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Technological innovations have produced large multi-modal datasets
that include imaging and multi-platform genomics data. Integrative analy-
ses of such data have the potential to reveal important biological and clin-
ical insights into complex diseases like cancer. In this paper, we present
Bayesian approaches for integrative analysis of radiological imaging and
multi-platform genomic data, where-in our goals are to simultaneously iden-
tify genomic and radiomic, that is, radiology-based imaging markers, along
with the latent associations between these two modalities, and to detect the
overall prognostic relevance of the combined markers. For this task, we pro-
pose Radio-iBAG: Radiomics-based Integrative Bayesian Analysis of Multi-
platform Genomic Data, a multi-scale Bayesian hierarchical model that in-
volves several innovative strategies: it incorporates integrative analysis of
multi-platform genomic data sets to capture fundamental biological relation-
ships; explores the associations between radiomic markers accompanying
genomic information with clinical outcomes; and detects genomic and ra-
diomic markers associated with clinical prognosis. We also introduce the use
of sparse Principal Component Analysis (sPCA) to extract a sparse set of ap-
proximately orthogonal meta-features each containing information from a set
of related individual radiomic features, reducing dimensionality and combin-
ing like features. Our methods are motivated by and applied to The Cancer
Genome Atlas glioblastoma multiforme data set, where-in we integrate mag-
netic resonance imaging-based biomarkers along with genomic, epigenomic
and transcriptomic data. Our model identifies important magnetic resonance
imaging features and the associated genomic platforms that are related with
patient survival times.
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1. Introduction. In oncology, it is of critical importance to investigate both
inter- and intra-tumor heterogeneity through an in-depth understanding of the com-
plex interplay between genotypes and phenotypes, towards developing rational
anti-cancer therapeutic strategies [Felipe De Sousa et al. (2013)]. The increased
availability of complementary and matched molecular and imaging data allows for
a thorough examination of tumor heterogeneity at multiple levels [Nicolasjilwan
et al. (2015), Hu et al. (2017), Gutman et al. (2013)]. Investigations at the molecu-
lar level have been tremendously improved by the development of many genomic
profiling technologies, including microarrays, next-generation sequencing, methy-
lation arrays and proteomic analyses. The Cancer Genome Atlas (TCGA) project,
aiming to provide more comprehensive information of human cancer genomes by
creating an “atlas” of high-throughput multiple genomic profiles across multiple
cancers, was launched in 2005 as a publicly funded project [Tomczak, Czerwińska
and Wiznerowicz (2015)]. The growing availability of such data has motivated
the development of integrative analytical models that incorporate various genomic
platforms to detect complex patterns of tumor heterogeneity that have predictive
and prognostic ability [Wang et al. (2013)].

While genomic data provide information on the molecular characterization of a
disease, imaging modalities such as X-ray radiography, magnetic resonance imag-
ing (MRI), computed tomography, and positron emission tomography provide vi-
sual and broad resources for the acquisition of high-quality images and provide
complementary quantitative information about the structural aspects of a disease.
In the context of cancer, these imaging modalities provide a quantitative basis for
detailed assessment of various features of the tumor that are associated with the de-
velopment and progression of cancer. Radiomics is an emerging field with a goal of
providing predictive or prognostic information by revealing quantitative mechanis-
tic associations between radiologic images and clinical outcomes [Coroller et al.
(2015), Aerts et al. (2014), Ganeshan et al. (2010), Lee et al. (2016)]. Radiomics, in
general, involves the extraction and mining of various types of quantitative imag-
ing features that are processed from high-throughput images obtained via differ-
ent imaging modalities. These imaging features describe different morphological
characteristics of a tumor, for example, tumor shape features such as round or
spiculated, total volume or surface area, intensity histogram features that describe
the contrast intensity level, and textural features such as energy and entropy that
evaluate tumor spatial heterogeneity. In particular, “texture analysis,” which ap-
plies different statistical models and mathematical transforming methods to further
evaluate a tumor’s intra-lesional heterogeneity, has become an active ongoing area
of research [Castellano et al. (2004)]. In the context of glioblastoma multiforme
(GBM), several studies have shown that the textural features from perfusion para-
metric maps provide useful information for predicting patients’ survival times [Lee
et al. (2016)] and the features extracted from a gray-level co-occurrence matrix
(GLCM) [Haralick, Shanmugam and Dinstein (1973), Castellano et al. (2004)] are
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effective in discriminating tumor volumetric phenotypes [Chaddad and Tanougast
(2016)].

Radiomic and genomic features capture complementary characteristics of the
underlying tumor, with radiomics capturing visual phenotypic information in the
tumor and genomics capturing its underlying molecular biology. Thus, it is of in-
terest to assess the interrelationships of these two types of features, a task termed
radiogenomics, and then collectively assess how these inter-related features cor-
relate with clinically relevant endpoints (e.g., survival, progression). From an an-
alytical standpoint, radiogenomic analysis faces several key challenges. First, in-
corporating complex biological interactive mechanisms, both within and between
multiple genomic platforms at the genomic (DNA), transcriptomic (mRNA) and
epigenomic (methylation) levels, is understudied in the radiogenomic framework.
Second, the high-dimensional nature of both the quantitative features of images
and genomic markers necessitates proper dimension reduction techniques and fea-
ture selection methods. Third, the analysis becomes more complicated when we
wish to link clinical outcomes with genomic and radiomic outcomes in addition to
modeling associations between the radiomic and genomic measurements to pro-
vide potentially biologically and clinically translatable results.

Multiple studies have addressed these challenges to various degrees. Taking
advantage of multi-platform genomic data resources, additive models have been
developed that treat the features from different platforms in the same models,
although not explicitly modeling their interrelationships [Daemen et al. (2009),
Lanckriet et al. (2004)]. Wang et al. (2013) proposed an integrative Bayesian anal-
ysis framework to integrate multi-platform genomic data using hierarchical mod-
els that capture the natural mechanistic relationships among the various molecular
resolution levels. Jennings et al. (2012) generalized the method to integrate var-
ious types of genomic platforms with a single clinical outcome. These methods
effectively capture the biological interaction within different molecular processes,
but do not consider high dimensionality in the outcomes. Olivares et al. (2013)
extended the above model with multivariate correlated imaging outcomes. This
approach models image markers in separate linear models after applying a de-
correlating procedure, but does not consider patient-specific clinical outcomes.
Stingo et al. (2013) developed an integrative Bayesian modeling approach for
imaging-genetics that incorporates the binary disease status as a clinical response,
and developed a hierarchical mixture model that can select discriminatory imaging
regions of interest and their relevant single-nucleotide polymorphisms simultane-
ously. Similarly, Batmanghelich et al. (2013) developed a joint probabilistic model
of imaging and genetic features associated with disease measures, to provide in-
sights into how imaging biomarkers can serve as intermediate phenotypes when
detecting genetic and diagnostic associations. However, these approaches consider
only an individual platform and thus do not consider the interrelationships among
the various molecular resolution levels in their analytical frameworks.
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In this paper, we introduce Radio-iBAG: Radiomics-based integrative Bayesian
analysis of multiplatform genomic data, an integrative multi-scale Bayesian frame-
work to perform radiogenomic analyses. Our goal is three-fold: first, to detect
explicit associations among different genomic platforms at the different molec-
ular levels; second, to treat the radiomic-based biomarkers as an intermediate
phenotype (i.e., endo-phenotype), evaluate the molecular underpinnings regulat-
ing these biomarkers and finally, evaluate the eventual associations with relevant
patient-level clinical outcomes (e.g., survival times). To accomplish these tasks, we
construct a multi-level regression-based modeling strategy: a first stage “genomic
model” detects the complex biological mechanistic relationships among different
genomic platforms, a second stage “radiogenomic model” subsequently discov-
ers the underlying associations between gene-platform combinations and radiomic
biomarkers. To assess clinical relevance, a third level model “radiogenomic clini-
cal model” uncovers the associations between clinical outcomes and genomically-
driven radiomic markers.

