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Abstract. Given a sample of a random variable supported by a smooth compact manifold M ⊂R
d , we propose a test to decide whether

the boundary of M is empty or not with no preliminary support estimation. The test statistic is based on the maximal distance between
a sample point and the average of its kn-nearest neighbors. We prove that the level of the test can be estimated, that, with probability
one, its power is one for n large enough, and that there exists a consistent decision rule. Heuristics for choosing a convenient value for
the kn parameter and identifying observations close to the boundary are also given. We provide a simulation study of the test.

Résumé. Soit un n-échantillon issus d’une loi supportée par M , une variété compacte suffisament régulière. On propose un test de
l’hypothèse nulle ∂M =∅ contre l’hypothèse alternative ∂M �=∅ qui ne nécessite pas d’estimation de M préliminaire. La statistique
de test est la distance maximale (adéquatement renormalisée) entre une observation et la moyenne de ses kn-plus proches voisins.
On montre que le niveau du test peut être estimé, que sa puissance est 1 lorsque n est suffisament grand et, enfin, qu’il existe une
règle de décision consistente. De manière pratique, on propose aussi une heuristique pour le choix de kn et pour l’indentification des
observations proches du bord. Ces résultats sont illustrés par des simulations.
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1. Introduction

Given an i.i.d. sample X1, . . . ,Xn of X drawn according to an unknown distribution PX on R
d , geometric inference deals

with the problem of estimating the support, M , of PX , its boundary, ∂M , or any possible functional of the support, such
as the measure of its boundary, for instance. These problems have been widely studied when PX is uniformly continuous
with respect to Lebesgue measure, i.e. when the support is full dimensional. We refer to [14] and [19] for prior work on
support estimation, [15] for a review of support estimation, [17] for estimation of the boundary, [16] for estimation of the
measure of the boundary, [7] for estimation of the integrated mean curvature and [3] for the recognition of topological
properties having a support estimator homeomorphic to the support. The lower dimensional case (that is, when the support
of the distribution is a d ′-dimensional manifold with d ′ < d) has recently gained importance due to its connection with
non-linear dimensionality reduction techniques (also known as manifold learning), as well as persistent homology. See
[11] For links between data analysis and topological analysis and [13] for one of the later work on persistent diagrams.
[30] illustrates the link between topology and unsupervised learning. In [21] a test deciding whether the support lies near
a lower dimensional manifold or not is proposed. In [22] or [23] minimax rates for manifold estimation are given under
different hypotheses. In [2] non-asymptotic bounds for manifold estimation and related quantities such as tangent spaces
and curvature are derived. In these papers the manifolds are supposed without boundary.

Regarding support estimation, it would be natural to think that some of the proposed estimators (in the full dimensional
framework) would still be suitable. For instance, in [29], assuming that M is smooth enough, it is proved that for ε small
enough, the Devroye–Wise estimator M̂ε =⋃n

i=1 B(Xi, ε) deformation retracts to M and therefore the homology of M̂ε

equals the homology of M (see Proposition 3.1 in [29]). Considering boundary estimation, it is not possible to directly
adapt the “full dimensional” methods since in this case the boundary is estimated by the boundary of the estimator.
Unfortunately, when the support estimator is full dimensional (which is typically the case, as for example in the Devroye–
Wise estimator but also for more recent manifold estimators) this idea is hopeless (see Figure 1).
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Fig. 1. A one dimensional set M with boundary (the two extremities of the line), sample drawn on M and the associated Devroye–Wise M̂r estimator
of M . Note that ∂M̂r is far from ∂M .

As far as our knowledge extends, there are only a few d ′-dimensional support estimators, see [1] or [28]; they all
require support without boundary thus the classical plug-in idea of estimating the boundary of the support using the
boundary of an estimator can not be used.

In the lower dimensional case, before trying to estimate the boundary of the support, one has to be able to decide
whether it has a boundary or not. The answer provides topological information about the manifold that may be useful.
For instance, if there is no boundary, the support estimator proposed in [1] can be used. Moreover, a compact, simply
connected manifold without boundary is homomorphic to a sphere, as follows from the well known (and now proved)
Poincaré conjecture. When the test decides there is a boundary, one can naturally want to estimate it, or at least estimate
the number of its connected components, which is an important topological invariant (for instance the surfaces, i.e. the
2-dimensional manifolds, are topologically determined by their orientability, their Euler characteristic, and the number
of the components of the boundary). Testing for the presence of boundary can also be useful as a preliminary step when
considering the problem of density estimation on a manifold. Roughly speaking, when the support is smooth enough and
has no boundary, a kernel density estimator will work. However, when the support has a boundary, a bias appears near
to it. In [8] a correction taking into account the distance to the boundary, also based on a barycenter moving statistics
(calculated with a kernel instead of nearest neighbors) is proposed. It allows decreasing the bias but may increase the
variance and so should only be performed when necessary, that is, when the support has a boundary.

The aim of the present paper is to provide a statistical test to decide whether the boundary of the support is empty
or not and, when there is a boundary, to provide an heuristic method to identify observations close to the boundary and
estimate the number of connected components of the boundary.

This paper is organized as follows. In Section 2 we introduce the notation used throughout the paper. In Section 3
we present the test statistic, the associated theoretical results, a way to select suitable values for the parameter kn and
perform a small simulation study. In Section 4 we present an heuristic algorithm that identifies points located close to the
boundary and estimates the number of connected components of the boundary. Finally, Section 5 is devoted to the proofs.

2. Notation and geometric framework

If B ⊂R
d is a Borel set, we will denote by |B| its Lebesgue measure and by B its closure. Given a set A on a topological

space, the interior of A with respect to the underlying topology is denoted by Å. The k-dimensional closed ball of radius
ε centred at x will be denoted by Bk(x, ε)⊂ R

d (when k = d the index will be omitted) and its Lebesgue measure will
be denoted by σk = |Bk(x,1)|. When A= (aij ) (i = 1, . . . ,m, j = 1, . . . , n) is a matrix, we will write, ‖A‖ the euclidean
norm of A, ‖A‖∞ =maxi,j |aij | and ‖A‖op the operator norm of A. The transpose of A will be denoted A′. For the case
n=m, we will write det(A) and tr(A) for the determinant and trace of A, respectively.

Given a C2 function f , �∇f denotes its gradient and Hf its Hessian matrix. We will denote by �d ′(t) the cumulative
distribution function of a χ2(d ′) distribution and Fd ′(t)= 1−�d ′(t).

In what follows M ⊂ R
d is a d ′-dimensional compact manifold of class C2 (also called a d ′-regular surface of class

C2). We will consider the Riemannian metric on M inherited from R
d . When M has a boundary, as a manifold, it will be

denoted by ∂M . For x ∈M , TxM denotes the tangent space at x and ϕx the orthogonal projection on the affine tangent
space x + TxM . When M is orientable it has a unique associated volume form ω such that ω(e1, . . . , ed ′) = 1 for all
oriented orthonormal bases e1, . . . , ed ′ of TxM . Then if g :M → R is a density function, we can define a new measure
μ(B)= ∫

B
gdω, where B ⊂M is a Borel set. Since we will only be interested in measures, which can be defined even if

the manifold is not orientable, although in a slightly less intuitive way, the orientability hypothesis will be dropped in the
following.
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3. The test

3.1. Hypotheses, test statistics and main results

Throughout this paper, X1, . . . ,Xn is an i.i.d. sample of a random variable X whose probability distribution, PX , fulfills
condition P, and the sequence (kn) fulfills condition K:

P. A probability distribution PX fulfills condition P if there exists a compact, path connected d ′-dimensional manifold
of class C2 M and a density function f such that:
1. ∂M is either empty or of class C2,
2. for all x ∈ M , f (x) ≥ f0 > 0, f is Lipschitz continuous with constant Kf , and, for all measurable A ⊂ M ,

PX(A)= ∫
A

f ω. In the following f1 =maxx∈M f (x).

K. A sequence {kn}n ⊂ R fulfills condition K if kn/n1/(d ′+1) → 0 and if kn/(ln(n))4 → ∞ when d ′ > 1 and if
kn/

√
n lnn→+∞ when d ′ = 1.

Definition 1. Given an i.i.d. sample X1, . . . ,Xn of a random row vector X with support M ⊂ R
d , where M is a d ′-

dimensional manifold with d ′ ≤ d , we will denote by Xj(i) the j -nearest neighbor of Xi . For a given sequence of positive
integers kn, let us define, for i = 1, . . . , n,

ri,kn = ‖Xi −Xkn(i)‖; rn = max
1≤i≤n

ri,kn; Xi,kn =
⎛
⎜⎝

X1(i) −Xi

...

Xkn(i) −Xi

⎞
⎟⎠ ; Ŝi,kn =

1

kn

(Xi,kn)(Xi,kn)
′,

where Xj(i) − Xi is a row vector, for all j = 1, . . . , kn. Consider Qi,kn the d ′-dimensional space spanned by the d ′
eigenvectors of Ŝi,kn associated to its d ′ largest eigenvalues. Let X∗

k(i) be the normal projection of Xk(i) −Xi on Qi,kn

and Xkn,i = 1
kn

∑kn

k=1 X∗
k(i).

Define δi,kn = (d ′+2)kn

r2
i,kn

‖Xkn,i‖2, for i = 1, . . . , n. Then the proposed test statistic is


n,kn = max
1≤i≤n

δi,kn .

