on tval = 23.8 from Figure 2, further lending support to the conclusion
that IRF7 is up-regulated in lesional skin.

Interferon-α (IFN-α) plays an important role in psoriasis pathogenesis (van der
Fits et al. (2004), Nestle et al. (2005)). As a gene inducible by IFN-α, IRF7 has
been studied extensively in psoriasis studies. For example, van der Fits et al. (2004)
show increased IRF7 expression levels in lesional skin compared to nonlesional
and healthy skin using reverse transcription polymerase chain reaction (RT-PCR).
Yao et al. (2008) find increased IRF7 expression levels in lesional skin compared
to paired nonlesional skin using microarray. Finally, IRF7 also shows significantly



2478 K. LIANG

increased expression levels in lesional skin in the recent RNA-seq study from Tsoi
et al. (2015). In summary, IRF7 has been repeatedly shown to have elevated ex-
pression levels in lesional skin compared to nonlesional skin. Despite the weak
evidence of IRF7 over-expression in lesional skin from the Jabbari et al. (2012)
data, we are able to adjust its significance level using known covariate information
and arrive at a correct conclusion.

5. Discussion. Our model III implies that the primary statistics are condition-
ally independent given covariates. The conditional independence is less stringent
and a more reasonable assumption than the marginal independence implied by the
two-group model. In applications with spatial covariates, such as in neuroimaging
and astronomy, our conditional model can provide a reasonable explanation of the
spatial clustering of signals with similar strengths. On the other hand, the correla-
tion among true null statistics depend heavily on the specific application under in-
vestigation and can pose a serious challenge. Through simulation we demonstrate
that the performance of our procedure is relatively robust to block dependence
structure which mimics the correlation among gene expression levels in pathways.
However, this robustness may not generalize well to other types of dependence in
applications such as GWAS. For recent investigations into the multiplicity adjust-
ment for GWAS with consideration of linkage disequilibrium, see, for example,
Stange et al. (2016) and Brzyski et al. (2017). Some recent studies of the FDR un-
der dependence include Efron (2010), Schwartzman and Lin (2011), Fan, Han and
Gu (2012) and Fan and Han (2017), among others. We will leave the exploration
of the dependent case for future research.

In large-scale multiple testing applications confounding factors could affect the
validity of each individual test statistic and lead to spurious findings. Detection
and adjustment for confounding factors should be carefully carried out before the
multiplicity adjustment. Interested readers can refer to Leek and Storey (2007),
Gagnon-Bartsch and Speed (2012), and Wang et al. (2017) for literature and meth-
ods. The confounding issue is less of concern for our psoriasis dataset because
paired lesional and nonlesional skin samples were collected from each psoriasis
patient in the study. Subject-level confounding factors such as age and sex would
be balanced by the paired design. Also, our result shows high concordance with a
previous microarray study (Gudjonsson et al. (2010)) and a subsequent RNA-seq
study with a larger sample size (Tsoi et al. (2015)).

Our method is a nonparametric empirical Bayes method that estimates the true
null probability function using thin plate spline and the conditional alternative den-
sity using kernel density. Such methodology works best when the number of tests
is large and the number of covariates is small, as in our psoriasis application. On
the other hand, these nonparametric methods will encounter difficulty when the
number of covariates is large due to the curse of dimensionality. Several adap-
tations may be employed, for example, the additive model in Qu, Nettleton and
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Dekkers (2012) can be used for estimating the true null probability function, cer-
tain dimension reduction methods such as principal component analysis may lead
to a more stable result and recently Tansey et al. (2018) extend the FDR regression
framework of Scott et al. (2015) to the high-dimensional setting through a deep
neural network. The details will depend on specific applications and will be left
for future research.
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SUPPLEMENTARY MATERIAL

Proofs and additional results (DOI: 10.1214/19-AOAS1270SUPP; .pdf). The
proofs of theorems, the simulation result with a small number of tests, and the
analysis of an additional application.

REFERENCES

ANDREASSEN, O. A., DJUROVIC, S., THOMPSON, W. K., SCHORK, A. J., KENDLER, K. S.,
O’DONOVAN, M. C., RUJESCU, D., WERGE, T., VAN DE BUNT, M. et al. (2013). Improved
detection of common variants associated with schizophrenia by leveraging pleiotropy with
cardiovascular-disease risk factors. Am. J. Hum. Genet. 92 197–209.

