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We consider a particular instance of a common problem in recommender
systems, using a database of book reviews to inform user-targeted recommen-
dations. In our dataset, books are categorized into genres and subgenres. To
exploit this nested taxonomy, we use a hierarchical model that enables infor-
mation pooling across across similar items at many levels within the genre
hierarchy. The main challenge in deploying this model is computational. The
data sizes are large and fitting the model at scale using off-the-shelf maximum
likelihood procedures is prohibitive. To get around this computational bottle-
neck, we extend a moment-based fitting procedure proposed for fitting single-
level hierarchical models to the general case of arbitrarily deep hierarchies.
This extension is an order of magnitude faster than standard maximum like-
lihood procedures. The fitting method can be deployed beyond recommender
systems to general contexts with deeply nested hierarchical generalized linear
mixed models.

1. Introduction. Given a dataset of books, users and user reviews of those
books, consider the problem of recommending books to users. This problem is
a specific instance of the recommender system problem common in commercial
applications (Adomavicius and Tuzhilin (2005)). In our context the following data
are available:

• A collection of 38,659 books, each with an author title, genre, subgenre and
sub-subgenre, a taxonomy scraped from amazon.com by McAuley, Pandey
and Leskovec (2015). Figure 1 shows the first two levels of the book genre
hierarchy.

• A set of 157,638 ratings of the books made by 38,085 users taken from the
BookCrossing dataset, an anonymized collection of book reviews harvested
from bookcrossing.com by Ziegler et al. (2005).

• User age and location (continent) included with the BookCrossing dataset.

Appendix A gives descriptive statistics for the dataset, including descriptions
of how the ratings are distributed between user age groups and continents. Most
ratings are from users, aged 20–40 years, in the United States.
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FIG. 1. First two levels of the book genre hierarchy for the 10 largest subgenres.

Others have built recommender systems for the BookCrossing dataset
(Agarwal and Chen (2010), Weng et al. (2008), Zhang, Cao and Yeung (2010)).
Our application is unique in that we will attempt to leverage the book genre hier-
archy to improve recommendations.

Rather than solving the book recommendation problem directly, we will attempt
to solve a proxy problem—for each book-user pair predict whether the user would
like the book if they rated it. We can use the solution to the proxy problem to
solve the original problem by recommending books with the highest predicted
“like” probabilities. This proxy approach to the recommendation system is com-
mon (Adomavicius and Tuzhilin (2005), Ansari, Essegaier and Kohli (2000)); it
ignores information inherent in a user’s selection of which books to review, but
despite this it often gives reasonable downstream results.

One strategy for solving a recommender system problem is the content-based
approach, using user attributes together with book-specific parameters to make
recommendations. Another strategy is the collaborative approach, recommending
books that are liked by similar users. We prefer instead a variant of the hierarchical-
model-based approach advocated by Condliff, Lewis and Madigan (1999) and
Ansari, Essegaier and Kohli (2000) that combines the content-based and collab-
orative strategies.

The simplest form of the hierarchical model approach is a flat item hierarchy
with each item sitting directly under the root. In our context, the flat model would
assign a random effect vector ui to each book i that relates the popularity of the
book to user- and context-specific covariate vector along with a fixed-effect vector
β that relates book popularity to another covariate vector (possibly the same). For
a particular user review of a book i, let y be a binary indicator of whether the user
liked the book, and let x0 and x1 be the user-context covariate vectors associate
fixed and random effects, respectively. The link between the effects, the covariates
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and the response is

(1) logit Pr(y = 1 | ui) = βT x0 + uT
i x1.

The random effect vectors are independent multivariate normal random vectors
with mean zero and covariance matrix �1:

(2) ui ∼ N (0,�1).

Equation (1) demonstrates the content-based aspect of the model, where user
attributes (x0 and x1) are linked to preferences. Equation (2) introduces the
collaborative-based features: books with abundant data will have strongly identi-
fied random effects ui ; others will have posterior means (conditional on the avail-
able review data) determined in part by the effects of similar items through the
covariance matrix �1.

In our application, we have a richer hierarchy with books nested under author,
sub-subgenre, subgenere and genre. We can exploit this hierarchy in the model
formulation by allowing for a random effect vector at each node in the hierarchy
and not just at the leaves. Doing so allows for information pooling in random
effect estimates across the levels in the hierarchy. We elaborate on this benefit in
Section 2.

Despite its appeal, the hierarchical modeling and more general mixed modelling
approaches to recommender systems have long considered infeasible at commer-
cial scale due to the high computational demands of fitting the model (Agarwal
(2008), Naik et al. (2008)). Recent progress has expanded the scope of applica-
tion of these models. Gao and Owen (2016), Gao and Owen (2017) proposed a
moment-based approach for estimating the parameters of a crossed effects model;
Perry (2017) proposed a moment-based approach for fitting a flat hierarchical
model; Tan et al. (2018) proposed a kernel-based approach for fitting a linear flat
hierarchical model, and Zhang et al. (2016) developed a parallelized maximum
likelihood fitting algorithm that can exploit multiple computing cores.

To fully exploit the deeply nested book hierarchy in a computationally efficient
manner, we will in the sequel develop a moment-based fitting method for hierar-
chical models of arbitrary depth. Note that deeper models involve more parame-
ters and thus require more data to learn. In practice, one should perform model
selection to choose the depth of the hierarchical model. For example, in our book
recommendation application we used out-of-sample prediction performance on a
development set to determine the best number of hierarchies.

The rest of the paper is organized as follows. In Section 2 we elaborate on
the benefits of using a hierarchical model in our context. Next, in Section 3 we
introduce the details of our model, using framework suitable for describing general
hierarchical models. Our fitting method proceeds in two passes. In the first pass, we
use the available data to get initial parameter estimates at the leaves of the tree, and
then we propagate information in these estimates up to the root. In the second pass,



FITTING A DEEPLY NESTED HIERARCHICAL MODEL 2263

we use the accumulated information to refine the estimates back down from the
root back to the leaves. We describe these procedures in Section 4 and Section 5,
respectively. After investigating the performance of our method in simulations in
Section 6, we apply the procedure to our dataset in Sections 7 and 8. We conclude
with a short discussion in Section 9.

Our fitting procedure is implemented in the mbest R package and is available
at https://cran.r-project.org/package=mbest.

2. Local and global approaches. This hierarchical modeling approach in-
terpolates two extremes, a “global” and a “local” approach. The global approach
would have a single parameter vector shared by all books and fit by lumping the re-
views for all books together. The local approach would have a different parameter
vector for each book and fit in isolation using only the reviews of the correspond-
ing book. The global approach corresponds to setting ui = 0 for all books i; the
local approach corresponds to treating ui as nonrandom.

The appeal of the hierarchical model can be demonstrated by comparing the
performance of a global and a local model. We perform this comparison at the
author level. The global model will have a single parameter vector shared by all
authors; the local model will have a different parameter vector for each author.
Both models use the same set of covariates, described later in Section 3. We fit
both models on a training set then evaluate on a test set. In the global model, the
probability that a user likes an item is described as

logit Pr(y = 1) = βT x,

where x is the vector of user covariates. The predictions from this model are the
same for all authors. In the local model, the probability that the user likes book i

is described as

logit Pr(y = 1) = βT
i x.

