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A THRESHOLD FOR CUTOFF IN TWO-COMMUNITY RANDOM GRAPHS

BY ANNA BEN-HAMOU

LPSM, Sorbonne Université, anna.ben-hamou@upmc.fr

In this paper, we are interested in the impact of communities on the mix-
ing behavior of the nonbacktracking random walk. We consider sequences of
sparse random graphs of size N generated according to a variant of the classi-
cal configuration model which incorporates a two-community structure. The
strength of the bottleneck is measured by a parameter α which roughly cor-
responds to the fraction of edges that go from one community to the other.
We show that if α � 1

logN
, then the nonbacktracking random walk exhibits

cutoff at the same time as in the one-community case, but with a larger cut-
off window, and that the distance profile inside this window converges to the
Gaussian tail function. On the other hand, if α � 1

logN
or α � 1

logN
, then the

mixing time is of order 1/α and there is no cutoff.

1. Introduction.

1.1. Setting. We consider an extension of the classical configuration model, designed to
incorporate a two-community structure. Let V be a vertex set partitioned into two nonempty
communities V0 and V1, that is,

V = V0 ∪ V1 and V0 ∩ V1 = ∅.

Let d : V →N \ {0,1} be a fixed degree sequence such that∑
v∈V0

d(v) = N0, and
∑
v∈V1

d(v) = N1

are both even. Let N = N0 + N1. Each vertex v of V is endowed with d(v) half-edges,
and, for i = 0,1, we denote by Hi the set of half-edges attached to a vertex of Vi , and let
H =H0 ∪H1. By definition, |H0| = N0, |H1| = N1 and |H| = N .

Now let p be a fixed even integer between 2 and min{N0,N1} and choose uniformly at
random p distinct half-edges in H0 to form the random subset of outgoing half-edges of
H0. Similarly, and independently, choose uniformly at random p distinct half-edges in H1 to
form the random subset of outgoing half-edges of H1. Half-edges which are not outgoing are
called internal half-edges. Let α0 = p/N0, α1 = p/N1 and α = α0 + α1.

We then generate the random graph G by choosing independently a uniform pairing on
the set of internal half-edges of H0, a uniform pairing on the set of internal half-edges of
H1 (this is feasible since both sets have even size), and a uniform matching between the set
of outgoing half-edges of H0 and the set of outgoing half-edges of H1 (which have equal
size p). We let η be the induced pairing on H. If x and y are two distinct half-edges attached
to vertices u and v respectively, then the pairing η(x) = y (which is equivalent to η(y) = x)
induces an edge between u and v in the resulting graph.

REMARK 1.1. The graph model may very well be defined with N0, N1 and p all odd,
the important thing being that N0 − p and N1 − p are both even. However, assuming that p

is even is quite convenient for the analysis, in particular in Section 4.

Received September 2018; revised June 2019.
MSC2020 subject classifications. Primary 60J10; secondary 05C80, 05C81.
Key words and phrases. Nonbacktracking random walk, random graphs, mixing times, cutoff, bottleneck.

1824

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/19-AAP1544
http://www.imstat.org
mailto:anna.ben-hamou@upmc.fr
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


A THRESHOLD FOR CUTOFF 1825

We are interested in the mixing properties of the nonbacktracking random walk (NBRW)
on G, defined as the Markov chain with state space H and transition matrix

P(x, y) =
⎧⎪⎨⎪⎩

1

deg(η(x))
if y and η(x) are neighbors,

0 otherwise,

where two half-edges x and y are called neighbors if they are attached to the same vertex
and are different. The degree of half-edge x, denoted deg(x), corresponds to the number of
neighbors of x (if x is attached to vertex u, then deg(x) = d(u) − 1). The NBRW thus moves
at each step from the current state x to a uniformly chosen neighbor of η(x). (Equivalently,
the NBRW can be defined over the directed edges of the graph: at each step, it moves from
(u, v) to (v, u′), with u 
= u′, with probability 1

d(v)−1 . In particular, the NBRW cannot traverse
the same edge twice in a row in opposite directions.)

The matrix P enjoys the following symmetry property with respect to η: for all x, y ∈ H,

(1.1) P
(
η(y), η(x)

)= P(x, y).

In particular, P is doubly stochastic and the stationary distribution of the chain is the uniform
distribution π on H. The worst-case total-variation distance to equilibrium at time t ≥ 0 is

D(t) = max
x∈H Dx(t) where Dx(t) = ∑

y∈H

(
1

N
− P t(x, y)

)
+
.

This quantity is weakly decreasing in t , and the first time when it falls below a given threshold
0 < ε < 1 is the ε-mixing time:

tMIX(ε) = inf
{
t ≥ 0,D(t) < ε

}
.

1.2. Results. Let

(1.2) μ = 1

N

∑
x∈H

log deg(x) and σ 2 = 1

N

∑
x∈H

(
log deg(x) − μ

)2
be the mean and variance of the logarithmic degree of a uniformly chosen half-edge. For
i ∈ {0,1}, let also

(1.3) μi = 1

Ni

∑
x∈Hi

log deg(x) and σ 2
i = 1

Ni

∑
x∈Hi

(
log deg(x) − μi

)2
be the mean and variance of the logarithmic degree within community Hi .

We consider a sequence (Gn)n≥1 of graphs distributed according to this model, with N →
∞ as n → ∞ (the index n will be omitted from notation) and are interested in the following
regime:

α = α0 + α1 ≤ 1 (there is a community structure)(1.4a)

N0 � N1 � N (communities have comparable size)(1.4b)

lim infσ 2 > 0, (nonvanishing variance)(1.4c)

min
v∈V

d(v) ≥ 3 (branching degrees)(1.4d)

� = max
v∈V

d(v) = O(1) (sparse regime)(1.4e)

To see why condition (1.4a) corresponds to the presence of community structure, observe that
when η is a uniform pairing over H, then the expected number of pairs between one element
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of H0 and one element of H1 is equal to N0N1
N−1 . In expectation, the analogue of α0 + α1 is

then equal to N
N−1 ≈ 1.

For the first part of our result, we need the following additional assumption

(1.5) Either lim inf |μ0 − μ1| > 0 or |μ0 − μ1|2 = o(α).

THEOREM 1.1. Under assumptions (1.4) and (1.5), if α � 1
logN

, then for all ε ∈ (0,1),

tMIX(ε) − logN
μ√

ν2 logN

μ3

P−→ 	
−1

(ε),

where

ν2 = σ 2 + 2N0N1(1 − α)

N2

(μ0 − μ1)
2

α
,

and 	 is the tail function of the standard normal distribution (	 = 1 − 	 with 	 the c.d.f. of
the standard normal distribution).

THEOREM 1.2. Under assumptions (1.4), if α � 1
logN

or α � 1
logN

, then for all x ∈ Hi

and for all ε <
N1−i

N
, there exist a, b > 0 depending only on ε and Ni/N such that

a + oP(1)

α
≤ t

(x)
MIX(ε) ≤ b + oP(1)

α
,

and there is no cutoff.

Let us briefly comment on the results. It is natural to expect that the presence of communi-
ties has an influence on the mixing behavior of the NBRW. If α is very small, that is, if there
are only few edges that go from one community to the other, then the graph has a very narrow
bottleneck and the walk will take a long time to cross this bottleneck. Intuitively, the mixing
time in this case is determined by the geometric time needed to hit one of those crossing
edges, and the distance then decreases smoothly, as the tail function of a Geometric variable:
there is no cutoff.

