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We consider the statistical inverse problem of estimating a background
fluid flow field v from the partial, noisy observations of the concentration θ

of a substance passively advected by the fluid, so that θ is governed by the
partial differential equation

∂

∂t
θ(t,x) = −v(x) · ∇θ(t,x) + κ�θ(t,x), θ(0,x) = θ0(x)

for t ∈ [0, T ], T > 0 and x ∈ T
2 = [0,1]2. The initial condition θ0 and dif-

fusion coefficient κ are assumed to be known and the data consist of point
observations of the scalar field θ corrupted by additive, i.i.d. Gaussian noise.
We adopt a Bayesian approach to this estimation problem and establish that
the inference is consistent, that is, that the posterior measure identifies the
true background flow as the number of scalar observations grows large. Since
the inverse map is ill-defined for some classes of problems even for perfect,
infinite measurements of θ , multiple experiments (initial conditions) are re-
quired to resolve the true fluid flow. Under this assumption, suitable condi-
tions on the observation points, and given support and tail conditions on the
prior measure, we show that the posterior measure converges to a Dirac mea-
sure centered on the true flow as the number of observations goes to infinity.

1. Introduction. In this work we consider the inverse problem of estimating a back-
ground fluid flow from partial, noisy observations of a dye, pollutant, or other solute advect-
ing and diffusing within the fluid. The physical model considered is the two-dimensional
advection-diffusion equation on the periodic domain T

2 = [0,1]2:

(1)
∂

∂t
θ(t,x) = −v(x) · ∇θ(t,x) + κ�θ(t,x), θ(0,x) = θ0(x).

Here:

• θ : R+ × T
2 → R is a passive scalar, typically the concentration of some solute of

interest, which is spread by diffusion and by the motion of a (time-stationary) fluid flow v.
This solute is “passive” in that it does not affect the motion of the underlying fluid.

• v : T2 → R
2 is an incompressible background flow, that is, v is constant in time and

satisfies ∇ · v = 0.
• κ > 0 is the diffusion coefficient, which models the rate at which local concentrations of

the solute spread out within the solvent in the absence of advection.

We obtain finite observations Y ∈ R
N subject to additive noise η, that is,

(2) Y = G(v) + η, η ∼ γ0
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for some measure γ0 related to the precision of the observations. Here, the forward map
G : H →R

N associates the background flow v, sitting in a suitable function space H , with a
finite collection of measurements (observables) of the resulting solution θ = θ(v) of (1). In
this work, we are primarily interested in spatial-temporal point observations:

(3) Gj (v) := θ(tj ,xj ,v) for any tj ∈ [0, T ] and xj ∈ [0,1]2.

The goal of the inverse problem is then to estimate the flow v from data Y . The initial con-
dition is assumed to be known, so the problem can be interpreted as a controlled experiment,
where the solute is added at known locations and then observed as the system evolves to
investigate the structure of the underlying flow. This is a common experimental approach to
investigating complex fluid flows; see, for example, Karch et al. (2012), Kellay and Goldburg
(2002), Smits (2012), Wolfgang (1987).

As we will illustrate, the inverse problem is ill-posed, that is, the flow v is not uniquely de-
fined by the scalar field θ ; that the observations of θ are both finite-dimensional and polluted
by noise exacerbates this problem. We therefore adopt a Bayesian approach to regularize the
inverse problem, as described for this problem in our companion work Borggaard, Glatt-Holtz
and Krometis (2018) (see also Krometis (2018)) and in a more general setting in, for example,
Dashti and Stuart (2017), Kaipio and Somersalo (2005), Stuart (2010). A key component of
this approach is the selection of a prior probability measure on the space of divergence-free
flows, H . It is then natural to ask to what extent the result of the inference depends on the
choice of prior, and in particular whether the Bayesian approach to the inverse problem is
consistent: That is, under what conditions does the posterior measure concentrate on the true
fluid flow as the number of observations N of θ grows large?

In this work, we establish conditions under which the Bayesian inference of v given data
(2) is consistent for i.i.d. observational noise η = (η1, . . . , ηN), ηj ∼ N(0, σ 2

η ). We then prove
that the posterior measure converges weakly to a Dirac measure centered on the true back-
ground flow as the number of scalar observations N grows large; see Section 3 for a full
statement of the assumptions and the key result. Here it is a nontrivial task to determine
suitable conditions on the structure of the observed data and on the prior measure for which
consistency would be expected to hold. As such, as a crucial starting point for the analysis of
consistency, one must address difficult experimental design questions.

In our problem, even under the noiseless and complete measurement of θ , essential sym-
metries can prevent the recovery of v. For example, a poor choice of θ0 in (1) makes it im-
possible to distinguish between (an infinite class of) laminar flows, so multiple experiments
(initial conditions) are required to guarantee resolution of the true background flow. A second
useful structural condition is that, by picking spatial-temporal observation points at random,
we can ensure a sufficiently complete recovery of the solution θ as the number of observa-
tion points grows. Third, it is worth emphasizing that we require special conditions on the
prior measure. Crucially, we identify a tail condition that ensures that flows are sufficiently
smooth—that is, the prior turns out to be critical to the result by restricting consideration to
flows of limited roughness (up to a region of low probability).

An important outcome of this experimental design is that it allows us to use compactness
to effectively constrain the space of possible divergence-free velocity fields. Indeed, com-
pactness plays an important role in two components of the consistency proof. First, we use it
to show the continuity of the inverse map from θ to v (see Section 4). Second, we use it to
develop a suitable uniform version of the law of large numbers in order to show that noisy
observations can differentiate between the true and other scalar fields (Section 5).

Consistency of Bayesian estimators has been of interest since at least Laplace (1810), with
rigorous proofs of convergence for some problems appearing in the mid-twentieth century
(Doob (1949), Le Cam (1953)). The works Diaconis and Freedman (1986), Freedman (1963),
Schwartz (1965) identified infinite-dimensional examples where Bayesian estimators are not
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consistent—that is, there are cases where the data can never guarantee recovery of the true
parameter value. See, for example, Wasserman (1998), Le Cam and Yang (2000) or Nickl
(2013) for a more detailed description on the history of consistency and the main ideas.

In recent years, there has been interest in extending these consistency results to infinite-
dimensional inverse problems, and in particular those constrained by PDEs. Our result is one
of the first on consistency in this context. Recent work in this area includes Vollmer (2013),
which used an elliptic PDE as the guiding example, and Nickl (2017), which establishes
a Bernstein–von Mises theorem—consistency, but also contraction rates in the form of a
Gaussian approximation—for Bayesian estimation of parameters of the time-independent
Schrödinger equation.

It is worth noting that the related inverse problem of estimating the drift function b from
partial observations {X1, . . . ,XN } of the Itô diffusion

(4) dXt = b(Xt) dt + σ(Xt) dWt, t > 0

has been studied extensively; see, for example, Papaspiliopoulos et al. (2012) or Gugushvili
and Spreij (2014). Consistency has been established in various forms for this problem; see
Abraham (2019), Koskela, Spanò and Jenkins (2019), Nickl and Söhl (2017), van der Meulen
and van Zanten (2013). However, while the equations (1) and (4) are related by the Kol-
mogorov equations (see, e.g., Øksendal ((2013), Chapter 8)), the observed data are different:
Observations of an individual diffusion provide an approximate measurement of the drift,
whereas observations of the concentration θ are less direct—movement of individual parti-
cles must be inferred. Our consistency proof therefore, while retaining some similarities with
other such arguments, requires an original approach with different assumptions.

The remainder of the paper is organized as follows. Section 2 describes the mathematical
framework of the inverse problem and why it is ill-posed in the traditional sense. The main
result and key assumptions are stated in Section 3. Continuity of the inverse map is shown
in Section 4. Uniform convergence of the log-likelihood is shown in Section 5. Convergence
of the posterior to the inverse image of the true scalar field is shown in Section 6. Finally,
the proof of the main result is provided in Section 7. Energy estimates for the advection-
diffusion problem used to show continuity of the forward and inverse maps are reserved for
the Appendix.