We will now explain the heuristic behind the test we will propose. It will be proved that, under conditions P and
K we have rn

a.s.−→ 0 (using that the density is bounded from below and the classic condition kn/n → 0 as in [27]
where the concept of nearest neighbors was introduced). Consider an observation Xi0 such that d(Xi0, ∂M) ≥ ri0,kn .
The regularity of the manifold and the continuity of the density given by condition P will imply that the sample
{r−1

i0,kn
X∗

1(i0)
, . . . , r−1

i0,kn
X∗

kn(i0)
} “converges” to an uniform sample on Bd ′(0,1), and then ‖Xkn,i0‖r−1

i0,kn

a.s.−→ 0. It will also

be proved that δi0,kn −→ χ2(d ′) in distribution. If ∂M =∅, all the observations satisfy d(Xi, ∂M)≥ ri,kn . Even though
the {δi,kn}i are not independent, we will obtain an asymptotic result for 
n,kn that involves the χ2(d ′) distribution. If
∂M �= ∅, condition P (the regularity of the boundary and the fact that the density is bounded from below) allows us
to (lower) bound the probability that X belongs to a neighborhood of the boundary. With this bound we can ensure
a.s. the existence of an observation Xi0 with d(Xi0, ∂M) = O(lnn/n), and then condition K (kn/(lnn)4 →+∞) en-
sures that d(Xi0, ∂M) � ri0,kn . Note that this condition is stronger than the usual kn →+∞ as in [27]. The sample

{r−1
i0,kn

X∗
1(i0)

, . . . , r−1
i0,kn

X∗
kn(i0)

} thus “looks like” an uniform sample on a half ball and ‖Xkn,i0‖r−1
i0,kn

a.s.−→ αd ′ > 0. The
asymptotic behavior of the test statistic is given in the following four theorems. The first theorem provides a bound for
the level when testing H0: ∂M = ∅ versus H1: ∂M �= ∅ using the test statistic 
n,kn and rejection region {
n,kn ≥ tn}
for some suitable tn. The second theorem states that, with probability one, the power of the test is one for n large enough.
The third theorem provides a consistent decision rule.

Theorem 1. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an i.i.d. sample drawn according to
an unknown distribution PX which fulfills condition P. The test{

H0: ∂M =∅,

H1: ∂M �=∅
(1)

with the rejection zone

Wn =
{

n,kn ≥ F−1

d ′
(
9α/

(
2e3n

))}
, (2)
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Fig. 2. Behaviour when there is an angle at X1. Blue: manifold and observations, black: estimated tangent space and projections. Red: mean of the
projections, dashed green: the sphere of radius ‖X1 −X11‖, centred at X1. Left when α > π/2, the tangent space is “correct” but not the normalization
radius. Right, when α < π/2, the tangent space is not at all the expected one.

satisfies PH0(Wn)≤ α + o(1).

Theorem 2. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an i.i.d. sample drawn according to
an unknown distribution PX which fulfills condition P. The test (1) with rejection zone (2) has power 1 for n large enough.

Theorem 3. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an i.i.d. sample drawn according to an
unknown distribution PX which fulfills condition P. For all λ > 6, the decision rule ∂M =∅ if, and only if, 
n,kn ≤ λ lnn

is consistent for n large enough.

3.2. Discussion of the hypotheses

The two main hypotheses in this paper consist in the smoothness of the support and the continuity of the density. These
two hypotheses can not be weakened and we now exhibit examples of manifolds without boundary for which our test
fails, the first one being not smooth enough and the second one with a discontinuous density.

Suppose that d = 2, d ′ = 1, X is uniformly drawn on M that has no boundary, but there exists a corner at the origin
with an angle α (see Figure 2). Introduce S = 1

r
EYY ′ where Y =X|{‖X‖ ≤ r}. Then a short calculation gives

S = cos2(α/2)

3

(
1 0
0 tan(α/2)2

)
.

• If α > π/2, the projection direction is “the vertical one”, that can be considered as a “correct tangent space”. The only
problem is that we should rescale by ‖X∗

i −X∗
kn(i)‖ instead of ri,kn = ‖X∗

i −X∗
kn(i)‖.

• If α < π/2, the projection direction is “the horizontal one”, this fails in recognizing the tangent space, and induces a
barycentre moving as in the boundary case and the test will decide falsely that there is a boundary.

The continuity of the density is also necessary: if this is not the case, we may reject H0 for any support, with or without
boundary. In order to see this, consider the circular support M = {(x, y) ∈ R

2 : x2 + y2 = 1} with a “density” 1/(4π)

when x ≤ 0 and 3/(4π) when x > 0. In this case it can be proved that 
n,kn/kn → 1/2 (considering points located near
the discontinuity points), which also corresponds to a “boundary-type” behavior.

The other hypotheses can be weakened by pre-processing the data. For instance, the intrinsic dimension can be esti-
mated by several existing methods (see [9] for a consitent method or [10] for a review). Observe that this is costless in
terms of sample size dependency. Even more, there are minimax bounds for dimension estimation (see [26]).

With our approach the assumption that there is no noise, i.e. that the dimension of the support is lower than the dimen-
sion of the ambient space, can not be replaced by a noisy model in which the support is “around” a lower dimensional
manifold. However, in such a case, performing a preliminary manifold estimation before running our test (see for instance
[22] or [4]) can be used to overcome this problem. Even if the manifold estimator is not a d ′-dimensional manifold, we
may expect that by imposing stronger conditions on the sequence kn, our approach can work.

Even if, due to [24,32] and [25] we can avoid assuming the compactness of the support for some geometrical inference
problem we are not sure that it is possible for the boundary detection case.
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Fig. 3. e0 (dashed) and e1 (plain) for different values of n and d ′ (from left to right, increasing values of n in {100;200;500;1000;2000} and from top
to bottom increasing values of d ′ in {1;2;3;4;5}), the chosen value for kn is indicated by the vertical dashed line.

Lastly, the C2 smoothness of the whole boundary is not necessary, the existence of a compact C2 subset of ∂M is
enough. When the manifold has a boundary, the hypothesis f (x) > 0 on M can also be weakened to the usual condition
f (x)≥ ad(x, ∂S)b (for some positive constants a and b), which change only the convergence rates.

3.3. Numerical simulations and kn calibration

In this section we are going to explain intuitively the underlying idea regarding the parameter kn. We think that, at least
asymptotically, the “optimal” choice of kn should only depend on d ′. Other parameters, such as density variations, or
the curvature of the manifold, should slow down the convergence rate. That is, we believe that the quality of p-value
estimation asymptotically behaves like Cf,M,dg(n, d ′, k′n). Intuitively, we have that

1. Under H0:
(a) if we let U1, . . . ,Uk be an uniform random sample on the d ′-dimensional unit ball, Ukn = (1/kn)

∑kn

i=1 Ui and
δU
k = (d ′ + 2)kn‖Ukn‖2. Then kn should be large enough to ensure that δU

kn
is “close enough”, in law, to a χ2(d ′)

distribution.
(b) On the other hand, kn should be small enough so that, locally, the nearest neighbors to every sample point behave

like an uniform sample on a d ′-dimensional ball.
As can be seen in Figure 3 and Table 1, kn ≥ 10 is sufficient to guarantee 1(a). Regarding 1(b), the greater the curvature
of M , or the more variations in the density, the smaller the kn should be (see Figure 3). When n is large enough, this
still provides a large interval of acceptable values for kn.

2. Under H1:
(a) kn should be large enough to ensure the existence of an observation Xi0 such that its kn nearest neighbors “look”

like an uniform sample on a half ball. More precisely, kn should be large enough to guarantee that ri0,kn �
d(Xi0, ∂M).

(b) On the contrary, kn should be small enough so that, locally, the nearest neighbors “look” like an uniform sample
on a subsets of the d ′-dimensional ball.

Part 2(b) is analogous to part 1(b) and does not add more constraints on kn. Considering 2(a), the (only) important
parameter is the (d ′ − 1) measure of the boundary. The smaller this measure is, the larger kn should be. Conversely, if the
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Table 1
Proposed values for kn

n= 100 n= 200 n= 500 n= 1000 n= 2000

d ′ = 1 30 30 40 40 40
d ′ = 2 24 26 28 28 28
d ′ = 2 20 24 26 26 26
d ′ = 4 18 22 22 24 26
d ′ = 5 18 18 20 22 24

Table 2
For different samples, the % of times where H0 is rejected when there is
no boundary

n= 100 n= 200 n= 500 n= 103 n= 2000

S1 0.96% 0.53% 0.37% 0.41% 0.33%
S2 4.01% 1.39% 0.71% 0.38% 0.29%
S3 12.09% 4.81% 1.63% 0.9% 0.95%
S4 20.93% 7.8% 3.08% 2.06% 1.06%
Trefoil 100% 99.93% 12.87% 2.05% 0%
Torus 100% 99.61% 27.46% 4.69% 0%

Table 3
For different samples, the % of times where H0 is accepted when there is
a boundary

n= 100 n= 200 n= 500 n= 103 n= 2000

S+1 0% 0% 0% 0% 0%

S+2 0% 0% 0% 0% 0%

S+3 0% 0% 0% 0% 0%

S+4 0% 0% 0% 0% 0%
Spire 0.5% 3.5% 1.5% 2% 5%
Moebius 0% 0% 0% 0% 0%

measure of the boundary is large, we will have more observations close to it, so the condition ri,kn � d(Xi, ∂M) will be
fulfilled. Due to the well known curse of dimensionality, for small values of n and for high dimensions, we have more
observations located close to the boundary, which has the following unexpected effect: kn decreases with the dimension.

All this is illustrated in two simulation studies, first for Sd ′ = {x ∈R
d ′+1,‖x‖ = 1} the d ′-dimensional sphere and S+

d ′ ={x = (x1, . . . , xd ′+1),‖x‖ = 1, x1 ≥ 0} the d ′-dimensional half sphere. Consider the test with a level α = 5%. For a given
d ′ ∈ {1,2,3,4,5} and a given n ∈ {100,200,500,1000,2000} we estimate e0(k)= PH0(
n,k ≥ F−1

d ′ (9α/(2e3n))) as the

percentage of wrong decisions for samples of size n, uniformly drawn on Sd ′ and e1(k)= PH1(
n,k ≤ F−1
d ′ (9α/(2e3n)))

as the percentage of wrong decisions for samples of size n, uniformly drawn on S+
d ′ . Each time the percentages are

estimated with 200 repetitions of the experiment. The results are presented in Figure 3. For d ′ ∈ {1,2,3} we observe
that e0 can be neglected (for k ∈ [10,60]) when n ≥ Nd ′ (with N1 = 200, N2 = 500 and N3 = 1000). We propose the
following criteria to choose kn.