On the other hand, if α is large, then the walk can easily go from one community to the
other, and the mixing behavior is very similar to the case where there is no community struc-
ture, as studied by B. and Salez [6]. In this paper, the authors considered the configuration
model with η uniformly chosen among all possible pairings on H. They showed, under much

weaker degree assumptions, that the NBRW has cutoff at time logN
μ

, with window
√

σ 2

μ3 logN

and that the distance profile inside the window is Gaussian.
The contribution of the present paper is to determine quite precisely the threshold between

those two regimes, the one with no community structure and the one with two communities
connected by very few edges. As it turns out, cutoff can still occur with a strong community
structure, even in a regime where the proportion α of crossing edges vanishes to 0, provided
it decays more slowly than 1/ logN . This threshold arises as the result of a competition
between the mixing time in each community, which is of order logN , and the time it takes
to switch community, which is approximately Geometric with expectation of order 1/α. This
result can be interpreted in light of a series of powerful results that relate mixing and hitting
times [14, 24, 26] and that characterize cutoff in terms of concentration of hitting times of
“worst” sets [5, 15].
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Another interesting fact is the impact of communities on the cutoff window (in the regime

α � 1/ logN ). In the case of no community structure, the window is of order
√

σ 2

μ3 logN ,

which, under assumptions (1.4), has order
√

logN . The introduction of a community struc-
ture can significantly increase the cutoff window. Under our assumptions, this window is of

order
√

logN
α

, which is still much smaller than logN , the first order of the mixing time, but
can be much larger than

√
logN . Let us also note that, for some fixed value of α, the window

is maximized for α0 = α1, that is, for N0 = N1, when the two communities have equal size.

1.3. Related work. A sequence of chains (Pn) is said to exhibit the cutoff phenomenon if
for all ε ∈ (0,1), t (n)

MIX(ε) ∼ t
(n)
MIX(1−ε) as n → ∞. In other words, convergence to equilibrium

occurs very abruptly: the total-variation distance drops from near 1 to near 0 at the mixing
time, over a much shorter time known as the cutoff window. It was first observed for random
walks on finite groups, such as random transpositions on the symmetric group [12], or the
lazy random walk on the hypercube [2]. It was then observed in various other contexts, such
as the Glauber dynamics on the Ising model at high temperature [22], or the simple exclusion
process [17]. This phenomenon was quickly conjectured to be a widespread phenomenon,
satisfied by a large class of finite Markov chains. However, finding simple sufficient condi-
tions for cutoff appeared to be a very challenging task and several conditions that appeared
to be “natural” have been disproved by counter-examples. For instance, regular expanders
of bounded degree have remarkable mixing properties and one could reasonably expect that
the (lazy) random walk on such graphs has cutoff, but this was disproved in [21]. However,
one can rather ask: what is the mixing behavior of the random walk on a “typical” graph?
This led to study random walks on random graphs, uniformly chosen in a given class. In this
line of work, the article of [20] was a breakthrough: they showed that, with high probability,
simple and nonbacktracking random walks on random d-regular graphs have cutoff. Cutoff
for NBRW was then established on sparse random graphs with given degrees, by B. and Salez
[6], and independently by [8], and [10] established the cutoff phenomenon for the random
walk on sparse random directed graphs. Recently, [3, 4] studied NBRW on dynamical random
graphs, and established three different mixing behaviors according to the rate at which the
graph is re-randomized.

Those random graph models are “homogeneous” in the sense that with high probability,
they do not give rise to a community structure within vertices. However, various real net-
works, such as social or biological networks [13], exhibit a community structure: there is a
partition of vertices such that vertices in the same group are more likely to be connected than
vertices in different groups. Probably one of the most famous random graph model with a
community structure is the stochastic block model. This model was first introduced by [16],
and was then studied in a wide variety of contexts, in particular in the very rich research area
of community detection (see [1] for a survey of recent results). Fixed-degree variants of the
stochastic block model, often referred to as hierarchical configuration models, were intro-
duced and investigated by [29, 31] and [30], with a particular focus on epidemic propagation.
The model considered here can be seen as a variant of the hierarchical configuration model
with two communities, where randomization is used first to determine which half-edges are
outgoing, and then to choose the pairings of internal and outgoing half-edges (degrees, how-
ever, are fixed). In his master thesis, Poirée [27] studied NBRW on such random graphs, in the
particular case of regular degrees and communities of equal size.

1.4. Open questions. Several extensions of the model would be interesting to investigate
and a lot of related questions could be raised. Let us briefly mention some of them:
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• The regime in (1.4) is quite restrictive, it would be interesting to see how far those as-
sumptions can be relaxed (in the one-community case, B. and Salez [6] could go up to
� = No(1)). We expect that Theorem 1.1 holds without assumption (1.5) nor any other as-
sumption on |μ0 − μ1|. Nevertheless, condition (1.5) encompasses a variety of situations,
including the important case where degrees are I.I.D. according to some distribution over
{3, . . . ,�}, in which case the Central Limit Theorem yields |μ0 − μ1| = OP(n

−1/2).
• Instead of choosing the outgoing half-edges at random, it would be interesting to consider

the model where each vertex initially has a fixed number of outgoing and internal half-
edges.

• What happens with more than two communities? Consider for instance the following sim-
ple generalization of the model with K ≥ 2 communities of equal size N/K : in each com-
munity Hk , k ∈ {1, . . . ,K}, choose uniformly at random K − 1 distinct blocs (Bk,
)
 
=k of
p distinct half-edges. Then, for all k and 
 
= k, choose a uniform matching between Bk,


and B
,k , and a uniform pairing over Hk \ (
⋃


 
=k Bk,
). Letting α = pK2/N , we expect

(at least in when K is fixed) that if α � 1
logN

, then there is cutoff at logN
μ

with window√
ν2

μ3 logN where

ν2 = σ 2 + 2(1 − α)

K2α

{
(K − 1)

K∑
k=1

μ2
i − ∑

k 
=


μkμ


}
.

• What happens for the simple random walk?

2. A useful coupling. Before entering into the proofs, we describe a coupling for typical
nonbacktracking trajectories, which helps approximating the annealed law of the walk and
will be crucially used later on. This coupling takes advantage of the fact that the NBRW

started at a given x ∈ H and the graph along its trajectory can be generated simultaneously
as follows: initially, X0 = x ∈ H, all half-edges are unpaired and no type has been allocated
yet (the property of a half-edge to be outgoing or internal will be referred to as its type); then
at each time k ≥ 0:

1. (a) if the type of Xk has not been fixed yet and if Xk belongs to Hi for i = 0,1, we make
Xk outgoing with probability α

(k)
i corresponding to the conditional probability that

Xk is outgoing given the past. With probability 1 − α
(k)
i , we make Xk internal;

i. if Xk is outgoing, we pair it with a uniformly chosen unpaired half-edge of H1−i

and declare that this chosen half-edge is outgoing;
ii. if Xk is internal, we pair it with a uniformly chosen other unpaired half-edge of

Hi and declare that this chosen half-edge is internal;

(b) if the type of Xk has already been set, then η(Xk) is already defined and no new pair
is formed;

2. in both cases, once η(Xk) is determined, its neighbors are deterministically given by the
degree sequence, and we let Xk+1 be a uniformly chosen neighbor of η(Xk).

The sequence {Xk}k≥0 is then exactly distributed according to the annealed law. Now, con-
sider a sequence {X�

k}k≥0 generated in the following way: initially X�
0 = x ∈ H; then at each

time k ≥ 0:

1. if X�
k belongs to Hi for i = 0,1, draw a Bernoulli random variable Bk with parameter

αi = p/Ni ;

(a) if Bk = 1, let η(X�
k) be a uniformly chosen half-edge in H1−i ;
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(b) if Bk = 0, let η(X�
k) be a uniformly chosen half-edge in Hi ;

2. in both cases, let X�
k+1 be a uniformly chosen neighbor of η(X�

k).

The process {Xk}k≥1 and the simple Markov chain {X�
k}k≥1 can be coupled in such a way

that the two sequences are equal up to the first time k where either the types of Xk and
X�

k differ, or the two types are equal but the uniformly chosen half-edge η(X�
k) is already

paired. The total-variation distance between the type indicators at time k is smaller than
maxi=0,1 |α(k)

i − αi |. Using the facts that at least (p − k) ∨ 0 half-edges remain to be made
outgoing in each community, that there are at least Ni − 2k unpaired half-edges in Hi , and
that p ≤ min{N0,N1}, we have, for all k < min{N0,N1}/2,

−k

Ni

≤ α
(k)
i − αi ≤ 2k

Ni − 2k
.

Also, as there are less than 2k paired half-edges by step k, the probability that η(X�
k) is

already paired is less than maxi=0,1 2k/Ni . Letting T be the first time where the two coupled
sequence differ and using a crude union-bound yields

(2.1) P(T ≤ t) = O

(
t2

N

)
,

by (1.4b). The distribution of {X�
k}k≥1 is much simpler than that of {Xk}k≥1: at each step,

draw a Bernoulli random variable whose parameter depends on the current community. If it
is equal to 1, move to a uniform half-edge from the other community; if it is equal to 0, move
to a uniform half-edge from the same community. It is not hard to check that the stationary
distribution of this Markov chain is uniform over H.

