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We consider a random walker in a dynamic random environment given
by a system of independent discrete-time simple symmetric random walks.
We obtain ballisticity results under two types of perturbations: low particle
density, and strong local drift on particles. Surprisingly, the random walker
may behave very differently depending on whether the underlying environ-
ment particles perform lazy or nonlazy random walks, which is related to a
notion of permeability of the system. We also provide a strong law of large
numbers, a functional central limit theorem and large deviation bounds under
an ellipticity condition.

1. Introduction and main results. Random walks on random environments are models
for the movement of a tracer particle in a disordered medium, and have been the subject of in-
tense research for over 40 years. The seminal works [23, 28, 29], concerning one-dimensional
random walk in static random environment (i.e., constant in time), established a rich spec-
trum of asymptotic behaviors that can be very different from that of usual random walks. In
higher dimensions, important questions remain open despite much investigation. For excel-
lent expositions on this topic, see [15, 31]. The dynamic version of the model, that is, when
the random environment is allowed to evolve in time, has also been studied for over three
decades (see, e.g., [13, 24]). However, models with both space and time correlations have
only been considered relatively recently. For an overview, we refer to the PhD theses [1, 19].
We will abbreviate “RWRE” for random walk in static random environment, and “RWDRE”
for random walk in dynamic random environment.

The setup of the present paper fits in the context of RWDRE on one-dimensional inter-
acting particle systems, as introduced in [4, 5]. One motivation for studying RWDRE in one
dimension comes from the static counterpart which is known to exhibit, in some regimes,
anomalous behavior such as transience with zero speed [29] and nondiffusive scalings [23,
28], in sharp contrast to usual homogeneous random walks. These phenomena are related to
trapping effects, whereby regions of the lattice with atypical environment configurations tend
to hold the random walker for abnormally large times. Since in the dynamic case the trapping
regions may disappear as time passes by, the question of whether these phenomena still take
place is naturally raised. This question is up to now only partially answered in the literature,
mostly by identifying regimes with no anomalous behavior. For example, [3, 5, 11, 16, 27]
identify general conditions and [2, 6, 17, 22, 25] study particular examples where laws of
large numbers and central limit theorems hold.

Let us introduce the environment on which we will define our random walker. It will be
a Markov chain in (Z+)Z, where Z+ := N ∪ {0}. Fix ρ > 0 and let (N(x,0))x∈Z be an i.i.d.
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collection of Poisson(ρ) random variables. We take this as the initial state of the chain, that
is, for every x ∈ Z, we regard N(x,0) as an initial amount of particles placed at the site
x. We next define the evolution of the chain. Although this could be done by writing down
its transition kernel, let us give a more descriptive construction. Assume that every particle
present at time 0 performs, independently, a simple symmetric random walk in discrete time
(possibly lazy) and define N(x, t) as being the number of particles present at the space-time
point (x, t).

More precisely, we associate an independent random walk trajectory to each particle in
the initial configuration. For that, let (Sz,i)z∈Z,i∈N be a collection of independent discrete-
time simple symmetric random walks Sz,i = (S

z,i
t )t∈Z+ on Z which are independent of

(N(x,0))x∈Z. We assume that Sz,i starts at z almost surely, so that the random walks
(S

z,i
t − z)t∈Z+ take steps in {−1,0,1}, are centered, independent and identically distributed.

For i ≤ N(z,0), Sz,i represents the trajectory of the ith particle that started at z. Now, for
each t ∈ N, we define N(x, t) :=∑z∈Z,i≤N(z,0) 1{Sz,i

t =x}.
It is standard to show that {N(x, t) : x ∈ Z}t∈Z+ indeed defines an homogeneous, discrete-

time, Markov chain. The assumption that (N(x,0))x∈Z are i.i.d. Poisson(ρ) random variables
implies that this chain is stationary, that is, for each t ∈ N, (N(x, t))x∈Z are also independent
Poisson(ρ) random variables. We are going to regard the parameter ρ > 0 as the density of
the environment. In Section 2, we revisit the construction of this chain and show how it can
be seen as a Poisson point process in the space of doubly-infinite random walk trajectories
in Z. This will be useful for exploring independence of disjoint set of trajectories.

To define the random walker X = (Xt)t∈Z+ , fix p◦,p• ∈ [0,1]. For a given realization of
N = (N(x, t))x∈Z,t∈Z+ , X is defined as the time-inhomogeneous Markov chain on Z that
starts at 0 and, when it reaches position x at time t , jumps to x + 1 with probability

(1.1) p◦ if N(x, t) = 0, or p• if N(x, t) ≥ 1,

and jumps to x − 1 otherwise. The parameters p◦,p• ∈ [0,1] thus represent the chance for
the random walker to jump to the right in the absence (respectively, presence) of particles.
We revisit the definition of the random walker X in Section 2, where a convenient graphical
construction is given.

It will be also convenient to define the local drifts

(1.2) v◦ := 2p◦ − 1, v• := 2p• − 1.

The case v◦v• > 0 is called nonnestling and has already been treated in [21]. Here, we will
focus on the nestling case

(1.3) v• ≤ 0 < v◦,
meaning that the random walker experiences a local drift to the right on empty sites, and no
drift to the right on sites occupied by particles.

An important parameter in our analysis will be

(1.4) q0 := P
(
S

0,1
1 = 0

) ∈ [0,1).

When q0 > 0 we say that the random walks Sz,i are lazy. (Here, P stands for the prob-
ability measure on a space supporting the random elements (Sz,i)z∈Z,i∈N.) Surprisingly, the
asymptotic behavior of the random walker may strongly depend on whether q0 = 0 or q0 > 0.
Indeed, for small values of p•, the random walker may develop a positive speed if q0 > 0 and
a negative one if q0 = 0. This is related to a notion of permeability: if p• = q0 = 0, the ran-
dom walker cannot cross any particles that it meets to the right, and we say that the system is
impermeable to the random walker. If either p• or q0 are positive, it is possible for the walker
to cross particles in both directions, and we call the system permeable.
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Let Pρ denote the joint law of N and X for a fixed density ρ > 0. In order to describe our
results, we introduce the following condition:

DEFINITION 1.1 (Ballisticity condition). Fixed ρ, p◦, p•, q0 and given v� �= 0, we say
that the ballisticity condition with speed v� is satisfied if there exist γ > 1 and c1, c2 ∈ (0,∞)

such that

(1.5) P
ρ

(
∃n ∈N : v�

|v�|Xn < |v�|n − L

)
≤ c1 exp

{−c2(logL)γ
} ∀L ∈N.