2. Preliminaries. In this section, we describe the mathematical framework of the inverse
problem (2). We begin by defining the functional analytic setting for the problem, including
how we represent divergence-free background flows. We then define the inverse problem, key
notation and Bayes’ Theorem for this application.

2.1. Representation of divergence-free background flows. The target of the inference is a
divergence-free background flow v, so we start by describing the space H of such flows that
we consider. For this purpose we begin by recalling the Sobolev spaces of (scalar valued)
periodic functions on the domain T

2 = [0,1]2

(5)

Hs(
T

2)= {
u : u = ∑

k∈Z2\{0}
cke2πik·x, ck = c−k,‖u‖Hs < ∞

}
,

where ‖u‖2
Hs := ∑

k∈Z2

‖k‖2s |ck|2,

defined for any s ∈ R; see, for example, Robinson (2001), Temam (1995). We will abuse no-
tation and use the same notation for periodic divergence-free background flows by replacing
the coefficients ck in (5) as

(6) ck = vk
k⊥

‖k‖2
, vk = −v−k,
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where for k = (k1, k2) we set k⊥ = (−k2, k1) to ensure k · k⊥ = 0. Throughout the rest of the
paper we fix our parameter space as follows:

NOTATION 2.1 (Parameter space, H ). We consider background flows v ∈ H , where H

is the Sobolev space (see (5)),

(7) H = Hm(
T

2) for some m > 1

with coefficients ck given by (6).

Here the exponent m is chosen so that vector fields in H , as well as their corresponding
solutions θ(v), exhibit continuity properties convenient for our analysis below (see Corol-
lary 2.4 below). We take Lp(T2) with p ∈ [1,∞] for the usual Lebesgue spaces and de-
note the space of continuous and pth integrable, X-valued functions by C([0, T ];X) and
Lp([0, T ];X), respectively, for a given Banach space X. All of these spaces are endowed
with their standard topologies unless otherwise specified.

2.2. Mathematical setting of the advection-diffusion problem. In this section, we pro-
vide a precise definition of solutions θ for the advection-diffusion problem (1). Crucially the
setting we choose yields a map from v to θ and then to observations of θ that is continuous.

PROPOSITION 2.2 (Well-posedness and continuity of the solution map for (1)).

(i) Fix any s ≥ 0 and m ≥ s with m > 0 and suppose that v ∈ Hm(T2) and θ0 ∈ Hs(T2).
Then there exists a unique θ = θ(v, θ0) such that

θ ∈ L2
loc
([0,∞);Hs+1(

T
2))∩ L∞([0,∞);Hs(

T
2))

with
∂θ

∂t
∈ L2

loc
([0,∞);Hs−1(

T
2))

so that in particular

θ ∈ C
([0,∞);Hs(

T
2))

solves (1) at least weakly. In other words, θ satisfies

(8)
〈
∂θ

∂t
, φ

〉
H−1(T2)×H 1(T2)

+ 〈v · ∇θ,φ〉L2(T2) + κ〈∇θ,∇φ〉L2(T2) = 0

for all φ ∈ H 1(T2) and almost all times t ∈ [0,∞).
(ii) For any T > 0 the map that associates v ∈ Hm(T2) and θ0 ∈ Hs(T2) to the corre-

sponding θ(v, θ0) is continuous relative to the standard topologies on Hm(T2) × Hs(T2)

and C([0, T ];Hs(T2)).

This result can be proven using energy methods; similar results can be found for example
in Evans (2010), Lieberman (1996). In the case of a smooth solution where s > 3 one may
also establish Proposition 2.2 using particle methods as in for example, Øksendal (2013) by
observing that (1) is the Kolmogorov equation corresponding to a stochastic differential equa-
tion with the drift given by v; see Krometis (2018) for details in our setting. For completeness,
we provide the a priori estimates leading to Proposition 2.2 in the Appendix.

DEFINITION 2.3 (Solution operator S , observation operator O). Fix θ0 ∈ Hs(T2) and a
time T > 0 and consider the phase space H defined as (7). The forward map G as in (2) is
interpreted as the composition G(v) = O ◦ S(v), where:
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1. The solution operator S : H → C([0, T ];Hs(T2)) maps a given v to the corresponding
solution θ(v, θ0) of (1) (in the sense of Proposition 2.2).

2. The observation operator O : C([0, T ];Hs(T2)) → R
N measures point observations

O(θ) = (O1(θ), . . . ,ON(θ)) defined by Oj (θ) = θ(tj ,xj ) for tj ∈ [0, T ] and xj ∈ [0,1]2.

We now note assumptions on v and θ0 under which these observations are well defined
and vary continuously with v.

COROLLARY 2.4 (Continuity of θ ). Let v ∈ H with associated exponent m > 1 (see (7))
and let θ0 ∈ Hs , for m ≥ s > 1. Recalling that Hs(T2), s > 1 embeds continuously in C(T2)

in dimension 2 (see, e.g., Robinson (2001), Theorem A.1) we have that C([0, T ];Hs) ⊂
C([0, T ] × T

2) again with the embedding continuous. Thus, with Proposition 2.2, we have
that

S : H → C
([0, T ] ×T

2)
continuously. In particular this justifies that G is well defined and continuous in the case of
point observations as in Definition 2.3.

2.3. Bayesian setting of the inverse problem. In this subsection, we define the setting of
the statistical inverse problem and note cases where the inverse map is ill-posed. This will
inform the assumptions required for the consistency argument. We close with a definition of
Bayes’ theorem for this problem.

We begin by fixing some notation used in the remainder of the paper.

DEFINITION 2.5 (v�, Y , G, η). We frequently fix a “true” background flow by v� ∈ H .
For the given v�, the observed data Y is given by

Y = G
(
v�)+ η,

where

• the forward map G : H → R
N with Gj (v) := θ(tj ,xj ;v) corresponding to the observa-

tion point (tj ,xj ) ∈ [0, T ] × [0,1]2;
• the observational noise η = {η1, . . . , ηN } ∈R

N for i.i.d. ηj ∼ N(0, σ 2
η ).

We emphasize, however, that v� is not necessarily the only v that could produce such data,
as we describe in the next remark.

REMARK 2.6. Since the background flow v enters (1) through the v · ∇θ term, the in-
verse problem of recovering v from θ(v) can be ill-posed. One important class of examples
illustrating this difficulty arises when v · ∇θ is zero everywhere, in which case the fluid flow
does not have any effect on θ . Two such examples are as follows:

(i) Ill-posedness: Laminar flow: Let θ0(x) be independent of x2 and v� = (0, f (x1)). Then
θ(v�) = θ(v) for any v = (0, g(x1)).

(ii) Ill-posedness: Radial symmetry: Set θ0(x) ∝ sin(πx1) + sin(πx2) and v� =
(cos(πx2),− cos(πx1)). Then θ(v�) = θ(v) for any v = cv�, c ∈R.

In these cases, even noiseless and complete spatial/temporal observations of θ have no way to
discriminate between a range of background flows, making it impossible to uniquely identify
a true background flow v� in general.
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We have following adaptation of Bayes’ Theorem to the advection-diffusion problem; see
the derivation in Borggaard, Glatt-Holtz and Krometis ((2018), Appendix C) or Dashti and
Stuart (2017) for additional information.

THEOREM 2.7 (Bayes’ theorem). Fix a prior distribution μ0 ∈ Pr(H) and let forward
maps Gj , data Yj , and associated i.i.d. observational noise ηj ∼ N(0, σ 2

η ) be as defined in
Definition 2.5. Then the posterior measure μY associated with the random variable v|Y is
absolutely continuous with respect to μ0 and given by

(9) μY(dv) = 1

ZY
exp

[
− 1

2σ 2
η

N∑
j=1

(
Yj − Gj (v)

)2]
μ0(dv),

where ZY is the normalization

(10) ZY =
∫
H

exp

[
− 1

2σ 2
η

N∑
j=1

(
Yj − Gj (v)

)2]
μ0(dv).