Letting St =∑t
k=1 log deg(X�

k), we have the following central limit theorem: for all x ∈H
and λ ∈ R,

Px

(
St − μt

ν
√

t
≤ λ

)
−→
t→∞ 	(λ),

where

ν2 = lim
t→∞

1

t
Varπ(St ) = σ 2 + 2

+∞∑
s=1

Covπ

(
log deg

(
X�

0
)
, log deg

(
X�

s

))
.

In the definition above, the subscript π means that X�
0 ∼ π . We have

ν2 = σ 2 + 2
∑

x,y∈H

1

N

+∞∑
s=1

(
Px

(
X�

s = y
)− 1

N

)
log deg(x) log deg(y).

Note that for all i, j ∈ {0,1}, for all x ∈ Hi and y ∈Hj , we have

Px

(
X�

s = y
)= Pπi

(X�
s ∈ Hj )

Nj

,

where πi is the uniform distribution over Hi , hence

ν2 = σ 2 + 2
∑

(i,j)∈{0,1}2

Niμiμj

N

+∞∑
s=1

(
Pπi

(
X�

s ∈ Hj

)− Nj

N

)
.

Noticing that the sequences (Pπ0(X
�
s ∈ H0))s≥0 and (Pπ1(X

�
s ∈ H1))s≥0 obey the following

induction relations{
Pπ0

(
X�

s ∈ H0
)= (1 − α0)Pπ0

(
X�

s−1 ∈ H0
)+ α0

(
1 − Pπ1

(
X�

s−1 ∈ H1
))

,

Pπ1

(
X�

s ∈ H1
)= (1 − α1)Pπ1

(
X�

s−1 ∈ H1
)+ α1

(
1 − Pπ0

(
X�

s−1 ∈ H0
))

,
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we obtain

(2.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pπ0

(
X�

s ∈H0
)= α0(1 − α0 − α1)

s + α1

α0 + α1
= N0

N
+ N1

N
(1 − α)s,

Pπ1

(
X�

s ∈H1
)= α1(1 − α0 − α1)

s + α0

α0 + α1
= N1

N
+ N0

N
(1 − α)s,

which yields

(2.3) ν2 = σ 2 + 2N0N1(1 − α)

N2

(μ0 − μ1)
2

α
.

We will also need a quantitative control on the CLT normal approximation, in the form of
Berry–Esseen type bound.

LEMMA 2.1. Under assumptions (1.4) and (1.5), for all x ∈H and t � 1
α

,

sup
λ∈R

∣∣∣∣Px

(
St − tμ

ν
√

t
≤ λ

)
− 	(λ)

∣∣∣∣= o(1).

PROOF OF LEMMA 2.1. Assume first that lim sup |μ0 − μ1| > 0. By [19], Part I, Chap-
ter 3, Theorem 3.1 (see also [23]), we have

sup
λ∈R

∣∣∣∣Px

(
St − μt

ν
√

t
≤ λ

)
− 	(λ)

∣∣∣∣≤ 159 log(�)σ 2ax

ν3γ 2
�

√
t

,

where ax is the 
2(π)-norm of the ratio between the distribution of X�
1 starting from x and

π , that is,

ax =
√

N
∑
y∈H

Px

(
X�

1 = y
)2

,

and γ� is the spectral gap of the chain (X�
k). If x ∈ Hi for i = 0,1, then

ax =
√√√√N

(
(1 − αi)2

Ni

+ α2
i

N1−i

)
≤
√

N

(
1

N0
+ 1

N1

)
= O(1),

since N0 � N1 � N by assumption (1.4b). The second largest eigenvalue of the transition
matrix of (X�

k) is equal to 1 − α, that is, γ� = α. Also, by assumption (1.4e), � = O(1) and
σ 2 = O(1).Using that N0 � N1 � N , we obtain

1

ν3γ 2
�

√
t

= (αt)−1/2

(αν2)3/2 � (αt)−1/2

(ασ 2 + (1 − α)(μ0 − μ1)2)3/2 ,

and the proof is concluded by assumption (1.4c) and the fact that lim sup |μ0 − μ1| > 0.
Let us now consider the case |μ0 − μ1|2 = o(α). Note that this implies σ 2 ∼ ν2. To prove

Lemma 2.1 in this case, we use Stein’s method of exchangeable pairs. To alleviate notation,
let Ys = log deg(X�

s ). Let

W =
t∑

s=1

Ys − μ

ν
√

t
= St − tμ

ν
√

t
,

and let W ′ be constructed as follows: choose an index S ∈ {1, . . . , t} uniformly at random. If
X�

S ∈ Hi , for i = 0,1, then let ỸS = log deg(X̃�
S) with X̃�

S chosen uniformly at random in Hi

and let

W ′ = Ỹ �
S − μ

ν
√

t
+

t∑
s=1
s 
=S

Ys − μ

ν
√

t
.
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The pair (W,W ′) is exchangeable and

E
[
W ′ − W

∣∣X�
1, . . . ,X

�
t

]= 1

ν
√

t

t∑
s=1

1

t

{
1X�

s ∈H0(μ0 − Ys) + 1X�
s ∈H1(μ1 − Ys)

}

= −W

t
+ 1

ν
√

t

t∑
s=1

1

t

{
1X�

s ∈H0(μ0 − μ) + 1X�
s ∈H1(μ1 − μ)

}
(2.4)

= −W + ξt

t
,

where

ξt = μ0 − μ1

ν
√

t

(
t∑

s=1

1X�
s ∈H0 − tN0

N

)
.

By [28], Theorem 3.1,

d
(
W,N (0,1)

)≤ sup
f ∈F

∣∣E[f ′(W) − Wf (W)
]∣∣,

where d(·, ·) is the Wasserstein metric, and where

F = {
f : ‖f ‖∞,

∥∥f ′′∥∥∞ ≤ 2,
∥∥f ′∥∥∞ ≤

√
2/π

}
.

Let f ∈ F and let F be a primitive of f . By exchangeability and Taylor expansion, there is
W� between W and W ′ such that

0 = E
[
F
(
W ′)− F(W)

]
= E

[(
W ′ − W

)
f (W) + 1

2

(
W ′ − W

)2
f ′(W) + 1

6

(
W ′ − W

)3
f ′′(W�)].

Using (2.4), rearranging, and using the assumptions on f , we get∣∣E[f ′(W) − Wf (W)
]∣∣

=
∣∣∣∣E[ξtf (W) +

(
t

2

(
W ′ − W

)2 − 1
)
f ′(W) + t

6

(
W ′ − W

)3
f ′′(W�)]∣∣∣∣

≤ 2E
[|ξt |]+√

2/πE

[∣∣∣∣ t2E[(W ′ − W
)2 ∣∣ X�]− 1

∣∣∣∣]+ 2t

6
E
[∣∣W ′ − W

∣∣3],
where X� = (X�

1, . . . ,X
�
t ). Let us bound each of the three terms in the sum above separately.

First,

tE
[∣∣W ′ − W

∣∣3]≤ t (log�)3

ν3t3/2 = O

(
1√
t

)
.

Moreover, E[|ξt |] ≤ E[ξ2
t ]1/2. Assume without loss of generality that X�

0 = x ∈ H0. Then by
(2.2),

(2.5) Ex

[
t∑

s=1

1X�
s ∈H0

]
= tN0

N
+ N1(1 − α)(1 − (1 − α)t )

Nα
= tN0

N
+ O

(
1

α

)
,

and

Ex

[(
t∑

s=1

1X�
s ∈H0

)2]
=

t∑
s=1

Px

(
X�

s ∈H0
)
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+ 2
∑
s<s′

(
N0

N
+ N1

N
(1 − α)s

)(
N0

N
+ N1

N
(1 − α)s

′−s

)

=
(

tN0

N

)2
+ O

(
t

α

)
.

This entails

E
[
ξ2
t

]1/2 = O

( |μ0 − μ1|√
α

)
= o(1).