Condition (1.5) is reminiscent of ballisticity conditions from the literature of random walks
in static random environments such as Sznitman’s (T ′) condition (cf. [30]). Such a condition
provides control on the backtracking probability of the random walker that can be very useful
in obtaining finer asymptotic results, see for example, Theorem 1.4 below.

Note that, if ρ = 0 (i.e., if no particles are present), the random walker has a global drift v◦,
which is positive under (1.3). Our first result states that, in the permeable case, perturbations
around ρ = 0 still lead to ballisticity with a positive speed v�.

THEOREM 1.2. Assume (1.3) and p• ∨ q0 > 0. Then there exist ρ� = ρ�(p◦,p•, q0) > 0
and v� = v�(p◦,p•, q0) > 0 such that, for any ρ ≤ ρ�, (1.5) holds with γ = 3/2.

Our second ballisticity result shows a radically distinct behavior for perturbations around
p• = 0 in the impermeable case.

THEOREM 1.3. Assume q0 = 0. For any p◦ ∈ [0,1], ρ > 0 and γ ∈ (1,3/2), there exist
v� = v�(ρ) < 0 and p� = p�(p◦, ρ, γ ) ∈ (0,1) such that, if p• ≤ p�, then (1.5) holds.

Theorem 1.3 may be seen as a manifestation of particle conservation in our dynamic ran-
dom environment. Indeed, when q0 = 0, this conservation forces the random walker to inter-
act with environment particles that it crosses; see Section 4.2. The difference in the ballistic
behavior of the two cases is illustrated by the phase diagrams in Figure 1.

As already mentioned, the ballisticity condition (1.5) can be used to study further asymp-
totic properties of the random walker. The following theorem summarizes new results as well
as previous results from [21].

THEOREM 1.4. Fix 0 ≤ p• < p◦ ≤ 1, ρ ≥ 0, q0 ∈ [0,1) and assume that (1.5) holds for
some v� �= 0 and some γ > 1. Assume additionally that

(1.6) (a) p• > 0 if v� > 0

Lazy environment Non-lazy environment

0 01 1p• p•

ρ ρ

v� > 0

v� < 0

FIG. 1. Phase diagrams corresponding to lazy and nonlazy particles.
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or

(1.7) (b) p◦ < 1 if v� < 0.

Then there exist v = v(p◦,p•, q0, ρ) ∈ R and σ = σ(p◦,p•, q0, ρ) ∈ (0,∞) satisfying vv� >

0, |v| ≥ |v�| and such that the following hold:

1. (Strong law of large numbers)

(1.8) lim
n→∞

Xn

n
= v P

ρ-a.s.

2. (Functional central limit theorem) Under Pρ , the sequence of processes

(1.9)
(

X�nt� − �nt�v
σ
√

n

)
t≥0

, n ∈ N,

converges in distribution as n → ∞ (with respect to the Skorohod topology) to a standard
Brownian motion.

3. (Large deviation bounds) For any ε > 0, there exist constants c1, c2 > 0 such that

(1.10) P
ρ

(∣∣∣∣Xn

n
− v

∣∣∣∣> ε

)
≤ c1e

−c2(logn)γ ∀n ∈ N.

Asymptotic results for RWDRE such as law of large numbers (LLN) and central limit the-
orems (CLT) under general conditions were derived for example, in [4, 5, 14, 16, 26, 27],
often requiring uniform mixing conditions on the random environment (implying, e.g., that
the conditional distribution of the environment at the origin given the initial state approaches
a fixed law for large times uniformly). This uniformity can be relaxed in particular examples,
for example, [9, 17, 25] (supercritical contact process), or under additional assumptions, for
example, [2, 3] (spectral gap, weakly noninvariant) and [10] (attractivity). In [11] by ex-
ploiting some properties of the environment as seen by the random walker the authors are
able to prove a LLN for a class of RWDRE imposing mixing conditions that do not require
uniformity. There, a CLT is also proved under the assumption of uniform mixing.

The random environment we consider here does not fit the setup considered in the pa-
pers mentioned above. Indeed, being a conservative particle system, it exhibits poor mixing
properties which complicates the usage of most of the available general techniques. For this
reason, random walks on such conservative particle systems are challenging models. They
have been studied in [6–8, 20, 22] (simple symmetric exclusion), and in [18, 21] (indepen-
dent random walks). Each of these works imposes additional conditions and explores very
specific properties of the environment in question. In particular, the works [18, 21, 22] intro-
duce perturbative approaches, where parameters of the system are driven to a limiting value
where the behavior is known. Although in this paper we also study perturbative regimes, it is
important to observe that we not always recover the limiting behavior for small densities as
it is shown by Theorem 1.3. This indicates that nontrivial adaptations of the techniques are
needed.

At this point, a few remarks are in order:

1. Note that the assumption p◦ > p• in Theorem 1.4 imposes no loss of generality, by
possibly reflecting the system from left to right. The conditions on p◦,p• in items (a) and
(b) can be seen as ellipticity assumptions, as they allow the random walk to take jumps in the
direction of v� independently of the environment.