BENIDT, S. and NETTLETON, D. (2015). Simseq: A nonparametric approach to simulation of RNA-
sequence datasets. Bioinformatics 31 2131–2140.

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

BLANCHARD, G. and ROQUAIN, É. (2009). Adaptive false discovery rate control under indepen-
dence and dependence. J. Mach. Learn. Res. 10 2837–2871. MR2579914

BRZYSKI, D., PETERSON, C. B., SOBCZYK, P., CANDÈS, E. J., BOGDAN, M. and SABATTI, C.
(2017). Controlling the rate of GWAS false discoveries. Genetics 205 61–75.

CAI, T. T. and SUN, W. (2009). Simultaneous testing of grouped hypotheses: Finding needles in
multiple haystacks. J. Amer. Statist. Assoc. 104 1467–1481. MR2597000

COLLADO-TORRES, L., NELLORE, A., KAMMERS, K., ELLIS, S. E., TAUB, M. A.,
HANSEN, K. D., JAFFE, A. E., LANGMEAD, B. and LEEK, J. T. (2017). Reproducible RNA-seq
analysis using recount2. Nat. Biotechnol. 35 319–321.

CRAVEN, P. and WAHBA, G. (1978). Smoothing noisy data with spline functions. Numer. Math. 31
377–403.

DU, L. and ZHANG, C. (2014). Single-index modulated multiple testing. Ann. Statist. 42 30–79.
MR3226157

EFRON, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis.
J. Amer. Statist. Assoc. 99 96–104. MR2054289

EFRON, B. (2007). Size, power and false discovery rates. Ann. Statist. 35 1351–1377. MR2351089
EFRON, B. (2008). Simultaneous inference: When should hypothesis testing problems be combined?

Ann. Appl. Stat. 2 197–223. MR2415600
EFRON, B. (2010). Correlated z-values and the accuracy of large-scale statistical estimates. J. Amer.

Statist. Assoc. 105 1042–1055. MR2752597
EFRON, B. and TIBSHIRANI, R. (2002). Empirical Bayes methods and false discovery rates for

microarrays. Genet. Epidemiol. 23 70–86.

https://doi.org/10.1214/19-AOAS1270SUPP
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=2579914
http://www.ams.org/mathscinet-getitem?mr=2597000
http://www.ams.org/mathscinet-getitem?mr=3226157
http://www.ams.org/mathscinet-getitem?mr=2054289
http://www.ams.org/mathscinet-getitem?mr=2351089
http://www.ams.org/mathscinet-getitem?mr=2415600
http://www.ams.org/mathscinet-getitem?mr=2752597


2480 K. LIANG

EFRON, B., TIBSHIRANI, R., STOREY, J. D. and TUSHER, V. (2001). Empirical Bayes analysis of
a microarray experiment. J. Amer. Statist. Assoc. 96 1151–1160. MR1946571

FAN, J. and HAN, X. (2017). Estimation of the false discovery proportion with unknown depen-
dence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1143–1164. MR3689312

FAN, J., HAN, X. and GU, W. (2012). Estimating false discovery proportion under arbitrary covari-
ance dependence. J. Amer. Statist. Assoc. 107 1019–1035. MR3010887

FAN, J. and YIM, T. H. (2004). A crossvalidation method for estimating conditional densities.
Biometrika 91 819–834. MR2126035

FERKINGSTAD, E., FRIGESSI, A., RUE, H., THORLEIFSSON, G. and KONG, A. (2008). Unsuper-
vised empirical Bayesian multiple testing with external covariates. Ann. Appl. Stat. 2 714–735.
MR2524353

GAGNON-BARTSCH, J. A. and SPEED, T. P. (2012). Using control genes to correct for unwanted
variation in microarray data. Biostatistics 13 539–552.

GENOVESE, C. and WASSERMAN, L. (2002). Operating characteristics and extensions of the false
discovery rate procedure. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 499–517. MR1924303

GUDJONSSON, J. E., DING, J., JOHNSTON, A., TEJASVI, T., GUZMAN, A. M., NAIR, R. P.,
VOORHEES, J. J., ABECASIS, G. R. and ELDER, J. T. (2010). Assessment of the psoriatic tran-
scriptome in a large sample: Additional regulated genes and comparisons with in vitro models.
Journal of Investigative Dermatology 130 1829–1840.