To address the high dimensionality in both the genomic and radiomic datasets,
we utilize Bayesian shrinkage-based priors to achieve sparsity and regularization
in the high-dimensional covariate space at various hierarchical levels. Specifically,
we employ a scale-mixture of normal representations, that allow adaptive shrink-
age and borrowing strength within and across the different hierarchical levels.
Our methodology is motivated by and applied to a GBM case study, wherein we
discover multiple radiomic feature groups significantly associated with patients’
survival times along with their mechanism of action through multi-platform ge-
nomics.

In Section 2, we introduce our modeling scheme, major components, modeling
methods and biomarker detection for each modeling stage. In Section 3, we illus-
trate our proposed model on the GBM case study with a detailed description of the
radiomic features and genomic profile datasets, modeling results and biological
interpretations. In Section 4, we draw some conclusions and discuss some future
extensions and advancements.

2. Method: Radio-iBAG model.

2.1. Modeling stages. As mentioned above, our core construction of the
Radio-iBAG model framework consists of a multi-stage Bayesian hierarchical
model. In the genomic model, we model the complex biological mechanistic re-
lationship among genomic data from different platforms capturing information
at various molecular resolution levels (e.g., gene expression, copy number and
methylation). Subsequently, we carry the information garnered from the genomic
model into the second stage, the radiogenomic model, to parse out the imaging-
genomic correlations, which are then included as predictors in the third stage, the
radiogenomic clinical model. This procedure delineates the image features that di-
rectly affect clinical outcomes, as well as those that appear to be modulated by
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FIG. 1. Schematic representation of the multi-stage modeling process. In stage I, for each gene,
model the relationship between mRNA and different upstream genomic platforms and partition mRNA
expression into multiple parts explained by different genomic platforms, CN: copy number alteration,
miRNA: microRNA, Methy: methylation, Others: gene expression that is explained by other factors;
In stage II, for each radiomic marker, apply Bayesian hierarchical model and partition the radiomic
marker into different parts modulated by multiple mRNA factors that are explained by various gene–
platform combinations and regard the residual as a nongene-driven part denoted as Iḡ ; In stage
III, apply Bayesian hierarchical model to investigate the relationship between segmented radiomic
factors with clinical outcome.

combinations of genomic factors. This construction allows us to discover strong
relationships between imaging and genomics data, among the genomic platforms,
and identify which appear to be associated with clinical outcome.

Figure 1 illustrates the general multi-stage modeling scheme. In the first stage,
multiplatform genomic data sets are expressed as data matrices: XmRNA, XCN,
XmiRNA or XMethy, each with rows as samples and columns as gene-level sum-
maries of the respective platforms. In stage II, we consider radiomic features (RFs)
that are preprocessed and extracted from imaging data sets, forming a data frame
I with columns as different features and rows as samples. In the final stage, we
incorporate into the model the clinical outcome, denoted as Y , which is a vector
with the number of elements as the sample size. The construction of each modeling
stage is explained in detail in the ensuing sections.
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A. Genomic model. Our genomic model involves the integrative modeling of
multiplatform genomic data sets. Modern genomics data is comprised of multiple
platforms that contain measurements at various molecular resolution levels, from
DNA to mRNA to proteins, and including epigenetic levels including alterations
like methylation and microRNA (miRNA) that affect mRNA expression. These
platforms capture complementary information at the different molecular resolu-
tion levels, and together provide a more complete picture of the underlying bi-
ology than any one platform. In this paper, we consider three genomic platforms:
mRNA, DNA copy number (CN) and miRNA, but the general models we introduce
can incorporate any other platforms capturing upstream genetic and epigenetic in-
formation, as well. Also, for a specific gene, we take only the genomic platforms
mapped with this gene into our model, we do not consider modeling coexpression
or coregulation of the neighboring genes or potential transcriptional regulators.
Suppose NG = number of patients with genomic information, J = total number
of genomic platforms, and PG = number of target genes. For our particular case,
using copy number alteration and miRNA as our upstream platforms, the gene
expression level can be modeled and expressed as

(1) XmRNAg = f1(XmiRNAg ) + f2(XCNg )︸ ︷︷ ︸
upstream platform driven

+ Og︸︷︷︸
explained by other factors

,

where each fj (·) is a smooth nonparametric function of the corresponding predic-
tor modeled by a penalized spline formulation that allows us to capture flexible
nonlinear relationships. We assessed the nonlinearity of gene-level fits and show
that GAM provides better fit that GLM for most genes (see the Supplementary
Material Section S3). Other types of splines or alternative nonparametric models
could also be used. Our analysis in this stage matches the first stage of the iBAG
model [Wang et al. (2013)], whereby the gene expression of a given gene is mod-
eled as explained by upstream factors, with the effects of upstream factors mod-
eled nonparametrically as in [Hu (2014)] via a generalized additive model (GAM)
[Hastie and Tibshirani (1990)]. In principle, the model can include any number of
upstream (to mRNA) platform types, including methylation, copy number, loss of
heterozygosity, methylation, miRNA, and transcription factors, as long as matched
data are available.

The terms in the model are described and interpreted as follows:

• XmRNAg is the expression of gene g with dimension NG ×1, g = 1,2, . . . ,PG .
• XmiRNAg is an aggregated miRNA expression value that integrates informa-

tion across miRNAs that have been documented to regulate the expression of
gene g. For a given gene, there exist multiple miRNAs that interact with this gene,
and here we construct gene-level summaries of these miRNAs that condense their
activity into a lower dimension using principal components, as described in detail
in Section 3. The gene-level summaries XmiRNAg have dimension NG × MmiRNAg ,
where MmiRNAg denotes the number of gene-level summary vectors for the gth
gene.
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• XCNg are gene-level summaries of the CN alteration for the gth gene with
dimension NG × MCNg . Similarly, as there are multiple CN alteration values from
different markers within the same gene, MCNg denotes the number of gene-level
summary vectors.

• Og represents the “other” part of gene expression that is not captured by the
modeled upstream factors, but instead attributed to other upstream factors not in
the model, and is of dimension NG × 1.