Finally,

E

[∣∣∣∣ t2E[(W ′ − W
)2 ∣∣ X�]− 1

∣∣∣∣]≤
(

t2

4
E
[
E
[(

W ′ − W
)2 ∣∣ X�]2]− tE

[(
W ′ − W

)2]+ 1
)1/2

.

Using (2.5) and the fact that N0
N

σ 2
0 + N1

N
σ 2

1 ∼ σ 2 ∼ ν2, we obtain

tE
[(

W ′ − W
)2]= 2

ν2t

t∑
s=1

(
σ 2

0 Px

(
X�

s ∈ H0
)+ σ 2

1 Px

(
X�

s ∈ H1
))

= 2 + o(1) + O

(
1

tα

)
,

and, using that

∑
1≤s<s′≤t

Px

(
X�

s ∈ Hi ,X
�
s′ ∈Hj

)= t2

2

NiNj

N2 + O

(
t

α

)
,

we get

t2

4
E
[
E
[(

W ′ − W
)2 ∣∣ X�]2]= 1

4ν4t2E

[(
t∑

s=1

∑
i=0,1

1X�
s ∈Hi

Ni

∑
y∈Hi

(
log deg(y) − Ys

)2)2]

= O

(
1

t

)
+ 2

ν4t2

∑
s<s′

∑
i,j=0,1

Px

(
X�

s ∈Hi ,X
�
s′ ∈Hj

)
σ 2

i σ 2
j

= 1

ν4

(
N0

N
σ 2

0 + N1

N
σ 2

1

)2
+ O

(
1

αt

)
= 1 + o(1) + O

(
1

tα

)
.

Hence, if tα → ∞, the Wasserstein distance between W and N (0,1) tends to 0, and so does
the Kolmogorov distance. �

3. Proof of Theorem 1.1.

3.1. Lower bound. Let x ∈ H be a fixed starting point and let

t = logN

μ
+ (

λ + o(1)
)√ ν2

μ3 logN,

with ν2 as in (2.3). For θ = logN
N

, let Aθ be the set of y ∈ H such that there exists a path
from x to y which has probability larger than θ to be seen by a NBRW of length t . Since, for
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all y ∈ Aθ , we have P t(x, y) ≥ θ , and since P t(x, ·) is a probability, the set Aθ has size less
than 1/θ , hence

Dx(t) ≥ P t(x,Aθ) − π(Aθ) ≥ P t(x,Aθ) − 1

θN
.

Taking expectation with respect to the pairing, we have

EP t(x,Aθ) ≥ Px

(
t∏

s=1

1

deg(Xs)
> θ

)
= Px

(
t∏

s=1

1

deg(X�
s )

> θ

)
+ o(1),

where the last equality is by (2.1). Using Lemma 2.1, we have

Px

(
t∏

s=1

1

deg(X�
s )

> θ

)
= Px

(
St − μt

ν
√

t
< −λ + o(1)

)
≥ 	(λ) + O

(
1√
αt

)
.

Since α � 1
logN

by assumption, we get

min
x∈HEDx(t) ≥ 	(λ) + o(1).

3.2. Upper bound. As in [6], the first step is to reduce the maximization over all starting
points to reasonably nice starting points, namely, to points whose neighborhood up to some
level is a tree. We stress out that Lemma 3.1 holds without any assumption on α.

We call x ∈ H a root if the ball of radius R centered at x (denoted by Bx ) is a tree, where

(3.1) R =
⌈

logN

6 log�

⌉
.

We denote by R the set of roots. The following lemma shows that we may restrict our
attention to starting points in R. Its proof is very similar to the one of Proposition 4.1 in [6],
the introduction of communities only slightly changes the argument.

LEMMA 3.1. Let K = �log logN�. Then

max
x∈H P K(x,H \R)

P−→ 0.

PROOF OF LEMMA 3.1. Define 
 = � logN
5 log�

� and fix x ∈ H. The ball of radius 
 around
x can be generated sequentially, its half-edges being given a type and then paired with a
uniformly chosen other hitherto unpaired half-edge from the same or the other community

depending on the type, until the entire ball is generated. Observe that at most k = �((�−1)
−1)
�−2

pairs are formed, and that, for each of them, the number of unpaired half-edges having an al-
ready paired neighbor is at most �(� − 1)
. Hence, if the half-edge that is to be paired is
in Hi , the conditional chance to pair it with a half-edge that has an already paired neigh-

bor (thereby creating a cycle) is at most �(�−1)
−1
Ni−2k−1 if it has been given an internal type, or

�(�−1)
−1
N1−i−2k−1 if it has been given an outgoing type. Thus, letting q be the minimum of those two
ratios, the probability that more than one cycle is found is at most

(kq)2 = O

(
�4


N2

)
= o

(
1

N

)
,

by the definition of 
 and assumption (1.4b). Summing over all x ∈ H (union bound), we
obtain that with probability 1 − o(1), no ball of radius 
 in G contains more than one cycle.
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Now fix a graph G with the above property. Then the NBRW on G starting from any x ∈ H
will very quickly reach a root, namely it satisfies

(3.2) P(XK /∈ R) ≤ 21−K = o(1),

by exactly the same argument as for the proof of equation (21) in [6]. �

We have

D(t + K) ≤ max
x∈H P K(x,H \R) + max

x∈R Dx(t).

By Lemma 3.1, the first term is oP(1), and, for all x ∈ R, bounding the summands corre-
sponding to y ∈ (H \R) ∪Bx by 1/N ,

Dx(t) ≤ ∑
y∈R\Bx

(
1

N
− P t (x,η(y)

))
+

+ |(H \R) ∪Bx |
N

.

Observe that Lemma 3.1 together with the fact that P K is doubly stochastic (since P is)
imply that

|H \R| = ∑
x∈H

P K(x,H \R) = oP(N).

And for all x ∈R, we have (deterministically) |Bx | ≤ �R ≤ N1/6. Hence

max
x∈R

|(H \R) ∪Bx |
N

= oP(1).

The following proposition will therefore conclude the proof of the upper bound.

PROPOSITION 3.2. For t = logN
μ

+ (λ + o(1))

√
ν2 logN

μ3 , we have

max
x∈R

∑
y∈R\Bx

(
1

N
− P t (x,η(y)

)
+ ≤ 	(λ) + oP(1).

To prove this, we first observe that, by property (1.1), we can write

(3.3) P t (x,η(y)
)=∑

u,v

P t/2(x, u)P t/2(y, v)1{η(u)=v}.

We will show that, to approximate well this weighted sum of indicators, it is not necessary to
reveal the entire balls of radius t/2 over x and y. Instead, we consider an exploration process
which generates the pairing η along with two disjoint trees Tx and Ty , rooted at x and y

respectively. Initially, all half-edges are unpaired and no type has been revealed. Tree Tx is
reduced to x and tree Ty is reduced to y. Then at each time step:

1. An unpaired half-edge z of Tx ∪ Ty is chosen, provided it satisfies

(3.4) w(z) ≥ wMIN = N
− 1

2 − log(2)
16 log(�) and h(z) < t/2,

where w(z) and h(z) correspond to the weight and height of z,defined as follows: if z ∈ Tr

for r ∈ {x, y}, there is a unique path (z0, . . . , zh) from r to z, with z0 = r and zh = z. The
value h is then called the height of z, denoted h(z), and its weight is

w(z) =
h∏

i=1

1

deg(zi)
.
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2. If z ∈ Hi for i ∈ {0,1}, the type of z is set to outgoing with probability proportional
to p minus the number of paired outgoing half-edges of Hi , and internal with probability
proportional to Ni − p minus the number of paired internal half-edges of Hi .

3. If z is internal, it is paired with z′, uniformly chosen among the unpaired half-edges of
Hi , and the type of z′ is set to internal. If z is outgoing, it is paired with z′, uniformly chosen
among the unpaired half-edges of H1−i , and the type of z′ is set to outgoing.

4. If z′ was not already in Tx ∪Ty and is not a neighbor of either x or y, then the neighbors
of z′ are added to Tx ∪Ty as children of z. Otherwise, both z and z′ are marked with the color
RED.