2. Under the conditions of Theorem 1.2 and Theorem 1.4 in case (a), it is possible to
show that the speed v in (1.8) above is a continuous function of ρ in the interval [0, ρ�], see
Remark 5.3 below. In particular, for fixed p• > 0, v converges to v◦ as ρ → 0. When p• = 0,
we also expect that v� in Theorem 1.2 may be taken arbitrarily close to v◦ by making ρ�

sufficiently small, but we are currently unable to prove this.
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3. In [21] it has been proved that, when the environment has large particle density and
v• �= 0, the random walker obeys a LLN with a speed that has the same sign as v•. This
could suggest that, for small densities, the speed should always have the same sign as that
of v◦. However, this does not hold for perturbations around the impermeable case, as seen
in Theorem 1.3. We can regard this fact as a discontinuity of the speed with respect to the
density of particles as it approaches zero. This contrasts with the usual perturbative results
where the behavior of the system is expected to mimic the behavior obtained at the limiting
case. In our model, this feature is a product of the very specific microscopic dynamics of the
environment and the random walk in the nonlazy, nonelliptic case, and is not stable under
simple modifications (e.g., in continuous time). However, we still consider it an interesting
cautionary example, as similar effects could arise in other situations. Moreover, we believe
that, to some extent, it also reflects the slow mixing of the random environment. More pre-
cisely, we believe that no such discontinuities would be possible when the environment mixes
sufficiently fast and uniformly (with respect to both initial configuration and density). This
remains an interesting problem for future research.

4. A crossover from positive to negative speed of a RWDRE is also obtained in [22],
where the random environment is a simple symmetric exclusion process. The transition is
observed when varying the jump rate of the exclusion particles. We also mention [2], where
very interesting symmetry properties of the speed are obtained (in particular for the case
where the environment is given by the East model).

5. Theorems 1.2 and 1.3 are proved with the help of a renormalization scheme taken
from [12]. However, the application of this scheme here is much more involved than in the
high-density regime considered in [12, 21]. The extra difficulty comes from the fact that
the mixing rate of the environment becomes worse as the density of particles is decreased,
which is one of the reasons why the proof presented in [21] would not work. Furthermore,
the discontinuity we observe as ρ approaches zero in the case q0 = 0 is an indication that the
low-density regime is indeed more delicate.

6. Theorem 1.4 is proved via a regeneration argument as in [21]. Under b), the con-
clusion already follows from [21], Theorem 1.4, (and reflection symmetry); in this case, the
ellipticity condition p◦ < 1 can be in fact dropped using techniques from the proof of [12],
Theorem 5.2. The proof of the theorem under (a) will be given in Section 5 below. The con-
trol of the regeneration time is here different, as the asymmetry in law of occupied/empty
sites in the random environment leads to different monotonicity properties once the roles of
p◦ and p• are exchanged (cf. Section 5.1). We are presently unable to extend this analysis to
the nonelliptic case, that is, when p• = 0.

7. It is important to comment on the flexibility of our techniques with respect to changes
in the model. First of all, it would have been straightforward, if more technical, to extend our
results to more general transition kernels for the underlying random environment; for simplic-
ity, we do not pursue this here. On the other hand, extensions to d ≥ 2 or different transition
kernels for the random walker would require new ideas. The main source of difficulty in
these cases is the lack of monotonicity properties that are used crucially in the present paper,
specially in the proofs of Theorem 5.2 (control of the regeneration time) and Theorem 3.1
(triggering). Unfortunately, the technique used in [12] would no longer work, the reason be-
ing the asymmetry between particles and holes in the random environment. Despite of this,
we believe that such extensions are not beyond the reach of current techniques, and that our
contributions in the present paper could be helpful in future efforts to answer them. For ex-
ample, in the case of 2-state transition kernels, we believe that the approach in [10] could be
made to work, however several technical steps would need to be adapted.

The rest of the paper is organized as follows. Technical statements start in Section 2, where
we provide a convenient construction of our model. Theorems 1.2–1.3 are proved in Section 3
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by application of a renormalization setup from [12]; the proof relies on two triggering the-
orems that are in turn proved in Section 4. Finally, in Section 5 we prove Theorem 1.4 by
means of a regeneration argument. Appendix contains the results from [12] that are used in
Section 3.

2. Construction. In this section, we provide a convenient construction of our random
environment and our random walker by means of a point process of trajectories as in [21].

Define the set of doubly-infinite trajectories

(2.1) W = {w : Z→ Z : ∣∣w(i + 1) − w(i)
∣∣≤ 1 ∀i ∈ Z

}
.

Note that trajectories in W are allowed to jump to the left, jump to the right, or stay put. We
endow the set W with the σ -algebra W generated by the canonical coordinates w �→ w(i),
i ∈ Z.

Let (Sz,i)z∈Z,i∈N be a collection of independent random elements of W , with each Sz,i =
(S

z,i
� )�∈Z distributed as a double-sided simple symmetric random walk on Z started at z, that

is, the past (S
z,i
−�)�≥0 and future (S

z,i
� )�≥0 are i.i.d. and distributed as a simple symmetric

random walk satisfying (1.4).
For a subset K ⊂ Z

2, denote by WK the set of trajectories in W that intersect K , that is,
WK := {w ∈ W : ∃i ∈ Z, (w(i), i) ∈ K}. We define the space of point measures

(2.2) � =
{
ω =∑

i

δwi
;wi ∈ W and ω(W{y}) < ∞ for every y ∈ Z

2
}
,

endowed with the σ -algebra generated by the evaluation maps ω �→ ω(WK), K ⊂ Z
2.

For a fixed initial configuration η = (η(x))x∈Z ∈ Z
Z+, we define the random element

(2.3) ω :=∑
z∈Z

∑
i≤η(z)

δSz,i ∈ �

and, for y ∈ Z
2, we set

(2.4) N(y) := ω(W{y})
and let

(2.5) U = (Uy)y∈Z2 be i.i.d. Uniform[0,1] random variables

independent of ω.
We define the space-time processes Yy = (Y

y
n )n∈Z+ , y ∈ Z

2 by setting

(2.6)

Y
y
0 = y,

Y
y
n+1 = Yy

n +
⎧⎨⎩(21{U

Y
y
n

≤p◦} − 1,1) if N
(
Yy

n

)= 0,

(21{U
Y

y
n

≤p•} − 1,1) if N
(
Yy

n

)≥ 1,
n ∈ Z+.