3. Statement of the main result. With the mathematical preliminaries in Section 2 in
hand, we are now ready to provide a precise formulation of the main result of the paper. Re-
ferring back to Remark 2.6 we do not expect consistency to hold without delicate assumptions
on the initial conditions in (1) and on the observation points in our forward function G in (2).
Moreover our result relies on the selection of an appropriate prior μ0. In particular this μ0
should distinguish the regularity of the ‘true’ background flow v� for which we assume there
is greater degree of spatial smoothness than for generic elements in the ambient parameter
space H (although a slight generalization is described in Remark 3.9). We therefore define
an additional smaller space used throughout.

DEFINITION 3.1 (Higher regularity space). Define the space

(11) V = Hm�(
T

2), m� > m,

where m is the exponent associated with the parameter space H defined according to (7). We
denote ‖ · ‖V for the associated norm and take

(12) Br
V (v0) = {

v ∈ V : ‖v − v0‖V ≤ r
}
,

that is, the ball about v0 ∈ V of radius r > 0 in the V -norm.

Our main result is as follows:

THEOREM 3.2 (Convergence of posterior to a Dirac). Let {(tj ,xj )}∞j=1 be a sequence of

observation points that we assume are i.i.d. uniform random variables in [0, T ]×T
2. Fix any

θ
(1)
0 , θ

(2)
0 ∈ Hm, with m > 1 determined from (7), such that

(13)
(∇θ

(1)
0 (x)

)⊥ · ∇θ
(2)
0 (x) �= 0 for almost all x ∈ T

2.

Define the parameter-to-observable (forward) maps Gj for {(tj ,xj )}∞j=1 and the initial con-

ditions θ
(1)
0 , θ

(2)
0 by

(14)
G2j−1(v) := θ

(
tj ,xj ,v, θ

(1)
0

)
,

G2j (v) := θ
(
tj ,xj ,v, θ

(2)
0

)
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for j = 1,2, . . . . As in Definition 2.5, we fix any v� ∈ V and draw data points {Yj }∞j=1, where

Yj = Gj

(
v�)+ ηj(15)

for i.i.d. observational noises ηj ∼ N(0, σ 2
η ) that are independent of the observation points

{(tj ,xj )}∞j=1.

Fix a prior distribution μ0 ∈ Pr(H) and for N ≥ 1 observations, let μN
Y be the Bayesian

posterior measure on H , given by (cf. Theorem 2.7)

μN
Y (dv) = 1

ZN
Y

exp

[
− 1

2σ 2
η

N∑
j=1

(
Yj − Gj (v)

)2]
μ0(dv),(16)

where ZN
Y is the normalization

ZN
Y =

∫
H

exp

[
− 1

2σ 2
η

N∑
j=1

(
Yj − Gj (v)

)2]
μ0(dv).

Suppose that

for any r > 0, μ0
(
Br

V

(
v�))> 0.(17)

Additionally assume that there exists an f : R+ → R
+ such that f is monotone increasing

with limr→∞ f (r) = ∞ and

sup
N

∫
H

f
(‖v‖V

)
μN
Y (dv) < ∞ a.s.(18)

Then μN
Y ⇀ δv� (weakly in H ) almost surely. In other words, on a set of full measure,∫

H
φ(v)μN

Y (dv) → φ
(
v�) as N → ∞ for any φ ∈ Cb(H).(19)

REMARK 3.3 (Support of the prior). We note that the assumption (17) is a classic as-
sumption in posterior consistency, cf. Ghosal and van der Vaart ((2017), Chapter 6); if the
prior “rules out” the true flow, the posterior cannot recover it.

REMARK 3.4 (Equivalent prior tail condition). Condition (18) is equivalent to the as-
sumption that for all ε > 0 there exists an R such that

sup
N

μN
Y
((

BR
V (0)

)c)
< ε.(20)

To establish that (18) implies (20), let ε > 0 and choose R such that

sup
N

∫
H

f
(‖v‖V

)
μN
Y (dv) < εf (R).

Then for any N ≥ 1, Markov’s inequality yields

μN
Y
((

BR
V (0)

)c)= ∫
(BR

V (0))c
μN
Y (dv) ≤ 1

f (R)

∫
H

f
(‖v‖V

)
μN
Y (dv) < ε.

Thus, (18) implies (20). For the converse direction, use (20) to select an increasing sequence
{Rj }∞j=1 such that

sup
N

μN
Y
((

B
Rj

V (0)
)c)

<
1

4j
.
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Now define f (r) =∑∞
j=1 2j1r∈[Rj ,Rj+1). Then

sup
N

EμN
Y
f
(‖v‖V

)= sup
N

EμN
Y

∞∑
j=1

2j1‖v‖V ∈[Rj ,Rj+1) ≤ sup
N

EμN
Y

∞∑
j=1

2j1
v∈(B

Rj
V (0))c

=
∞∑

j=1

2j sup
N

μN
Y
((

B
Rj

V (0)
)c)

<

∞∑
j=1

2j 1

4j
=

∞∑
j=1

1

2j
< ∞

so that (20) implies (18).

REMARK 3.5 (Sufficient conditions on the prior). Suppose that

μ0
(
Br

V (0)
)= 1(21)

for some r > 0. In this case, (20) and therefore (18) (see Remark 3.4) are clearly satisfied.
Thus we can guarantee the existence of a class of nontrivial priors such that Theorem 3.2
holds. On the other hand the reverse implication is not to be expected to hold and thus the
general significance of (18) for the admissible classes of μ0 is not immediately clear. In
particular μ0 having bounded support is a strong restriction and indeed we conjecture that
there is a class of Gaussian measures on V such that (18) still holds. We will investigate this
question in future work.

REMARK 3.6 (Poincaré inequality, support of μ0). Since we are assuming that elements
in H are mean-free (see (5)) we have the Poincaré-type inequality

‖v‖H ≤ C‖v‖V(22)

for a constant C independent of v. As such, for any ε > 0, Bε
V ⊂ BCε

H where C is the constant
appearing in (22). In particular under the condition (17) in Theorem 3.2 we have that v� ∈
supp(μ0) = {v ∈ H : μ0(B

r
H (v�)) > 0, for all r > 0}.

REMARK 3.7 (Restrictions on the initial conditions). It unavoidable that we impose a
condition such as (13) on the initial data in Theorem 3.2. In Remark 2.6 we provide two
examples where the observations have no way to discriminate between a range of background
flows. In these two examples as well as many other classes of initial conditions, the posterior
fails to concentrate on v� as the number of observations N → ∞ (except for very particular
priors). An interesting question for future work is to characterize the support of the limiting
measure for the analogue of μN

Y as N → ∞ as a function of a single initial condition θ0.

REMARK 3.8 (The role of T ). It is worth noting that any T > 0 suffices for consistency.
This is because the two initial conditions have been chosen so that any v will have an imme-
diate effect on at least one of θ(1), θ (2). As a result, we need only observe the evolution of
the two systems for some nonzero time interval to identify the effect of v� (as the number of
observations grows large). The question of how T > 0 (and hence the placement of observa-
tion points) affects the rate at which μN

Y converges to δv� is a much more delicate question
for future work.

REMARK 3.9 (Case where v� /∈ V ). As pointed out by a helpful reviewer, Theorem 3.2
can be extended to the case where v� /∈ V by replacing Br

V (v�) with v� + Br
V (0) throughout

the proof, as long as the assumption (18) is appropriately recentered on v�, that is,

sup
N

∫
H

f
(∥∥v − v�

∥∥
V

)
μN
Y (dv) < ∞ a.s.
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or, as in Remark 3.4, for all ε > 0 there exists R such that

sup
N

μN
Y
((

v� + BR
V (0)

)c)
< ε.

That is, the prior needs to help rule out flows that are far from v� as measured by ‖·‖V .

Before turning to the technical details let us provide an overview of the method of the
proof of Theorem 3.2. Our starting point is based on two basic observations. First, according
to Portmanteau’s Theorem, condition (19) can be established with the equivalent condition
that

lim inf
N≥1

μN
Y
(
Bε

H

(
v�))≥ 1(23)

for any ε > 0. See for example, Billingsley (2013) for further details on such generalities
concerning the weak convergence of probability measures.