This takes a similar form to the global model, but the coefficients βi depend on the
book author i.

TABLE 1
Average misclassification rates of local author-specific (Errora) and global (Errorg) models

(standard deviations in parentheses)

# Author Ratings Errora (%) Errorg (%) Errora − Errorg (%)

[10,20] 38.52 (0.53) 35.16 (0.52) 3.36
(20,50] 37.15 (0.42) 34.91 (0.41) 2.24
(50,100] 34.76 (0.48) 34.20 (0.48) 0.55
(100,1000] 32.15 (0.40) 32.32 (0.40) −0.16

https://cran.r-project.org/package=mbest
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Table 1 shows the test set misclassification rates for the two fitted models,
grouped by the number of ratings per author. For authors with 100 or fewer rat-
ings, the global model performs better on average than the local model. Only in
the group of authors with large number of ratings (more than 100) does the local
model perform better.

What is needed is an adaptive model that can interpolate between these two
extremes. For authors with abundant data, use the local model; for authors with
little or no data, use the global model; for others, use some combination of the two
models.

The hierarchical model achieves the interpolation between local and global
models automatically. For items i with abundant data, the posterior distribution
(conditional on the data) for the random effect vector ui is concentrated around
the local coefficient estimate that uses only the reviews for item i. For items with
no data, the posterior distribution for ui is diffuse with mean zero; the predictions
for item i are determined, mostly, by the fixed effect vector β shared globally by
all items. As the number of reviews for item i increases, the posterior distribution
for ui and the corresponding predictions for item i interpolate between these local
and global extremes.

The flat item hierarchy shares information across all items. In our application,
we have a deep hierarchy of books. In Section 3, we will show how to exploit this
deep hierarchy by a using a model with a random effect vector at each node in the
hierarchy. Predictions for the items at the leaves involve the random effects on the
nodes on the path from the root of the hierarchy to the item. Information pooling
occurs at all levels of the hierarchy, with siblings in a subtree pooled to estimate
the posterior distribution of their random effects. A hierarchy node with a subtree
of abundant data will have an estimated random effect close to what would come
in a fitted model. For other nodes, the estimate will involve information pooling
across other nodes at the same level in the tree.

3. Modeling framework. For our proxy problem, the goal is to estimate, for
a given book and user, the probability that the user would like the book conditional
on the user rating the book. We have a set of user and context covariates for each
review and a response y indicating whether the user liked the book. We also have
a deeply nested hierarchy of books nested under author, sub-subgenere, subgenre
and genre. In what follows, we describe a model that leverages the book hierarchy
in a way that facilitates information pooling for the estimates across the levels in
the hierarchy.

To introduce the model, we first need to be more precise about what we mean
by a hierarchy in the context of our problem and other similar settings. For us, a
“depth-d hierarchy” is a tree where all leaves have depth d . In such a hierarchy,
we label the nodes of the tree by unique strings of natural numbers:

• the root of the hierarchy gets labeled by the empty string, denoted ∗;
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• the children of the root get labeled by the length-1 strings 1,2, . . . ,M∗;
• in general, if i is the label of a node, we let Mi denote its number of children;

we label these children by the strings obtained from concatenating the label i

with the child identifiers: i1, i2, . . . , iMi .

In this labeling scheme, each node other than the root has a label that can be rep-
resented as ij , where i is the node’s parent and j is a natural number in the range
1,2, . . . ,Mi .

For a node i, we denote its depth by |i|, equal to its distance from the root; this
is also equal to the length of its label. For any depth l in the range 1, . . . , d , we
let Nl denote the set of nodes with depth l. Finally, for node i of depth l and for
0 ≤ k ≤ l, we let π(i, k) denote its ancestor at depth k in the hierarchy, setting
π(i, |i|) = i.

In the context of our application, the leaves of the hierarchy are authors. The
internal nodes are genres and subgenres. We observe data for each author (ratings
for that author by users); our goal is to relate these ratings to the user covariates,
using the structure of the book hierarchy to inform our predictions.

In general terms, the hierarchical model supposes that at each leaf node i ∈ Nd

we observe a response vector yi of length ni . The behavior of this response vec-
tor is linked to observable covariates through a vector of nonrandom fixed effects
identified with the root of the hierarchy, and a set of random effects identified with
the nodes in the hierarchy on the path from the root to the leaf i. Different levels
of the hierarchy may use different sets of user and book features to predict the
user’s probability of liking the book. We denote these features by Xi0, . . . ,Xid ,
where Xil , a matrix of dimension ni × ql , contains the features used by level-l
of the hierarchical model to predict the response vector yi . To link these features
to the response, we posit the existence of a fixed effect vector β of dimension q0
identified with the root of the hierarchy, along with a random effect vector ui at
every other node in the tree such that ui has dimension ql when i is at depth l.
The distribution of the response yi is determined by some function of the linear
predictor ηi , defined as

(3) ηi = Xi0β +
d∑

l=1

Xiluπ(i,l).

This predictor involves the fixed effect vector β and the random effects of all nodes
on the path from the leaf i to the root.

In our application, we have a binary response vector yi with entries indicating
whether the user liked the book. We use the canonical logistic link, supposing that
for k = 1, . . . , ni ; this predictor relates to the response as

(4) logit Pr(yik = 1 | u) = ηik,

where u without subscript denotes the collection of all random effects. We further
suppose that the components of the vector yi are independent of each other con-
ditional on u. In an application with a continuous response vector yi , we would
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instead typically specify that yi has independent Gaussian components with mean
and variance given by

(5) E(yik | u) = ηik, var(yik | u) = φ

for k = 1, . . . , ni and for some dispersion parameter φ. The hierarchical model is
not limited to these two settings, and in principle a modeler could specify any link
between the linear predictor ηi and the mean of the response yi .

To endow our model with a mechanism that allows borrowing strength across
similar items in the hierarchy, we model the d populations of random effects at
the levels of the hierarchy. We treat these populations as independent. For the pop-
ulation of level-l random effects, l = 1, . . . , d , we suppose that each item ui is
an independent draw from a multivariate normal distribution with mean-zero and
covariance matrix �l for some ql × ql covariance matrix �l :

(6) ui ∼ N (0,�l) for i ∈ Nl .

We further suppose that all random effects u are independent of each other.
In the sequel, we discuss estimation for the depth-d hierarchical model. That

estimation procedes in two stages: first, estimate the model parameters β and
�1, . . . ,�d . Next, use the model parameters to get empirical Bayes estimates of
the random effects {ûi}. The empirical Bayes estimation procedure is the part of
the model estimation that leverages information across different levels of the hi-
erarchy. Our estimates of the covariance matrices �1, . . . ,�d allow us to impute
components of particular random effects vectors when we only have information
about a subset of their components.