1. If {k such that e0(k)+ e1(k)≤ 0.01} �=∅ then kn =min{k such that e0(k)+ e1(k)≤ 0.01}.
2. If {k such that e0(k)+ e1(k)≤ 0.01} =∅ then choose kn = argmink(e0(k)+ e1(k))

The values of kn are given in Table 1. They are also presented in Figure 3.
We also considered the trefoil knot, a torus, a spire and a Moebius ring. The percentage of times (over 50,000 replicates

for each manifold and sample size) where H0 is rejected is shown in Table 2 when there is no boundary. In Table 3 it is
shown the percentage of times (over 50,000 replicates) where H0 is accepted when there is a boundary. As can be seen,
the test almost never fails under H1, which is not surprising considering the way we chose the sequence kn. Under H0 the
convergence to an error rate inferior to 5% depends on the dimension d ′ and the curvature of the manifold.
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Fig. 4. Some examples for support with boundary, the associated sample (n= 2000) is in black, and points that are identified as “close to the boundary”
are in red, the size of the points depending of the associated α, the boundary identification starts with α = 20% (small red points), and finish with
α = 5% (larger red points).

4. Empirical detection of points close to the boundary and estimation of the number of its connected components

A natural second step after deciding that the support has a boundary is to estimate it, or at least identify observations
“close” to it. To get an insight into the topological properties of the boundary, a third step could be to estimate the number
of its connected components. In this section we will tackle empirically both problems.

4.1. Detection of “boundary observations”

Theorem 1 suggests selecting {Xi : δi,kn ≥ F−1
d ′ (9α/(2ne3))} as “boundary observations”. However, when applying this

method with the previously proposed values for kn, it identifies “too few” boundary observations for d ′ = 2. We think
that this is due to the 2e3/9 factor, which deals with the problem of the maximum of dependant variables but, for a given
observation, underestimates probability to be close to the boundary. Allowing “large” values for α is not sufficient to
overcome this problem, as it can be observed in Figure 4 where α = 20% is considered. For this reason we will adapt,
using tangent spaces, the method given in [4] to detect “boundary balls”.

In [4], M is d-dimensional and boundary observations are identified as those with large Voronoi cells (recall that
Vor(Xi) = {x : ‖x − Xi‖ ≤ ‖x − Xj‖ ∀j}). More precisely, define ρi = sup{‖x − Xi‖ : x ∈ Vor(Xi)}. Then boundary
observations are those Xi such that ρi ≥ εn, where εn is a smoothing parameter. Two different ideas inspired this char-
acterization. The first one was to consider the Devroye–Wise estimator of the support Ŝεn =

⋃
i B(Xi, εn) (see [14] or

[19]), in which case it is quite intuitive that sample points Xi fulfilling B(Xi, εn)∩ ∂Ŝ �=∅ are close to the boundary. The
second one was to look for observations in ∂Cεn , the εn-convex hull of the sample (see [12]). These two approaches are in
fact the same, the boundary observations can be easily identified considering the size of the Voronoi cells (see Figure 5 left
side). This can be explained as follows. Choose εn > dH ({X1, . . . ,Xn},M), where dH denotes the Hausdorff distance,
suppose that there exists x ∈ Vor(Xi) with ‖x −Xi‖> εn, then x /∈M . Using the fact that Xi ∈M , it follows that there
exists t ∈ [Xi, x] ∩ ∂M (because M is d-dimensional) and then d(Xi, ∂M) ≤ εn (when ∂M is smooth enough we have
an even better inequality).

When M has dimension d ′ < d , every observation has a large Voronoi cell (this can be observed considering directions
normal to M , see Figure 5 right side). Then the previously suggested method requires a small adjustment, naturally done
using projections on the tangent space, which can be estimated via local PCA. The idea being to locally lie in the full
dimensional case. More precisely, recalling that Qi,kn denotes estimation via local PCA of the tangent space at Xi , the
tangential boundary observations are defined as follows.

Definition 2. Xi is a (kn, εn)-tangential boundary observation if

ρi ≡ sup
{‖x‖ : x ∈Qi,kn and ‖x‖ ≤ ∥∥x −X∗

j (i)

∥∥,∀1≤ j ≤ kn

}≥ εn.

As in [4], we suggest choosing εn = 2 maxi minj ‖Xi −Xj‖.

4.2. Building a “boundary graph”

Once we have identified Ym = {Y1, . . . , Ym} as the set of the centers of the (kn, εn)-tangential boundary balls, a natural
second step is how to estimate ∂M . In this respect, we think that the tangential weighted Delaunay complex (see [1])
should work. To prove this is far beyond the scope of this paper. Here, we propose, as an initial step, an estimator based
on a graph with vertices Ym, building edges between the vertices in such a way that the resulting graph captures the
“shape” of the boundary. To do this, we are going to “connect” each Yi to those Yj such that ‖Yi − Yj‖ ≤ Ri . As usual,
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Fig. 5. Left side, d = d ′ = 2, 500 points drawn on M = B(0,1) \ B(0,0.5), observations and Voronoi cells are presented. Observations with an
associated radius larger than 0.3 are highlighted. Right side, d = 2, d ′ = 1, 70 points uniformly drawn on a half circle, all the Voronoi cells are large,
but considering the tangential direction (highlighted by arrows at two points) helps to identify boundary observations.

Fig. 6. Consider the point (0,0) (the red ∗) in Y and its 9 nearest neighbors. We will connect (0,0) to its 5 nearest neighbors.

the choice of Ri depends on striking a balance. On the one hand, Ri should be small enough to connect a point only with
its neighbors. On the other hand, Ri should be large enough to allow capturing the global structure of ∂M . The idea for
selecting Ri is based on the following. As ∂M is a (d ′ − 1)-dimensional manifold without boundary, then for all x ∈ ∂M ,
for r small enough, the projection onto the space tangent to ∂M at the point x, πx(B(x, r) ∩ ∂M), should be close to
B(x, r)∩ Tx∂M . As a plug-in version we introduce

1. Zi,r = {Yj : ‖Yj − Yi‖ ≤ r}, the empirical neighborhood of Yi ,
2. π̂i(Zi,r ) the orthogonal projection onto the (d ′ − 1) first axis of a PCA based on Zi,r .

Naturally π̂i (Zi,r ) estimates πx(B(x, r) ∩ ∂M) and so should be close to a (d ′ − 1)-dimensional ball centred at Yi . We
quantify this closeness as follows. We say that r is large enough for i if Yi is in H̊i where Hi is the convex hull of π̂i (ZRi

).
Lastly, for all i = 1, . . . , n, choose Ri as the smallest value r that is large enough for i. This is illustrated in Figure 6.
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Fig. 7. Boundary ball detection and associated graph for different sample sizes. In the first row the Moebius ring and in the second the truncated cylinder
with a hole in a cap. Observations are represented as blue dots while boundary centres are large black dots. The graph is represented by black lines.

Fig. 8. d = 3, on abscissa 1 : (n = 500, k = 25), 2 : (n = 1000, k = 25), 3 : (n = 2000, k = 30), 4 : (n = 4000, k = 40), 5 : (n = 8000, k = 50),
6 : (n= 16,000, k = 50).

4.3. Some experiments

To illustrate the procedure introduced we consider the Moebius ring and the truncated cylinder with a hole in a cap, (see
Figure 7). Both are 2-dimensional sub-manifolds of R

3. The boundary of the first one has one connected component
while the boundary of the second one has three.

As expected, in the cylinder the sample size required to have a “coherent” graph is higher.
Second, we consider uniform draws of sizes n ∈ {500,1000,2000,4000,8000,16,000} on the (d − 1)-dimensional

half sphere {x2
1 + · · · + x2

d = 1, xd ≥ 0} ⊂ R
d for d = {3,4,5}. Define d1 = maxx∈∂M mini ‖x − Yi‖ and d2 =

maxi minx∈∂M ‖x − Yi‖. They are estimated via a Monte Carlo method, drawing 50,000 points on ∂M . For each value
of n and d , the box plot over 50 repetitions of the p-values of the test and the estimations of d1 and d2 are shown in
Figures 8, 9 and 10.
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Fig. 9. d = 4, on abscissa 1 : (n = 500, k = 30), 2 : (n = 1000, k = 50), 3 : (n = 2000, k = 50), 4 : (n = 4000, k = 60), 5 : (n = 8000, k = 70),
6 : (n= 16,000, k = 70).

Fig. 10. d = 5, on abscissa 1 : (n = 500, k = 50), 2 : (n = 1000, k = 70), 3 : (n = 2000, k = 80), 4 : (n = 4000, k = 90), 5 : (n = 8000, k = 100),
6 : (n= 16,000, k = 100).

5. Proofs

5.1. Proofs under H0 (∂M =∅)

In this section we give the details of the proofs when ∂M �= ∅. First we prove that the empirical distribution of the δi

converges to a χ2 distribution, then we prove that the proposed test has, asymptotically, level α (which proves Theorem 1).
For ease of writing, in what follows, a denotes a general constant that may have different values and should be

understood as “there exists an uniform constant such that. . . ”.
First we introduce ξ∗n ≡ (ln(n)/n)1/2d ′ , ξ�

n ≡ (kn/n)1/d ′ , ξ◦n ≡
√

ln(n)/kn, ρn = max(ξ∗n , ξ�
n ) and ξn ≡ max{ξ∗n , ξ�

n ,

ξ◦n }. Observe that by condition K, (lnn)2ξn → 0, then

1. the maximum distance from an observation to its knth nearest neighbor converges (almost surely) to 0, i.e. rn → 0
(this is a consequence of Lemma 1);

2. the local PCA step converges to the projection onto the tangent space (the rate, ξ◦n , is given in Lemma 3).