This model is fit separately for each gene, and effectively partitions the in-
formation contained in the mRNA measurements into an additive set of com-
ponents, with each component capturing the part of mRNA expression ex-
plained by a particular upstream platform. We call these parts different ge-
nomic platform components. For gene g, the components can be estimated
based on the following formula: GmiRg = f̂1(XmiRNAg ), GCNg = f̂2(XCNg ) and

GOg = XmRNAg − f̂1(XmiRNAg ) − f̂2(XCNg ). Repeating the same procedure for
all the genes, we combine the components grouped by platform, forming differ-
ent genomic platform combinations: GmiR = {GmiR1,GmiR2, . . . ,GmiRPG

}, GCN =
{GCN1,GCN2, . . . ,GCNPG

} and GO = {GO1,GO2, . . . ,GOPG
}. These combina-

tions represent the gene expression level attributed to miRNA, CN and other fac-
tors, respectively, for all PG target genes of interest.

At times, not all samples with genomic data have radiomic data, as in our GBM
example. In that case, we denote NGI (NGI ⊆ NG) as the sample size of their inter-
section. We carry forward the corresponding subset of the estimated gene platform
combinations GmiR, GCN, GO, each with dimension NGI × PG , as predictors into
the second-stage radiogenomic model.

B. Radiogenomic model. The goal of the second stage radiogenomic model
is to find gene-platform combinations that appear to be associated with radiomic
markers, and to partition the radiomic markers into the parts modulated by different
gene effects carried from the genomic model and those that are not modulated by
the modeled genomic factors. The model can be written as

I = Ig + Iḡ
(2)

= GmiRBmiR + GCNBCN + GOBO︸ ︷︷ ︸
Genomically driven

+ Iḡ︸︷︷︸
Non-genomically driven

.

The terms in the model can be expressed and interpreted as follows:

• I denotes a NGI × K matrix in which K is the number of general RFs (indi-
vidual radiomic features or Radiomic-meta-Features (RmFs) that we constructed
from high dimensional RFs that are highly correlated, described in detail in Sec-
tion 3.2).

• BmiR is of dimension PG × K , with columns as the vectors of the expression
effects for corresponding radiomic markers through miRNA.
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• BCN is of dimension PG × K , with columns as the vectors of the expression
effects for corresponding radiomic markers through CN.

• BO is of dimension PG × K , with columns as the vectors of the expression
effects for the corresponding radiomic markers through “other” genomic mecha-
nistic factors.

• GmiR, GCN, GO are the estimated gene expression components described in
part A.

Associations are detected by examining the coefficients’ posterior probabilities
based on Markov chain Monte Carlo (MCMC) samples, and estimates given by
posterior means (detailed information in Section 2.3). To achieve the segmentation
of the radiomic features, we can estimate each component by ÎCN = GCNB̂CN,
ÎmiR = GmiRB̂miR, ÎO = GOB̂O . The final nongene-driven part can be estimated
by Îḡ = I−GCNB̂CN −GmiRB̂miR −GOB̂O . We then further carry the above four
components into the final stage, the radiogenomic clinical model.

C. Radiogenomic clinical model. The third-stage model relates the various
radiogenomic marker combinations from the second stage model to a clinical out-
come (e.g., survival time in our context). The model can be expressed as

Y = ICNα1 + ImiRα2 + IOα3 + Iḡα4 + ε,

where Y is the clinical outcome with dimension NGIC × 1 and NGIC (NGIC ⊆
NGI ⊆ NG) is the sample size of the intersection of the genetic, image and clinical
data sets. ICN is the CN modulated radiomic marker component matrix. Simi-
larly, ImiR denotes the microRNA modulated part; IO is the part of radiomic fea-
tures explained by a genomic factor but modulated by something other than CN or
miRNA; and Iḡ denotes the part of the radiomic feature not regulated by genes in
the model. All four radiomic marker components have the dimension NGIC × K .
α1, α2, α3, α4 denote the corresponding image marker combination effects. ε is
the error term for modeling the clinical outcome. In our GBM application, where
the clinical outcome is survival time, we use an accelerated failure time (AFT)
model, with Y as the log-transformed survival time [Wei (1992)]. However, for the
general analytical process, our outcome Y can involve any clinical measurements
with suitable regression model determined by the type of outcome (e.g., logistic
models for binary outcomes or Cox proportional hazards models in the presence
of censored outcomes).

Our goal in this final stage is to identify radiomic markers associated with clini-
cal outcome, either modulated by genomic factors or not. We identify these factors
by estimation and Bayesian posterior inference of α = {α1,α2,α3,α4}, and then
can characterize these effects in more detail by tracing information back through
the earlier stage models. For example, if a particular radiomic feature is related
to clinical outcome through a genomic effect, we can examine the corresponding
second stage model to identify which genes are driving such effects, and then the
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first stage model for those genes to find which upstream platforms most strongly
modulate the expression of those genes. In this way, the radio-iBAG model can
not only detect clinically relevant radiomic features, but provide a thorough sum-
mary of the radiomic-genomic and multi-platform genomic interrelationships that
appear to modulate these factors.

2.2. Radio-iBAG model estimation. Our second- and third-stage models in-
volve multiple genes and/or RFs, so it is necessary to introduce sparsity into the
regression models to regularize the fitting and to obtain a relatively smaller and
more interpretable set of radiogenomic factors that appear to be related to the clin-
ical outcome. This can be done using penalized likelihood or other regularization
techniques, but here we use a Bayesian approach and induce sparsity through the
prior distributions on the regression parameters.

Some commonly used sparsity priors involve a discrete-mixture prior consist-
ing of a point mass at zero for noise and a continuous density distribution for
signals, for example a normal distribution and a point mass at zero [Mitchell and
Beauchamp (1988)]. Other types of sparsity priors do not have a zero component,
but instead are absolutely continuous distributions that accomplish sparsity via
nonlinear shrinkage, which can often be accomplished using a normal scale mix-
ture prior distribution. Examples include a normal-exponential (Bayesian lasso)
[Park and Casella (2008)], Horseshoe [Carvalho, Polson and Scott (2010)], gen-
eralized double pareto [Armagan, Dunson and Lee (2013)], Dirichlet Laplace
[Bhattacharya et al. (2015)], and Normal Gamma [Griffin and Brown (2010)].
While the Bayesian lasso, which is a Bayesian analog to the commonly-used
lasso [Tibshirani (1996)], is commonly used, it has limited flexibility given it is
determined by a single hyperparameter that regulates both sparsity and the tails.
We instead use the normal-gamma (NG) prior [Griffin and Brown (2010)], which
contains a second hyperparameter, and thus can better handle sparsity as well as
flexibility to manage the tails and yield to more accurate coefficient estimates, as
described and illustrated via multiple simulation settings in [Griffin and Brown
(2010)]. We apply this prior in both stage II radiogenomic and stage III radio-
genomic clinical models. Further, we allow the sparsity hyperparameters to be
indexed by platform, which enables borrowing of strength across genes in deter-
mining the desired sparsity and tail levels on a platform specific basis.