4. Fitting procedure. Frequentist hierarchical models like the one described
in the previous section are often fit via maximum likelihood methods (Bates et al.
(2013)). However, these fitting algorithms can be prohibitively slow for large
datasets like those that appear in commercial-scale settings (Agarwal (2008), Naik
et al. (2008)). Perry (2017) got over the computational hurdle in a depth-1 hier-
archical model by using a moment-based estimation procedure, adapted from an
earlier procedure due to Cochran (1937). Here we will extend Perry’s (2017) pro-
cedure to handle hierarchy of arbitrary depth.

Throughout the section we will assume that the model described in (3) and (6)
is in force. For the response data yi and the leaf nodes i ∈ Nd , we will allow for
both the logistic regression case from (4) and the normal response case from (5).
Our estimators extend naturally to any generalized linear model at the leaves with
shared dispersion parameter φ.

The estimation procedure is easiest to describe if we reparametrize. To do so,
for any node i, let bi denote the vector of fixed and random effects on the path
from the root up to and including i. Specifically, set b∗ = β and for node ij with
parent i define recursively

bij = (bi, uij ).
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For depth l = 1, . . . , d , let pl be the total number of fixed and random effects up
to and including depth l,

pl = q0 + q1 + . . . + ql,

if i ∈ Nl , then bi has pl components.
Now, for leaf node i ∈ Nd define the matrix obtained by concatenating the

columns of feature matrices Xi = [Xi0 Xi1 · · · Xid ], so Xi has dimension ni ×pd .
In this reparametrized form, the linear predictor at leaf node i is

(7) ηi = Xibi.

This form makes the hierarchical model look somewhat like a standard general-
ized linear model, but the effect vector bi includes both nonrandom and random
components—the fixed effect vector β and the random effects uπ(i,l) on the path
from the root to the leaf i.

The estimation procedure for the hierarchical model is defined by repeatedly
pruning the tree by reducing the leaves to a set of estimates at their parents. The
high level description of the procedure is as follows:

1. Produce estimates b̂i of bi at each leaf node i ∈ Nd . Set l = d .
2. We have at hand estimates b̂ij of bij = (bi, uij ) for each node ij ∈ Nl . For

each i ∈ Nl−1, combine the child estimates, b̂ij for j = 1, . . . ,Mi to produce an
estimate b̂i of bi and an estimate �̂li of �l .

3. Combine estimates �̂li for i ∈ Nl−1 to produce a final estimate �̄l .
4. If l = 1, set β̄ = b̂∗ to be the final estimate of the fixed effects and stop.

Otherwise, go to Step 2 with the level l decreased to l − 1.

In settings with a dispersion parameter φ, we handle this parameter analogously
to �d .

When the fitting procedure terminates, we will have final estimates β̄ and
�̄1, . . . , �̄d of the fixed effects and the random effect covariance matrices. The
rest of this section is devoted to detailing the individual steps of the fitting proce-
dure.

The computational cost of estimating b̂i at all leaf nodes Nd (step 1) is of order
O{Np2

d}, where N denotes the total number of observations. For any level l ∈
{1,2, . . . , d}, it takes O(|Nl|p3

l ) operations to compute b̂i for all nodes i ∈ Nl−1,
followed by O(|Nl|(p3

l + q4
l ) + |Nl−1|q6

l ) to compute �̄l , where |Nl| denotes the
number of nodes on level l. In total, the fitting procedure takes at most O(Np2

d +∑d
l=1(|Nl|(p3

l + q4
l ) + |Nl−1|q6

l )) operations.

4.1. Step 1: Estimate parameters at the leaves. The first step in the estimation
procedure is to use the data yi at each leaf i ∈ Nd to produce an estimate b̂i of
bi , the vector of fixed and random effects on the path from the root to the leaf.
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Recall that ηi = Xibi . We will explicitly handle cases where the combined predic-
tor matrix Xi is rank degenerate. We will only require that, conditional on bi , the
estimate b̂i has negligible bias outside the null space of Xi and is approximately
normally distributed with known covariance matrix.

First, we handle the normal model (5), where for k = 1, . . . , ni the components
of the response satisfy yik = ηik + εik for a mean-zero Gaussian error vector εi

with independent components εik for k = 1, . . . , ni having unknown variance φ.
In this case we set

b̂i = (
XT

i Xi

)†
XT

i yi,

where † denotes pseudo-inverse. When Xi has full rank, the estimate b̂i is the
unique least-squares estimate of bi ; otherwise, the least-squares estimate is not
unique and b̂i is one of the vectors minimizing the squared Euclidean norm ‖yi −
Xib̂i‖2.

To define the estimate of the dispersion parameter φ, we let ri denote the rank
of Xi . When ri < ni we set

φ̂i = 1

ni − ri
‖yi − Xib̂i‖2;

otherwise, we set φ̂i = 0. We combine the estimates φ̂i across all the leaves to get
a single estimate for the dispersion parameter:

φ̄ =
∑

i∈Nd
(ni − ri)φ̂i∑

i∈Nd
(ni − ri)

.

Next we derive the properties of the estimate b̂i . First, let Xi = UiDiV
T
i de-

note a compact singular value decomposition where Di is a diagonal matrix of
dimension ri × ri with positive diagonal entries. Then

b̂i = ViD
−1
i UT

i yi

= ViV
T
i bi + ViD

−1
i UT

i εi .

Thus,

DiV
T
i (b̂i − bi) = ei,

where ei = UT
i εi is a mean-zero Gaussian random vector of ri independent com-

ponents, each with variance φ. If we set Zi = φ̄−1/2DiV
T
i , then the quantity

Zi(b̂i − bi) is approximately mean-zero normal with identity covariance matrix.
For the logistic regression model (4), we proceed analogously, but we use the

Firth’s biased-reduced estimator (Firth (1993)) in place of the least squares esti-
mator for bi . This is a refinement of the maximum likelihood estimator that is well
defined even when the responses are perfectly separated by a linear combination
of the predictors. In cases where Xi is rank-degenerate, there are multiple such
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estimators; we arbitrarily take b̂i to be one of them. The properties of the estima-
tor are like those of the maximum likelihood. As the sample size ni increases, the
estimator is asymptotically unbiased with covariance equal to the inverse informa-
tion matrix. In the case of rank-deficient feature matrix Xi , the information matrix
takes the form I (bi) = ViDi(bi)V

T
i where Vi is the matrix of right singular vectors

of Xi . In this case, if we set Zi = D
1/2
i (b̂i)V

T
i , then Zi(b̂i − bi) is approximately

mean-zero normal with identity covariance matrix.
In both the normal and the logistic regression case, we can find an estimator b̂i

and a matrix Zi with full column rank ri such that, conditional on bi , the quantity
Zi(b̂i − bi) is approximately normal with identity covariance. In the logistic re-
gression case, the quality of the normal approximation depends on the sample size
ni being large.

4.2. Step 2: Combine the estimates at level l. We now suppose that for some
level l, for each node ij ∈ Nl we have a matrix Zij of full row rank rij , such that
conditional on bij ,

E
{
Zij (b̂ij − bij ) | bij

} = 0, cov
{
Zij (b̂ij − bij ) | bij

} = I.

For linear models, these two conditions hold exactly; in nonlinear models these
will only hold approximately, with the quality of the approximation depending on
the size of the sample used to estimate b̂ij . We will show how to combine estimates
b̂i1, . . . , b̂iMi

to get an estimate b̂i of bi for node i ∈ Nl−1 and an estimate �̂il of
�l .