For a given i ∈ {1, . . . , n}, denote by x0 ≡ Xi , and by x1, . . . , xkn the kn-nearest neighbors of Xi . Recall that ri,kn =
max1≤j≤kn ‖x0 − xj‖ (see Definition 1). For all j ∈ {1, . . . , kn}, write x∗j for the local PCA projection of xj − x0, and yj

for the (orthogonal) projection onto the tangent space Tx0M (at the point x0) of xj − x0.
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Write δi = (d ′ + 2)knr
−2
i,kn
‖(1/kn)

∑
j x∗j ‖2 and δY

i = (d ′ + 2)knr
−2
i,kn
‖(1/kn)

∑
j yj‖2.

By Lemma 3, for all i ∈ {1, . . . , n} we have, with probability greater than 1− n−6,

δi = (d ′ + 2)kn

r2
i,kn

∥∥∥∥ 1

kn

∑
j

yj +Ei,n

(
1

kn

∑
j

yj

)
+ 1

kn

∑
j

ej

∥∥∥∥
2

with ‖Ei,n‖op ≤ aξn and ‖ej‖ ≤ aξn‖yj‖2.
From where it follows that,

δi = δY
i +

(d ′ + 2)kn

r2
i,kn

∥∥∥∥Ei,n

(
1

kn

∑
j

yj

)∥∥∥∥
2

+ (d ′ + 2)kn

r2
i,kn

∥∥∥∥ 1

kn

∑
j

ej

∥∥∥∥
2

+ 2
(d ′ + 2)kn

r2
i,kn

〈
1

kn

∑
j

yj ,Ei,n

(
1

kn

∑
j

yj

)〉
+ 2

(d ′ + 2)kn

r2
i,kn

〈
1

kn

∑
j

yj ,
1

kn

∑
j

ej

〉

+ 2
(d ′ + 2)kn

r2
i,kn

〈
1

kn

∑
j

ej ,Ei,n

(
1

kn

∑
j

yj

)〉
.

So, with probability greater than 1− n−6 for all i, we have δi = δY
i + εi,1 with:

|εi,1| ≤ a2ξ2
nδY

i + a2ξ2
n

(
d ′ + 2

)
knr

2
i,kn

+ 2aξnδ
Y
i + 2aξn

√(
d ′ + 2

)
knδ

Y
i ri,kn + 2a2ξ2

n

√(
d ′ + 2

)
knδ

Y
i ri,kn .

By Lemma 1 we have P(rn ≥ aρn)≤ n−7, where rn =maxi (ri,kn). Because ρn ≤ ξn we have, with probability greater
than 1− 2n−6, for all i

|εi,1| ≤ aξnδ
Y
i + aξ2

n

√
δY
i + aξ4

n . (3)

First we will prove that δi → χ2(d ′) in distribution. Consider the distribution of the random variable yj for j =
1, . . . , kn. By Proposition 4 it is the same as the following mixture law: with probability 1− pn: zi ≡ yj /ri,kn is drawn
according to an uniform law on Bd ′(O,1− cri,kn) and with probability pn: zj ≡ yj /ri,kn is drawn according to a residual
law (supported by Bd ′(O,1)) with pn ≤ aρn. Denote by Ki the number of yj belonging to the uniform part of the mixture
(Ki has distribution Binom((1− pn), kn)), and introduce κn =maxi |(kn −Ki)/

√
kn|. By application of Lemma 2 (with

k′n = kn and qn = aρn, because kn � n1/(d ′+1) we have ρn

√
kn ln(n)→ 0) we have, for n large enough:

P
(
ln(n)κn ≥ a

)≤ n−6. (4)

For ease of writing let us suppose that z1, . . . , zKi
are the observations belonging to the uniform part of the mixture.

Consider z∗Ki+1, . . . , z
∗
n i.i.d., uniformly distributed on Bd ′(O,1). We will write uj ≡ zj if j ≤Ki , and uj ≡ z∗j if j > Ki .

If we define now ej ≡ zj − z∗j if j > Ki , then

δY
i |{rn ≤ aξn} =

(
d ′ + 2

)
kn

∥∥∥∥∥ 1

kn

Ki∑
j=1

uj + 1

kn

kn∑
j=Ki+1

z∗j +
1

kn

kn∑
j=Ki+1

zj − 1

kn

kn∑
j=Ki+1

zj

∥∥∥∥∥
2

=(d ′ + 2
)
kn

∥∥∥∥∥ 1

kn

kn∑
j=1

uj − 1

kn

kn∑
j=Ki+1

ej

∥∥∥∥∥
2

=(d ′ + 2
)
kn

[∥∥∥∥∥ 1

kn

kn∑
j=1

uj

∥∥∥∥∥
2

+
∥∥∥∥∥ 1

kn

kn∑
j=Ki+1

ej

∥∥∥∥∥
2

− 2

〈
1

kn

kn∑
j=1

uj ,
1

kn

kn∑
j=Ki+1

ej

〉]
.

Consider uj/(1 − cri,kn) for i = 1, . . . , n, which is an uniform sample on a d ′-dimensional unit ball, and δU
i = (d ′ +

2)kn‖∑j uj /(1− cri,kn)‖2. Then,

δY
i |{rn ≤ aξn} = (1− cri,kn)

2δU
i + ε2,i with |ε2,i | ≤ a

√
δU
i κn + aκ2

n. (5)
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By Proposition 1, δU
i

L−→ χ2(d ′) when kn →+∞. This and (4) implies that ε2,i
a.s−→ 0. From P({rn ≤ aξn})→ 0 we

obtain δY
i

L−→ χ2(d ′). That in turns, by (3) implies that εi,1
L−→ 0.

Lastly,

δi
L−→ χ2(d ′). (6)

Regarding Theorem 1, we need an upper bound for P(maxi δi > t). If we use the classical rough bound P(maxi δi >

t) ≤ nP(δi > t), we get P(maxi δi > t) ≤ n�d ′(t) + no(1), which is useless because we have no control on the no(1)

term. To solve this problem we aim to get a better upper bound for P(maxi δi > t). This is done using Theorem 2.4 in
[31], which states that for all i = 1, . . . , n

P
(
δU
i > t

)≤ 2e3

9
Fd ′(t). (7)

Now the aim is to prove that, conditionally to rn ≤ aξn, (lnn)1/3 maxi |εi,2| a.s.−→ 0. First we have

P

(
|εi,2|> λ

(lnn)1/3

)
≤ P

(
max

1≤i≤n

√
δU
i κn ≥ λ

(lnn)1/3

)
.

As

P

(
max

1≤i≤n

√
δU
i κn ≤ λ

(lnn)1/3

)
≥ P

(
max

1≤i≤n

√
δU
i ≤ λ(lnn)2/3

a
and κn ≤ a

lnn

)

we have

P

(
max

1≤i≤n

√
δU
i κn ≥ λ

(lnn)1/3

)
≤ P

(
max

1≤i≤n

√
δU
i ≥ λ(lnn)2/3

a
or κn ≥ a

lnn

)

and, finally, by (4) and (7)

P

(
max

1≤i≤n

√
δU
i κn ≥ λ

)
≤ n

2e3

9
Fd ′
(

λ2(lnn)4/3

a2

)
+ n−6.

From

n
2e3

9
Fd ′
(

λ2(lnn)4/3

a2

)
∼ 2e3n

9

exp(−λ2 lnn4/3/(2a2))(λ lnn/2a)d
′−2

�(d ′/2)
,

we obtain that∑
P

(
max

1≤i≤n

√
δU
i κn ≥ λ

)
<+∞

so, by Borel–Cantelli’s Lemma, (lnn)1/3 maxi |εi,2| a.s.−→ 0.
Applying exactly same calculus it can be obtained from (lnn)2ξn → 0 and (3) that, conditionally to rn ≤ aξn maxi δi ≤

maxi δ
U
i + ε3,n with (lnn)1/3ε3,n

a.s.−→ 0. As a result,

P

(
max

1≤i≤n
δi ≥ t

∣∣{{rn ≤ aξn} ∩
{|ε3,n| ≤ a(lnn)−1/3}})≤ 2e3n

9
Fd ′
(
t − a(lnn)−1/3).

Introduce tn = tn,α ≡ F−1
d ′ (9α/(2e3n)). Notice that tn →+∞ so that we can use the usual equivalent of Fd ′(tn) and

get

2e3n

9

e−tn/2(tn/2)d
′/2−1

�(d ′/2)
→ α when n→+∞.

Now note that 2e3n/9Fd ′(xn)→ α⇔ xn = 2 lnn+ (d ′ − 2) ln(lnn)+ 2 ln(2e3/(9α�(d ′/2)))+ o(1). Thus:

P

(
max

1≤i≤n
δi ≥ tn|

{{rn ≤ aξn} ∩
{|ε3,n| ≤ a(lnn)−1/3}})≤ α+ o(1).
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Lastly, because e.a.s. rn ≤ aξn (which follows from Lemma 1) and because |ε3,n|(lnn)1/3 a.s.−→ 0 we have P({rn ≤
aξn} ∩ {|ε3,n| ≤ a(lnn)−1/3})→ 1, and so

P

(
max

1≤i≤n
δi ≥ tn

)
≤ α+ o(1),

which proves Theorem 1. For λ > 6 we have

P

(
max

1≤i≤n
δi ≥ λ lnn

)
≤ an1−λ/2(lnn)d

′/2−1

so that, once again, by the Borel–Cantelli’s lemma, we obtain that if λ > 6,

Under H0: 
n,kn ≥ λ lnn e.a.s. (8)

5.2. Proofs under H1 (∂M �=∅)

The idea of the proof is the following. When ∂M �= ∅, there exists an observation Xi0 close enough to the boundary
(that is, such that d(Xi0, ∂M)� ri0,kn ). Then B(Xi0, ri0,kn) ∩M looks like a “half ball”, so that 
n,kn ≥ δi0,kn ≥ (d ′ +
2)kn(αd ′ + o(1))→∞, αd ′ being a positive constant (obtained from Proposition 2).