For y = (x, t) ∈ Z
2, we define the random walkers Xy = (X

y
n)n∈Z+ by the relation Y

y
n =

(X
y
n, n + t), that is, X

y
n is the spatial projection of Y

y
n . Writing X = X0, one may check that

the pair (N,X) has indeed the distribution described in Section 1.
For η ∈ Z

Z+ fixed, we denote by Pη the joint law of ω and U = (Uy)y∈Z2 . For ρ > 0, denote
by νρ the product Poisson(ρ) law on Z

Z+. We write P
ρ = ∫ Pηνρ(dη), that is, Pρ is the joint

law of ω and U when η is distributed as νρ . Our configuration space will be taken as

(2.7) � := � × [0,1]Z2
,

equipped with the product σ -algebra.
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An important observation is that, under Pρ , ω is a Poisson point process on � with intensity
measure ρμ, where

(2.8) μ =∑
z∈Z

Pz

and Pz is the law of Sz,1 as an element of W .
For y = (x, n) ∈ Z

2 and w ∈ W , define the space-time translation θyw as

(2.9) θyw(i) := w(i − n) + x, i ∈ Z.

The translations of a measurable function g : � → E are then defined by setting

(2.10) gy = θyg := g ◦ θy.

Note that, under Pρ , the law of (ω,U) is invariant with respect to space-time translations;
in particular, the law of Yy − y does not depend on y.

We will also need the following definition.

DEFINITION 2.1. For ω,ω′ ∈ �, we say that ω ≤ ω′ when ω(A) ≤ ω′(A) for all A ∈ W .
We say that a random variable f : � → R is nondecreasing when f (ω, ξ) ≤ f (ω′, ξ) for
all ω ≤ ω′ and all ξ ∈ [0,1]Z2

. We say that f is nonincreasing if −f is nondecreasing. We
extend these definitions to events A in σ(ω,U) by considering f = 1A. Standard coupling ar-
guments imply that Eρ(f ) ≤ E

ρ′
(f ) for all nonincreasing random variables f and all ρ ≤ ρ′.

REMARK 2.2. The above construction provides two forms of monotonicity:

(i) Initial position: If x ≤ x′ have the same parity (i.e., x′ − x ∈ 2Z), then

(2.11) X
(x,n)
i ≤ X

(x′,n)
i ∀n ∈ Z ∀i ∈ Z+.

(ii) Environment: If v◦ ≥ v•, then X
y
n is nonincreasing (in the sense of Definition 2.1) for

any y ∈ Z
2, n ∈ Z+.

3. Renormalization: Proof of Theorems 1.2–1.3. In this section, we apply the renor-
malization setup from Section 3 of [12] to reduce the proof of our main results to two trig-
gering statements, Theorems 3.1 and 3.2. The relevant results from [12] that we use here are
stated in the Appendix.

THEOREM 3.1. Assume p• ∨ q0 > 0. There exists c = c(p◦,p•, q0) > 0 such that

(3.1) P
L−1/16(

XL < L15/16)≤ c exp
{−c−1(logL)2} ∀L ∈ N.

THEOREM 3.2. Assume q0 = 0. For any ρ̂ > 0, there exist v̂ = v̂(ρ̂) < 0 and c > 0 such
that the following holds. For any L̂ ∈ N, there exists p� = p�(ρ̂,p◦, L̂) ∈ (0,1) such that, if
p• ≤ p�, then

(3.2) P
ρ̂ (X

L̂
> v̂L̂) ≤ c exp

{−c−1(log L̂)3/2}.
The proof of Theorems 3.1–3.2 will be given in Section 4. Next we use Corollary A.1 from

the Appendix (which corresponds to [12], Corollary 3.11) to show how these two theorems
respectively imply Theorems 1.2 and 1.3.

Before, we recall some definitions taken from [12] that will be useful during the proofs.
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DEFINITION 3.3. A function � : Z+ → Z is said 1-Lipschitz if |�(t + 1) − �(t)| ≤ 1
for every t ∈ Z+. Let H : � × Z → {0,1} and L ∈ N. We say that a 1-Lipschitz function � :
Z+ → Z is an (L,H)-crossing if �(0) ∈ [0,L)∩Z and for every t ∈ [0,L)∩Z, (ω,U) ∈ �,

H
(
θ(�(t),t)(ω,U),�(t + 1) − �(t)

)= 1.

DEFINITION 3.4. Let H : � × Z → {0,1} and L ∈ N. Given g : � → [−1,1] and a
(L,H)-crossing � : Z+ → Z, we define the average χ

g
� of g along � by

(3.3) χ
g
�(ω,U) := 1

L

L∑
i=0

g(�(i),i)(ω,U),

where gy = θyg as in (2.10).

PROOF OF THEOREM 1.2. Define a local function g : � → {−1,1} by setting

(3.4) g(ω,U) =
{

1 if U0 < p•, or if N(0) = 0 and U0 < p◦,

−1 if U0 ≥ p◦ or if N(0) > 0 and U0 ≥ p•,

that is, the function g returns the first step of the random walker X0 for a given realization of
ω,U . Then we define a function H : � ×Z → {0,1} by

(3.5) H
(
(ω,U), z

)= 1{g(ω,U)=z}.

In words, H decides whether a jump z is correct (H = 1) or not (H = 0) for a given realiza-
tion of ω,U according to whether the actual random walk X0 would take z as its first jump
or not. Note that

� : [0,∞) ∩Z→ Z is a (L,H)-crossing if and only if

�t = X
y
t for every t ∈ [0,L) ∩Z and some(3.6)

y ∈ {0, . . . ,L − 1} × {0},
that is, the (L,H)-crossings are the trajectories of the RWDRE with initial position in
{0, . . . ,L−1}. Also note the following correspondence between events: for any L ∈ N, v̂ > 0,{∃(L,H)-crossing � : χ

g
� ≤ v̂
}

= {∃x ∈ {0, . . . ,L − 1} : X
(x,0)
L − x ≤ v̂L

}
.