Recall that bij = (bi, uij ) for each node ij ∈ Nl , where uij is the random effects
on level l, and bi , uij are of length pl−1, ql , respectively. Let Zij = UijDijV

T
ij be

a compact singular value decomposition. When the context is clear, for simplicity
we denote Vij1 as the first pl−1 rows of Vij and denote Vij2 as the last ql rows of
Vij .

We have the following (unconditional) moment equations:

E
(
V T

ij b̂ij

) = V T
ij (bi,0) = V T

ij1bi,(8)

cov
(
V T

ij b̂ij

) = D−2
ij + V T

ij

[
0 0
0 �l

]
Vij = D−2

ij + V T
ij2�lVij2.(9)

The moment equations (8) and (9) hold for any node ij ∈ Nl ; therefore, by stan-
dard moment matching method, we want to take empirical mean of terms on the
left-hand side and set parameters on the right-hand side to match it. However, we
cannot do this right away, since the dimension of V T

ij , or equivalently the rank rij ,
may vary by nodes ij ∈ Nl . To overcome this, we augment the moment equations
to have same dimension across nodes ij ∈ Nl . In particular, with any choice of
symmetric positive-definite matrix Wij for each node ij ∈ Nl , we have

E
(
Vij1WijV

T
ij b̂ij

) = Vij1WijV
T
ij1bi,(10)

cov
(
Vij2WijV

T
ij b̂ij

) = Vij2Wij

(
D−2

ij + V T
ij2�lVij2

)
WijV

T
ij2.(11)
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We use the semiweighted scheme for choosing Wij as described by Perry (2017).
Now, the moment equations have consistent dimension across all nodes. For

every node ij ∈ Nl , equation (10) has dimension pl−1 × 1, and (11) has dimension
ql × ql . Based on equation (10), we define the moment-based estimator b̂i as

b̂i = �
†
i

Mi∑
j=1

Vij1WijV
T
ij b̂ij , �i =

Mi∑
j=1

Vij1WijV
T
ij1,

where † denotes pseudoinverse. Based on equation (11), the moment-based esti-
mator �̂il should satisfy

Mi∑
j=1

(
Vij2WijV

T
ij b̂ij − Vij2WijV

T
ij1bi

)(
Vij2WijV

T
ij b̂ij − Vij2WijV

T
ij1bi

)T

=
Mi∑
j=1

Vij2WijD
−2
ij WijV

T
ij2 +

Mi∑
j=1

Vij2WijV
T
ij2�̂ilVij2WijV

T
ij2.

In practice, we do not have access to the true bi to compute �̂il in the above
equation, instead we use the empirical estimate b̂i . If the result �̂il is not posi-
tive semidefinite, we project it onto the cone of positive semidefinite matrices and
obtain the final estimate.

Let �i = ViDiV
T
i denote the eigendecomposition of the positive semidefinite

matrix �i . Let �
1/2
i denote the symmetric square root of �i . Perry’s (2017) results

imply that, subject to assumptions on the sample size and conditional on bi , the
quantity �

1/2
i (b̂i − bi) is approximately normally distributed with

E
{
�

1/2
i (b̂i − bi) | bi

} = 0, cov
{
�

1/2
i (b̂i − bi) | bi

} ≈ ViV
T
i .

The error in the approximation tends to zero as the number of child nodes Mi

increases. In addition, since V T
i �

1/2
i = V T

i ViD
1/2
i V T

i = D
1/2
i V T

i , we can rewrite
the above results as

E
{
D

1/2
i V T

i (b̂i − bi) | bi

} = 0, cov
{
D

1/2
i V T

i (b̂i − bi) | bi

} ≈ I.(12)

Perry (2017) details the precise assumptions required for these results along with
the quality of the approximations.

4.3. Step 3: Combine the level-l covariance estimates. At the end of Step 2
in the procedure, we have an estimates �̂il of �l for each i ∈ Nl−1. In Step 3,
we combine these estimates to produce a final estimate �̄l by taking a weighted
average: of �̂il over all nodes i ∈ Nl−1,

�̄l =
∑

i∈Nl−1
Mi�̂il∑

i∈Nl−1
Mi

.

Nodes with higher numbers of children Mi get more weights.
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4.4. Step 4: Recurse or stop. If we are at the root of the tree, so that l = 0 and
we have an estimate b̂∗, then we terminate the estimation procedure by setting our
final estimate of the fixed effects to β̄ = b̂∗. Otherwise, we decrement l to l − 1
and go to Step 2 with Zi = D

1/2
i V T

i that are used in equation (12).

5. Empirical Bayes random effect estimates. At the end of the fitting pro-
cedure described in Section 4, we have estimate β̄ of the fixed effect vector and
estimates �̄1, . . . , �̄d of the random effect covariance matrices. We also have at
each node i in the hierarchy a preliminary estimate b̂i of bi , the fixed and ran-
dom effects on the path from the root to node i. These preliminary estimates do
not share information across the hierarchy; estimate b̂i is determined only from
the data at the leaves descending from i. We can improve the estimates by replac-
ing each b̂i with an empirical Bayes estimate b̄i that pools information across the
hierarchy.

The information-pooling algorithm works top-down from the root. It starts by
setting b̄∗ = β̄ . Then, at depth-1 nodes j ∈ N1, the procedure uses b̄∗ and �̄1
together with b̂j to get a refined estimate b̄j . This process repeats, level by level,
until we get refined estimates at the leaves.

The full procedure is as follows:

1. Set b̄∗ = β̄ and set l = 0.
2. If l = d , stop.
3. For each node i ∈ Nl we have a refined estimate b̄i . For each child ij for

j = 1, . . . ,Mi , we have a preliminary estimate b̂ij . Use b̄i together with b̂ij and
�̄l+1 to produce a refined estimate b̄ij .

4. Increment l to l + 1 and go to Step 2.

After applying this procedure, we have a refined estimate b̄i at each node in the
tree. The estimates at each leaf i can be used to make refined estimates of the linear
predictors (η̄i = Xib̄i), or they can be used to make predictions for new data.

To complete the description of the procedure, we need to explain Step 3 in
more detail. In this step we have at our disposal b̄i , �̄l+1 and b̂ij for node i ∈ Nl

and its children. Further, we have a matrix Zij of full column rank rij such that
Zij (b̂ij − bij ) is approximately distributed as a multivariate normal with identity
covariance matrix.

By definition, bij = (bi, uij ) where uij is the random effect vector for node
ij ∈ Nl+1, and bi , uij are of length pl , ql+1, respectively. We denote Zij1 as the
first pl columns of Zij and denote Zij2 as the last ql+1 columns of Zij . Conditional
on bi , we have the following (approximate) Bayesian linear regression model for
any node j ∈ Nl+1:

uij ∼ N (0,�l+1),

Zij b̂ij = Zij1bi + Zij2uij + eij ,

eij ∼ N (0, I ).
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The empirical Bayes estimate ûij is an estimate of the posterior mean of uij con-
ditional on the observed data Zij b̂ij , acquired by using plug-in estimates b̄i and
�̂l+1 for bi and �l+1.