To estimate the coefficient vector, for the kth RF, we assign the NG prior distri-
bution to βk = {βk

miR,βk
CN,βk

O}, each part of the coefficient vector being assigned
with a particular set of the hyperparameters. In this way, we allow priors settings
that incoporate multi-scale datasets. More specifically, suppose our genomic plat-
form combination predictors can be expressed as X = {GmiR,GCN,GO}, then the
linear regression model and its hierarchical prior setting can be expressed as

Ik = Xβk + Ikḡ,

Ik ∼ Normal
(
Xβk, σ

2
k INGI

)
,
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βk ∼ Normal(0P̃ ,Dψ),

Dψ = diag(ψ1,1,ψ1,2, . . . ,ψ1,P1,ψ2,1,ψ2,2, . . . ,

ψ2,P2, . . . ,ψJ,1,ψJ,2, . . . ,ψJ,PJ
),

where P̃ = P1 + P2 + · · · + PJ is the total number of predictors (dimension of
X), J denotes the total number of platform types (j = 1,2,3, . . . , J , here our
J = 3), and Pj denotes the total number of genomic features (each sub-indexed
as g) for the j th genomic platform type. Our estimation of the scale parame-
ters and the main coefficients (βk) is processed by applying the NG prior ψj,g ∼
Gamma(λj ,1/(2γ 2

j )) for the j th platform. Also, the hyper-prior λj ∼ exp(c) and

γ −2
j ∼ Gamma(ã, b̃/(2λj )) are assigned to induce greater flexibility and com-

pleteness in shrinkage estimation. To complete our prior specification, we assume
a conjugate InverseGamma(a, b) prior on σ 2

k . Here, we let each genomic platform
combination (platform type) share the same set of hyperparameters (λj , γ 2

j ), thus
maintaining the grouped structure at the shrinkage level. For implementation, we
utilize Markov Chain Monte Carlo (MCMC) based Bayesian sampling techniques
such as Gibbs sampling and Metropolis–Hastings. The posterior means calculated
from MCMC samples are used to obtain the parameter estimations, and the corre-
sponding posterior probabilities are used to conduct signal detection. The details
for the posterior distribution and MCMC sampling are shown in the Appendix.

For the radiogenomic clinical model, we utilize similar NG prior distributions,
the only difference being that our group structure is determined by the RF com-
binations. We assign the same hyperparameters for the partitioned RFs that be-
long to the same combination/group. Suppose our predictor set estimated from
stage II can be expressed as I = {ICN,ImiR,IO,Iḡ}, and the effect parameter
α = {α1,α2,α3,α4}, then the model and prior construction can be expressed as

Y = Iα + ε,

Y ∼ Normal
(
Iα, σ 2INGIC

)
,

α ∼ Normal(0,Dψ),

Dψ = diag(ψ1,1,ψ1,2, . . . ,ψ1,K,ψ2,1,ψ2,2, . . . ,

ψ2,K, . . . ,ψJ,1,ψJ,2, . . . ,ψJ,K),

where J denotes the total number of different RF combination types (j =
1,2,3, . . . , J , our J = 4), k denotes the RF index (k = 1,2,3, . . . ,K). Further,
we assign our prior and hyper-prior distributions as ψj,k ∼ Gamma(λj ,1/(2γ 2

j )),

σ 2 ∼ InverseGamma(u1, u2), λj ∼ exp(d), and 1/(2γ 2
j ) ∼ Gamma(ẽ, f̃ /(2λj )).

Note that for censored sample i, we sample Yi from complete conditional distri-
bution which is normal distribution with left truncation at ti that represents the
follow-up time. Finally, RF combination selection is based on the posterior proba-
bility of the MCMC samples. Details about the posterior distribution and sampling
methods are provided in the Appendix.
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2.3. Radiomic and genomic marker selection. For marker/feature selection
we propose a thresholding procedure for the various regression models. Specif-
ically for the radiogenomic clinical model, we choose a thresholding criteria
considering both the effective size and clinical interpretability. For example, in
the GBM case study, we apply the AFT model with the log-transformed sur-
vival time as the clinical outcome. In our analysis, considering that the survival
times are measured in months, which is comparatively small, we choose to ap-
ply log2-based transformation, which leads to better interpretability and a sim-
pler calculation. Based on this setting, the region for detecting the coefficients
of the image markers becomes αjk ∈ (−∞, δ∗−) ∪ (δ∗+,∞), where we denote δ∗−
as log2(1 − δ2) and δ∗+ as log2(1 + δ2), particularly, αjk is the coefficient of the
kth radiomic marker modulated by the j th genomic platform (j = 1,2, . . . , J ,
k = 1,2, . . . ,K). Moreover, δ2 is determined to achieve the proper effect size and
is interpreted as the percentage change in survival time, for example, for the GBM
data analysis, we choose δ2 = 0.05, which corresponds to 5% change in survival
time. More specifically, we denote P+(Ijk) = ∑t=T

t=S+1 I (α
(t)
jk > δ∗+)/(T − S) and

P−(Ijk) = ∑t=T
t=S+1 I (α

(t)
jk < δ∗−)/(T − S) where t denotes the t th MCMC iter-

ation, S denotes the burn-in sample size and T represents the total number of
MCMC iterations. We flag Ijk to be positively significant if P+(Ijk) > 0.5 or
negatively significant if P−(Ijk) > 0.5 [Barbieri and Berger (2004)].

Analogously, for the radiogenomic model, considering δ-fold or larger variation
in the response for a unit change in a particular predictor is defined as a standard
in the significance detection, which corresponds to βjg ∈ (−∞,−δ) ∪ (δ,∞) and
βjg is the coefficient of the j th platform of the gth gene in the analysis. Once a
proper threshold δ1 is determined, the posterior probability is defined as P(xjg) =∑t=T

t=S+1 I (|β(t)
jg | > δ1)/(T − S), where S is the burn-in sample size and T is the

total number of MCMC iterations. Feature xjg in the gene-platform combinations
is highlighted to be “significant” if P(xjg) > 0.5.

Algorithm 1 provides a concise summary of Radio-iBAG model implementation
and genomic/radiomic marker selection.

3. Radiogenomic mapping of glioblastoma multiforme. Glioblastoma Mul-
tiforme (GBM) is an aggressive and malignant form of primary brain cancer. It is
the highest grade glial tumor, with a median survival time of 14.6 months fol-
lowing standard treatment options and typically three months without treatment
[Stupp et al. (2009)]. Although different treatment approaches that include ra-
diation, surgery and chemotherapy have been developed and applied in clinical
practice, the overall mortality rate still remains high, mainly due to the tumor’s re-
sistance to treatment [Bleeker, Molenaar and Leenstra (2012)] and the complexity
of its primary biological mechanism.

Currently, at the molecular level, TCGA provides data sets with multiple ge-
nomic platforms, including methylation, CN alteration, and gene expression. Stud-
ies based on TCGA platform have identified distinct molecular subclasses of
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Algorithm 1 Radio-iBAG modeling algorithm

GBM, resembling stages in neurogenesis that are relevant to prognosis [Verhaak
et al. (2010)]. Also, with the availability of standardized medical image annota-
tions from The Cancer Imaging Archive (TCIA), multiple studies currently focus
on the detection of radiomic imaging variables associated with clinical outcomes
[Chaddad and Tanougast (2016), Kickingereder et al. (2016)]. Relevant studies
have shown that quantitative imaging features extracted from different modali-
ties provide strong prognostic information [Nicolasjilwan et al. (2015), Lee et al.
(2016)].