HALL, P., RACINE, J. and LI, Q. (2004). Cross-validation and the estimation of conditional proba-
bility densities. J. Amer. Statist. Assoc. 99 1015–1026. MR2109491

HUMMEL, M., MEISTER, R. and MANSMANN, U. (2008). GlobalANCOVA: Exploration and as-
sessment of gene group effects. Bioinformatics 24 78–85.

IGNATIADIS, N., KLAUS, B., ZAUGG, J. B. and HUBER, W. (2016). Data-driven hypothesis weight-
ing increases detection power in genome-scale multiple testing. Nat. Methods 13 577–580.

JABBARI, A., SUÁREZ-FARIÑAS, M., DEWELL, S. and KRUEGER, J. G. (2012). Transcriptional
profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed
genes. Journal of Investigative Dermatology 132 246–249.

JIN, J. (2008). Proportion of non-zero normal means: Universal oracle equivalences and uniformly
consistent estimators. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 461–493. MR2420411

JIN, J. and CAI, T. T. (2007). Estimating the null and the proportional of nonnull effects in large-
scale multiple comparisons. J. Amer. Statist. Assoc. 102 495–506. MR2325113

KUKURBA, K. R. and MONTGOMERY, S. B. (2015). RNA sequencing and analysis. Cold Spring
Harbor Protocols 2015 951–969.

LANGAAS, M., LINDQVIST, B. H. and FERKINGSTAD, E. (2005). Estimating the proportion of true
null hypotheses, with application to DNA microarray data. J. R. Stat. Soc. Ser. B. Stat. Methodol.
67 555–572. MR2168204

LAW, C. W., CHEN, Y., SHI, W. and SMYTH, G. K. (2014). Voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 15 R29.

LEEK, J. T. and STOREY, J. D. (2007). Capturing heterogeneity in gene expression studies by sur-
rogate variable analysis. PLoS Genet. 3 e161.

LI, A. and BARBER, R. F. (2017). Accumulation tests for FDR control in ordered hypothesis testing.
J. Amer. Statist. Assoc. 112 837–849. MR3671774

LIANG, K. (2019). Supplement to “Empirical Bayes analysis of RNA sequencing experiments with
auxiliary information.” DOI:10.1214/19-AOAS1270SUPP.

LIANG, K. and NETTLETON, D. (2012). Adaptive and dynamic adaptive procedures for false discov-
ery rate control and estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 163–182. MR2885844

MACDONALD, P., LIANG, K. and JANSSEN, A. (2019). Dynamic adaptive procedures that control
the false discovery rate. Electron. J. Stat. 13 3009–3024. MR4010590

MARTIN, R. and TOKDAR, S. (2012). A nonparametric empirical Bayes framework for large-scale
multiple testing. Biostatistics 13 427–439.

http://www.ams.org/mathscinet-getitem?mr=1946571
http://www.ams.org/mathscinet-getitem?mr=3689312
http://www.ams.org/mathscinet-getitem?mr=3010887
http://www.ams.org/mathscinet-getitem?mr=2126035
http://www.ams.org/mathscinet-getitem?mr=2524353
http://www.ams.org/mathscinet-getitem?mr=1924303
http://www.ams.org/mathscinet-getitem?mr=2109491
http://www.ams.org/mathscinet-getitem?mr=2420411
http://www.ams.org/mathscinet-getitem?mr=2325113
http://www.ams.org/mathscinet-getitem?mr=2168204
http://www.ams.org/mathscinet-getitem?mr=3671774
https://doi.org/10.1214/19-AOAS1270SUPP
http://www.ams.org/mathscinet-getitem?mr=2885844
http://www.ams.org/mathscinet-getitem?mr=4010590


COVARIATE ASSISTED MULTIPLE TESTING 2481

MEINSHAUSEN, N. and RICE, J. (2006). Estimating the proportion of false null hypotheses among
a large number of independently tested hypotheses. Ann. Statist. 34 373–393. MR2275246

NESTLE, F. O., CONRAD, C., TUN-KYI, A., HOMEY, B., GOMBERT, M., BOYMAN, O.,
BURG, G., LIU, Y.-J. and GILLIET, M. (2005). Plasmacytoid predendritic cells initiate psori-
asis through interferon-α production. J. Exp. Med. 202 135–143.

NEWTON, M. A. (2002). On a nonparametric recursive estimator of the mixing distribution. Sankhyā
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