To derive the posterior distribution define Yij = Zij b̂ij − Zij1bi , noting that the
conditional distribution uij | {Zij b̂ij , bi} is the same as that of uij | {Yij , bi}. By
Bayes rule, then the posterior density of uij satisfies

p(uij | Yij , bi) ∝ p(Yij | uij , bi)p(uij )

∝ exp
{
−1

2
(Yij − Zij2uij )

T (Yij − Zij2uij ) − 1

2
uT

ij�
−1
l+1uij

}

∝ exp
{
−1

2

[
uT

ij

(
ZT

ij2Zij2 + �−1
l+1

)
uij − 2YT

ij Zij2uij

]}
.

Thus, the posterior distribution is that of a multivariate Gaussian with expected
value given by

E(uij | Zij b̂ij , bi) = (
ZT

ij2Zij2 + �−1
l+1

)−1
ZT

ij2(Zij b̂ij − Zij1bi).

The empirical Bayes estimate of uij comes from using this expression in conjunc-
tion with plug-in estimates for �l+1 and bi :

ûij = (
ZT

ij2Zij2 + �̂−1
l+1

)−1
ZT

ij2(Zij b̂ij − Zij1b̄i).

The refined estimate of bij is b̄ij = (b̄i , ûij ). Note that b̄ij pools information across
the hierarchy by using b̄i and �̂l+1 which contain information from all the nodes
in the hierarchy.

6. Simulation. To evaluate our proposed estimation method, we compare its
performance with three other procedures:

• glmer, a maximum likelihood procedure, implemented as part of the lme4 R
package (Bates et al. (2013)).

• glmer.split, a data-splitting estimation procedure, which randomly splits
the dataset into 10 subsets, computes estimates on each of them separately using
glmer and then combines the estimates by averaging them. We implemented
the procedure ourselves in R; the algorithm is based on procedures proposed by
Huang and Gelman (2005), Gebregziabher et al. (2012) and Scott et al. (2013).

• sgd, which uses stochastic gradient descent to maximize a regularized version
of the h-likelihood. We implemented the procedure in a combination of C and
R; the algorithm is based on procedures proposed by Koren, Bell and Volinksy
(2009) and Dror, Koenigstein and Koren (2011). We choose the regularization
parameters by cross validation.
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In evaluating the methods, we look at both the quality of their estimates and the
time it takes to compute them. We do not include the tuning parameter cross-
validation time in the timing results.

We perform two sets of simulations: one for a two-level logistic regression
model, and one for a two-level linear regression model. The setup and results for
both simulations are similar, so we only include the logistic regression results here.
Appendix B contains the linear regression results.

Following the notation in Section 3, we set the number of groups on the first
level to |N1| = 50 and the number of groups on the second level (the leaves) to
|N2| = 500. We simulate N samples with N ranging from 1000 to 100,000. We set
the dimensions of fixed and random effect vectors to q0 = q1 = q2 = 5. For each
value of N , we draw 20 replicates according to the following procedure.

For each replicate, we draw a q0-dimensional fixed effect vector β with com-
ponents βk, k = 1, . . . , q0 drawn independently from a heavy-tailed student’s t-
distribution with four degrees of freedom. We draw random effect covariance ma-
trices �1 and �2 independently from an inverse Wishart distribution with shape I

and 10 degrees of freedom, scaled by 0.1.
We allocate the N samples to the 50 groups and 500 subgroups in a way that

approximates the highly skewed hierarchies in the Book Crossing dataset. In each
replicate, we first draw sampling rates λ1, . . . , λ500 from a Pareto distribution with
scale and shape parameters set to 1. Then, we allocate the N samples to the 500
leaf nodes by drawing from a multinomial distribution with probability vector
(λ1, . . . , λ500)/

∑500
i=1 λi . Similarly, we allocate the 500 leaf nodes to 50 groups

using the same Pareto distribution and sampling scheme.
For every group node in the first level of the hierarchy, i ∈ N1, we draw a q1-

dimensional random effect vector ui from multivariate Gaussian with mean zero
and covariance matrix �1. For every leaf node i ∈ N2, we draw a q2-dimensional
random effect vector ui from multivariate Gaussian with mean zero and covariance
�2. Then, we randomly draw fixed effect predictor vectors xk for sample point
k = 1, . . . ,N with independent elements taking values +1 and −1 with probability
1/2 each. We use the same procedure to randomly draw random effect predictors
zk for every sample point k and let the two levels of the hierarchy share the same
random effect predictors. Finally, for every sample k in leaf node ij ∈ N2, we draw
response yk as Bernoulli with success probability

μk = logit−1{
xT
k β + zT

k (ui + uij )
}
.

To evaluate the quality of the estimators, we use the following loss functions:

• Fixed Effect Loss: ‖β − β̂‖2;
• Random Effect Level-l Covariance Loss: tr{(�̂l�

−1
l − I )2};

• Random Effect Level-l Loss: |Nl|−1 ∑
i∈Nl

‖�−1/2
l (ui − ûi)‖2;
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• Prediction Loss:

N−1
N∑

k=1

μk log
μk

μ̂k

+ (1 − μk) log
1 − μk

1 − μ̂k

,

where μ̂k = logit−1{xT
k β̂ + zT

k (ûi + ûij )} for sample k in leaf ij .

We also measure the overall computation time for each, excluding the cross-
validation time for tuning parameter selection.

We compare our method (mhglm) with the three other methods described
above—glmer, glmer.split and sgd. Figure 2 shows the mean performance
for each method, averaged over 20 replicates, with circle radii indicating standard

FIG. 2. Performance for the multilevel logistic regression model. Radii indicate one standard error
along y-axis (absent when smaller than line width). The proposed method (mhglm) is much faster
than the three other methods, meanwhile it provides competitive prediction performance.
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errors along the vertical axes. For moderate to large sample sizes, there is a no-
ticeable difference between the proposed method and other maximum likelihood
based estimators. However, the proposed method still appears to be consistent, in
the sense that its estimators improve with more samples. In terms of prediction
loss, our proposed method outperformed both sgd and glmer.split and is
only slightly worse than glmer.

The bottom panel compares the computation time for all methods. For large
sample sizes, our proposed method is much faster than the other procedures by
factors ranging from 100 to 1000, and the factor appears to grow exponentially as
sample sizes increase.

In the context of this simulation, our proposed method is able to trade off a mod-
est loss in prediction performance for a dramatic decrease in computation time. We
can see that our proposed procedure will scale well to our book recommendation
context and to commercial recommendation settings generally.

7. Application. Having developed an estimation procedure for deeply nested
hierarchical models in Sections 4 and 5 and having established its suitability in
Section 6, we now return to our main application, fitting a model to data that allows
us to predict whether or naot a user would like a book if they had rated it.