(3.7)

Since, for v� ∈ (0,1),

(3.8) P
L−1/16

(∃n ≥ 1 : X0
n < v�n − L) ≤ P

L−1/16
(∃n ≥ L : X0

n ≤ v�n),

we only need to bound the right-hand side for some v� ∈ (0,1). Now, by (3.7), translation
invariance and Theorem 3.1, for all L̂ large enough,

P
L̂−1/16(∃ a (L̂,H)-crossing � with χ

g
� ≤ L̂−1/16)

≤ L̂PL̂−1/16(
X0

L̂
≤ L̂15/16)

Theorem 3.1≤ cL̂ exp
{−c−1(log L̂)2}< exp

(−(log L̂)3/2).
(3.9)

Noting that the events in (3.7) are measurable in σ(N(y),Uy : y ∈ B0,L) (where B0,L :=
([−2L,3L) × [0,L)) ∩ Z

2), and are nondecreasing by (1.3), we verify the assumptions of
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Corollary A.1 (taking v(L) = ρ(L) = L−15/16, and L̂ = L
k̂

for some k̂ large enough), ob-
taining v� ∈ (0,1), ρ� > 0 and c > 0 such that, for all ρ ≤ ρ�,

P
ρ(X0

n ≤ v�n
)≤ P

ρ(∃ a (n,H)-crossing � with χ
g
� ≤ v�

)
≤ c−1 exp

(−c(logn)3/2)(3.10)

for all n ∈ Z+. To conclude, sum over n ≥ L and apply the union bound to (3.8). �

PROOF OF THEOREM 1.3. This time, we define g : � → {−1,1} as

(3.11) g(ω,U) =
{−1 if U0 < p• ∧ p◦,or if ω(W0) = 0 and U0 < p◦,

1 otherwise.

For y ∈ Z
2, define a space-time process Ỹ

y
t , t ∈ Z+ by setting, analogously to (2.6),

(3.12) Ỹ
y
0 = y and Ỹ

y
t+1 = Ỹ

y
t + (g(θỸ

y
t
(ω,U)

)
,1
)
, t ∈ Z+.

Denote by X̃
y
t the first coordinate of Ỹ

y
t . Note that, by invariance in law of ω under reflection

through the origin, X̃y has the same distribution as −Xy . Setting H : � × Z → {0,1} as in
(3.5), we analogously obtain (3.6)–(3.7) with X substituted by X̃.

Fix now γ ∈ (1,3/2) and take ko as in Corollary A.1. Fix ρ > 0 and consider an auxiliary
density ρ̂ > 0, to be fixed later. For this ρ̂, let v̂ < 0 as in Theorem 3.2; we may assume that
|v̂| < 1. Fix k̂ ≥ ko, p◦ ∈ [0,1] and let p� be as in Theorem 3.2 for L̂ = L

k̂
. Reasoning as in

the proof of Theorem 1.2, we see that, if p• ≤ p�, then

P
ρ̂(∃ a (L̂,H)-crossing � with χ

g
� ≤ |v̂|)≤ L̂Pρ̂(X0

L̂
≥ L̂v̂
)

Theorem 3.2≤ cL̂ exp
{−c−1(log L̂)3/2}< exp

(−(log L̂)γ
)(3.13)

whenever k̂ (and thus L̂) is large enough. The events in (3.7) (with X replaced by X̃) are
again measurable in σ(N(y),Uy : y ∈ B0,L), and are either always nondecreasing, or always
nonincreasing (depending on whether p◦ ≥ p• or not). Applying Corollary A.1 (with v(L) =
|v̂|, ρ(L) = ρ̂) we obtain ρ∞, c > 0 and v� < 0 depending on ρ̂ such that

P
ρ∞(X0

n ≥ v�n
)≤ c−1 exp

(−c(logn)γ
)

(3.14)

for all n ∈ Z+. Now we note that, using the explicit expression for ρ∞ (which is mentioned
in the proof of [12], Corollary 3.11, see Remark A.2 in the Appendix), we may choose ρ̂

in such a way that (3.14) is still valid with ρ in place of ρ∞. To conclude, sum (3.14) over
n ≥ L/2 and use {∃n ≥ 1 : X0

n > v�n + L} ⊂ {∃n ≥ L/2 : X0
n ≥ v�n} together with a union

bound. �

4. Triggering: Proof of Theorems 3.1–3.2. Here we give the proofs of Theorem 3.1
(Section 4.1) and Theorem 3.2 (Section 4.2).

4.1. Permeable systems at low density. Throughout this section, we assume p• ∨ q0 > 0
(and v◦ > 0 ≥ v•). As mentioned in the Introduction, we call this case permeable since the
random walker is able to cross over particles of the environment. The usefulness of this
condition comes from the fact that X may be coupled with an independent homogeneous
random walk X̄ with drift v◦ (which we call a “ghost walker”) such that, whenever the initial
configuration η consists of at most one particle that is not at the origin, there is a positive
probability that Xn = X̄n for all n ∈ Z+. In fact, we will show that this probability decays at
most exponentially in the number of particles of the environment. This suggests the following
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strategy: whenever a “ghost walker” is started to the left of X, it can “push” X to the right.
This may happen with small probability but, if enough time is given, many trials are possible
and so there is a large probability that at least one of them succeeds.

In order to implement this idea, we work first in a time scale at which typical empty regions
in the initial configuration remain empty, and the number of particles between such regions
is relatively small. This ensures that X does not move very far to the left, and that the “ghost
walkers” do not meet too many particles on their way. The original scale is then reached via
translation-invariance and a union bound.

We proceed to formalize the strategy outlined above. In the following, we state two propo-
sitions which will then be used to prove Theorem 3.1. Their proofs are postponed to Sec-
tions 4.1.1–4.1.2 below.

First of all we define the ghost walkers. For (x, t) ∈ Z
2, put

X̄
(x,t)
0 := x,

X̄
(x,t)
s+1 := X̄(x,t)

s +
{

1 if U
(X̄

(x,t)
s ,s+t)

≤ p◦,
−1 otherwise,

s ∈ Z+.
(4.1)

Then X̄(x,t) is a simple random walk with drift v◦ started at x. For T ∈ [0,∞], let

(4.2) G
(x,t)
T := {X(x,t)

s = X̄(x,t)
s ∀s ∈ [0, T ]}

be the good event where the random walk X(x,t) follows X̄(x,t) up to time T . A comparison
between X and X̄(x,t) on this event is given by the next lemma.

LEMMA 4.1. Fix (x, t) ∈ Z
2 with x ∈ 2Z. If Xt ≥ x and G

(x,t)
T occurs, then

Xt+s ≥ X̄(x,t)
s for all s ∈ [0, T ].