Our second observation concerns using the law of large numbers to identify the approxi-
mate character of the potential terms in (16) for large N . Referring back to (15) and (16), we
have (

Yj − Gj (v)
)2 = η2

j + 2ηj

(
Gj

(
v�)− Gj (v)

)+ (Gj

(
v�)− Gj (v)

)2
.

Invoking the law of large numbers, using assumed statistical properties of {ηj }j≥1 and
{(tj , xj )}j≥1, we have

1

N

N∑
j=1

(
Yj − Gj (v)

)2

≈ σ 2
η + 1

T

2∑
l=1

∫ T

0

∫
T2

(
θ
(
t, x,v, θ

(l)
0

)− θ
(
t, x,v�, θ

(l)
0

))2
dxdt

(24)

for all N sufficiently large.1 For δ > 0, take

Xδ =
{

v ∈ H :
2∑

l=1

∫ T

0

∫
T2

(
θ
(
t, x,v, θ

(l)
0

)− θ
(
t, x,v�, θ

(l)
0

))2
dxdt < δ2

}
.(25)

Invoking (24), we observe that

μN
Y
(
X c

δ

)≈
∫
X c

δ
exp[− N

4σ 2
η T

∑2
l=1
∫ T

0
∫
T2(θ(θ

(l)
0 ,v) − θ(θ

(l)
0 ,v�))2 dxdt]μ0(dv)∫

exp[− N
4σ 2

η T

∑2
l=1
∫ T

0
∫
T2(θ(θ

(l)
0 ,v) − θ(θ

(l)
0 ,v�))2 dxdt]μ0(dv)

≤
exp(− Nδ2

4σ 2
η T

)μ0(X c
δ )∫

Xδ/2
exp[− N

4σ 2
η T

∑2
l=1
∫ T

0
∫
T2(θ(θ

(l)
0 ,v) − θ(θ

(l)
0 ,v�))2 dxdt]μ0(dv)

≤
exp(− 3Nδ2

16σ 2
η T

)

μ0(Xδ/2)
.

(26)

Here note that (cf. Remark 3.6) v� ∈ supp(μ0) so that we are not dividing by zero in the final
upper bound.

1Referring back to Section 2.1 we are assuming that T2 is unit length.
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One is thus tempted to now combine (23) and (26) and find for every ε > 0 a corresponding
δ > 0 such that

Xδ ⊂ Bε
H(27)

so that

μN
Y
(
Bε

H

)≥ μN
Y (Xδ) ≥ 1 −

exp(− 3Nδ2

16σ 2
η T

)

μ0(Xδ/2)
,

yielding the desired weak convergence (19). However this naïve argument runs up against
two fundamental flaws:

(i) Although, as we establish below in Lemma 4.3, the condition (24) ensures that the
map v �→ (θ(·, θ (1)

0 ,v), θ(·, θ(2)
0 ,v)) is injective into L2([0, T ]×T

2) it is not clear if this map
has a continuous inverse, which we would need for (27).

(ii) It is not obvious that we have sufficient uniformity over v ∈ H in our invocation of the
LLN in (24). In particular this means that the approximation in the first line in (26) would be
unjustified.

We address both of these concerns by assuming a little bit of extra regularity for our “true
vector field” taking v� ∈ V and by making effective use of the prior to identify this regularity
for v� (see assumptions (17), (18)). With the Rellich–Kondrachov theorem we are thus able to
use “compactness” to address both concerns. Indeed although an injective, continuous map ψ

does not have a continuous inverse in general, this property does hold true when the domain of
ψ is compact; see Lemma 4.4 below. Regarding the second concern, we establish a uniform
version of the LLN Proposition 5.1 below (and see also Newey and McFadden (1994), Nickl
(2013)) but our proof makes essential use of the fact that the “parameter” (which for us is
v ∈ H ) lies in a compact set.

The precise proof of Theorem 3.2 is presented in a series of sections as follows. Firstly in
Section 4 we address the injectivity of the forward map under (13) as well as continuity of
the inverse map. In Section 5 we introduce a uniform version of the Law of Large Numbers,
Proposition 5.1 and use this Proposition to obtain a quantitative version of (24). Section 6
establishes that μN

Y converges on the “true scalar field” θ(v�) as N → ∞. Finally Section 7
uses the machinery now in place to complete the proof of Theorem 3.2.

4. Continuity of inverse map. In this section, we lay out conditions under which the
inverse solution map θ �→ v is continuous. This requires some care. Indeed it is not true in
general that the forward map S is injective, as illustrated in Remark 2.6. As such, counterex-
amples to Theorem 3.2 exist (cf. Remark 3.7) if we fail to impose a suitable assumption on
the initial condition(s) for (1) à la (13).

With this in mind we now define the solution map associated with the solution of (1) for
the multiple initial conditions.

NOTATION 4.1 (Paired solution map S̃). Fix any θ
(1)
0 , θ

(2)
0 ∈ Hm for m > 1 as in (5)

and let θ(1)(v), θ(2)(v) be the associated solutions of (1) corresponding to v ∈ H defined
according to Proposition 2.2. We denote

S̃(v) = (
θ
(·,v, θ

(1)
0

)
, θ
(·,v, θ

(2)
0

))
,

regarding S̃ as a map S̃ : H → L2([0, T ] ×T
2)2.

We now observe that the the paired solution map S̃ is continuous (Corollary 4.2) and that
under condition (13), S̃ is 1-to-1 (Lemma 4.3).
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COROLLARY 4.2 (S̃ continuous). The paired solution map S̃ : H → L2([0, T ] × T
2)2

(see Notation 4.1) is continuous.

PROOF. For any θ0 ∈ Hm (with m as in (7)) the associated solution map S : H →
L2([0, T ] ×T

2) given by S(v) = θ(·,v, θ0) is continuous by Corollary 2.4 so that the map S̃
is also continuous. �

LEMMA 4.3 (S̃ injective). Let S̃ be the paired solution map given in Notation 4.1 with
initial conditions satisfying (13). Suppose that v, ṽ ∈ H such that

(28)
∥∥S̃(v) − S̃(ṽ)

∥∥
L2([0,T ]×T2)2 = 0.

Then v = ṽ, or in other words, S̃ is injective.

PROOF. Let v, ṽ ∈ H satisfy (28), that is,∥∥θ(i)(·,v) − θ(i)(·, ṽ)
∥∥
L2([0,T ]×T2) = 0, i = 1,2.

Then θ(i)(t,x,v) = θ(i)(t,x, ṽ) for almost all t,x and i = 1,2. Denote θ(i)(t,x) :=
θ(i)(t,x,v) = θ(i)(t,x, ṽ). Then from Proposition 2.2, θ(i)(t,x) satisfies

(29)
〈
∂θ(i)

∂t
, φ

〉
H−1(T2)×H 1(T2)

+ 〈
u · ∇θ(i), φ

〉
L2(T2) + κ

〈∇θ(i),∇φ
〉
L2(T2) = 0

for all φ ∈ H 1(T2), almost all time t ∈ [0,∞), i = 1,2, and u = v, ṽ. Subtraction leads to

(30) g(t) = 〈
(v − ṽ) · ∇θ(i)(t), φ

〉
L2(T2) = 0

for all φ ∈ H 1(T2), almost all time t ∈ [0,∞), and i = 1,2. Since we also have

(31) g(t) = −〈θ(i)(t), (v − ṽ) · ∇φ
〉
L2(T2)

and θ(i) ∈ C([0,∞);L2(T2)) by Proposition 2.2 we infer that g(t) = 0 for all t ≥ 0 and in
particular g(0) = 0. Therefore

(32)
(
v(x) − ṽ(x)

) · ∇θ
(i)
0 (x) = 0

for i = 1,2 and almost all x ∈ T
2. However, under the assumption (13), ∇θ

(1)
0 (x),∇θ

(2)
0 (x)

span R
2 at almost all x. Therefore ṽ(x) = v(x) for almost all x and hence ‖v − ṽ‖H = 0,

completing the proof. �

Even under the conditions of Lemma 4.3 it remains unclear if S̃ has a continuous inverse.
To remedy this we recall the following elementary fact from real analysis suggesting we
further restrict the domain of S̃ .