More precisely, set εn ≡ a ln(n)/n. We will first prove that for a suitably chosen constant a, with probability one, for
n large enough there exists an Xi0 ∈ ∂M ⊕ εnB ≡ {x : d(x, ∂M)≤ εn}. Indeed, as ∂M is a compact (d ′ − 1)-manifold of
class C2, by Proposition 14 in [33] it has positive reach. Then by Theorem 5.5 in [20], for n large enough |∂M ⊕ εnB| =
C∂Mεn(1+ o(1)) where C∂M > 0 is a constant depending only on ∂M .

Thus,

P
(
(∂M ⊕ εnB)∩Xn =∅

)≤ (1− f0C∂Mεn

(
1− o(1)

)n ≤ n−f0C∂Ma+o(1).

If we choose a > (f0C∂M)−1, then as a direct application of the Borel–Cantelli’s lemma, with probability one, for n large
enough, ∃i0, d(Xi0, ∂M)≤ εn. Now we are going to prove that

for all Xi0 ∈ ∂M ⊕B(0, εn), we have ri0,kn ≥
√

εn e.a.s. (9)

This will allow us to apply Proposition 3 part 5, which implies that B(Xi0, ri0,kn) is “close” to a half ball.

First we assume n large enough to ensure that εn < 1. Cover ∂M with νn ≤ Bε
(1−d ′)/2
n balls, centred at {x1, . . . xνn} ⊂

∂M with radius
√

εn. Observe that

P(∃Xi0 : ri0,kn ≤
√

εn)= P
(∃Xi0 : #

{
B(Xi0 :

√
εn)∩Xn

}≥ kn

)
.

Now, if Xi0 ∈ ∂M ⊕ εnB, then there exists a yi ∈ ∂M such that ‖Xi0 − yi‖ ≤ εn and yi belongs to some ball B(xr ,
√

εn)

for r = 1, . . . , νn. Then

P(∃Xi0 ∈ ∂M ⊕ εnB : ri0,kn ≤
√

εn)≤
νn∑

i=1

P
(
#
{
B(xi,3

√
εn)∩Xn

}≥ kn

)
. (10)

Applying Corollary 1 part 1 together with f ≤ f1, we get that there exists a constant b such that

P
(
#
{
B(xi,3

√
εn)∩Xn

}≥ kn

)≤ n∑
j=kn

(
n

j

)(
bε

d ′/2
n

)j
.

Now from the bounds n!/(n− j)! ≤ nj and
∑n

j=k xj /j ! ≤ xkex/k!, we obtain

P
(
#
{
B(xi,3

√
εn)∩Xn

}≥ kn

)≤ n∑
j=kn

1

j !
(
bnε

d ′/2
n

)j ≤ (bnε
d ′/2
n )kn

kn! exp
(
bnε

d ′/2
n

)
. (11)

Finally, (10), (11) and the upper bound on νn imply

P(∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤
√

εn)≤ Bε
(1−d ′)/2
n

(bnε
d ′/2
n )kn

kn! exp
(
bnε

d ′/2
n

)
.
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If we apply Stirling’s formula, for n large enough

P(∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤
√

εn)≤ exp

{
−kn ln(kn)+ kn + 1− d ′

2
ln(εn)+ kn ln

(
bnε

d ′/2
n

)+ bnε
d ′/2
n

}
.

From kn �√
n ln(n) when d ′ = 1 and kn � ln(n) for any dimension d ′ > 1, it follows that

P(∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤
√

εn)≤ exp
(−kn ln(kn)

(
cd ′ + o(1)

))
with c2 = 2 and cd ′ = 1 when d ′ �= 2.

Then, kn � (ln(n)) ensures that∑
n

P(∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤
√

εn) <∞.

The proof of (9) follows by a direct application of the Borel–Cantelli’s lemma.
For an observation Xi0 such that d(Xi0, ∂M) ≤ c∂M ln(n)/n, denote by x0 its projection onto ∂M . Recall that ux0

denotes the unit vector tangent to M and normal to ∂M pointing outward. Now introduce Y = ϕXi0
(X)|{‖X −Xi0‖ ≤

ri0,kn}.
On the one hand, a direct consequence of Proposition 5 is that

E

(〈
Y −Xi0

ri0,kn

,−ux0

〉)
≥ αd ′ − ari0,kn ≥ αd ′ − arn.

On the other hand, by Hoeffding’s inequality,

P

(
1

kn

kn∑
k=1

〈
Yk(i0) −Xi0

ri0,kn

,−ux0

〉
−E

(〈
Y −Xi0

ri0,kn

,−ux0

〉)
≤−t

)
≤ exp

(−2t2kn

)
.

Thus

P

(
1

kn

kn∑
k=1

〈
Yk(i0) −Xi0

ri0,kn

,−ux0

〉
≤ αd ′ − arn − (lnn)−1

)
≤ 2 exp

(−2kn/(lnn)2).
Let us denote

Z = 1

kn

kn∑
k=1

Yk(i0) −Xi0

ri0,kn

and Z∗ = 1

kn

kn∑
k=1

X∗
k(i0)

−Xi0

ri0,kn

,

by Lemma 4 we have that there exists a sequence ε′n such that, with probability greater than 1−n−6, Z∗ =Z+Ei0,nZ+ε′n
with ‖Ei0,n‖op ≤ aξn and ‖ε′n‖ ≤ aξnri0,n with

ξn =max
(
(lnn/n)1/(2d ′), (kn/n)1/d ′ ,

√
lnn/kn

)
as in previous section, and so with probability greater than 1− n−6, 〈Z∗,−ux0〉 ≥ (1− aξn)〈Z,−ux0〉 − aξnri0,n thus,
we have that

P

(
1√

(d ′ + 2)kn

√
δi0,kn ≤ (1− aξn)

(
αd ′ − arn − (lnn)−1)− aξnri0,n

)
≤ 2 exp

(−2kn/(lnn)2)+ n−6.

From kn � (lnn)4, we get
∑

n n(exp(−2kn/(lnn)2)+ n−6) < +∞, so that, by Borel–Cantelli’s lemma for all i0 such
that d(Xi0, ∂M)≤ c∂M ln(n)/n, we have

δi0,kn ≥
(
d ′ + 2

)
kn

(
(1− aξn)

(
αd ′ − arn − (lnn)−1)− aξnri0,n

)2
,

with probability one for n large enough. As by Lemma 1 rn
a.s.→ 0, and because 
n,kn ≥ δi0,kn we have for all λ < 1,

PH1

(

n,kn ≥

(
d ′ + 2

)
α2

d ′λkn

)= 1 for n large enough. (12)
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Now, observe that kn � (ln(n))4 ensures the existence of an n1 such that for all n≥ n1, kn(d
′ +2)α2

d ′/2≥ tn,α ∼ 2 lnn,
which together with (12) prove Theorem 2.

Similarly, for all λ > 6, PH1(
n,kn ≥ λ lnn)= 1 for n large enough and by (8) we also have PH0(
n,kn ≤ λ lnn)= 1
for n large enough, which concludes the proof of Theorem 3.

5.3. Useful lemmas

We will now give the details of the proofs of the lemmas and propositions used in the proofs of the main theorems. First
we focus on the asymptotic behavior of the “centroid movement” when considering uniform samples on a ball or on a
half ball.

Proposition 1. Let X1, . . . ,Xn be an i.i.d. sample uniformly drawn on B(x, r) ⊂ R
d and write Xn ≡ 1

n

∑n
i=1 Xi . We

have

(d + 2)n‖Xn − x‖2

r2
L−→ χ2(d). (13)

Proof. Taking (X− x)/r we can assume that X obeys the uniform distribution on B(0,1).
If we write X = (X·,1, . . . ,X·,d ), then the density of X·,i is

f (x)= 1

σd

σd−1
(
1− x2)(d−1)/2

I[−1,1](x),

and so

Var(X·,i )=
∫ 1

−1
x2 1

σd

σd−1
(
1− x2)(d−1)/2

dx = σd−1

σd

B
(
3/2, (d + 1)/2

)
,

where B(x, y) is the Beta function. If we use the fact that σd = πd/2

�( d
2+1)

and that B(x, y)= �(x)�(y)
�(x+y)

, we get

σd−1

σd

B
(
3/2, (d + 1)/2

)= �(d+2
2 )√

π�(d+1
2 )

× �( 3
2 )�(d+1

2 )

�(d+4
2 )

= �(d+2
2 )�( 3

2 )√
π�(d+4

2 )
.

Since �(z+ 1)= z�(z) and �(1/2)=√π , we obtain that

σd−1

σd

B
(
3/2, (d + 1)/2

)= √
π 1

2√
π d+2

2

= 1

d + 2
.

Now, to prove (13), observe that

(d + 2)n‖Xn‖2 = ∥∥√(d + 2)nXn

∥∥2 L−→N(0, Id).

Then, ‖√(d + 2)nXn‖2 L−→‖N(0, Id)‖2. Lastly, it is well known that ‖N(0, Id)‖2 L= χ2(d). �

Proposition 2. Let X be uniformly drawn on Bu(x, r) = B(x, r) ∩ {z ∈ R
d : 〈z − x,u〉 ≥ 0} where u is a unit vector.