PROOF. Follows from Remark 2.2(i) and the definitions of X, X̄, G
(x,t)
T . �

To set up the scales for our proof, we fix α,β,β ′ ∈ (0,1) satisfying

(4.3) 0 <
α

2
< β ′ < β < α < 2β <

1

8

and we let

Ti := i2
⌊
2v−1◦ Lβ⌋, i ∈ [0,ML] ∩Z where ML := 1

4
v◦Lα−β,(4.4)

�L := ⌊Lβ ′⌋
.(4.5)

We assume that L is large enough so that �L,ML ≥ 1.
Let us comment on the conditions in (4.3). The goal will be to drive our random walker a

distance of order Lβ to the right in a time Lα . To do so, we will launch ML “ghost walkers”
for time intervals of length Lβ (so β < α). What we need is an empty region of size Lβ ′

within distance Lβ to the left of the origin (so β ′ < β < 1/16), which the symmetric walks
of the environment will not visit for a time Lα (hence α/2 < β ′). This is what we define now.

If p• = 0, it is not possible to couple X
(x,t)
1 and X̄

(x,t)
1 if there is a particle at (x, t). Thus,

if we aim to control G
(x,t)
T , we should have N(x, t) = 0. To that end, define

(4.6) Ẑ := max
{
z < −2�L : N(x,0) = 0 ∀x ∈ Z, |x − z| ≤ 2�L

}
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to be the center of the first interval of 4�L + 1 empty sites to the left of the origin in the initial
configuration. Then set

(4.7) X− :=
{
Ẑ − �L if Ẑ − �L ∈ 2Z,

Ẑ − �L + 1 otherwise.

Note that X− ∈ 2Z.
In order to use Lemma 4.1, we must control the probability that X crosses X− before

time Lα . This is the content of the following proposition, whose proof relies on standard
properties of simple random walks and Poisson random variables.

PROPOSITION 4.2. There exist c, ε > 0 such that, for all large enough L ∈ N,

(4.8) P
L

− 1
16
(

min
0≤s≤Lα

Xs < X−
)

≤ ce−c−1Lε

.

The next proposition shows that, with large probability, one of the events G
(X−,Ti )
T1

’s occurs.
Its proof depends crucially on the permeability of the system.

PROPOSITION 4.3. There exists c > 0 such that, for all large enough L ∈N,

(4.9) P
L

− 1
16
( ⋃

i∈[0,ML−1]
G

(X−,Ti )
T1

∩ {X̄(X−,Ti )
T1

≥ Lβ})≥ 1 − ce−c−1(logL)2
.

We are now ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1. First we argue that, for some constant c > 0,

(4.10) P
L

− 1
16
(

sup
0≤s≤Lα

Xs < Lβ
)

≤ ce−c−1(logL)2 ∀L ∈ N.

Indeed, by Lemma 4.1, the complement of the event in (4.10) contains the event{
min

0≤s≤Lα
Xs ≥ X−

}
∩ ⋃

i∈[0,ML−1]
G

(X−,Ti )
T1

∩ {X̄(X−,Ti )
T1

≥ Lβ},
which by Propositions 4.2–4.3 has probability at least 1 − ce−c−1(logL)2

.
Now let τk be the sequence of random times when the increments of X are at least Lβ , that

is, τ0 := 0 and recursively

(4.11) τk+1 := inf
{
s > τk : Xs − Xτk

≥ Lβ}, k ≥ 0.

Setting K := sup{k ≥ 0 : τk ≤ L}, we obtain

(4.12) XL =
K−1∑
i=0

Xτi+1 − Xτi
+ XL − XτK

≥ KLβ − (τK+1 − τK).

On the event

(4.13) BL := {τk+1 − τk ≤ Lα ∀k = 0, . . . ,K
}
,

we have K ≥ L1−α − 1. Therefore, by (4.12), on BL we have

(4.14) XL ≥ L1−α+β − Lβ − Lα ≥ L
15
16
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for large L since 1 − α + β > 15/16 > α > β . Thus we only need to control the probability
of BL. But, by the definition of X,

P
L

− 1
16 (

Bc
L

)≤ P
L

− 1
16
(
∃(x, t) ∈ [−L,L] × [0,L] : sup

s∈[0,Lα]
X(x,t)

s < Lβ
)

≤ cL2
P

L
− 1

16
(

sup
0≤s≤Lα

Xs < Lβ
)

≤ ce−c−1(logL)2
,

(4.15)

where we used a union bound, translation-invariance and (4.10). This completes the proof of
Theorem 3.1. �

4.1.1. Proof of Proposition 4.2. Recall the definition of Ẑ in (4.6). The idea behind the
proof of Proposition 4.2 is that, with our choice of scales, the interval [Ẑ − �L, Ẑ + �L]
remains empty throughout the time interval [0,Lα]. Since inside this interval X behaves as a
random walk with a positive drift, it avoids X− ≤ Ẑ − �L + 1 with large probability.

We first show that Ẑ − 2�L ≥ −Lβ with large probability.

LEMMA 4.4.

(4.16) P
L

− 1
16 (

Ẑ − 2�L < −Lβ)≤ ce−c−1Lβ−β′
.

PROOF. We may assume that L is large enough. Let E0 := 0 and recursively

(4.17) Ek+1 := max
{
z < Ek : N0(z) > 0

}
, k ≥ 0.

Then (Ek − Ek+1)k≥0 are i.i.d. Geom(1 − e−L
− 1

16
) random variables. Let

(4.18) K := inf
{
k ≥ 0 : |Ek+1 − Ek| > 4�L

}
.

Then K + 1 has a geometric distribution with parameter e−4�LL1/16
. Thus

P
L

− 1
16
(
K + 1 >

1

4
Lβ−β ′

)
≤ (1 − e−4L−(1/16−β′)) 1

4 Lβ−β′

≤ 4
1
4 Lβ−β′

e− 1
4 (1/16−β ′)Lβ−β′

logL

≤ ce−c−1Lβ−β′
.