LEMMA 4.4. Let Y,Z be metric spaces and suppose that B ⊂ Y is compact. Let f :
Y → Z be injective and continuous. Then f −1 : f (B) → Y is also continuous.2

PROOF. See, for example, Rudin ((1964), Theorem 4.17). �

From Lemma 4.4 we draw the following two conclusions.

2Here, we denote f (B) := {f (y) ∈ Z : y ∈ B}.
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COROLLARY 4.5 (S̃−1 continuous). Let S̃ : H → L2([0, T ] × T
2)2 be the paired solu-

tion map given in Notation 4.1 with initial conditions meeting (13). Then, for any r > 0 and
v0 ∈ V , S̃−1 : S̃(Br

V (v0)) → H is continuous.

PROOF. We have S̃ : H → L2([0, T ] × T
2)2 continuous by Corollary 4.2 and injective

by Lemma 4.3. We also have Br
V (v0) compact in H by the Rellich–Kondrachov Theorem;

see, for example, Corollary A.5 of Robinson (2001). Therefore, S̃−1 : S̃(Br
V (v0)) → H is

continuous by Lemma 4.4. �

COROLLARY 4.6. Let r > 0 and v0 ∈ V . For all ε > 0, there exists a δ > 0 such that{
v ∈ H : ∥∥S̃(v) − S̃(v0)

∥∥
L2([0,T ]×T2)2 < δ

}∩ Br
V (v0) ⊂ Bε

H (v0).

5. Concentration of normalized potentials, uniform law of large numbers. The next
step in our analysis is to prove a rigorous and more quantitative version of (24), Proposi-
tion 5.2, which yields the asymptotics of the potential functions (log-likelihoods) appearing
in the posterior measures μN

Y defined as in (16). As a preliminary step we introduce a uniform
version of the law of large numbers. See also Newey and McFadden (1994), Nickl (2013) for
previous related results.

PROPOSITION 5.1 (Uniform law of large numbers). Let (X,ρ) be a metric space with
B ⊂ X compact and f : Rn × X → R (Borel) measurable. Take {Zj }∞j=1 ∈ R

n to be an
i.i.d. sequence of random variables and let Z be any random variable with this distribution.
Assume that

Ef (Z,x)2 < ∞ for all x ∈ B(33)

and that there exists a deterministic function d : Rn → R
+ with Ed(Z)2 < ∞ such that for

all ε > 0 and x ∈ B , there exists a δ = δ(x, ε) > 0 such that

ρ(x, x̃) < δ =⇒ ∣∣f (z, x) − f (z, x̃)
∣∣≤ d(z)ε for all z ∈ R

n.(34)

Then

lim
N→∞ sup

x∈B

∣∣∣∣∣ 1

N

N∑
j=1

f (Zj , x) −Ef (Z,x)

∣∣∣∣∣= 0 a.s.(35)

PROOF. Note that, since d is nonnegative, Ed(Z) = 0 implies that

�̃ =
∞⋂

j=1

{
ω ∈ � : d(Zj(ω)

)= 0
}

is a set of full measure in which case the random functions x �→ f (Zj , x), j = 1,2, . . . are
all constant on �̃ and the result (35) follows for this special case.

We turn to the nontrivial case where Ed(Z) �= 0. Define g(z, x) := f (z, x) − Ef (Z,x),
z ∈ R

n, x ∈ X. Then by our assumptions on f , Eg(Z,x)2 < ∞ for every x ∈ B . Note also
that for any x, x̃ ∈ X, ε > 0, and z ∈R

n,∣∣f (z, x) − f (z, x̃)
∣∣≤ d(z)ε =⇒ ∣∣g(z, x) − g(z, x̃)

∣∣≤ [d(z) +Ed(Z)
]
ε.(36)

Fix any ε > 0. Then by (34) and (36), for each x ∈ B there exists a δ(x, ε) > 0 such
that ρ(x̃, x) < δ(x, ε) implies |g(z, x̃) − g(z, x)| < d(z)+Ed(Z)

2Ed(Z)
ε. Let Bδ(x,ε)(x) = {x̃ ∈ X :
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ρ(x̃, x) < δ(x, ε)} and note that
⋃

x∈B Bδ(x,ε)(x) ⊃ B . Then since B is compact, there exists
a finite subcovering {Bδi (xi)}mi=1, δi := δ(xi, ε) such that

m⋃
i=1

Bδi (xi) ⊃ B.

Let x ∈ B and let i be an index such that x ∈ Bδi (xi). Then∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , x)

∣∣∣∣∣≤
∣∣∣∣∣ 1

N

N∑
j=1

(
g(Zj , x) − g(Zj , xi)

)∣∣∣∣∣+
∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , xi)

∣∣∣∣∣
≤ ε

2Ed(Z)

∣∣∣∣∣ 1

N

N∑
j=1

d(Zj ) +Ed(Z)

∣∣∣∣∣+
∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , xi)

∣∣∣∣∣.
Taking the supremum over x and using the subcovering yields

sup
x∈B

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , x)

∣∣∣∣∣
≤ max

i=1,...,m
sup

x∈Bδi (xi)

[
ε

2Ed(Z)

∣∣∣∣∣ 1

N

N∑
j=1

d(Zj ) +Ed(Z)

∣∣∣∣∣+
∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , xi)

∣∣∣∣∣
]

≤ ε

2Ed(Z)

∣∣∣∣∣ 1

N

N∑
j=1

d(Zj ) +Ed(Z)

∣∣∣∣∣+ max
i=1,...,m

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , xi)

∣∣∣∣∣.
Then the strong law of large numbers gives

lim sup
N→∞

[
sup
x∈B

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , x)

∣∣∣∣∣
]

≤ lim sup
N→∞

(
ε

2Ed(Z)

∣∣∣∣∣ 1

N

N∑
j=1

d(Zj ) +Ed(Z)

∣∣∣∣∣
+ max

i=1,...,m

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , xi)

∣∣∣∣∣
)

≤ ε
2Ed(Z)

2Ed(Z)
+ max

i=1,...,m
Eg(Z,xi) = ε a.s.,

where the last equality follows from the fact that Eg(Z,x) = 0 for all x. Thus, we have

�ε :=
{

lim
N→∞ sup

x∈B

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , x)

∣∣∣∣∣< ε

}

has probability 1 for all ε > 0. Then taking �0 =⋂∞
k=1 � 1

k
and invoking the continuity of

measures,

P{�0} = P

{
lim

N→∞ sup
x∈B

∣∣∣∣∣ 1

N

N∑
j=1

g(Zj , x)

∣∣∣∣∣= 0

}
= lim

K→∞P

{
K⋂

k=1

� 1
k

}
= 1,

which is the desired result. �

We now use this uniform law of large numbers to show that for large N , the growth in the
log-likelihood (normalized by 1

N
) for a vector field v can be written in terms of the observa-

tion error and the difference between the scalar fields associated with v and v�.
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PROPOSITION 5.2. Let {(tj ,xj )}∞j=1 be a sequence of observation points independently

and identically uniformly distributed in [0, T ] × T
2. Fix a v� ∈ V and draw associated data

points {Yj }∞j=1 according to

Yj = Gj

(
v�)+ ηj(37)

for i.i.d. observational noise ηj ∼ N(0, σ 2
η ) independent of {Yj }∞j=1 and the parameter-to-

observable (forward) maps Gj given by (14). Then, for any r > 0,

lim sup
N→∞

sup
v∈Br

V (v�)

∣∣∣∣∣ 1

N

N∑
j=1

(
Yj − Gj (v)

)2

−
(
σ 2

η + 1

2T

∥∥S̃(v�)− S̃(v)
∥∥2
L2([0,T ]×T2)2

)∣∣∣∣∣= 0,

(38)

almost surely, where S̃ is the paired solution operator as in Notation 4.1.