Then,

E

( 〈X− x,u〉
r

)
= αd, where αd =

(
�(d+2

2 )√
π�(d+3

2 )

)
. (14)

Proof. First assume that r = 1, x = 0 and u= e1 = (1,0, . . . ,0). The marginal density of X1 is

fX1(t)=
2

σd

σd−1
(
1− t2)(d−1)/2

I[0,1](x),

so

E(X1)=
∫ 1

0
2
σd−1

σd

x
(
1− x2)d−1

dx = σd−1

σd

�(1)�(d+1
2 )

�(d+3
2 )

= �(d+2
2 )√

π�(d+3
2 )

= αd.
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For a general value of r , x and u, define Y = Au(X − x)/r where Au is a rotation matrix that sends u to (1,0, . . . ,0)

(with r > 0). Then Y is uniformly distributed on Be1(0,1) and so (14) holds. �

Now we aim to make explicit how close to an uniform sample on a ball or a half ball are the nearest neighbors statistics
as n→+∞. First we detail some consequences of the regularity of M and ∂M . For x ∈M we denote by NxM the normal
space at x. For x ∈ ∂M we denote by ux the unit normal outer vector to ∂M , that is, ‖ux‖ = 1, ux ∈ TxM ∩Nx∂M and
for all ε > 0 there exists an rε such that ‖y − x‖ ≤ rε ⇒ 〈 y−x

‖y−x‖ , ux〉 ≤ ε. Write ϕx :M → x + TxM for the orthogonal

projection onto the affine tangent space. Let Jx(y) be the Jacobian matrix of ϕ−1
x and Gx(y)=√det(J ′x(y)Jx(y)).

Proposition 3. Let M ⊂ R
d be a compact C2 d ′-dimensional manifold with either ∂M = ∅ or ∂M is a C2 (d ′ − 1)-

dimensional manifold. Then, there exists an rM > 0 and cM > 0 such that for all r ≤ rM :

1. For all x ∈M , ϕx is a C2 bijection from M ∩B(x, r) to ϕx(M ∩B(x, r)) for all r ≤ rM .
2. For all x ∈M and y ∈ x + TxM such that ‖x − y‖ ≤ rM , |Gx(y)− 1| ≤ cM‖x − y‖.
3. For all x, y ∈M such that ‖x − y‖ ≤ rM , ‖ϕx(y)− y‖ ≤ cM‖x − ϕx(y)‖2 ≤ cM‖x − y‖2.
4. For all x ∈M , if d(x, ∂M)≥ r , then

B
(
x, r − cMr2)∩ (x + TxM)⊂ ϕx

(
B(x, r)∩M

)⊂ B(x, r)∩ (x + TxM).

5. For all x ∈M with d(x, ∂M)≤ r2, write x∗ for its projection onto ∂M and define H−
x = {y : 〈y − x,ux∗〉 ≤ −cMr2}

and H+
x = {y : 〈y − x,ux∗〉 ≤ cMr2}. Then,

H−
x ∩B

(
x, r − cMr2)∩ (x + TxM)⊂ ϕx

(
B(x, r)∩M

)⊂H+
x ∩B(x, r)∩ (x + TxM).

Proof. 1. When the manifold has no boundary, this result is classic (see, for instance Lemma 16 in [28]), but, as far as
our knowledge extends, it has not been proved when M has a boundary.

It only has to be proved that there exists a radius ρM,0 > 0 such that all the ϕx restricted to M ∩B(x,ρM,0) are one to
one. Proceeding by contradiction, let rn → 0, xn, yn and zn be such that {yn, zn} ⊂ B(xn, rn) and ϕxn(yn)= ϕxn(zn). Since
M is compact, we can assume that (by taking a subsequence if necessary) xn → x ∈M . Put wn ≡ (yn−zn)/‖yn − zn‖→
w. Since ϕxn(yn)= ϕxn(zn), we have wn ∈ (TxnM)⊥. Since M is of class C2, we have w ∈ (TxM)⊥. Let γn be a geodesic
curve on M that joins yn to zn (there exists at least one since M is compact and path connected). As M is compact and C2,
it has an injectivity radius rinj > 0. Therefore (see Proposition 88 in [6]), if we take n so large that rn ≤ rinj/2, we may take
γn to be the (unique) geodesic which is the image, by the exponential map, of a vector vn ∈ TynM . The Taylor expansion
of the exponential map shows that wn = vn/‖yn− zn‖+ o(1). Then, taking the limit as n→∞, we get w ∈ TxM , which
contradicts the fact that w ∈ (TxM)⊥.

As a conclusion, there exists an r0 such that for all x ∈M , ϕx is one to one from M ∩B(x, r) to ϕx(M ∩B(x, r)) (then
the existence of an r1 such that for all x ∈M and r ≤ r1, ϕx is one to one and C2 is easily obtained).

2 and 3. For all x ∈M there exist k functions �x,k : ϕx(M ∩B(x, r1))− x →R such that

ϕ−1
x : ϕx

(
M ∩B(x, r1)

)→M ∩B(x, r1)

x +

⎛
⎜⎜⎜⎝

y1
...

yd ′
0d−d ′

⎞
⎟⎟⎟⎠ �→ x +

⎛
⎜⎜⎜⎝

y

�x,d ′+1(y)
...

�x,d(y)

⎞
⎟⎟⎟⎠ .

The compactness of M together with its C2 regularity allows us to find a (uniform) radius r2 such that all the �x,k are
C2 on ϕx(M ∩ B(x, r2)). Note that as ϕx is the orthogonal projection, we have, for all x and k, that ∇0�x,k = 0. Once
again the smoothness and compactness assumptions guarantee that the eigenvalues of the Hessian matrices H(�x,k)(0)

are uniformly bounded from above by some λM > 0.
Thus, first

∥∥ϕ−1
x (y)− y

∥∥2 =
d−d ′∑
k=1

(
�x,d ′+k(y − x)

)2 ≤ (d − d ′
)
λM‖x − y‖4 + o

(‖x − y‖4), (15)

and then there exist a c3 and r3 such that for all (x, y) ∈M × ϕx(M ∩B(x, r2)) such that ‖x − y‖ ≤ r3,∥∥ϕ−1
x (y)− y

∥∥≤ c3‖x − y‖2. (16)
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Second:

Jx(y)=

⎛
⎜⎜⎜⎝

Id ′
∇y�x,d ′+1

...

∇y�x,d

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

Id ′
O(‖y‖)

...

O(‖y‖)

⎞
⎟⎟⎟⎠ and Jx(y)′Jx(y)= Id ′ +O

(‖y‖).

This, together with the differentiability of the determinant, implies that there exist a c4 > 0 and r4 > 0 such that for all
x, y ∈M fulfilling ‖x − y‖ ≤ r4,∣∣Gx(y)− 1

∣∣≤ c4‖x − y‖.
4. Only the first inclusion has to be proved: the second one is obvious. Introduce r̃ = min{r1, r2, r3,1/c3}. Proceeding

by contradiction, suppose that there are r , x and y such that 0 < r ≤ r̃ , x ∈M , d(x, ∂M) > r , y ∈ B(x, r(1−c3r))∩TxM

and y /∈ ϕx(B(x, r) ∩M). As x ∈ ϕx(B(x, r) ∩M), the segment [x, y] intersects ∂(ϕx(B(x, r) ∩M)). Let z ∈ [x, y] ∩
∂ϕx(B(x, r) ∩ M). On the one hand, we have ‖x − z‖ < ‖x − y‖ ≤ r(1 − c3r). On the other hand, since ϕ−1

x is a
continuous function, ∂ϕx(B(x, r) ∩M)= ϕx(∂(B(x, r) ∩M)), and, because d(x, ∂M) > r , one has that ∂ϕx(B(x, r) ∩
M)= ϕx(M ∩ ∂B(x, r))). Then, there exist a z0, ‖x − z0‖ = r , and ϕx(z0)= z. Now by (16),

r2 = ‖x − z‖2 + ‖z− z0‖2 < r2(1− c3r)
2 + c2

3r
4 = r2 − 2c3r

3(1− c3r)≤ r2,

which is a contradiction. Then there exist a c5 and r5 such that for all r ≤ r5 and for all x ∈M with d(x, ∂M) > r ,

B
(
x, r − c5r

2)∩ (x + TxM)⊂ ϕx

(
B(x, r)∩M

)⊂ B(x, r)∩ (x + TxM). (17)

5. Sketch of proof. Suppose that ∂M �= ∅. For each x∗ ∈ ∂M write ϕ∗x∗ for the affine projection on x∗ + Tx∗∂M .
First note that for all y we have ϕ∗x∗(y)= ϕx∗(y)− 〈y − x∗, ux∗〉ux∗ . Thus, by the triangle inequality, |〈y − x∗, ux∗〉| ≤
‖ϕ∗x∗(y)− y‖ + ‖ϕx∗(y)− y‖.

Recall that ∂M is of class C2 and take y ∈ ∂M . Then by applying (17) (to M and ∂M) we have that there are r6 and c6
such that for all x∗ ∈ ∂M and for all y ∈ ∂M with ‖x∗ − y‖ ≤ r6, |〈y − x∗, ux∗〉| ≤ c6‖x∗ − y‖2. Thus, for all r ≤ r6/2
and for all x with d(x, ∂M)≤ r6/2, and denoting by x∗ the projection of x onto ∂M , we have

∂M ∩B(x, r)⊂ B(x, r)∩ {y : ∣∣〈y − x∗, ux∗
〉∣∣≤ c6

∥∥x∗ − y
∥∥2}

.

Taking now an x with d(x, ∂M)≤ r2 gives

ϕx

(
∂M ∩B(x, r)

) ⊂ ϕx

(
B(x, r)∩ {y : ∣∣〈y − x,ux∗〉

∣∣≤ c7r
2})

⊂ ϕx

(
B(x, r)

)∩ ϕx

({
y : ∣∣〈y − x,ux∗ 〉

∣∣≤ c7r
2}).

Clearly ϕx(∂M ∩B(x, r))⊂ B(x, r)∩ (x + TxM).
Recall that, as ∂M is a compact C2 manifold it has a positive reach (see Proposition 14 in [33]). Let us denote by c the

reach of ∂M , so for all (x∗, y) ∈ (∂M)2 we have from Theorem 4.8 part 7 in [20].