(4.19)

Since |Ẑ − 2�L| ≤ 4�L(K + 1),

P
L

− 1
16 (

Ẑ − 2�L < −Lβ)≤ P
L

− 1
16
(
K + 1 >

1

4
Lβ−β ′

)
≤ ce−c−1Lβ−β′

(4.20)

by (4.19). This finishes the proof. �

Next we show that, with large probability, the particles of the random environment do not
penetrate deep inside the empty region up to time Lα . Let

(4.21) EL := {N(y) = 0 ∀y ∈ [Ẑ − �L, Ẑ + �L] × [0,Lα]}.
LEMMA 4.5. There exists c > 0 such that

(4.22) P
L

− 1
16 (Ec

L

)≤ ce− 1
c
L(β−β′)∧(2β′−α)

.
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PROOF. For x ∈ Z, the random variable

(4.23) N̂L(x) := ∑
z/∈[x−2�L,x+2�L]

∑
i≤N(z,0)

1{∃s∈[0,Lα] : S
z,i
s ∈[x−�L,x+�L]}

has a Poisson distribution with parameter

(4.24) λL(x) := L− 1
16

∑
z/∈[x−2�L,x+2�L]

P
(∃s ∈ [0,Lα] : Sz,1 ∈ [x − �L, x + �L]),

where Sz,1 is a simple symmetric random walk started at z as defined in the Introduction. By
standard random walk estimates, we have

λL(x) ≤ 2
∑

k>�L

P
(

sup
s∈[0,Lα]

∣∣S0,1
s

∣∣≥ k
)

≤ c
∑

k>�Lβ′ �
e− k2

cLα ≤ cLαe−c−1L2β′−α

.(4.25)

Therefore, by Lemma 4.4 and (4.25),

P
L

− 1
16 (

N̂L(Ẑ) > 0
)

(4.26)

≤ P
L

− 1
16 (

Ẑ < −Lβ)+ P
L

− 1
16 (∃x ∈ [−Lβ,0

] : N̂L(x) > 0
)

≤ ce−c−1L(β−β′) + cLβ sup
x

λL(x) ≤ ce− 1
c
L(β−β′)∧(2β′−α)

.(4.27)

Since N(z,0) = 0 for all z ∈ [Ẑ − 2�L, Ẑ + 2�] by definition, N̂L(Ẑ) is equal to the total
number of particles that enter [Ẑ − �L, Ẑ + �L] × [0,Lα]. This completes the proof. �

Let now, for t ∈ N,

H
(t)
+ := inf

{
s ≥ 0 : X(Ẑ,t)

s − Ẑ = �L

}
,

H
(t)
− := inf

{
s ≥ 0 : X(Ẑ,t)

s − Ẑ = −�L + 1
}(4.28)

be the times when the random walk X(Ẑ,t) hits the sites Ẑ + �L or Ẑ − �L + 1. Let

(4.29) DL := {H(t)
− > H

(t)
+ ∧ (Lα − t

) ∀t ∈ [0,Lα]}.
The last lemma of this section shows that also DL has large probability.

LEMMA 4.6.

(4.30) P
L

− 1
16 (Dc

L | EL

)≤ ce−c−1Lβ′
.

PROOF. Fix t ∈ [0,Lα] and note that, on the event EL, X
(Ẑ,t)
s − Ẑ is up to time H

(t)
+ ∧

H
(t)
− ∧ (Lα − t) equal to X̄

(Ẑ,t)
s − Ẑ. The latter is a random walk with drift v◦ > 0, so by

standard estimates we obtain

P
L

− 1
16 (

H
(t)
− ≤ H

(t)
+ ∧ (Lα − t

) | EL

)≤ P
L

− 1
16
(

inf
s≥0

X̄(Ẑ,t)
s − Ẑ ≤ −�L + 1

)
≤ ce−c−1�L ≤ ce−c−1Lβ′

.

(4.31)

The proof is completed using (4.31) and a union bound over t ∈ [0,Lα]. �

With Lemmas 4.4–4.6 at hand we can finish the proof of Proposition 4.2.
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PROOF OF PROPOSITION 4.2. By Lemmas 4.5–4.6,

(4.32) P
L

− 1
16

(DL) ≥ 1 − ce−c−1Lε

,

where ε := β ′ ∧ (β − β ′) ∧ (2β ′ − α). The proof is finished by noting that, since X must hit
Ẑ in order to reach Ẑ − �L + 1 ≥ X−, if DL occurs then Xs ≥ X− ∀s ∈ [0,Lα]. �

4.1.2. Proof of Proposition 4.3. For (x, t) ∈ Z
2 and T ∈ [0,∞), let

(4.33) �
(x,t)
T :=

{
X̄(x,t)

s − x ≥ 1

2
v◦s ∀s ∈ [0, T ]

}
, �(x,t)∞ := ⋂

T >0

�
(x,t)
T .

When (x, t) = (0,0), we omit it from the notation of both G
(x,t)
T and �

(x,t)
T .

The proof of Proposition 4.3 follows two steps that are presented in Lemmas 4.7 and 4.9.
We first show a lower bound on the probability of G∞ ∩ �∞. This lower bound is provided
in Lemma 4.7 and decays exponentially in the number of particles in η. Intuitively speaking
this can be interpreted as if the walker had to pay a constant price to ignore each particle.
Then in Lemma 4.9 we show that, if the initial configuration has a logarithmic number of
particles and we are given enough attempts, the walker is very likely to ignore all of them.

For η ∈ Z
Z+, denote by

(4.34) |η| :=∑
z∈Z

η(z) ∈ [0,∞]

the total number of particles in η. Note that |N(·, t)| = |η| a.s. under Pη.
The first goal of the section is the following key lemma, providing a lower bound on the

probability of G∞ ∩ �∞ when |η| < ∞ and η(0) = 0.

LEMMA 4.7. There exists p∗ ∈ (0,1) such that

(4.35) inf
η : |η|≤k,η(0)=0

Pη(G∞ ∩ �∞) ≥ pk∗ ∀k ≥ 0.

In order to prove Lemma 4.7, we will need an auxiliary result. For a set B ⊂ Z and two
configurations η, ξ ∈ Z

Z+ satisfying ξ ≤ η (i.e., ξ(x) ≤ η(x) ∀x ∈ Z), let

(4.36) ηB,ξ (x) :=
{
η(x) − ξ(x) if x ∈ B,

η(x) otherwise.