The availability of such large-scale data resources (TCIA and TCGA) makes
it feasible to perform radiogenomic mapping in GBM to explore the complex
associations between molecular features and imaging features for this particular
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cancer type. In this section, we apply our integrative multi-stage Bayesian hierar-
chical model with the data from patients with GBM and matched with TCGA and
TCIA platforms, to discover radiogenomic associations characterizing these data
and identify RmFs and genomic markers associated with GBM prognosis. More
details of the genomic and imaging data sets are provided hereafter.

3.1. Data description.

3.1.1. Radiomic and clinical data description. Among 304 GBM patients
with available genomic records, 78 matched patients (NGI = 78) also have MRI
T1-weighted post contrast images and T2-weighted fluid attenuated inversion re-
covery (T2-weighted FLAIR) images available from TCIA for texture analysis.
Image preprocessing procedures, including steps such as nonuniformity normal-
ization (N3) correction, registration, segmentation, isotropic voxel-reslicing and
image filtering, were performed prior to texture feature extraction. For this analy-
sis, we derived textural features from the axial 2D slice that has the largest tumor
area [Zhou et al. (2014)]. Our textural features were obtained from a two-step pro-
cess: (1) Image filtering, (2) Haralick features4 derivation [Haralick, Shanmugam
and Dinstein (1973)] [Haralick (1979)] and summary measures calculation. These
image preprocessing steps as well as the texture feature calculations are described
in detail in the Supplementary Material S2.1 [Zhang et al. (2019)].

For the radiomic data set, we had 972 RFs that could be categorized into 20
groups based on how they were calculated. The group names and corresponding
descriptions are provided in the Supplementary Material S2.2. They cover the fea-
tures of both T2-weighted FLAIR and T1-weighted post-contrast MRI modalities
with different type of features: texture features, histogram features and regional
features and with two types of ratio based normalization methods.

For clinical outcomes, we utilized overall survival times (in months) as the
response in our integrative analysis. For the clinical model, we used data from
NGIC = NGI = 78 GBM patients with matching multi-platform genomic, ra-
diomic, and clinical data, and with nine patients having censored clinical out-
comes. We applied the AFT model using the log2 transformed survival time
log2(Ti) as the response, where Ti is the survival time in months after diagnosis
for patient i, and imputed the survival time for censored samples simultaneously.

3.1.2. Genomic data description. Our gene expression data set is level 3 (sum-
marized per gene), and was downloaded and processed by TCGA Assembler [Zhu,
Qiu and Ji (2014)] with open-source software and related instructions available in
public. The CN data set is level 2 (probe-level) data obtained from TCGA Portal

4Features generated using various metrices of the co-occurence matrices are called “Haralick fea-
tures” after the publication of [Haralick, Shanmugam and Dinstein (1973)].
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from the HG_CGH_244A platform with normalized records of CN alteration for
each probe. The miRNA data set was also acquired from TCGA Portal with 534
miRNA records and 575 samples in total.

In our analysis, we focus on 49 genes that are members of signaling pathways
that have previously been detected associated with GBM (RTK/PI3K, P53, and
RB pathways [Network et al. (2008)] and 304 patients (NG = 304) with records
available for mRNA, CN and miRNA. The sample sizes and the specific types of
the raw datasets for all genomic platform, radiomic data and clinical data are illus-
trated via diagram in Supplementary Figure S3 with description in Section S2.3.
The genomic datasets used in the first stage are all continuous and the descrip-
tions of the raw data structure (for 304 samples) of different genomic platforms
are given in below:

• mRNA (304 × 49) contains gene expression levels for each gene and each pa-
tient.

• Copy number (304 × 491) contains the CN alteration data (columns) for each
sample (rows). There exist multiple copy number markers per gene, and the
columns of the data set are sorted by gene. Also, one gene, HRAS, does not have
CN alteration information, thus, any variance of gene expression contributed by
CN changes will be captured by the factor “others” in this analysis; in other
words, for gene HRAS, the corresponding column in matrix GCN is set as zero.

• miRNA (304 × 522) contains miRNA values for each gene (column) and
patient (row) based on the miRNA-mRNA interaction membership matrix,
with records coming from targetHub [Manyam et al. (2013)], which collected
miRNA-mRNA interaction records based on five external databases, and multi-
MiR [Ru et al. (2014)] is based on 14 external databases, including validation
databases, prediction databases and drug-associated databases. There exist mul-
tiple miRNA records corresponding to one gene, and the columns of the miRNA
data set are ordered by gene.

We wish to obtain gene-level summaries for each platform based on these raw
data sets. Considering that a given gene can contain multiple values from different
markers for both miRNA and CN alteration records, and including all these records
into the genomic model is computationally expensive and inefficient, the gene-
level summaries that can be carried into the modeling stage need to be generated.
There are different ways to obtain gene-level summaries, for example, taking the
average, selecting the top most correlated records, or extracting the top principal
components via PCA. For the analysis of GBM data, CN alteration and miRNA,
in each case, we perform PCA on the genomic platform data set mapped to a gene
and keep the top principal components with cumulative variance that explain up to
90% of the total variance. In this way, we regard the remaining records as capturing
most of the information of the genomic platform data. Specifically, for gene g, the
gene-level summaries for each platform can be expressed as XmiRNAg and XCNg ,
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which have been denoted in Methods. Our genomic model is conducted based on
these three data sets, XmRNAg , XmiRNAg and XCNg .

As described in Section 2.1, our genomic model uses the GAM to fit the model
and estimate the partitioned mRNA that is modulated by different genomic plat-
forms. To implement the GAM algorithm, we utilized Wood’s R package “mgcv”
and exploited its option for the automatic smoothness selection for the penalty pa-
rameter based on generalized cross-validation [Wood (2001)]. Subsequently, for
each gene, we calculated the proportion of the mRNA variance explained by each
platform. We assume that if a genomic platform does not explain much variation
in mRNA expression, it will not have a significant impact on image features. Thus,
for GmiR, GCN and GO, we filtered out the genomic platform features that ex-
plain less than 10% of the total variance of gene expression, leaving the remaining
features to be carried forth into the radiogenomic model.

3.2. Estimation of radiomic-meta-features. One of the critical challenges in
fitting the radiogenomic model is the high dimensionality and redundancy of the
set of radiomic features (RFs). In our GBM case study, the preprocessed RF data
set has 972 features, and contains many features within the same type of radiomic
class but with different settings, for example, filtering scales. Thus, there are exten-
sive correlation among many RFs with high magnitudes up to 0.99, as can be seen
in the correlation heatmap shown in Supplementary Figure S1. Facing these chal-
lenges, we utilize a new radiomic strategy of empirically constructing radiomic
meta features (RmFs) comprised by a linear combination a sparse subset of highly
correlated RFs. Each RmF defines a factor capturing one aspect of the fundamen-
tal structure in the radiomic features, and together the relatively small number of
RmFs retain a vast majority of information contained in the set of 972 RFs. To
our knowledge, this strategy has not been applied in the radiomics literature to
date, and may be useful in other contexts. We construct the RmFs by applying
sparse principal component analysis (sPCA) [Zou, Hastie and Tibshirani (2006)]
which incorporates a regularization technique such as the lasso or elastic net to
induce sparsity in the principal component loadings. This has the advantage of in-
terpretability over general principal components that do not in general yield sparse
loadings, in the case of our GBM application yielding RmFs that are reasonably
intuitive and interpretable (see Section 3).