∣∣〈y − x∗, ux∗
〉∣∣< ‖y − x∗‖2

2c
. (18)

Notice now that for all y ∈ ∂M ∩B(x, r) we have y ∈ ∂M ∩B(x∗, r + r2), and∣∣〈ϕx(y)− x,ux∗
〉∣∣≤ ∣∣〈ϕx(y)− y,ux∗

〉∣∣+ ∣∣〈y − x∗, ux∗
〉∣∣+ ∣∣〈x∗ − x,ux∗

〉∣∣
thus ∣∣〈ϕx(y)− x,ux∗

〉∣∣≤ ∥∥ϕx(y)− y
∥∥+ ∣∣〈y − x∗, ux∗

〉∣∣+ ∣∣〈x∗ − x,ux∗
〉∣∣.

Equations (16) and (18) entails,

∣∣〈ϕx(y)− x,ux∗
〉∣∣≤ c3‖x − y‖2 + ‖y − x∗‖2

2c
+ ∥∥x∗ − x

∥∥.
Recall that ‖x − y‖ ≤ r and ‖x − x∗‖ ≤ r2, then |〈ϕx(y)− x,ux∗ 〉| ≤ r2(c3 + (1+ r)2/(2c)+ 1).
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Lastly, we proved that there exists c7 such that,

ϕx

(
∂M ∩B(x, r)

)⊂ B(x, r)∩ (x + TxM)∩ {y : ∣∣〈y − x,ux∗〉
∣∣≤ c7r

2}.
Now, when r ≤ r1, we have ∂ϕx(M ∩B(x, r))= ϕx(∂(M ∩B(x, r)))= ϕx(∂M ∩B(x, r))∪ ϕx(M ∩ ∂B(x, r)) As in

the proof of previous part, we easily obtain

∂ϕx

(
M ∩B(x, r)

)⊂ (x + TxM)∩ {y : ∣∣〈y − x,ux∗〉
∣∣≤ c7r

2}∪ (B(x, r) \ (B(x, r − c3r
2)).

Thus, arguing on the basis of connectedness arguments, we have:

(x + TxM)∩ {y : 〈y − x,ux∗〉 ≤ −c7r
2}∩B

(
x, r − c3r

2)⊂ ϕx

(
M ∩B(x, r)

)
⊂ (x + TxM) ∩ {y : 〈y − x,ux∗〉 ≤ −c7r

2} ∩ B(x, r) (19)

or

(x + TxM)∩ {y : 〈y − x,ux∗〉 ≥ c7r
2}∩B

(
x, r − c3r

2)
⊂ ϕx

(
M ∩B(x, r)

)⊂ (x + TxM)∩ {y : 〈y − x,ux∗〉 ≥ c7r
2}∩B(x, r). (20)

Because ux is the normal outer vector to ∂M we have (19) and not (20). The choice of (19) comes from the orientation
of ux∗ . �

Recall the change of variables formula

V ⊂ B(x, r0,M) ⇒ PX(V )=
∫

V∩M

f dω=
∫

ϕx(V )

f
(
ϕ−1

x (y)
)
Gx(y) dy. (21)

Corollary 1. Let X1, . . . ,Xn be an i.i.d. sample of X, a random variable whose distribution PX fulfills condition P. Then,
there exist positive constants rM , A, B and C such that if r ≤ rM , then:

1. For all x ∈M , Ard ′ ≤ PX(B(x, r))≤ Brd ′ .
2. For all x ∈M such that d(x, ∂M)≥ r , |PX(B(x, r))− f (x)σd ′rd ′ | ≤ Crd ′+1.

Proof. For any r ≤ rM and any x ∈M ,

PX

(
B(x, r)

)≤f1

∫
ϕx(B(x,r)∩M)

Gx(y) dy.

Thus by Proposition 3, part 2 we have

PX

(
B(x, r)

)≤ f1σd ′r
d ′(1+ cMr). (22)

For any r > 0 let us consider first x ∈M such that d(x, ∂M)≥ r/2. Then

PX

(
B(x, r)

)≥ PX

(
B(x, r/2)

)≥ f0

∫
ϕx(B(x,r/2)∩M)

Gx(y) dy.

Since r ≤ 2rM , applying Proposition 3 parts 2 and 4 we obtain

PX

(
B(x, r)

)≥ f0σd ′
(
r − cMr2)d ′(1− cMr). (23)

Let x ∈M such that d(x, ∂M)≤ r/2, let x∗ be the projection of x onto ∂M , then we have

PX

(
B(x, r)

)≥ PX

(
B
(
x∗, r/2

))≥ f0

∫
ϕx∗ (B(x∗,r/2)∩M)

Gx∗(y) dy.

Since r ≤ 2rM , applying Proposition parts 2 and 5, we obtain

PX

(
B(x, r)

)≥ f0

(
σd ′

2
(r)d

′ − cMσd ′−1r
d ′+1

)
(1− cMr). (24)
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Lastly, part 1 is a direct consequence of (22), (23) and (24).
To prove part 2, assume r ≤ rM . From the Lipschitz hypothesis on f , we get∣∣∣∣PX

(
B(x, r)

)− f (x)

∫
B(x,r)∩M

dω

∣∣∣∣≤ rKf

∫
B(x,r)∩M

dω.

By (21),
∫
B(x,r)∩M

dω= ∫
ϕx(B(x,r)∩M)

Gx(y) dy. Applying Proposition 3 part 2 there follows

∣∣∣∣
∫
B(x,r)∩M

dω−
∫

ϕx(B(x,r)∩M)

dy

∣∣∣∣≤ cM,1r

∫
ϕx(B(x,r)∩M)

dy.

By Proposition 3 part 4,∣∣∣∣
∫
B(x,r)∩M

dω−
∫
B(x,r)∩TxM

1dy

∣∣∣∣≤
∫

(B(x,r)\B(x,r−cM,2r
2))∩TxM

dy + cM,1r

∫
B(x,r)∩TxM

dy.

This implies

∣∣PX

(
B(x, r)

)− f (x)σd ′r
d ′ ∣∣ ≤ rKf

(
σd ′r

d ′(1− (1− cM,2r)
d ′))

+ f (x)
(
σd ′r

d ′(1− (1− cM,2r)
d ′)+ cM,1σd ′r

d ′+1).
Thus, the choice of any constant C1 > σd ′(Kf + f1dcM,2 + cM,1) allows us to find a suitable R1. �

This in turns implies the following lemma.

Lemma 1. Let X1, . . . ,Xn be an i.i.d. sample of X, a random variable whose distribution PX fulfills condition P. Intro-
duce ρn = (2A−1((ln(n)/n)1/2 + kn/n))1/d ′ where A is the constant introduced in Corollary 1. Then P(rn ≥ ρn)≤ n−7,
where rn was introduced in Definition 1.

Proof. Let us introduce the random variables Zi ≡ #{{X1, . . . ,Xi−1,Xi+1, . . . ,Xn} ∩B(Xi, ρn)}. Zi follows a binomial
distribution. We can bound P(rn ≥ ρn) ≤∑

i P(Zi ≤ kn). Put pi = PX(B(Xi, ρn)). By Corollary 1 part 1, we have
kn/n ≤ pi . Then, by Hoeffding’s inequality, P(ri,kn ≥ ρn) = P(Zi − npi < kn − npi) ≤ exp(−2n(kn/n − pi)

2), from
which it follows that P(rn ≥ ρn) ≤∑i exp(−2n(kn/n − pi)

2). Using again Corollary 1 and the definition of ρn, we
obtain

P(rn ≥ ρn)≤ n exp
(−2n

(
kn/n+ (ln(n)/n

)1/2)2)≤ n−7,

which concludes the proof. �

Now that we have guaranteed that rn → 0, the following proposition will make explicit how close the projection of the
sample onto the tangent space of kn-nearest neighbors is to an uniform random sample on a d ′-dimensional sphere when
the manifold M has no boundary.

Proposition 4. Let X be a random variable whose distribution PX fulfills condition P with ∂M =∅. For each x0 ∈M ,
put Y1 = ϕx0(X) the projection onto the tangent space and Y = Y1|{‖X − x0‖ ≤ r}. Then there exists a constant a > 0

such that if r is small enough, Y
L= Z, where Z has a mixture law with density gx0 = (1 − p)gu + pgv where gu is

the density of a random variable uniformly distributed on Bd ′(O, r − cr2), gv is a density supported by Bd ′(O, r), and
p ≤ ar .

Proof. Observe that X|{‖X − x0‖ ≤ r} has density fx0(x) = f (x)
PX(B(x0,r))

IM∩B(x0,r). By Corollary 1 part 2, for r small
enough,

f (x)

f (x)σd ′rd ′(1+ Cr
f0σd′

)
IM∩B(x0,r) ≤ fx0(x)≤ f (x)

f (x)σd ′rd ′(1− Cr
f0σd′

)
IM∩B(x0,r).
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The random variable Y has density gx0(x)= fx0(ϕ
−1
x0

(x))Gx0(x)IBx0
, where Bx0 = ϕx0(M ∩B(x0, r)). By Proposition 3,

|Gx0(x)− 1| ≤ cMr , and so

1− cMr

σd ′rd ′(1+ Cr
f0σd′

)
IBx0

≤ gx0(x)≤ 1+ cMr

σd ′rd ′(1− Cr
f0σd′

)
IBx0

.

Note that by Proposition 3 we have

B
(
x0, r(1− cMr)

)∩ (x0 + Tx0M)⊂ Bx0 ⊂ B(x0, r)∩ (x0 + Tx0M).

Put B−(x0, r)≡ B(x0, r(1− cMr))∩ (x0 + Tx0M), and define

p ≡ (1− cMr)d
′+1
(

C

f0σd ′
r + 1

)−1

.

Observe that gx0 is a density and has the property that gx0(x)≥ pgu(x), gx0(x)= 0 if ‖x − x0‖> r , and p =O(r). This
concludes the proof. �

Proposition 5. Let X be a random variable whose distribution PX fulfills condition P with ∂M �=∅. For each x0 ∈M

with d(x0, ∂M)≤ r2, put Y1 = ϕx0(X) the projection onto the tangent space and Y = Y1|{‖X−x0‖ ≤ r}. Then there exists

a constant a > 0 such that if r is small enough, Y
L= Z, where Z has a mixture law with density gx0 = (1− p)gu + pgv

where gu is the density of a random variable uniformly distributed on Bd ′(O, r − cr2) ∩ {x, 〈x,−ux∗0 〉 ≥ cr2}, gv is a
density supported by Bd ′(O, r) and p ≤ ar .