PROOF. Referring to (37) and expanding we have

1

N

N∑
j=1

(
Yj − Gj (v)

)2 = 1

N

N∑
j=1

η2
j + 2

N

N∑
j=1

ηj

(
Gj

(
v�)− Gj (v)

)
(39)

+ 1

N

N∑
j=1

(
Gj

(
v�)− Gj (v)

)2

:= 1

N

N∑
j=1

(T1,j + 2T2,j + T3,j ),(40)

for any N ≥ 1. We will now focus on each of the three terms on the right hand side.
Terms involving T1,j : For this first term, the law of large numbers yields

lim
N→∞

1

N

N∑
j=1

T1,j = Eη2
j = σ 2

η a.s.(41)

Also, these terms are independent of, and therefore uniform in, v ∈ H .
Terms involving T2,j : Here we establish uniform convergence using Proposition 5.1. De-

note z = (zη, zt , zx1, zx2) ∈ R
4 and define

fi(z,v) = zη

(
θ
(
zt , (zx1, zx2),v�, θ

(i)
0

)− θ
(
zt , (zx1, zx2),v, θ

(i)
0

))
(42)

for i = 1,2. Let us verify the conditions required by Proposition 5.1 for fi . Note that by our
assumption on η, Eη2 = σ 2

η < ∞. Thus, by the maximum principle,

Efi

(
(η, t,x),v

)2
<
∥∥θ(i)

0

∥∥2
L∞E|η|2 < ∞, i = 1,2,(43)

which corresponds to (33). Moreover by the continuity identified in Corollary 2.4, for all
ε > 0, v ∈ H , there exists a δ = δ(v) such that

‖v − ṽ‖ < δ(v) =⇒ ∣∣f (z,v) − f (z, ṽ)
∣∣≤ |zη|ε for i = 1,2,(44)

thus verifying (34). Finally observe that since {ηj } and {tj ,xj } are independent, so are {ηj }
and {Gj (v�) − Gj (v)}. Furthermore, using Eηj = 0, we have for any j ≥ 1, Eηj (Gj (v�) −
Gj (v)) = EηjE(Gj (v�) − Gj (v)) = 0, thus

Efi(Z,v) = 0 for i = 1,2.(45)
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Fix any r > 0. Since Br
V (v�) is compact in H by the Rellich–Kondrachov Theorem

(Robinson ((2001), Corollary A.5)), and using (43)–(45), Proposition 5.1 yields

lim sup
N→∞

sup
v∈Br

V (v�)

∣∣∣∣∣ 2

N

N∑
j=1

T2,j (v)

∣∣∣∣∣≤ lim sup
N→∞

sup
v∈Br

V (v�)

∣∣∣∣∣ 2

N

�N/2�−1∑
l=0

T2,2l+1(v)

∣∣∣∣∣
+ lim sup

N→∞
sup

v∈Br
V (v�)

∣∣∣∣∣ 2

N

�N/2�∑
l=1

T2,2l(v)

∣∣∣∣∣
= 0.

(46)

Terms involving T3,j : Here we begin by observing that, since the observations (tj ,xj ) are
uniformly distributed on [0, T ] ×T

2,

ET3,j :=

⎧⎪⎪⎨
⎪⎪⎩

1

T

∥∥θ(·,v�, θ
(1)
0

)− θ
(·,v, θ

(1)
0

)∥∥2
L2([0,T ]×T2) if j is even,

1

T

∥∥θ(·,v�, θ
(2)
0

)− θ
(·,v, θ

(2)
0

)∥∥2
L2([0,T ]×T2) if j is odd.

To show the uniform convergence of these terms, denote z = (zt , zx1, zx2) ∈ R
3 and define

fi(z,v) = (
θ
(
zt , zx1, zx2,v�, θ

(i)
0

)− θ
(
zt , zx1, zx2,v, θ

(i)
0

))2
for i = 1,2. Invoking the the maximum principle as in (43) we have,

Efi(Z,v)2 < 16
∥∥θ(i)

0

∥∥4
L∞ < ∞, i = 1,2,(47)

where here Z is distributed uniformly as (tj ,xj ). Also, by Corollary 2.4, for all ε > 0 there
exists a δ such that

(48) ‖v − ṽ‖ < δ(v) =⇒ ∣∣f (z,v) − f (z, ṽ)
∣∣≤ ε.

Note that in this case the bound is independent of z. Noting once again that Br
V (v�) is a

compact subset of H and that (47), (48) yield the conditions (33), (34) we find with Proposi-
tion 5.1 that

lim sup
N→∞

sup
v∈Br

V (v�)

∣∣∣∣∣ 1

N

N∑
j=1

(
Gj

(
v�)− Gj (v)

)2 − 1

2T

∥∥S̃(v�)− S̃(v)
∥∥2
L2([0,T ]×T2)2

∣∣∣∣∣
≤ lim sup

N→∞
sup

v∈Br
V (v�)

∣∣∣∣∣ 1

N

�N/2�−1∑
l=0

T3,2l+1(v) − Ef1(Z,v)

2

∣∣∣∣∣
+ lim sup

N→∞
sup

v∈Br
V (v�)

∣∣∣∣∣ 1

N

�N/2�∑
l=1

T3,2l(v) − Ef2(Z,v)

2

∣∣∣∣∣
= 0.

(49)

Referring back to (40) and assembling the three estimates (41), (46), and (49), we arrive
at (38). The proof is complete. �

6. Identification of the scalar field. In this section, we show that the Bayesian posterior
measure for N point observations μN

Y converges to background flows that closely match the
true scalar field θ(v�). The idea is to use the decomposition of the log-likelihood given in
Proposition 5.2 along with the assumptions (17), (18) to gain control of tail events.

The main result is as follows
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PROPOSITION 6.1 (Identification of true θ ). Take {(tj ,xj )}, v�, Gj , and {Yj } to be the
observation points, the “true vector field”, the forward map, and the data, respectively that
are defined as in and satisfy the conditions of Theorem 3.2. Let μN

Y be the associated posterior
measures for N observations given by (16), where we assume that the conditions (17), (18)
are enforced. Then, for any δ > 0,

μN
Y (Xδ) → 1 as N → ∞,(50)

on a set of full measure, where, cf. (25),

Xδ = {
v ∈ H : ∥∥S̃(v�)− S̃(v)

∥∥
L2([0,T ]×T2)2 < δ

}
.(51)

REMARK 6.2. Note that Corollary 4.6 with v0 = v� also has implications for Xδ . Indeed,
these two characterizations will be combined in Section 7 to prove the main result.

Before turning directly to the proof of Proposition 6.1 we first establish a lemma that
derives some simple but useful consequences of the assumptions (17), (18). We recycle this
lemma again for later use in Section 7.

LEMMA 6.3. Suppose that v� ∈ V , and that μ0 satisfies (17). Define the measures μN
Y as

in (16) and assume that the condition (18) is maintained.3 Then, on a set �̃ of full measure,
for any δ, ε > 0, there exists an R = R(δ, ε,ω) > 0 (but independent of N ) so that both

(52) μ0
(
Xδ ∩ BR

V

(
v�))> 0 and μN

Y
((

BR
V

(
v�))c)< ε

for every N ≥ 1.

PROOF. Let δ > 0 and ε > 0. By Corollary 4.2, there exists an r > 0 such that Br
V (v�) ⊂

Xδ . Thus for any R > r , we observe that

μ0
(
Xδ ∩ BR

V

(
v�))≥ μ0

(
Xδ ∩ Br

V

(
v�))= μ0

(
Br

V

(
v�))> 0

by (17).
To establish the other condition in (52), use Remark 3.4 to choose R̃ > r such that

μN
Y
((

BR̃
V (0)

)c)
< ε.

Then selecting R = R̃+‖v�‖V ensures that R > r , maintaining the first condition in (52), and
further guaranteeing that (BR

V (v�))c ⊂ (BR̃
V (0))c, and thus μN

Y ((BR
V (v�))c) < ε, as desired for

the second condition in (52). The proof is now complete. �

With Lemma 6.3 in hand we now turn to the proof of the main result of this section.