This algorithm offers a parsimonious way to obtain more comprehensive rep-
resentation of radiomic features, which contain the maximum information of the
original radiomic data. While not strictly orthogonal like PCs, the SPCs are ap-
proximately orthogonal so it is reasonable to model these RmFs as independent
imaging features in the second stage radiogenomic model. The sparse loadings for
the RmFs for our GBM application are shown in Figure 2, and by contrast, the
nonsparse loadings for ordinary PCA are shown in the Supplementary Figure S2.

Let M be an NGI ×P matrix (typically with P � NGI ) with the rows being the
subjects and the columns the P (=972) RFs. The sparse PCA is applied as follows:
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• Apply ordinary PCA to M and record the number of top principal components
with the cumulative variance explaining up to 100(1 − α)% (e.g., 90%) of the
total variance. Each PC is regarded as a linear combination of the original fea-
tures with its loadings can be estimated by regressing the PC on these features.
Sparsity in loadings results from adding regularization terms in the regressions.

• The general sPCA algorithm and its numerical computation procedure are de-
scribed by [Zou, Hastie and Tibshirani (2006)]. In most cases, the number of
features is typically much bigger than the sample size; hence, the simplified
version of the general sPCA described in the paper should be applied here. The
mathematical formulation of sPCA is illustrated in the Supplementary Material
Section S2.2. To implement the algorithm, we utilized the R package “elas-
ticnet” [Zou and Hastie (2005)], with K (the number of principal components
based on the ordinary PCA) principal components and vectors of λj (L1 norm
regularization parameter for each loading vector). The parameter λj can be cho-
sen by cross-validation, or various values can be tried to find one that results in
the desired level of sparsity.

Suppose V is our final matrix of loadings with dimensionality P × K ,
the projected imaging features matrix (PC score matrix) is then I(NGI×K) =
M(NGI×P)V(P×K). We define the vectors of this matrix as RmFs, which contain
the majority of the information of the original radiomic data. These features are
further regarded as predictors in the analysis of the radiogenomic clinical model.

3.3. Results using the radio-iBAG model.

3.3.1. Radiomic-meta-feature estimation. We conducted sPCA with the regu-
larization parameter λ = 2.5 for each principal component, leading to 22 top prin-
cipal scores that explain 80.7% of the total variance. We also explored large range
of λ with the corresponding loadings and the cumulative variance that are showed
in Supplement Material Section S6. We chose λ = 2.5 given its balance in the spar-
sity of the loadings which leads to good interpretation and the cumulative variance
that could be attained. We call these 22 principal scores Radiomic-meta-features
(RmFs) as discussed in Section 3.2. To summarize the RmFs, Figure 2 plots a
heatmap of the squared loading proportions within the 20 broad categories of RFs
to show which feature types dominate each RmF.

This figure reveals that many of the RMFs appear to be interpretable in the sense
of summarizing certain aspects of the images, including morphological imaging
features that can be directly visualized, for example, unformity, tumor area, mean
intensity, etc. To further illustrate their interpretability, we pick out three exam-
ple RmFs and in Figure 3 plot T1-Post Contrast images for the four tumors with
highest and lowest values of the corresponding RmF scores, rescaled to [0,1].
RmF 21 has the largest loading values for feature categories indicating tumor area
(T1_Region, F_Region). The first column of Figure 3 shows that samples with
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FIG. 2. Squared loading proportion for each RF group. For each of the 22 radiomic-meta-features
(RmFs), the sum of the squared loadings of each group is calculated, divided by the total sum of the
squared loadings, which equals exactly 1. The heatmap shows these values in grey level, interpreted
the RF group importance for each RmF. The grey level ranging from white to black matches the
proportional values ranging from 0 to 1.

higher values of RmF 21 tend to have larger tumor area. RmF 14 has nonzero
loadings inversely proportional to pixel intensity variance measures, and thus can
be construed as representative of local pixel heterogeneity. From the second col-
umn, it is evident that larger RmF 14 (smaller variance) leads to lower local pixel
heterogeneity. The third column of Figure 3 shows the sorted RmF 17, whose load-
ings are dominated by the imaging intensity histogram feature “uniformity,” which
represents the nonuniformity of the overall gray-level pixel intensities. The gray
level of the magnified tumor region shows that when RmF value gets larger, the
tumor surface gets more non-uniform. These RmFs quantitatively capture these
fundamental features of the images.

We use these RmF as quantifications of the radiomic data in our modeling, with
the radiomic model fit to Rmf matrix I , which is of dimension 78×22, with RmFs
as columns and subjects as rows.
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FIG. 3. T1-Post Contrast images are shown based on the sorted results of three representitive
RmFs: RmF 21 mainly accounts for tumor area; RmF 14 mainly represents tumor pixel heterogeneity;
RmF 17 represents tumor uniformity. The RmF values are all scaled from 0 to 1.
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3.3.2. Radio-iBAG modeling results. Our model shows proper convergence
and it is not sensitive to the choice of the hyperparameters based on the model
checking results respectively described and shown in Supplementary Material Sec-
tion S4.2 and Section S7. After model fitting, the information about the prognostic
radiogenomic features can be explored in the following sequence: RmFs that sig-
nificantly influence the survival time, either positively or negatively, are selected
using our criteria outlined in Section 2.3. For each selected RmF, the important
RF groups comprising this RmF can be identified by evaluating the sPCA loading
information as shown in Figure 2. To obtain significant genes and genomic plat-
forms for the selected RmFs, we then trace back to the radiogenomic model and
the genomics model, to identify which genes, if any, are associated with that RmF,
and then which upstream platforms appear to be modulating the genomic effect.
The specific results for each stage are described here.

3.3.2.1. Radiomic results. We use posterior probabilities to detect significant ra-
diomic signals as well as genomic platform factors in both stage II and stage
III based on the median probability criteria described in Section 2.3. Figure 4

FIG. 4. Results of stage III (radiogenomic clinical model): Detecting postively and negatively sig-
nificant RmF combinations. Each RmF is segmented into four parts, of which three parts are mod-
ulated by different genomic platform combinations denoted as ICN, ImiR and IO . The 4th part
is modulated by unknown/unmeasured factors represented as Iḡ (“ng” in the legend). The barplot
shows the posterior probabilities that the coefficient for each part αjk > δ∗+, where αjk denotes the
kth RmF modulated by the j th genomic platform. For each RmF, the probabilities of these four com-
ponents, CN, miRNA, others, and ng, are respectively shown in red, green, purple and blue. Each
probability in (a) shows that one unit increment in the RmF component leads to at least 5% increase
in survival time. Each probability in (b) shows that one unit increment in the RmF component leads
to at least 5% decrease in survival time. We consider the markers to be significant if this posterior
probability is larger than 0.5.
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shows the posterior probabilities used to select the positively and negatively signif-
icant clinical RmF combinations. The results show that more RmF are positively
significant for the prognostic outcome, with one unit change leading to at least
5% increase in survival time (δ2 = 0.05, the results using alternative thresholding
δ2 = 0.02 and δ2 = 0.08 are shown in Supplementary Material Section S4.3). Also
negatively selected significant RmF combinations have the interpretation as one
unit change leading to at least 5% decrease in survival time. From Figure 4(a) and
(b), we see that RmF 7 and RmF 8 have a positively significant influence on the
survival time, with the parts that are modulated by genes through their copy num-
ber effects (GCN). RmF 1 and RmF 3 are negatively associated with survival with
the parts that are modulated by genes through their copy number effects (GCN).
RmF 1, RmF 4, RmF 8, RmF 18 and RmF 21 are positively related with sur-
vival via genemic effects not modulated by CN and miRNA. RmF 10 and RmF 19
are negatively associated with survival through genomic effects not modulated by
miRNA nor CN. RmF 13, RmF 14 and RmF 21 are positively associated with
survival apart from genetic modulated factors.