This exploration process continues until no unpaired half-edge in Tx ∪ Ty satisfies (3.4). The
pairing η is then completed to form the graph G. For r ∈ {x, y}, we denote by ∂Tr the set of
leaves of Tr , and by Fr the subset of leaves of ∂Tr which are at distance t/2 of r .

Note that, by (3.4), for r ∈ {x, y},
t

2
=

t/2∑
k=1

∑
z∈Tr

1{h(z)=k}w(z) ≥ (|Tr | − 1
)wMIN

�
,

which, together with (1.4e), implies

(3.5) |Tx ∪ Ty | = O
(
N

1
2 + log(2)

16 log(�) logN
)= O

(
N

1
2 + log(2)

15 log(�)
)
.

In particular,

(3.6) |Tx ∪ Ty | = O
(
N5/8).

LEMMA 3.3. For all ε > 0, with probability 1 − o(1), for all x ∈ R and y ∈ R \ Bx , we
have ∑

u∈∂Tx\Fx

w(u) + ∑
v∈∂Ty\Fy

w(v) ≤ ε.

PROOF OF LEMMA 3.3. The trees’ exploration can be stopped before height t/2 for two
reasons: either the weight of the half-edge is too small, or it has been colored RED, namely,
for r ∈ {x, y}, ∑

u∈∂Tr\Fr

w(u) = ∑
u∈∂Tr

w(u)1{w(u)<wMIN} + ∑
u∈∂Tr

w(u)1{u is RED}.

Let us first control the weight of RED half-edges. For x ∈ R and y ∈ R \ Bx , all RED half-

edges are at distance at least R from r , and thus have weight smaller than 2−R ≤ N
− log(2)

6 log(�)

by assumption (1.4d). Moreover, by the same arguments as in the proof of Lemma 3.1,
and using the upper bound (3.5), the total number of RED half-edges in Tr is stochasti-

cally dominated by twice a binomial random variable B(k, q) where k = O(N
1
2 + log(2)

15 log(�) )

and q = O(N
− 1

2 + log(2)
15 log(�) ). By Bennett’s Inequality,

P

( ∑
u∈∂Tr

1{u is RED} > N
log(2)

7 log(�)

)
≤ exp

(−�
(
N

log(2)
7 log(�)

))
.

Hence, for all ε > 0,

P

(
∃x ∈ R, y ∈R \Bx, r ∈ {x, y}, ∑

u∈∂Tr

w(u)1{u is RED} > ε

)
= o(1).
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Let us now control the weight of paths with weight smaller than wMIN. To this end, consider
m = �logN� independent NBRWs on G starting at r , each being stopped as soon as its weight
falls below wMIN, and let A be the event that their trajectories form a tree of height less than
t/2. Clearly,

P(A
∣∣G) ≥

( ∑
u∈∂Tr

w(u)1{w(u)<wMIN}
)m

.

Taking expectation and using Markov inequality, we deduce that

P

( ∑
u∈∂Tr

w(u)1{w(u)<wMIN} > ε

)
≤ P(A)

εm
,

where the average is now taken over both the walks and the graph. To prove that the above
probability is o(1/N2), it is enough to show that P(A) = o(1)m. To do so, we generate the m

stopped NBRWs one after the other, revealing types and pairs along the way, as described in
Section 2. Given that the first 
 − 1 walks form a tree of height less than t/2, the conditional
probability that the 
th walk also fulfills the requirement is o(1), uniformly in 1 ≤ 
 ≤ m.
Indeed:

• either it attains length s = �4 log logN� before leaving the graph spanned by the first 
− 1
trajectories and reaching an unpaired half-edge: thanks to the tree structure, there are at
most 
 − 1 < m possible trajectories to follow, each having weight at most 2−s by (1.4d),
so the conditional probability is at most m2−s = o(1),

• or the remainder of its trajectory after the first unpaired half-edge z has weight less than
�swMIN: this part consists of at most t/2 half-edges which can be coupled with (X�

k)
t/2
k=1

for a total-variation cost of O(mt2/N), and for N large enough

Pz

( t/2∏
k=1

1

deg(X�
k)

≤ �swMIN

)
≤ Pz

(
St/2 − μt

2
≥ log(2)

18 log(�)
logN

)
,

which is o(1) by Lemma 2.1. �

For each (i, j) ∈ {0,1}2, define

Wi,j = ∑
u∈Fx∩Hi

∑
v∈Fy∩Hj

w(u)w(v),

and, for θ = (N(logN)3)−1,

Wθ
i,j = ∑

u∈Fx∩Hi

∑
v∈Fy∩Hj

w(u)w(v)1{w(u)w(v)≤θ}.

LEMMA 3.4. For all ε > 0, with probability 1 − o(1), for all x ∈R and y ∈ R \Bx ,

1 ≤ (N0 − p)
N

N2
0

W0,0 + (N1 − p)
N

N2
1

W1,1 + pN

N0N1
(W0,1 + W1,0) + ε.

PROOF OF LEMMA 3.4. Note that

1 = N0 − p

N
+ N1 − p

N
+ 2p

N
,

so that to prove the lemma, it is enough to establish that for all ε, with probability 1 − o(1),
for all x ∈ R and y ∈ R \ Bx , for all i, j ∈ {0,1}, Wi,j ≥ NiNj

N2 − ε. Now, the event {Wi,j <
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NiNj

N2 − ε} is included in{ ∑
u∈Fx∩Hi

w(u) <
Ni

N
− ε

2

}
∪
{ ∑

v∈Fy∩Hj

w(u) <
Nj

N
− ε

2

}
.

By Lemma 3.3, with probability 1 − o(1), for all x ∈ R, y ∈ R \ Bx and r ∈ {x, y}, we have∑
u∈Fr

w(u) ≥ 1 − ε/4, so that it remains to show that for all ε > 0, r ∈ {x, y}, and i ∈ {0,1},

P

( ∑
u∈Fr∩Hi

w(u) >
Ni

N
+ ε

)
= o

(
1

N2

)
.

To do so, we proceed as in the proof of Lemma 3.3. Consider m = �(logN)2� independent
NBRWs on G starting at r , each of length t/2, and let B be the event that their trajectories
form a tree and that they all end in Hi . We have

P

( ∑
u∈Fr∩Hi

w(u) >
Ni

N
+ ε

)
≤ P(B)

(Ni/N + ε)m
.

To prove that the above probability is o(1/N2), it is enough to show that P(B) ≤ (Ni/N +
ε/2)m. Generate the m NBRWs one after the other, revealing types and pairs along the way,
as described in Section 2. Given that the first 
 − 1 walks form a tree and all end in Hi , the
conditional probability that the 
th walk also does is smaller than Ni/N + ε/2, uniformly in
1 ≤ 
 ≤ m. Indeed:

• either it attains length s = �4 log logN� before leaving the graph spanned by the first 
− 1
trajectories and reaching an unpaired half-edge: thanks to the tree structure, there are at
most 
 − 1 < m possible trajectories to follow, each having weight at most 2−s by (1.4d),
so the conditional probability is at most m2−s = o(1),

• or it encounters an unpaired half-edge z at some time s ′ < s and the remainder of its
trajectory can be coupled with (X�

k)
t/2
k=s′+1 for a total-variation cost of O(mt2/N). By

(2.2), and since t � 1/α,

Pz

(
X�

t/2−s′ ∈ Hi

)≤ Ni/N + ε/2. �

LEMMA 3.5. For all ε > 0, with probability 1 − o(1), for all x ∈R and y ∈ R \Bx ,

NP t (x,η(y)
)≥ (N0 − p)

N

N2
0

Wθ
0,0 + (N1 − p)

N

N2
1

Wθ
1,1 + pN

N0N1

(
Wθ

0,1 + Wθ
1,0
)− ε.