Recall from Section 1 that our dataset consists of two parts: a set of user ratings
of books, and a hierarchy of these books. We treat each rating as an observation
containing book and user identifiers along with a numerical score between one and
10. To accomplish the task of determining a “recommend” or “do not recommend”
label and to smooth differences between user-specific rating scales, we binarize
the ratings. In particular, we treat numerical scores of eight or above as “positive”
and ratings below this as “negative” which gives us a binary classification dataset
with balanced classes. We will model these binarized ratings using a hierarchical
logistic regression model. We use the user demographic features together with the
rating context to construct candidate predictors in the model, linked to the response
through fixed and random effects. We use a subset of the book hierarchy for the
structure of the hierarchical model.

7.1. Candidate predictors. The first set of candidate predictors are converted
from user demographic data. We bin users’ ages into five groups, (0,26], (26,32],
(32,38], (38,47] and (47,101], where each group has approximately the same
number of ratings. Each age group is represented by one categorical variable. If
age is missing, then all five indicators are zero. We aggregate the geographic fea-
ture into six groups by continent, North America, Europe, Oceania, Asia, South
America and Africa. Similarly, each group is represented by one categorical vari-
able. We have a total of 11 demographic predictors.

Our second set of candidate predictors is the time-varying predictors defined as
functions of past user behavior. The first predictor prev is a user-specific binary
indicator of whether the user’s previous rating was positive. This is designed to
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TABLE 2
Predictor associated with one observation from useri on bookj

Predictor Description

Agei User-specific features: a five-component indicator vector for age range
(0,26], (26,32], (32,38], (38,47], (47,101]

Geographici User-specific features: a six-component indicator vector for continent Africa,
Asia, Europe, North America, Oceania, South America

Previousi User-specific feature: a smoothed estimate of the log of proportion of positive
ratings from useri : log(pi + 1)/(ni + 2), where pi and ni are the number of
positive ratings (≥ 8) and total number of ratings from useri .

Distributionij User-book-specific feature: a smoothed estimate of the log of proportion of
ratings in bookj ’s genre from useri : log(kij + 1)/(ni + m), where kij is
number of ratings useri gives in bookj ’s genre; ni is total number of ratings
from useri , and m is total number of genres.

capture a user’s propensity to make positive ratings. The second predictor, dist,
is user-category specific and computed as the smoothed log proportion of past
ratings that the user gives in each category. This is designed to capture a users’
tendency to give ratings to each category, revealing his or her relative preference
among all categories. Table 2 gives detailed descriptions of all the predictors.

7.2. Model selection. We perform two forms of model selection. First, we
need to choose which parts of the book hierarchy to use. Second, we need to
choose which predictors to use. To carry out the model selection, we randomly
partition the data into 80/10/10 percent chunks, for training/development/testing
sets. We train various models on the training set, select a model with the best per-
formance on the development set and finally compare the chosen model with other
fitting methods on the testing set. In data processing, we only use training data to
construct the new features.

We use all predictors for fixed effects, and we can fit these reliably given the
large volume of data. However, we do not use all of these predictors on all ran-
dom effects levels. Because they rely on ratings specific to the particular position
in the hierarchy, fitting the random effects is much more difficult. The population
structure of the random effects mitigates against some of this data sparsity, but
there will still be situations where using coarser hierarchy makes the model less
susceptible to overfitting. To guard against overfitting in the random effects terms
of the model, we perform model selection by using out-of-sample prediction per-
formance on the development set. To choose the specific subset of the predictors
to use as random effects, we fit all possible combinations at all levels of the model,
selecting the model with the lowest misclassification rate on the development set.

We start with a depth-1 model. Here we fit depth-1 models with all five pos-
sible grouping factors: genre, subgenre, sub-subgenre, author, book. Table 3 lists
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TABLE 3
Best performing model for all choices of grouping factor for

one-level model. The standard deviations of the listed model errors
are below 0.004

Group Features Error

author geo 0.3212
book age, geo 0.3235
sub-subgenre prev, dist, age, geo 0.3282
subgenre prev 0.3288
genre 1 0.3291

the best one-level model using each grouping factor. We sort the performance by
misclassification error on development dataset. We see that using author as the
grouping factor and demographic information as the random effect features gives
the best prediction performance on development set. Note that we did not get ad-
ditional performance improvement by using a book-specific random effect model
which suggests that we could potentially overfit the data by using too many groups.

To further take advantage of the five nested hierarchies, we also consider depth-
2 models. Using the lme4 modeling notation, we fit all models of the following
form:

y ∼ age+ geo+ prev+ dist+ (X1|g1) + (X2|g1 : g2),

where grouping level g2 is nested under g1, and X1 and X2 are predictor matrices
with columns taken from the candidate predictors. The notation indicates that the
model has fixed effects corresponding to an intercept and predictors age, geo,
pref and dist, random effect predictors X1 at the first level, and random effect
predictors X2 at the second level.

We list the best performing depth-2 model for every combination of (g1, g2) in
Table 4 where we sort the performance by misclassification error on development
dataset. The feature 1 indicates the feature of all ones (i.e., the intercept term).
Note that we decrease the misclassification rate from 0.3212 to 0.3177 by adding
an additional hierarchy subgenre on top of author. This improvement in predic-
tive performance may seem small, but in practice such improvements can trans-
late to big impacts when the corresponding models are deployed in commercial
scale recommender system applications (Kohavi et al. (2014), Kramer, Guillory
and Hancock (2014)). Thus, the small improvement of the two-level model over
the one-level model can be meaningful.

The best two-level model is using subgenre and author as the two grouping
factors. On subgenre level it uses dist and age as random effects features; on
author level it uses age and geo as random features. It is a relatively simple model
with competitive performance, and we will focus on this model throughout the rest
of the paper.
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TABLE 4
Best performing model for all choices of grouping factors for two-level model. The standard

deviations of the listed model prediction errors are below 0.004

g1 g2 X1 X2 Error

subgenre author dist, age age, geo 0.3177
sub-subgenre author age dist, geo 0.3184
genre author dist, geo age, geo 0.3189
author book geo dist 0.3210
sub-subgenre book dist, age, geo geo 0.3212
subgenre book prev, dist, age age, geo 0.3218
genre book age, geo age 0.3226
subgenre sub-subgenre age, geo dist 0.3266
genre sub-subgenre dist, age dist, geo 0.3269
genre subgenre prev, dist prev 0.3287

8. Results.

8.1. Performance. In Section 7.2, the model that gave the best prediction per-
formance on the development set used two levels of hierarchy, corresponding to
“author” and “subgenere,” with author nested within subgenre. For fixed effect
predictors, the model used an intercept along with age, geo, prev and dist.
For random effect predictors at the first level in the hierarchy (subgenre), the model
used an intercept along with dist and age; at the second level in the hierarchy
(author), the model used an intercept along with age and geo. We do not include
any book-specific features in this model which implies that all books under the
same “subgenre 
 author” are viewed equally for a given user. When we are rec-
ommending books to users under this model, we are in fact recommending authors
under specific subgenres.

Having selected the model, we will now evaluate its performance on the held-
out test set. We fit the model to the training dataset using our proposed moment-
based procedure mhglm along with four competing methods: the glmer max-
imum likelihood procedure, the sgd stochastic gradient descent h-likelihood-
based procedure described in Section 6, the BSLMM Bayesian sparse linear mixed
model procedure by Zhou, Carbonetto and Stephens (2013) and the arLMM ap-
proximate ridge linear mixed model procedure by Tan et al. (2018). We compare
their prediction performances on the held-out test dataset. We do not include the
glmer.split method because glmer fails on the randomly splitted subsets
due to sparsity.