PROOF OF PROPOSITION 6.1. We begin by specifying an event on which (50) will be
established. Take

�̃ =
∞⋂

n=1

{
ω ∈ � : (38) holds for r = n

}
.

According to Proposition 5.2 this is a set of full measure. Fix any ω ∈ �̃. All of the constants
and statements that follow will implicitly depend on this sample ω.

3See also (21) in Remark 3.5.
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Take arbitrary δ, ε > 0. As in Lemma 6.3, select R > 0 so that both

μ0
(
X δ

2
∩ BR

V

(
v�))> 0 and μN

Y
((

BR
V

(
v�))c)< ε

2
.

For these values of R and δ, we invoke Proposition 5.2 and infer that there exists an N1 > 0
such that for all N ≥ N1 and every v ∈ BR

V (v�),∣∣∣∣∣ 1

N

N∑
j=1

(
Yj − Gj (v)

)2 −
(
σ 2

η + 1

2T

∥∥S̃(v�)− S̃(v)
∥∥2
L2([0,T ]×T2)2

)∣∣∣∣∣< δ2

8T
.

Then for every v ∈ X δ
2
∩ BR

V (v�) and N ≥ N1, we have

1

N

N∑
j=1

(
Yj − Gj (v)

)2
< σ 2

η + 1

2T

∥∥S̃(v�)− S̃(v)
∥∥2
L2([0,T ]×T2)2 + δ2

8T

< σ 2
η + δ2

4T
.

Similarly, for every v ∈ X c
δ ∩ BR

V (v�) and N ≥ N1, we have

1

N

N∑
j=1

(
Yj − Gj (v)

)2
> σ 2

η + 1

2T

∥∥S̃(v�)− S̃(v)
∥∥2
L2([0,T ]×T2)2 − δ2

8T

≥ σ 2
η + 3δ2

8T
.

Now, leveraging μ0(X δ
2
∩ BR

V (v�)) > 0, we choose N2 such that

1

μ0(X δ
2
∩ BR

V (v�))
exp

[
− δ2

16T σ 2
η

N2

]
<

ε

2
.

Then, for all N ≥ max{N1,N2}, we have (cf. (16))

μN
Y
(
X c

δ ∩ BR
V

(
v�))≤

∫
X c

δ ∩BR
V (v�) exp[− 1

2σ 2
η

∑N
j=1(Yj − Gj (v))2]μ0(dv)∫

X δ
2
∩BR

V (v�) exp[− 1
2σ 2

η

∑N
j=1(Yj − Gj (v))2]μ0(dv)

<

∫
X c

δ ∩BR
V (v�) exp[− 1

2σ 2
η
N(σ 2

η + 3δ2

8T
)]μ0(dv)∫

X δ
2
∩BR

V (v�) exp[− 1
2σ 2

η
N(σ 2

η + δ2

4T
)]μ0(dv)

= exp
[
− Nδ2

16T σ 2
η

]
μ0(X c

δ ∩ BR
V (v�))

μ0(X δ
2
∩ BR

V (v�))

≤
exp[− Nδ2

16T σ 2
η
]

μ0(X δ
2
∩ BR

V (v�))
<

ε

2
.

Then

μN
Y
(
X c

δ

)≤ μN
Y
(
X c

δ ∩ BR
V

(
v�))+ μN

Y
((

BR
V

(
v�))c)< ε

2
+ ε

2
= ε.

Thus, since ε and ω ∈ �̃ are arbitrary we conclude that for any δ > 0, μN
Y (X c

δ ) → 0 as
N → ∞ a.s. The desired result (50) follows, completing the proof of Proposition 6.1. �
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7. Convergence of posterior measures to the true vector field. We now combine the
continuity of the inverse map (Corollary 4.5) and the convergence of the posterior measure
to θ(v�) (Proposition 6.1) to finally prove our main result Theorem 3.2, that is, to show that
as the number of observations goes to infinity, the posterior converges weakly to a Dirac
measure centered at v�.

PROOF OF THEOREM 3.2. Let ε > 0. Let A be an open subset of H . To show weak
convergence, according to Portmanteau’s Theorem (see, for example, Billingsley ((2013),
Section 2)) we need to show

lim inf
N→∞ μN

Y (A) ≥ δv�(A).

If v� /∈ A, then δv�(A) = 0 so the result is trivial in this case.
Now consider v� ∈ A and fix any sample ω on the set �̃ of full measure for which (50) in

Proposition 6.1 holds. Fix any ε > 0. As guaranteed by Lemma 6.3, we can choose R > 0 so
that

μN
Y
((

BR
V

(
v�))c)< ε

2
.

Since A is open there exists an γ > 0 such that B
γ
H (v�) ⊂ A. Then, by Corollary 4.6, there

exists a δ > 0 such that Xδ ∩ BR
V (v�) ⊂ B

γ
H (v�) ⊂ A. As such

μN
Y (A) ≥ μN

Y
(
B

γ
H

(
v�))≥ μN

Y
(
Xδ ∩ BR

V

(
v�))≥ μN

Y (Xδ) − μN
Y
((

BR
V

(
v�))c)

≥ μN
Y (Xδ) − ε

2
.

However, Proposition 6.1 ensures that there exists an N� such that for all N > N�,

μN
Y (Xδ) > 1 − ε

2
.

Therefore for all N > N�,

μN
Y (A) ≥ μN

Y (Xδ) − ε

2
> 1 − ε = δv�(A) − ε.

Since ε > 0 and ω were arbitrary to begin with, lim infN→∞ μN
Y (A) ≥ δv�(A) with probability

1 completing the proof of Theorem 3.2. �

APPENDIX: ENERGY ESTIMATES FOR CONTINUITY OF THE SOLUTION MAP

In this appendix we provide some of the a priori estimates leading to Proposition 2.2. As
noted above, a suitable Galerkin approximation of (1) can be implemented to provide rigorous
justification for the forthcoming formal manipulations.

Let us begin with the L2-based estimates. Since v is divergence free, we have that d
dt

‖θ‖2 +
2κ‖∇θ‖2 = 0 so that for any T > 0, θ ∈ L2([0, T ];H 1(T2)) ∩ L∞([0, T ];L2(T2)). Turning
to the estimate for ∂tθ we have

‖∂tθ‖H−1 ≤ κ‖θ‖H 1 + ‖v · ∇θ‖H−1 .(53)

Regarding the second term on the right hand, using that v is divergence free and Hölder’s
inequality

‖v · ∇θ‖H−1 = sup
‖φ‖

H1=1

∣∣∣∣
∫

v · ∇θφ dx
∣∣∣∣≤ C‖v‖Lp‖θ‖Lq ,(54)
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where p−1 +q−1 = 2−1. Let us now recall the Sobolev embedding in spatial dimension d = 2
which entails the bound

‖f ‖Lp ≤ C‖f ‖Hr for any r ≥ 1 − 2

p
,with 2 ≤ p < ∞(55)

for any sufficiently smooth f and where the constant C depends only on the size of the
periodic box, p, and r . Thus, with our assumption that v ∈ Hs for some s > 0 it now follows
from (53), (54), and (55) that ∂tθ ∈ L2([0, T ];H−1).

Regarding the claimed continuity in L2 we consider any θ(1), θ (2) solving (1) and corre-
sponding to divergence free v(1),v(2). Taking ψ = θ(2) − θ(1) and u = v(2) − v(1) we have

∂tψ = κ�ψ − u · ∇θ(2) − v(1) · ∇ψ.(56)

Multiplying (56) by ψ , integrating and using that both v(1),u are divergence free, we obtain

1

2

d

dt
‖ψ‖2 + κ‖∇ψ‖2 =

∫
u · ∇ψθ(2) dx.(57)

Now, Hölder’s inequality yields∣∣∣∣
∫

u · ∇ψθ(2) dx
∣∣∣∣≤ ‖u‖Lp‖∇ψ‖∥∥θ(2)

∥∥
Lq ,

which holds for any 2 ≤ p,q ≤ ∞ such that p−1 + q−1 = 2−1. Observe that, by choosing
2 < q < ∞ sufficiently large, obtain a p = 2q

q−2 such that, according to (55) ‖u‖Lp ≤ C‖u‖Hs

where s > 0 is the given degree of regularity for v(1),v(2). With this observation, another
application of (55), this time for ‖θ(2)‖Lq , and Young’s inequality we have∣∣∣∣

∫
u · ∇ψθ(2) dx

∣∣∣∣≤ C‖u‖Hs‖ψ‖H 1
∥∥θ(2)

∥∥
H 1 ≤ κ

2
‖ψ‖2

H 1 + C‖u‖2
Hs

∥∥θ(2)
∥∥2
H 1 .