PROOF OF LEMMA 3.5. In the sum (3.3), retaining only those paths that stay in Tx ∪ Ty

and that have weight less than θ , we have

NP t (x,η(y)
)≥ N

∑
u∈Fx

∑
v∈Fy

ωuv1{η(u)=v},

where ωuv = w(u)w(v)1{w(u)w(v)≤θ}. Let us first condition on the types of the unpaired
half-edges at the end of the exploration stage, and average over the remaining pairing. For
i ∈ {0,1}, let Ii (resp. Oi ) be the set of unpaired internal (resp. outgoing) half-edges of
Hi at the end of the exploration stage. By applying [6], Lemma 6.1, to the sets of un-
paired internal half-edges (and noticing that, for us, the quantity denoted by m there satisfies∑

u∈Fx∩Ii
v∈Fy∩Ii

ωuv
N

Ni−p
≤ m ≤ N

|Ii |−1 ), we have, for i ∈ {0,1} and for all ε > 0,

(3.7) P

(
N

∑
u∈Fx∩Ii
v∈Fy∩Ii

ωuv

(
1{η(u)=v} − 1

Ni − p

)
< −ε

∣∣∣ |Ii |
)

≤ exp
(
−ε2(|Ii | − 1)

4θN2

)
.



1838 A. BEN-HAMOU

Combining (3.6), (1.4b) and (1.4a), we have |Ii | � Ni − p � N , entailing that the right-hand
side in (3.7) is o(1/N2). Now, applying [11], Proposition 1.1 (or rather its refinement for the
left tail given in its proof, with the summands here bounded by Nθ instead of 1 there, and
noticing that, for us, the quantity denoted by C = 2EX there satifies

∑
u∈Fx∩Oi

v∈Fy∩O1−i

ωuv
N
p

≤
EX ≤ N

|Oi | ), we have for i ∈ {0,1} and for all ε > 0,

(3.8) P

(
N

∑
u∈Fx∩Oi

v∈Fy∩O1−i

ωuv

(
1{η(u)=v} − 1

p

)
< −ε

∣∣∣ |Oi |
)

≤ exp
(
−ε2|Oi |

4θN2

)
.

Again, (3.6) yields |Oi | � p, and since by assumption p/N � 1/ logN , the right-hand side in
(3.8) is also o(1/N2). Our second task is to average over the types of half-edges in Fx ∪Fy .
To this end, for i ∈ {0,1}, let Ui be the set of unpaired half-edges of Hi at the end of the
exploration stage and write

Y = N

Ni − p

∑
u∈Fx∩Ii
v∈Fy∩Ii

ωuv = ∑
u,v∈(Fx∪Fy)∩Ui

quvBuBv,

where quv = N
Ni−p

ωuv1{u∈Fx}1{v∈Fy} and Bu = 1{u∈Ii}. Conditionally on Tx and Ty , the se-
quence (Bu)u∈(Fx∪Fy)∩Ui

enjoys a strong negative dependence property known as the strong
Rayleigh property [9] (the sequence (Bu)u∈Ui

enjoys it as a sequence of Bernoulli variables
conditioned on its sum, and any subsequence of a strong Rayleigh sequence is also strong
Rayleigh). Observing that Y is a Lipschitz function of (Bu) with constant

N

Ni − p
θ |Fx ∪Fy | = O

(
N−3/8)

by (3.6). Applying [25], Theorem 3.2, and using that, again thanks to (3.6), the quantity
denoted by μ in their paper here is O(N5/8), we have, for all ε > 0,

P(Y − EY < −ε) ≤ exp
(−�

(
N1/8)),

where P and E are the probability law and expectation given Tx ∪ Ty . Similarly, let

Z = N

p

∑
u∈Fx∩Oi

v∈Fy∩O1−i

ωuv = ∑
u,v∈Fx∪Fy

q ′
uvB

′
uB

′
v,

where now q ′
uv = N

p
ωuv1{u∈Fx∩Hi}1{v∈Fy∩H1−i} and B ′

u = 1{u∈Oi∪O1−i}. The sequence
(B ′

u)u∈Fx∪Fy still enjoys the strong Rayleigh property (the sequences (B ′
u)u∈Ui

and
(B ′

u)u∈U1−i
both enjoy it as sequences of Bernoulli conditioned on their sum and the con-

catenation of two independent strong Rayleigh sequences is also strong Rayleigh; and, as
already mentioned, if a sequence is strong Rayleigh, any of its subsequences is too). The
variable Z is a Lipschitz function with constant N

p
θ |Fx ∪Fy | = O(N−3/8) by (3.6) and our

assumption that p � N
logN

. Hence another application of [25], Theorem 3.2, yields

P(Z − EZ < −ε) ≤ exp
(−�

(
N1/8)).

The proof is then concluded by noticing that

EY = (
1 + o(1)

)
(Ni − p)

N

N2
i

Wθ
i,i ,
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and

EZ = (
1 + o(1)

) pN

N0N1
Wθ

i,1−i . �

Combining Lemma 3.4 and 3.5, we obtain that for all ε > 0, with probability 1 − o(1), for
all x ∈ R, ∑

y∈R\Bx

(
1

N
− P t (x,η(y)

)
+

≤ (N0 − p)
N

N2
0

W
θ

0,0 + (N1 − p)
N

N2
1

W
θ

1,1 + pN

N0N1

(
W

θ

0,1 + W
θ

1,0
)+ ε,

where W
θ

i,j = 1
N

∑
y∈H(Wi,j − Wθ

i,j ). The proof of Proposition 3.2 will then be concluded
by the following lemma.

LEMMA 3.6. For all ε > 0, with probability 1 − o(1), for all x ∈R, for all i, j ∈ {0,1},

W
θ

i,j ≤ NiNj

N2 	(λ) + ε.

PROOF OF LEMMA 3.6. Set m = �(logN)2� and let X(1), . . . ,X(m) be m independent
NBRWs of length t/2 started at x, and Y (1), . . . , Y (m) be m independent NBRWs of length t/2
started independently from the uniform distribution π over H, independent of X(1), . . . ,X(m).
Let C denote the event that their trajectories form a cycle-free graph and that for all 1 ≤ k ≤
m, X

(k)
t/2 ∈ Hi , Y

(k)
t/2 ∈Hj , and

t/2−�α−1∏

=1

1

deg(X
(k)

 )

t/2−�α−1∏

=1

1

deg(Y
(k)

 )

> θ,

for some constant � > 0 to be specified later (note that by our assumption on α, the term α−1

grows much more slowly than the window of order
√

logN
α

). Then, P(C
∣∣G) ≥ (W

θ

i,j )
m, and

P

(
W

θ

i,j >
NiNj

N2 	(λ) + ε

)
≤ P(C)

(
NiNj

N2 	(λ) + ε)m
.

Generate the 2m walks X(1), Y (1), . . . ,X(m), Y (m) one after the other along with the under-
lying types and pairs, as above. Given that the first 
 − 1 pairs already satisfy the desired
property, the conditional chance that X(
), Y (
) also does is at most NiNj

N2 	(λ) + ε/2, uni-
formly in 1 ≤ 
 ≤ m. Indeed:

• either one of the two walks attains length s = �4 log logN� before leaving the graph
spanned by the first 2(
 − 1) trajectories and reaching an unpaired half-edge: the con-
ditional chance is at most 2m2−s = o(1),

• or they both leave the graph before s: the remainder of their trajectory can then be coupled
with (X�

k) and (Y �
k ) for a total-variation cost of O(mt2/N). Thus, it is enough to bound,

uniformly in x, z, z′ ∈ H,

Px,π

(t�/2∏
k=1

deg
(
X�

k

)
deg

(
Y �

k

)
<

1

θ

)
Pz

(
X�

�α−1 ∈ Hi

)
Pz′

(
X�

�α−1 ∈ Hj

)
,
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where t�/2 = t/2− s −�α−1. By (2.2), the constant � can be chosen large enough so that
for all z ∈ H, Pz(X

�
�α−1 ∈ Hi ) ≤ Ni

N
+ ε/8. Also, it is not hard to check that the mixing

time of (X�
k) is of order 1/α, and, since 1/α � t�, the total-variation distance between the

law of X�
t�/2+1 and the law Y �

1 is o(1). And by reversibility of the chain (Y �
k ), we can write

Px,π

(t�/2∏
k=1

deg
(
X�

k

)
deg

(
Y �

k

)
<

1

θ

)
≤ Px

(
t�∏

k=1

deg
(
X�

k

)
<

1

θ

)
+ o(1).

Finally, by Lemma 2.1,

Px

(
t�∏

k=1

deg
(
X�

k

)
<

1

θ

)
= 	(λ) + o(1).

�

4. Proof of Theorem 1.2. In this whole section, we now assume that α = O( 1
logN

).
However, both for the lower and upper bounds, we will use different kinds of arguments
according to the more precise decay of α in this regime.