To interpret the flagged RmFs, we turn to Figure 2 (as well as the Supplemen-
tary Material .xls file), which illustrates how much variance each RF group con-
tributes to the corresponding RmF combinations. RmF 8 is found to be positively
associated with survival through CN effects, and Figure 2 shows that RmF 8 is
dominated by the the RF groups “T1_LoG_Tex_R1” and “T1_LoG_Tex_Fine.”
RF names and their brief interpretations are shown in the table of Section S2.2
of the Supplementary Materials. In general, we see that texture features derived
from T1-weighted post contrast images processed with R1 normalizing approach
tend to be more significant, and based on the actual loading values (Supplementary
Material Excel file), we found Haralick features to be important, including sum av-
erage and inverse difference moment. As another example, RmF 19 modulated by
gene expression not explained by miRNA or CN changes (GO ) is detected to be
negatively associated with survival, and for this RmF the dominant RF group is
the Haralick features extracted from T2-weighted FLAIR images, especially with
exact features named cluster shade, cluster prominence, energy and contrast. Ad-
ditionally, RmF 21, which is found to be positively associated with survival both
through genomic factors explained by “other” and the nongene driven part. Fur-
ther checking found that RmF 21 is associated with T1-weighted post contrast and
T2-weighted FLAIR tumor areas. This indicates tumor area, as one of the major
regional features, associated with the survival time and seemingly moderated by
gene expression of signaling pathway genes, in part regulated by some genomic
transcriptional factors other than CN or miRNA.

Radiomic biological significance. In general, more radiomic features extracted
from T1-weighted post contrast MRI images are selected to be clinically signifi-
cant and most of them appear to be associated with genomic effects in signaling
pathways. This is not unexpected given the fact that recent studies in literature
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showed that genomics are expected to be most related to T1-weighted post con-
trast images rather than T2-weighted FLAIR preprocessed ones. More specifically,
RmF 14, which mostly captures the contrast margin of the enhancing MRI image,
the magnitude and the loading information (included in Supplementary excel file),
indicate that higher texture feature sum of average or lower texture feature sum
of variance derived from the contrast of the edges leads to longer survival times.
The detection of RmF 10 shows that histogram features, derived from T2-weighted
FLAIR image pixel intensity and representing the global summary of the enhance-
ment, are selected to be primarily affecting patients’ survival. It has been shown
that the overall intensity is correlated with blood flow vasoconstriction. Moreover,
we see associations with several key genes PDGFRA and TP53, with genomic
transcriptional factors that affect the uniformity of the overall pixel intensity. In
addition, RmF 21, with both genomic transcriptional factor driven part and non-
gene driven part, are also selected to be significant in influencing patients’ survival
time. Since the region feature, more specifically, tumor area, that captures most of
the variation of RmF 21, our conclusion indicates that tumor area calculated from
both T1-weighted post contrast and T2-weighted FLAIR images, are clinically im-
portant, larger area results in shorter survival times.

Genomic results. For the selected RmFs, we trace back to stage II and obtain the
regulating genes that significantly affect the RmFs through specific genomic plat-
forms (CN, miRNA or others), as shown in Figures 5, 6 and 7. To flag genes as
associated wtih the RmFs, we compute the posterior probabilities of the magnitude
exceeding a prespecified threshold. For our analysis, we present the results with the
setting δ1 = 0.075 in this section since it gave us the best balance between the sig-
nal and sparsity (the results when setting the threshold δ1 = 0.05,0.075,0.1 are
shown in Supplementary Material Section S4.3). For the flagged genes, we traced
back through the stage I model to acquire the percentage values (marked in blue)
that represent the proportion of the mRNA variance that is explained by the corre-
sponding genomic platform. For example, RmF 8 modulated by the CN combina-
tion is selected to be important, referring to the top left graph in Figure 5, genes
GRB2, PIK3CB, SPRY2 and TP53 are selected as important, affecting RmF 8
through CN alteration. For gene SPRY2, 20.3% of its mRNA is explained by CN
alteration. Also, genes PDGFRA and TP53 are selected as significantly influenc-
ing RmF 10 via other transcriptional factors. For TP53 in particular, the genomic
factors (other than CN and miRNA) explains 86.2% of its mRNA variance.

For the results of stage I, after performing genomic modeling and filtering out
the genomic platforms that did not explain much of the variance of gene expres-
sion (discussed earlier), there are 92 markers in the remaining gene-platform com-
binations (miRNA: 12; CN: 31; Others: 49) being carried into stage II, the ra-
diogenomics model, as predictors. Figure 8 presents the overall genomic and ra-
diomics results: RmF 7 and RmF 8, modulated by CN, are selected to be positively
associated with survival time. Furthermore, 4 genes (GRB2, PIK3CB, SPRY2 and
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FIG. 5. Significant genomic CN combinations.
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FIG. 7. Significant genomic mRNA “Other” combinations.
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FIG. 8. Results: Significant RmFs, genes and genomic platforms. Four categories of RmF combi-
nations are listed in the first column, where “nongene” denotes “ḡ,” which is the non-gene-driven
part of the RmF. For each category, several significant RmFs detected from the clinical model are
listed in the second column, with unbolded indicating positive ones; bolded indicating negative ones.
Posterior probability of the important radiomic markers is shown in column 3. For each selected
RmF, several RF groups are selected based on RmF description heatmap (Figure 2). For each signif-
icant RmF combination, significant genes are listed with the percentage of how much the variance of
mRNA is explained by the specific genomic platform.

TP53), with their part of gene expression (mRNA) explained by CN alteration,
are detected as being significantly associated with these RmFs. For the transcrip-
tion modulated part, RmF 10 and RmF 19 are detected as being negatively im-
portant and associated with genes ERBB2, TP53 and PDGFRA; while RmF 21
is positively significant and associated with genes CDKN2A, ERBB2, MDM2,
PDGFRA, PIK3C2G and PIK3CG. For the non-gene-driven factors, RmF 13,
RmF 14 and RmF 21 are positively significant.
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Genomic biological significance. Result table shows that gene EGFR is selected
to be significant for multiple flagged RmFs. It agrees with the literature that the
aberrations and gene expression of EGFR, with its full name as “epidermal growth
factor receptor,” have been associated with the classical subtype of GBM among
four major subtypes (proneural, classical, mesenchymal and neural), defined based
on transcription data analysis [Verhaak et al. (2010)]. This particular subtype ac-
counts for ∼25%–30% of GBM cases. The amplification of the EGFR gene is the
most common genomic change that leads to overexpression of the receptor vari-
ant III (EGFRvIII), and 20% or less EGFRvIII in GBM is significantly related
to longer overall patient survival [Montano et al. (2011)]. Moreover, PDGFRA
is another gene which has been flagged as important for multiple RmFs. It was
found that for the proneural subtype, platelet-derived growth factor (PDGF) recep-
tors (PDGFRAs) have been found to represent the gene [Verhaak et al. (2010)].
Also, PDGFR has been positively correlated with patient survival time and its crit-
ical role in oncology has been well described in the context of gliomas [Nazarenko
et al. (2012)]. Gene TP53 is selected to significantly influence RmF 8 via its mRNA
explained by CN, and specifically, TP53 has been found to be the main hub gene
that acts as a tumor suppressor through comparative analyses of CN and mRNA
expression in GBM tumor and xenografts Hodgson et al. (2009). The study illus-
trated that loss of TP53 function in GBM leads to transcriptional upregulation in
gene expression network.