Both BSLMM and arLMM involve computing a kernel matrix on the training
data which makes it impossible to fit with all of the 100K+ data points in the
training set. As a result, we run BSLMM and arLMM on 10,000 randomly sampled
training data points. Furthermore, BSLMM and arLMM only work with one-level
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TABLE 5
Misclassification error and running time for five fitting methods

Fitting Method Error Error 95% Confidence Interval Time (seconds)

mhglm 0.3262 [0.3189,0.3335] 55.14
glmer 0.3268 [0.3195,0.3341] 44,790.23
sgd 0.3302 [0.3229,0.3376] 2022.35
BSLMM 0.3325 [0.3252,0.3399] 5355.50
arLMM 0.3792 [0.3716,0.3867] 39,628.08

hierarchical models, thus we keep the second level (author) and skip the first level
hierarchy (subgenre) in modeling BSLMM and arLMM. Additionally, since arLMM
is designed for regression, we run arLMM with the original book ratings as labels
and convert the predicted ratings into {0,1} in the same way as we binarize the
true ratings.

Table 5 lists misclassification error, error’s 95% confidence intervals and run-
ning time for all five methods. Most methods have comparable prediction per-
formance with a misclassification rate of about 32.5%. Our proposed procedure
mhglm slightly outperforms the other methods in overall misclassification error,
but the difference is not statistically significant. The only exception is arLMM
which performs poorly under the misclassification error. (If we evaluate arLMM
using the root mean squared error (RMSE) of the predicted ratings, the perfor-
mance gap is much smaller; arLMM has RMSE of 1.6828, meanwhile mhglm
achieves RMSE of 1.6784 from two-level regression in 19.41 seconds.)

When we look at the running time, however, mhglm is faster than sgd by a fac-
tor of 45, faster than BSLMM by a factor of 100 and faster than glmer and arLMM
by a factor of 1000. Fitting the model using our proposed method took under a
minute; fitting using sgd took 33 minutes; fitting using BSLMM took 1.5 hours;
fitting using arLMM took 11 hours, and fitting using glmer took 12.4 hours. Note,
again, that BSLMM and arLMM use 10 times fewer data than other methods, but the
running time is on the same order of magnitude as sgd and glmer respectively.

The results in Table 5 demonstrate two features of the mhglm fitting procedure.
First, the prediction performance is comparable to that of the more established
likelihood-based procedures. Second, mhglm is faster than these methods by at
least an order of magnitude. This reduction in computation time enabled us to
perform an exhaustive model selection search over all one- and two-level models.
For the four predictors and the intercept, and for the five grouping levels, there were
5 · 24 = 80 1-level models and 10 · 24 · 24 = 2560 two-level models. Extrapolating
from the timing results in Table 5, performing the search over these models using
mhglm took approximately 40 hours; using sgd, BSLMM, arLMM, or glmer, the
same search would take approximately 60 days, 160 days, 3.3 years or 3.75 years,
respectively.
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FIG. 3. Given book subgenre. Everything else remains the same, the increase in log odds if user is
young (left panel) or old (right panel). Error-bars show the ± estimated posterior standard deviation.
Both figures show the top 50 subgenres with the most ratings. Among the young age group (left panel),
their most favorite subgenre “romance” has significantly higher random effects than “literature &
fiction | genre fiction” which is their least favorite subgenre. The pattern is less clear among the old
age group (right panel) due to the large posterior standard deviations.

8.2. Fitted model. To gain some insight into the predictions made by our fitted
model, we investigate the empirical Bayes random effect estimates. Specifically,
we investigate the age random effects at the subgenre and author levels.

In the context of the fitted model, given a book’s subgenre we can compute the
increase in log odds of a user liking the book if we change the user’s age from
“missing” to “known” while keeping all other predictors constant. In Figure 3 we
show the change in log odds (±1 estimated posterior standard deviation) for young
and old age groups a for the subgenres that have most ratings. For the old age group
(47–101 years), the estimates have large estimated posterior standard deviations
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across the subgenres listed, making it difficult to identify a clear patter. For the
young age group (0–26 years) there is some weak but meaningful signal. In this
age group, there is a clear pattern in which of the common subgenres the users
like and don’t like. “Romance” is their favorite subgenre, which has significantly
higher random effects than “literature & fiction | genre fiction,” their least favorite
subgenre.

Next, we perform a similar analysis but on the second level of the hierarchy,
“author.” For every author we compute the increase in log odds of liking the book
if we change the users’ age from “missing” to “known” while everything else
remains the same. In Figure 4 we show the increase in log odds (± estimated

FIG. 4. Given book author. Everything else remains the same, the increase in log odds if user is
young (left panel) or old (right panel). Error-bars show the ± estimated posterior standard deviation.
Both figures show top 50 authors with most ratings. The posterior standard deviations are much
larger than that of the parent level (book subgenre). We observe some interesting patterns for authors
such as J. K. Rowling (liked by both age groups) and Danielle Steel (opposite opinions from the two
age groups).
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posterior standard deviation) for young and old age groups for the authors that
have most ratings.

We observe a few interesting patterns:

• The estimated posterior standard deviations are much larger for random effects
on the second level (author) for both young and old age groups.

• Some authors are consistent across different age groups. For instance, one would
want to recommend J. K. Rowling to both young and age groups. Meanwhile,
Nick Hornby and Piers Anthony are liked by neither group.

• Some authors have quite different behaviors across age groups. For instance,
Danielle Steel has positive log odds increase if we know the user is within young
age group, but negative log odds increase if user is among old age groups. An
opposite example is Elizabeth Berg; we will suffer a decrease in log odds if user
is young, meanwhile log odds will increase if the user is old.

The size of the estimated posterior standard deviations make clear that these as-
sociations are weak. Still, as demonstrated in Sections 7.2 and 8.1, there is enough
signal in them to translate to a meaningful reduction in misclassification rate on
the held-out development and test sets.

9. Discussion. The appeal of the deeply nested hierarchical model is that it
facilitates information sharing across subtrees at all levels of the hierarchy. Nodes
with abundant data effectively have their random effects estimated using only data
at the leaves descending from them. Nodes with little or moderate data, however,
benefit by having their estimated coefficients (random effects) shrunk toward the
global mean. In our book recommendation application, we have demonstrated this
advantage by showing that using two levels of hierarchy (author and subgenre)
deliver increased prediction performance than using one or no levels.

The main hurdle in deploying hierarchical models in recommender systems ap-
plications like ours, and other contexts of similar scale, is that the time required
to fit these models can be prohibitive. Perry (2017) extended a method original
due to Cochran (1937) and proposed a partial solution to this problem, but his
procedure is limited to single-level hierarchical models. Here, with our proposed
mglhm method, we have shown how to fit a hierarchical model of arbitrary depth
by repeatedly applying the single-level fitting procedure to prune the leaves of the
hierarchy. We then showed how to propagate the estimates at the root of the hierar-
chy down through the nodes in the hierarchy to refine the random effect estimates.