The proof is similar to the previous one and is left to the reader.
In the proofs of Theorems 1 and 2 we also needed to control the number of points in the mixture that are drawn with

the non-uniform random variable. This is done with the following lemma.

Lemma 2. Suppose Tn � Binom(k′n, qn) with qn

√
k′n ln(n)→ 0 and k′n/(ln(n))4 →+∞.

Then, for all λ > 0, for all b > 0, and for n large enough, nP(ln(n)Tn/
√

k′n > λ) < n−b .

Proof. By Bernstein Inequality we have

P

(
Tn

k′n
≥ qn +

√
2qnu

k′n
+ u

k′n

)
≤ e−u

then

P

(
Tn lnn√

k′n
≥√k′nqn ln(n)+

√
2qnu(lnn)2 + u lnn√

k′n

)
≤ e−u.

Thus, taking u= λ
√

k′n/(2 lnn) and considering n large enough to ensure

√
k′nqn ln(n)+

√
2qnλ

√
k′n(lnn)≤ λ/2,

which is possible according to the condition
√

k′nqn ln(n)→ 0, we have:

P

(
Tn lnn√

k′n
≥ λ

)
≤ exp

(
−λ

√
k′n

2 lnn

)
≤ exp

(
−(lnn)

(
λ

√
k′n

(lnn)4

))
.

Lastly, the results follows from k′n/(ln(n))4 →+∞, taking n large enough to ensure λ
√

k′n/(lnn)2 ≥ b+ 1. �

We have proved that the projection of the kn nearest neighbors onto the tangent space is close to an uniform draw. The
following proposition quantifies how this (unknown) projection is close to the estimation via a local PCA.

Proposition 6. Let X1, . . . ,Xn be an i.i.d. sample in R
d of a law whose support is included in the unit ball. Let Ŝn =

1
n

∑
i X

′
iXi and S = E(X′X). Then
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(i) P(‖Ŝn − S‖∞ > s)≤ 2d2 exp(−s2n/2);
(ii) If, moreover, Xi is uniformly drawn in the unit ball, then

P

(∥∥∥∥Ŝn − 1

d + 2
Id

∥∥∥∥∞ > s

)
≤ 2d2 exp

(−s2n/2
)

and there exist a and s0 such that for all s < s0, P(‖Ŝ−1
n −(d+2)Id‖∞ > as)≤ 2d2 exp(−s2n/2) for n large enough.

Proof. Part (i) is a direct consequence of the application of Hoeffding’s inequality: for all i, j we have P(|Ŝn − S|i,j >

s) ≤ 2 exp(−s2n/2). Part (ii) is a consequence of part (i) (for uniformly drawn S = (d + 2)−1Id ) and of the differentia-
bility of matrix inversion (close to the identity matrix). �

The following result provides the uniform convergence rate of the local PCA to the tangent spaces. Write Md(R) for
the space of d × d matrices with coefficients in R. Let Id ′,d ∈Md(R) be the block matrix

Id ′,d =
(

Id ′ 0
0 0

)
.

For a symmetric matrix S ∈Md(R), put S =QS
SQ′
S , with 
S diagonal with (
S)1,1 ≥ (
S)2,2 ≥ · · · ≥ (
S)d,d and

QS the matrix containing (by columns) an orthonormal basis of eigenvectors. Write PS,d ′ =QSId ′,dQ′
S , that is, the matrix

of the orthogonal projection on the plane spanned by the d ′ eigenvectors associated to the d ′ largest eigenvalues of S.
Note that PId′,d ,d ′ = Id ′,d .

Lemma 3. Let X1, . . . ,Xn be an i.i.d. sample drawn according to a distribution PX which fulfills condition P, with
∂M = ∅. Denote by ϕ̃Xi

the linear projection onto the tangent space at Xi and by ϕ̂Xi
the linear projection onto the

estimation of the tangent space via local PCA. With probability greater than 1− n−6 for n large enough, there exist a
constant a and a matrices Ei,n with ‖Ei,n‖op ≤ a(

√
ln(n)/kn + ρn) such that, for all i and all y ∈ B(Xi, ρn) we have:

∥∥ϕ̂Xi
(y)− (Id −Ei,n)ϕ̃Xi

(y)
∥∥≤ a

(√
ln(n)/kn + ρn

)∥∥ϕ̃Xi
(y)
∥∥2

.

Proof. By Proposition 6, for all i, P(‖r−2
i,kn

Ŝi,kn − r−2
i,kn

�i‖∞ ≥ t)≤ 2d2 exp(−t2kn/2), where �i = E(Y ′Y |‖Y‖ ≤ ri,kn)

with Y =X−Xi and Ŝi,kn is as in Definition 1. Then

P
(∃i : ∥∥r−2

i,kn
Ŝi,kn − r−2

i,kn
�i

∥∥∞ ≥ t
)≤ n2d2 exp

(−t2kn/2
)
.

Now if we apply the Borel–Cantelli lemma with t = 4
√

ln(n)/kn, we get that, with probability one, for n large enough,

P
(∃i,∥∥r−2

i,kn
Ŝi,kn − r−2

i,kn
�i

∥∥∞ ≥ 4
√

ln(n)/kn

)≤ 2d2n−7. (25)

Denote by Pi the matrix whose first d ′ columns form an orthonormal basis of TXi
M , completed to obtain an orthonor-

mal base of Rd . By Lemma 1, since kn/n→ 0, we have ρn → 0 and, for n large enough, combining Proposition 3 parts
3 and 4 and (21), there exists a c such that for n large enough

P
(
for all i : ∥∥r−2

i,kn
�i −

(
d ′ + 2

)−1
P ′

i Id ′,dPi

∥∥∞ ≤ cρn|{rn ≤ ρn}
)= 1. (26)

Now, (25), (26) and Lemma 1 give that, for n large enough,

P
(∃i,∥∥r−2

i,kn
Ŝi,kn −

(
d ′ + 2

)−1
P ′

i Id ′,dPi

∥∥∞ ≥ 4
√

ln(n)/kn + cρn

)≤ (2d2 + 1
)
n−7.

Thus, by usual inequality on the norms,

P
(∃i,∥∥r−2

i,kn
Ŝi,kn −

(
d ′ + 2

)−1
P ′

i Id ′,dPi

∥∥
op ≥ 4d−1

√
ln(n)/kn + cd−1ρn

)≤ (2d2 + 1
)
n−7.

Suppose now that, for all i we have

∥∥r−2
i,kn

Ŝi,kn −
(
d ′ + 2

)−1
P ′

i Id ′,dPi

∥∥
op ≤ 4d−1

√
ln(n)/kn + cd−1ρn.
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By previous equation and Lemma 19 in [5] (based on [18])) we have that, for all i

‖ϕ̃Xi
− ϕ̂Xi

‖op ≤
√

2(d ′ + 2)

d

(
4
√

ln(n)/kn + cρn

)
. (27)

Now suppose that rn ≤ ρn, which according to Lemma 1 it happens with probability greater than 1− n−7. Consider
y ∈M ∩B(Xi, ρn)−Xi . Introduce Ei,n the matrix of the application ϕ̃Xi

− ϕ̂Xi
and �Xi,k the function introduced in the

proof of points 2 and 3 in Proposition 3, we get

y =

⎛
⎜⎜⎜⎝

ϕ̃Xi
(y)

�Xi,d
′+1(ϕ̃Xi

(y))
...

�Xi,d (ϕ̃Xi
(y))

⎞
⎟⎟⎟⎠ so ϕ̂Xi

(y)= ϕ̃Xi
(y)+Ei,nϕ̃Xi

(y)+Ei,n

⎛
⎜⎜⎜⎝

0d ′
�Xi,d

′+1(ϕ̃Xi
(y))

...

�Xi,d (ϕ̃Xi
(y))

⎞
⎟⎟⎟⎠

and so, for all i, there exists Ei,n a matrix such that,

‖Ei,n‖op ≤
√

2(d ′ + 2)

d

(
4
√

ln(n)/kn + cρn

)
.

Then,

∥∥ϕ̂Xi
(y)− (Id −Ei,n)ϕ̃Xi

(y)
∥∥≤ (d − d ′

)
λM

√
2(d ′ + 2)

d

(
4
√

ln(n)/kn + cρn

)∥∥ϕ̃Xi
(y)
∥∥2

.

That concludes the proof. �

Lemma 4. Let X1, . . . ,Xn be an i.i.d. sample drawn according to a distribution PX which fulfills condition P. For a
given λ > 0, introduce In(λ) = {i : d(Xi, ∂M) ≤ λ(lnn)/n, ri,kn ≥

√
d(Xi, ∂M)}. Denote by ϕ̃Xi

the linear projection
onto the tangent space at Xi and by ϕ̂Xi

the linear projection onto the estimation of the tangent space via local PCA.
With probability greater than 1− n−6 for n large enough, there exist a constant a and a matrices Ei,n with ‖Ei,n‖op ≤
a(
√

ln(n)/kn + ρn) such that, for all i ∈ In(λ) and all y ∈ B(Xi, ρn) we have:

∥∥ϕ̂Xi
(y)− (Id −Ei,n)ϕ̃Xi

(y)
∥∥≤ a

(√
ln(n)/kn + ρn

)∥∥ϕ̃Xi
(y)
∥∥2

.

Proof. The proof is exactly the same as the previous one, the only difference being now that, up to a change of basis,
r−2
i,kn

�i is no longer close to (d ′ + 2)−1Id ′,d , but rather to a diagonal matrix with an eigenvalue (d ′ + 2)−1 eigenvalues of
order d ′ − 1 and βd ′ > 0 eigenvalue of order 1. �
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