MDM2 is a commonly known oncogene that inhibits the tumor suppressor
TP53; its overexpression and amplification have been studied through the anal-
ysis of CN alterations and gene expression profiles in previous studies [Yin et al.
(2009)]. The gene CDKN2A, with other transcription factors accounting for its
expression, has been found to be significantly associated with tumor area for both
T1-weighted post contrast and T2-weighted FLAIR. CDKN2A belongs to the RB1
pathway, serves as a cyclin-dependent kinase inhibitor, and has been detected to be
important [Solomon et al. (2008)]. It has been reported that loss of RB1 expression
occurs in up to 25% of glioblastomas. Changes in RB1 expression have been asso-
ciated with alterations in tumor cell proliferation and survival [Kim et al. (2011),
Nakamura et al. (1997)]. Also, the assessment of RB1 promoter hypermethylation
showed a clear correlation between the loss of RB1 expression and promoter hy-
permethylation [Nakamura et al. (2001)]. Analysis of GBM on the molecular level
(TCGA data), using fluorescence in situ hybridization and immunohistochemistry,
showed that alterations in RB1 occur more commonly in the proneural subtype of
GBM.

4. Discussion and conclusion. This article presents the radio-iBAG model,
a general framework for multi-scale integrative Bayesian analysis of radio-
genomics data. Our hierarchical models incorporate biological mechanistic re-
lationships among multiple genomic platforms, radiomic feature analysis and ra-
diogenomic analysis with relevant clinical outcomes. There are three key features
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of this modeling strategy: (1) Multiple genomic platform profiles are incorporated
in the radiogenomics framework; (2) For model fitting, high dimensionality with
a predefined group structure in the covariates can be addressed through Bayesian
shrinkage priors. In particular, we choose the normal gamma prior due to its flexi-
bility in both shrinkage and parameter estimation; and finally (3) Investigating the
relationship between clinical outcomes and radiomic features containing genomic
information allows us to identify clinically significant genes, radiomic features
and more importantly, the hidden associations between these two data modalities.
We note that although our modeling strategy is motivated by an imaging genomics
study in GBM, our methodology is general and can be applied to any other disease
domain which generates quantitative imaging data with matched genomic data.
This includes neurological diseases where the imaging features could be computed
from structural or functional neuroimaging assays [Azadeh et al. (2016)].

We applied our methodology to the analysis of radiomic and genomic data sets
of GBM. Our model analyzed the relationship between the survival times of pa-
tients and the RmFs modulated by various gene-platform combinations. Our analy-
sis identified several RmFs that significantly impact survival times as well as iden-
tified the key radiomic features driving these factors. These results revealed that
some of the most prognostically important radiomic features include tumor area,
intensity histogram uniformity, and Haralick features derived from the GLCM,
including energy contrast, inverse difference moment, and entropy for both T1-
weighted post-contrast and T2-weighted flair images. Based on the results of mod-
eling the relationship between RmFs and multi-platform genomic measurements,
for each detected RmF, we subsequently identified which gene-platform combina-
tions modulated that RmF. This allows us to detect prognostic RmFs modulated by
upstream molecular platforms such as copy number, microRNA or other factors.
Furthermore, we were able to identify which genes and platforms were driving
these associations.

In summary, the advantages of applying integrative analysis of multiplatform
genomic profiles in this framework are illustrated through the hierarchical back-
tracking, which allows us to discover strong associations and interrelationships
among the clinical, image and genomic factors that may help elucidate the under-
lying biology. Most of the significant genes identified in our analysis have been
shown to be biologically and clinically relevant to GBM molecular subclassifica-
tions, cancer development or therapeutic strategies.

Several possible future extensions and generalizations could be explored based
on our Radio-iBAG framework. For example, in our methodology, we applied a
multi-stage modeling strategy in doing integrative analysis. A possible advance-
ment may be using a joint model to capture all the relationships among different
platforms simultaneously and maintain the detective power with interpretable re-
sults. One other possible direction may be incorporating pathway information as
another hierarchy into the model structure or considering more complicated bio-
logical mechanisms at the molecular level, for example, hidden associations be-
tween a gene and other platforms of the neighboring genes, into the modeling
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framework, for example, as considered in McGuffey et al. (2018). Another possi-
ble future extension may be involving histological images of different tumor tissue
regions as another imaging modality into the study, which will provide more patho-
logical based interpretable radiogenomic relationships along with relevant clinical
outcomes. We leave these tasks for future work.

APPENDIX: FULL CONDITIONAL POSTERIOR DISTRIBUTION

The general posterior distribution of the coefficient parameter as well as other
hyperparameters for the regression model either for the Radiogenomic Model or
the Radiogenomic Clinical Model are shown below.

Consider the linear regression formula: Y = Xβ + ε.
In the radiogenomic model, Y denotes the specific RF, X is the matrix of the

genomic platform combinations. In the radiogenomic clinical model, Y denotes
the clinical outcome, X represents the RF combinations modulated by different
gene expression parts explained by different genomic platforms. The full posterior
distributions are

β|rest ∼ Normal
((

XT X + σ 2D−1
τ

)−1
XT Y,

(
XT X + σ 2D−1

τ

)−1
σ 2)

,

σ 2|result ∼ IG
(
a + n/2, b + (Y − Xβ)T (Y − Xβ)/2

)
,

ψji |rest ∼ GIG
(
a = γ −2

j , b = β2
ji , p = λj − 1

2

)
,

λj |rest ∼ (1/λj )
ã exp

{−b̃γ −2
j /(2λj ) − cλj

}
×

pj∏
i=1

ψ
λj

ji /
{(


(λj )
)pj

(
2γ 2

j

)pjλj
}
,

γ −2
j |rest ∼ Gamma

(
ã + pjλj ,

(
b̃/λj +

pj∑
i=1

ψji

)/
2

)
.

If applying to the radiogenomic clinical model, j denotes the RF combination that
are modulated by the gene expression that is explained by the j th platform, and
k represents the kth RF; if applying to the radiogenomic model, j is the genomic
platform type index, i is the gene index.

Specifically, λj is sampled through the Metropolis–Hastings method, the pro-
posed family is exp(σ 2

λ z)λj , and z comes from the standard normal distribution.
The acceptance rate is controlled between 20% and 30%.
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hyperparameter setting and initial value specification in MCMC algorithm.
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