Combining this bound with (57) we find, for any T > 0,

sup
t∈[0,T ]

∥∥θ(1)(t) − θ(2)(t)
∥∥2 ≤ ∥∥θ(1)

0 − θ
(2)
0

∥∥2 + C‖u‖2
Hs

∫ T

0

∥∥θ(2)(t ′)∥∥2
H 1 dt ′

from which the desired continuity in the L2 case now follows.
Before proceeding to the higher order, s > 0, estimates, let us introduce further notations

and recall some fundamental inequalities. For any r ≥ 0, we take �r := (−�)r/2 acting on
elements in Hr(T2). In other words

�rf = ∑
k∈Z2

(2π)r‖k‖rcke2πik·x for any f = ∑
k∈Z2

cke2πik·x

and we have ‖�rf ‖ = ‖f ‖Hr . We have the following useful interpolation inequality

∥∥�rf
∥∥≤ ∥∥�γlf

∥∥ γu−r
γu−γl

∥∥�γuf
∥∥ r−γl

γu−γl(58)

valid for any 0 ≤ γl < r < γu; see, for example, Robinson (2001). We will also make use of
the fractional Leibniz inequality or Kato–Ponce inequality:∥∥�r(fg)

∥∥
Lm ≤ C

(∥∥�rf
∥∥
Lp1 ‖g‖Lq1 + ‖f ‖Lp2

∥∥�rg
∥∥
Lq2

)
,(59)

which is valid for any r ≥ 0, 1 < m < ∞ and 1 < pi, qi ≤ ∞ with m−1 = p−1
j + q−1

j for
j = 1,2 and where the constant C is independent of any suitably smooth f,g. See Grafakos
and Oh (2014), Muscalu and Schlag (2013) for further details.
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With these preliminaries in hand, now suppose θ solves (1). Applying the operator �s to
(1), multiplying by �sθ and integrating over T2 we obtain

1

2

d

dt

∥∥�sθ
∥∥2 + κ

∥∥�s+1θ
∥∥2 =

∫
�s(v · ∇θ)�sθ dx.(60)

With Hölder’s inequality and (59) we find∣∣∣∣
∫

�s(v · ∇θ)�sθ dx
∣∣∣∣≤ C

∥∥�sθ
∥∥
Lp

(∥∥�sv
∥∥∥∥�1θ

∥∥
Lq + ‖v‖Lq

∥∥�s+1θ
∥∥),(61)

which holds for any 1 < p,q < ∞ such that 1 − 1
p

= 1
2 + 1

q
. Noting that q = 2p

2p−2−p
→ 2

as p → ∞, using the Sobolev embedding (55) and then the interpolation inequality (58), we
thus find, for some 0 < s′ < s ∧ 1,∣∣∣∣

∫
�s(v · ∇θ)�sθ dx

∣∣∣∣≤ C
∥∥�1+s′

θ
∥∥∥∥�1+sθ

∥∥∥∥�sv
∥∥(62)

≤ C
∥∥�1+sθ

∥∥2−(s−s′)∥∥�sθ
∥∥s−s′∥∥�sv

∥∥
≤ κ

∥∥�1+sθ
∥∥2 + C

∥∥�sθ
∥∥2∥∥�sv

∥∥ 2
(s−s′) .(63)

Combining (60), (63) and rearranging we obtain

d

dt

∥∥�sθ
∥∥2 + κ

∥∥�s+1θ
∥∥2 ≤ C

∥∥�sθ
∥∥2∥∥�sv

∥∥ 2
(s−s′) .

This bound and Grönwall’s inequality reveals

sup
t∈[0,T ]

∥∥θ(t)
∥∥2
Hs ≤ exp

(
T C

∥∥�sv
∥∥ 2

(s−s′) )‖θ0‖2
Hs .

Using this bound and integrating in time yields∫ T

0

∥∥�s+1θ
∥∥2 ≤ 2 exp

(
T
∥∥�sv

∥∥ 2
(s−s′) )‖θ0‖2

Hs ,

which indeed shows that for any T > 0, θ ∈ L2([0, T ];Hs+1(T2)) ∩ L∞([0, T ]; Hs(T2)).
We turn next to the estimates for ∂tθ . Here analogous to (53) we just need a suitable estimate
for ‖v · ∇θ‖Hs−1 . For any s > 0 this amounts to

‖v · ∇θ‖Hs−1 := sup
‖φ‖

Hs+1=1

∣∣∣∣
∫

v · ∇θφ dx
∣∣∣∣≤ C‖v‖Lp‖θ‖Lq sup

‖φ‖
Hs+1=1

‖∇φ‖Lr

for any 1 ≤ p,q, r ≤ ∞ with p−1 + q−1 + r−1 = 1 and where again we have used that v is
divergence free. By picking p = r > 2 such that Lp ⊂ Hs according to (55) we finally obtain

‖v · ∇θ‖Hs−1 ≤ C‖v‖Hs‖θ‖Hs+1

and thus conclude that ∂tθ ∈ L2([0, T ];Hs−1) for any T > 0.
We finally address the claimed continuity of the data to solution map in Hs . Adopting the

same notations as in (56), we have

(64)
1

2

d

dt

∥∥�sψ
∥∥2 + κ

∥∥�s+1ψ
∥∥2 = −

∫
�s(u · ∇θ(2) − v(1) · ∇ψ

)
�sψ dx := T1 + T2.

Regarding T1, we estimate as in (61), (63) and find,

|T1| ≤ C
∥∥�sψ

∥∥
Lp

(∥∥�su
∥∥∥∥�1θ(2)

∥∥
Lq + ‖u‖Lq

∥∥�s+1θ(2)
∥∥)

≤ C
∥∥�1+sψ

∥∥∥∥�su
∥∥∥∥�s+1θ(2)

∥∥≤ κ
∥∥�1+sψ

∥∥2 + C
∥∥�su

∥∥2∥∥�s+1θ(2)
∥∥2

.
(65)
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For T2 we proceed in precisely the same fashion as (63) and find

|T2| ≤ κ
∥∥�1+sψ

∥∥2 + C
∥∥�sψ

∥∥2∥∥�sv(1)
∥∥ 2

(s−s′) .(66)

Combining the identity (64) with the estimates (65), (66) and rearranging appropriately we
obtain

d

dt

∥∥�sψ
∥∥2 ≤ C

∥∥�sψ
∥∥2∥∥�sv(1)

∥∥ 2
(s−s′) + C

∥∥�su
∥∥2∥∥�s+1θ(2)

∥∥2
,

and hence, with Grönwall’s inequality,

∥∥�sψ(t)
∥∥2 ≤ exp

(
C
∥∥�sv(1)

∥∥ 2
(s−s′) t

)∥∥ψ(0)
∥∥2

+ C
∥∥�su

∥∥2
∫ t

0
exp

(
C
∥∥�sv(1)

∥∥ 2
(s−s′) (t − t ′

))∥∥�s+1θ(2)(t ′)∥∥2
dt ′.

Thus given the already established a priori bounds on θ(2) in Hs and our standing assumption
concerning the regularity of v(1) we have

sup
t∈[0,T ]

∥∥θ(1)(t) − θ(2)(t)
∥∥2
Hs ≤ C

(∥∥θ(1)
0 − θ

(2)
0

∥∥2
Hs + ∥∥v(1) − v(2)

∥∥2
Hs

)
,

from which the desired continuity in Hs now follows.
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