Let us define the two probability measures π0 and π1 on H by

π0(x) =
⎧⎪⎨⎪⎩

1

N0
if x ∈ H0,

0 otherwise
and π1(x) =

⎧⎪⎨⎪⎩
1

N1
if x ∈ H1,

0 otherwise.

For i = 0,1, let us denote by Oi the set of outgoing half-edges of Hi , and let τi = min{t ≥
0,Xt ∈ Oi}. Without loss of generality, we consider starting points in H0.

Let us first state a lemma that will be used both for the upper and lower bound.

LEMMA 4.1. Assume α � 1
logN

. Then, for s = 2 logN , for all x ∈ H0,∥∥PG
x (Xs ∈ ·) − π0

∥∥
TV = oP(1).

PROOF OF LEMMA 4.1. Let us define the random graph G0 formed with the half-edges
of H0 as follows: the internal half-edges of H0 are paired exactly as in G, and the out-
going half-edges of H0 are paired uniformly at random within each other (recall that p is
even). Since outgoing half-edges are chosen uniformly at random, the graph G0 is exactly
distributed according to the configuration model on H0 with uniform pairing. By the triangle
inequality,∥∥PG

x (Xs ∈ ·) − π0
∥∥

TV ≤ ∥∥PG
x (Xs ∈ ·) − P

G0
x (Xs ∈ ·)∥∥TV + ∥∥PG0

x (Xs ∈ ·) − π0
∥∥

TV.

By Theorem 1.1 of [6], with high probability, the NBRW on G0 has (worst case) cutoff at time
logN0

μ0
. Since all degrees are at least 3, μ−1

0 ≤ (log 2)−1 < 2. Hence for s = 2 logN ,

max
x∈H0

∥∥PG0
x (Xs ∈ ·) − π0

∥∥
TV = oP(1).

On the other hand,

(4.1)
∥∥PG

x (Xs ∈ ·) − P
G0
x (Xs ∈ ·)∥∥TV ≤ P

G
x (τ0 < s) = oP(1),

since E[PG
x (τ0 < s)] = O(sα) = o(1), by our assumption on α. �

REMARK 4.1. Note that the proof of Lemma 4.1 established that for all x ∈ H0,
‖PG

x (Xs ∈ ·) − π0‖TV ≤ Dx where Dx is a random variable that is determined only by the
matching on the internal half-edges of H0, and that maxx∈H0 E[Dx] = o(1).
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4.1. Lower bound. The proof of the lower bound is divided into two parts: first, we con-
sider α � 1√

N
. In this case, the coupling of Section 2 still holds up to the mixing time and

a tighter dependence in ε can be obtained for t
(x)
MIX(ε). Then, using a simple conductance ar-

gument, we establish a lower bound of order 1/α (but with looser dependence in ε), which
holds as soon as α � 1

logN
.

4.1.1. The case α � 1√
N

. In this section, we show that if α � 1√
N

, then for all x ∈ H0,

t
(x)
MIX(ε) ≥ 1 + oP(1)

α
log

(
N1

Nε

)
.

Let δ > 0 and t = 1
α

log( N1
N(ε+δ)

). We have

Dx(t) ≥ P
G
x (Xt ∈H0) − π(H0) = P

G
x (Xt ∈ H0) − N0

N
.

Since t � √
N , the coupling of Section 2 holds up to t with high probability, and equation

(2.2) gives

E
[
P

G
x (Xt ∈ H0)

]= Px

(
X�

t ∈ H0
)+ o(1) = N0

N
+ N1

N
(1 − α)t + o(1).

For large enough N ,

E
[
P

G
x (Xt ∈ H0)

]≥ N0

N
+ ε + δ

2
.

Hence, by Tchebytchev Inequality,

P
(
Dx(t) ≤ ε

)≤ 4 Var(PG
x (Xt ∈H0))

δ2 .

To conclude the lower bound, let us show that Var(PG
x (Xt ∈ H0)) = o(1). The second mo-

ment E[PG
x (Xt ∈ H0)

2] corresponds to the annealed probability that two independent NBRW

started at x are in H0 at time t . Generating the two walks one after the other, and noticing that
the probability that the first exits H0 before time s = �log logN�, or that the second follows
the first for more than s steps is o(1), we obtain

E
[
P

G
x (Xt ∈ H0)

2]=
(

N0

N
+ N1

N
(1 − α)t + o(1)

)(
N0

N
+ N1

N
(1 − α)t−s + o(1)

)
= E

[
P

G
x (Xt ∈ H0)

]2 + o(1).

4.1.2. The case α � 1
log(N)

. Let us recall that the conductance �(S) of a set S ⊂ H is
defined as

�(S) =
∑

x∈S

∑
y∈Sc π(x)P (x, y)∑
x∈S π(x)

.

Observe that

�(H0) = α0 and �(H1) = α1.

By the triangle inequality, we have, for all t ≥ 0,

Dx(t) ≥ ∥∥PG
π0

(Xt ∈ ·) − π
∥∥

TV − ∥∥PG
x (Xt ∈ ·) − P

G
π0

(Xt ∈ ·)∥∥TV.
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On the one hand, for s = 2 logN , and t ≥ s,∥∥PG
x (Xt ∈ ·) − P

G
π0

(Xt ∈ ·)∥∥TV ≤ ∥∥PG
x (Xs ∈ ·) − P

G
π0

(Xs ∈ ·)∥∥TV = oP(1).

Indeed, by Lemma 4.1, ‖PG
x (Xs ∈ ·) − π0‖TV = oP(1), and, by equation 4.1,∥∥PG
π0

(Xs ∈ ·) − π0
∥∥

TV ≤ P
G
π0

(τ0 < s) = o(1).

On the other hand, by [18], equation (7.10),∥∥PG
π0

(Xt ∈ ·) − π
∥∥

TV ≥ N1

N
− P

G
π0

(Xt ∈ H1) ≥ N1

N
− t�(H0).

Hence, for all x ∈ H0,

t
(x)
MIX(ε) ≥ 1

α0

(
N1

N
− ε − oP(1)

)
.

4.2. Upper bound. As for the lower bound, the proof of the upper bound uses different
arguments according to the decay of α. We first consider α � 1

logN
, and then α � 1

logN
.

4.2.1. The case α � 1
log(N)

. Let t = A
αε

with A > 0 some large constant to be specified
later, and s = �2 logN�. By the triangle inequality, for all x ∈H0,

Dx(t + 2s) ≤ ∥∥PG
x (Xs ∈ ·) − π0

∥∥
TV + ∥∥PG

π0
(Xt+s ∈ ·) − π

∥∥
TV.

By Lemma 4.1, ‖PG
x (Xs ∈ ·) − π0‖TV = oP(1). Now observe that∥∥PG

π0
(Xt+s ∈ ·) − π

∥∥
TV = N1

N

∥∥PG
π0

(Xt+s ∈ ·) − P
G
π1

(Xt+s ∈ ·)∥∥TV.

The rest of the proof now follows from a coupling argument. Let (Xk) and (Yk) be two
random walks started at π0 and π1 respectively. First the two random walks evolve inde-
pendently until the first time τ when they are in the same community. From time τ , if they
are both in Hi , if Xτ = x and Yτ = y, then the walks are coupled according to the oti-
mal coupling for the distance at time s, that is, the coupling which attains P

G
x,y(Xs 
= Ys) =

‖PG
x (Xs ∈ ·) − P

G
y (Ys ∈ ·)‖TV. If one of them switch community before they have met, then

we repeat the same coupling, until they meet. Once they meet, they evolve together. By the
strong Markov property, we have∥∥PG

π0
(Xt+s ∈ ·) − P

G
π1

(Yt+s ∈ ·)∥∥TV

≤ P
G
π0,π1

(τ > t) +
t∑

k=1

∑
x,y∈H

P
G
π0,π1

(τ = k,Xτ = x,Yτ = y)PG
x,y(Xt+s−k 
= Yt+s−k)

≤ P
G
π0,π1

(τ > t) + ∑
x,y∈H

P
G
π0,π1

(Xτ = x,Yτ = y)PG
x,y(Xs 
= Ys).