In our book recommendation application, our proposed fitting procedure was
faster than stochastic gradient descent by a factor of 45 and faster than the
likelihood-based glmer procedure by a factor of 1000. This increase in com-
putational speed enabled us to perform an exhaustive model selection search over
all one- and two-level models, reducing the overall computation time from about
60 days using sgd (or 3.75 years using glmer) to about 40 hours. As our simu-
lations in Section 6 demonstrated, the tradeoff in deploying our method is reduced
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statistical efficiency and prediction performance. However, in our application the
loss in prediction performance was negligible.

Although our motivation was a book recommendation system, our proposed fit-
ting procedure is general enough to handle hierarchical generalized linear models
of arbitrary depth. We have incorporated our implementation of this procedure
into the mbest R package, available on the Comprehensive R Archive Network
(CRAN). The interface in this implementation is flexible enough to handle any
deeply nested hierarchical generalized linear model.

APPENDIX A: DATA DESCRIPTION

A.1. Overview. The BookCrossing dataset introduced in Section 1 contains
433,671 numerical ratings of 185,973 books from 77,805 users (Ziegler et al.
(2005)). Each rating consists of a book id (ISBN), a user id, and a numerical score
between one and 10, where one indicates extreme negative and 10 indicates ex-
treme positive sentiment. We binarize the ratings so that ratings equal or above
eight are considered positive and ratings below eight are considered negative. The
threshold eight is chosen such that the two classes have comparable number of
samples. We have user demographic information including age and location; Sec-
tion A.2 reports some descriptive statistics about these features. We also know the
book authors and titles.

We augment the book meta-data with a genre hierarchy scraped from Ama-
zon.com by McAuley, Pandey and Leskovec (2015). In this meta-data, book titles
are nested within authors within sub-subgenres within subgenres within genres.
If the same author writes titles in multiple sub-subgenres, we treat the author as
multiple, separate entities. Section A.3 describes the hierarchy in metadata.

In the raw dataset, more than half of the ratings cannot be matched to Amazon
metadata. Dealing with this missing data is beyond the scope of the present treat-
ment, so we remove samples with missing ratings or unmatched book IDs from
consideration. This leaves us with 157,638 ratings of 38,659 books from 38,085
users.

A.2. User demographic features. The reported user age is a continuous vari-
able, ranging from 15 to 100. The mean and standard deviation of user age are 36.4
and 12.6 respectively. Table 6 shows the number of users and ratings from each age
range.

Most of the ratings comes from young or middle-aged users which makes it
easier to estimate and predict for users from those age ranges.

User’s location information is reported as his city, state, country and continent.
Table 7 reports the number of users and ratings from the 10 most represented
countries, and Table 8 reports the same information for each continent.

We can see that the vast majority of the ratings (85%) are from North America
with Europe, the next-most-represented continent, receiving only 6% of ratings.
This indicates that it’s quite difficult to accurately estimate and predict for users
from other than these two continents.
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TABLE 6
Number of users & ratings from each age range

Age Interval # Users # Ratings

≤20 2664 8752
(20,30] 6011 30,820
(30,40] 5906 32,252
(40,50] 3765 20,539
(50,60] 2609 11,961
(60,70] 952 2997
>70 297 992

TABLE 7
Top 10 countries with most ratings

Country # Users # Ratings

USA 29,042 120,201
Canada 3619 14,592
United Kingdom 989 3622
Australia 632 2067
Portugal 181 1490
Germany 381 1189
Spain 187 1008
Malaysia 111 964
Netherlands 178 638
New Zealand 148 563

TABLE 8
Number of users & ratings from each continent

Continent # Users # Ratings

North America 32,722 135,059
Europe 2632 10,122
Oceania 780 2630
Asia 430 2272
South America 68 210
Africa 36 87

A.3. Book hierarchy. Every book is nested under a deep hierarchy:

genre 
 subgenre 
 sub-subgenre 
 author 
 title.

For example, the book Harry Potter and the Chamber of Secrets is nested as
Children’s Books 
 Literature 
 Science Fiction, Fantasy, Mystery & Horror 
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FIG. 5. Left panel: Quantile plot of Log10 Number of Authors within Subgenres. Right panel:
Quantile Plot of Log10 Number of Ratings of Authors.

J. K. Rowling 
 Harry Potter and the Chamber of Secrets. Figure 1 displays all
hierarchies on the first two levels.

For modeling purposes, we only chose two out of five hierarchies. We omit the
intermediate levels and use simplified hierarchy of subgenre 
 author. Our first
level of hierarchy subgenre has 1344 groups which captures the necessary amount
of diversity across books using a reasonable amount of groups. We use author
(nested under subgenre) as the second level of hierarchy which has 27,360 groups.
We use book author instead of book title as the second level hierarchy, since the
BookCrossing dataset is very sparse, such that most books have only a few number
of ratings. Hierarchical models will not work well if most groups have very few
samples which shrinks the overall results towards that of a simple “global” model.

Even for these carefully chosen hierarchies, the distribution of subgroups and
samples are still highly skewed. We can see this skewness in Figure 5 which plots
the quantiles of the number of authors per subgenre (left panel) and the number of
ratings per author (right panel). Both plots are on log10 scale. 50% of subgenres
have fewer than 17 authors and 90% of subgenres have fewer than 261 authors.
At the other extreme, the largest subgenre (Literature & Fiction 
 General) has
2893 authors. The distribution of ratings among authors are highly skewed as well:
50% of authors have only one rating, 90% of authors have less than nine ratings,
meanwhile the mostly rated author (Sue Grafton) received 1183 ratings.

Hierarchical models gain its predictive power by pooling information across
groups. The existence of large numbers of small groups will make learning model
parameters and making good predictions difficult.

APPENDIX B: TWO-LEVEL LINEAR MODEL SIMULATIONS

Here we perform a simulation study similar to the two-level logistic regression
model study described in Section 6 but using a two-level linear regression model
instead.
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With all other simulation parameters drawn as described in Section 6, in the
linear regression setup we draw response k from a normal distribution with mean
μk = xT

k β + zT
k (ui + uij ) and variance φ = 1 whenever sample k belongs to leaf

ij . We again compare our procedure with those three methods. We use the same
loss for fixed and random effects as well as for the random effect covariance. For
prediction loss, we use the mean squared error:

N−1
N∑

k=1

φ−1(μk − μ̂k)
2,

where μk = xT
k β + zT

k (ui + uij ) and μ̂k = xT
k β̂ + zT

k (ûi + ûij ).
Figure 6 shows the mean loss, averages over 20 replicates, with circle radii

indicating standard errors along the vertical axes. For moderate to large sample

FIG. 6. Performance for the multilevel linear regression model. Circle radii indicate one standard
error along y-axis (absent when smaller than line width).
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sizes, there is a noticeable but decreasing difference between the proposed method
and other maximum likelihood based estimators. However, the proposed method
still appears to be consistent. In terms of computation time, this method again has
improvement by factor ranging from 100 to 1000, and the factor appears to grow
exponentially as sample sizes increase.
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