Now,

P
G
π0,π1

(τ > t) ≤ P
G
π0

(τ0 ≥ t) + P
G
π1

(τ1 ≥ t) + P
G
π0,π1

(τ0 = τ1).

Clearly, PG
π0,π1

(τ0 = τ1) = oP(1) since the expectation is O(α). The following lemma states
that, by times of order 1/α, both walks have hit an outgoing half-edge.

LEMMA 4.2. For t = A
αε

with A > 0 large enough,

P
G
π0

(τ0 ≥ t) ≤ ε + oP(1) and P
G
π1

(τ1 ≥ t) ≤ ε + oP(1).
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PROOF OF LEMMA 4.2. First note that

P
G
π0

(τ0 ≥ t) = P
G0
x0

(τ0 ≥ t).

Now let f be the function defined on H0 by f (z) = α0 − 1z∈O0 . Note that

E
G0
π0

f = 0 and E
G0
π0

f 2 = α0(1 − α0) ≤ α0.

We have

P
G0
π0

(τ0 ≥ t) = P
G0
π0

(
1

t

t−1∑
i=0

1Xi∈O0 = 0

)
≤ P

G0
π0

(
1

t

t−1∑
i=0

f (Xi) ≥ α0

)
,

and by Markov Inequality and Cauchy–Schwarz Inequality,

P
G0
π0

(
1

t

t−1∑
i=0

f (Xi) ≥ α0

)
≤ 1

(tα0)2

(
tEG0

π0
f 2 +

t−1∑
k=1

(t − k)EG0
π0

[
f (X0)f (Xk)

])

≤ 1

tα0
+ 1

tα2
0

t−1∑
k=1

√
E

G0
π0

[
f 2

]
E

G0
π0

[
f (Xk)2

]
.

Now, by contraction, EG0
π0 [f (Xk)

2] ≤ (1 − γ0)
k
E

G0
π0 [f 2], where γ0 is the Poincaré constant

of the NBRW on G0. Using Cheeger Inequality and a conductance argument (as in [7],
Lemma 3.5, for the conductance of the simple random walk), we have that with high proba-
bility, γ0 is bounded away from 0. Hence

P
G0
π0

(τ0 ≥ t) ≤ 1

tα0
+ 1

tα0

t−1∑
k=1

(1 − γ0)
k/2 ≤ 1

tα0

(
1 + 1

1 − √
1 − γ0

)
.

For t = A
αε

and A large enough, PG0
π0 (τ0 ≥ t) ≤ ε. �

To conclude the proof, we need to show that, with high probability, once the walks are
in the same community, they couple in logarithmic time. As already observed, PG

π0,π1
(τ0 =

τ1) = oP(1), and on the event τ0 
= τ1, we can write∑
x,y∈H

P
G
π0,π1

(Xτ = x,Yτ = y, τ0 
= τ1)P
G
x,y(Xs 
= Ys)

= ∑
x,y∈H0

1

N0
P

G
π1

(Yτ1+1 = y)PG
x,y(Xs 
= Ys) + ∑

x,y∈H1

1

N1
P

G
π0

(Xτ0+1 = x)PG
x,y(Xs 
= Ys).

For x, y ∈ H0, using the definition of the coupling, the triangle inequality, and Remark 4.1,

P
G
x,y(Xs 
= Ys) = ∥∥PG

x (Xs ∈ ·) − P
G
y (Ys ∈ ·)∥∥TV ≤ Dx + Dy.

Using the fact that, for z ∈ H1, the variable P
G
π1

(Yτ1 = z) is independent from the matching
on the internal half-edges of H0, we obtain

E

[ ∑
x,y∈H0

P
G
π1

(Yτ1+1 = y)

N0
P

G
x,y(Xs 
= Ys)

]

≤ E

[ ∑
x∈H0
z∈H1

P
G
π1

(Yτ1 = z)

N0

∑
y∼η(z)

1

deg(η(z))
(Dx + Dy)

]

≤ ∑
z∈H1

E
[
P

G
π1

(Yτ1 = z)
]
� sup

x∈H0

E[Dx],
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which is o(1) by Lemma 4.1. Similarly,

E

[ ∑
x,y∈H1

1

N1
P

G
π0

(Xτ0+1 = x)PG
x,y(Xs 
= Ys)

]
= o(1),

and this concludes the proof of the upper bound when α � 1
logN

.

4.2.2. The case α � 1
log(N)

. Take now ε < N1/N and t = A
α

log(1/ε), for A > 0 to be

specified later. Bounding the 
1(π)-distance by the 
2(π)-distance, we have

Dx(t) ≤ 1

2

√
N

∑
y∈H

P t(x, y)2 − 1.

Hence

P
(
Dx(t) > ε

)≤ P

(∑
y∈H

P t(x, y)2 >
1 + 4ε2

N

)
.

Note that

E

[∑
y∈H

P t(x, y)2
]

= Px(Xt = Yt ),

where X and Y are two independent NBRW of length t started at x. Recall that the excess of a
graph is the maximal number of edges that can be removed from it while keeping it connected.
To estimate the annealed probability that Xt = Yt , we distinguish different cases:

1. either the graph spanned by X and Y has excess strictly larger than 1: this has proba-

bility O( t4

N2 ), which is o(1/N);
2. or Y follows the trajectory of X up to t : the probability is O(2−t ) which is o(1/N) for

A large enough;
3. or each trajectory cycle-free and there exist s and r with s + r < t such that Y follows

X for the first s steps, then parts and merges back with X for the last r steps. In this situation,
if at time s + 1 both walks are in Hi , the probability that they merge back at time t − r + 1
can be approximated by(

Pπi

(
X�

t−s−r ∈ H0
)2 + o(1)

) 1

N0
+ (

Pπi

(
X�

t−s−r ∈ H1
)2 + o(1)

) 1

N1
.

Summing over s and r such that s + r < t , observing that the contribution from s or r larger
than log logN is negligible, and that, with high probability, for s ≤ log logN , both walks are
still in H0 at time s + 1 (recall that we assumed x ∈ H0), we obtain that

Px(Xt = Yt ) =
(

N0

N
+ N1

N
(1 − α)t

)2 1 + o(1)

N0
+
(

N1

N
− N1

N
(1 − α)t

)2 1 + o(1)

N1
.

Using that (1 − α)t = εA + o(1), we have

Px(Xt = Yt ) = 1 + N1
N

(N1
N0

+ 1)ε2A + o(1)

N
≤ 1 + 2ε2

N
,

for A and N large enough. By Tchebychev Inequality,

P
(
Dx(t) > ε

)≤ N2

1 + 2ε2 Var
(∑

y∈H
P t(x, y)2

)
.
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To conclude the proof, let us show that Var(
∑

y∈H P t(x, y)2) = o(N−2). Proceeding as
above, we first note that

E

[(∑
y∈H

P t(x, y)2
)2]

= Px

(
Xt = Yt ,X

′
t = Y ′

t

)
,

where X, Y , X′ and Y ′ are independent NBRW of length t started at x. Let us again distinguish
different cases:

1. either the graph spanned by the four walks has excess strictly larger than 2: this has
probability O( t6

N3 ), which is o(1/N2);
2. or there exist one walk which evolves only on the graph spanned by the three other

walks: since the excess is at most 2, there are not many possible trajectories to follow and the
probability is O(2−t ), which is o(1/N2) for A large enough;

3. or in the last situation, there exist s, r and s′, r ′ with s + r < t and s′ + r ′ < t such that
Y (resp. Y ′) follows X (resp. X′) for the first s (resp. s ′) steps, then parts and merges back
with X (resp. X′) for the last r (resp. r ′) steps.

Denoting by s� the minimum between t and the first time when all four walks are distinct,
we observe that, when summing over s, r , s′, r ′, the contribution from s� or r r ′ larger than
log logN is negligible, and that, with high probability, for s� ≤ log logN , all walks are still
in H0 at time s�, we obtain that

Px

(
Xt = Yt ,X

′
t = Y ′

t

)
=
((

N0

N
+ N1

N
(1 − α)t

)2 1 + o(1)

N0
+
(

N1

N
− N1

N
(1 − α)t

)2 1 + o(1)

N1

)2

= Px(Xt = Yt )
2 + o

(
1

N2

)
,

and this concludes the proof.
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