For A ⊂ Z
2, we write N(A) = (N(y))y∈A and UA = (Uy)y∈A. The following lemma is a

consequence of the i.i.d. nature of the particles in the environment.

LEMMA 4.8. Let A ⊂ Z
2 and B ⊂ Z. For any two configurations ξ ≤ η ∈ Z

Z+ and any
measurable bounded function f ,

(4.37)
Eη

[
f
(
N(A),UA

) | (Sz,i)
i≤ξ(z),z∈B

]= EηB,ξ

[
f
(
N(A),UA

)]
a.s. on the event

{
Sz,i

n ∩ A = ∅ ∀n ∈ Z, i ≤ ξ(z), z ∈ B
}
.

PROOF. For (x, t) ∈ Z
2, let

(4.38) NB,ξ (x, t) :=∑
z/∈B

∑
1≤i≤η(z)

1{Sz,i
t =x} +∑

z∈B

∑
ξ(z)<i≤η(z)

1{Sz,i
t =x}.
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On the event in the second line of (4.37), f (N(A),UA) = f (NB,ξ (A),UA) and the latter is
independent of (S(z,i))i≤ξ(z),z∈B . To conclude, note that NB,ξ has under Pη the same distri-
bution of N under PηB,ξ . �

We can now give the proof of Lemma 4.7.

PROOF OF LEMMA 4.7. We start with the case q0 > 0. We claim that one may assume
η(z) = 0 for all z ≤ 0. Indeed, apply Lemma 4.8 with A = {(x, t) ∈ Z

2+ : x ≥ 1
2v◦t}, B =

(−∞,−1] ∩Z and ξ(z) = η(z)1{z<0} to obtain

Pη(G∞ ∩ �∞) ≥ P
(
S0,1

n − 1 /∈ A ∀n ∈ Z+
)|ξ |

PηB,ξ (G∞ ∩ �∞),

where ηB,ξ (z) = 0 for all z ≤ 0 and |ηB,ξ | = |η| − |ξ |. We thus let

(4.39) pk := inf|η|=k,η(z)=0 ∀z≤0
Pη(G∞ ∩ �∞).

It is clear that

(4.40) p0 = P0(�∞) = P

(
X̄n ≥ 1

2
v◦n ∀n ∈ Z+

)
> 0.

Let A′ = (
⋃2

i=0{(i, i)}) ∪ {(x, t) ∈ Z
2 : t ≥ 3, x ≥ 1

2v◦t} and B = {1,2}. We say that “Sz,i

avoids A′” if Sz,i
n /∈ A′ for all n ∈ Z. Since q0 > 0,

(4.41) p̃ := inf
z∈B

P
(
Sz,1 avoids A′)> 0.

We will prove that, for all k ≥ 0,

(4.42) pk ≥ pk∗∗ where p∗∗ := p0p̃

by induction on k. Let |η| ≥ 1, η(z) = 0 for all z ≤ 0, and assume that (4.42) has been shown
for all k < |η|.

Assume first that η(1) + η(2) ≥ 1 and put ξ(z) = η(z)1{1,2}(z). Noting that G∞ ∩ �∞ is
measurable in σ(N(A′),UA′), use Lemma 4.8 and the induction hypothesis to write

Pη(G∞,�∞) ≥ Eη

[ ∏
z∈B,i≤ξ(z)

1{Sz,i avoids A′}Pη

(
G∞ ∩ �∞ | (Sz,i)

z∈B,i≤ξ(z)

)]

≥ p̃|ξ |p|η|−|ξ | ≥ p̃p|η|−1∗∗ ≥ p|η|∗∗ .

(4.43)

If η(1) + η(2) = 0, let

(4.44) τ := inf
{
n ∈ N : N(X̄n + 1, n) + N(X̄n + 2, n) ≥ 1

}
.

Note that τ < ∞ a.s. since X̄ has a positive drift while the environment particles are sym-
metric. Let η̄τ (x) = N(X̄τ + x, τ ) and note that, since the random walks are all 1-Lipschitz,
η̄τ (z) = 0 for all z ≤ 0. Furthermore, X is equal to X̄ until time τ since it meets no environ-
ment particles up to this time. Thus, using the Markov property and (4.43) we can write

Pη(G∞ ∩ �∞) ≥ Pη

(
�τ ∩ G(X̄τ ,τ )∞ ∩ �(X̄τ ,τ ))

= Eη

[
1�τPη̄τ (G∞ ∩ �∞)

]
(4.45)

≥ p̃p|η|−1∗∗ Pη(�τ ) ≥ p|η|∗∗ ,

completing the induction step.
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We turn now to the case q0 = 0, p• > 0. In this case, we can actually control

(4.46) pk := inf|η|=k
Pη(G∞ ∩ �∞) = inf

y∈Z2
inf|η|=k

Pη

(
Gy∞ ∩ �y∞

)
,

where the second equality holds by the Markov property, particle conservation and translation
invariance. Let p∗∗ := p•p0p̂ where p0 is as in (4.40) and

(4.47) p̂ := P
(
S0,1 avoids A′′), A′′ :=

{
(x, t) ∈ Z

2 : t ≥ 1, x ≥ 1

2
v◦t
}
.

Then we can prove (4.42) by induction in a similar way as for the previous case.
Indeed, suppose first that η(0) > 0. Note that, since X1 = 1 when U0 ≤ p•,

Pη(G∞ ∩ �∞)(4.48)

≥ Pη

(
U0 ≤ p•,G(1,1)∞ ∩ �(1,1)∞

)= p•Pη

(
G(1,1)∞ ∩ �(1,1)∞

)
≥ p•Eη

[ ∏
i≤η(0)

1{S0,i avoids A′′}Pη

(
G(1,1)∞ ∩ �(1,1)∞ | (S0,i)

i≤η(0)

)]
.(4.49)

Noting that G
(1,1)∞ ∩ �

(1,1)∞ is measurable in σ(N(A′′),UA′′), we may apply Lemma 4.8 with
B = {0}, ξ = η10 followed by the induction hypothesis to obtain

(4.50) Pη(G∞ ∩ �∞) ≥ p•p̂|η(0)|p|η|−|η(0)| ≥ p•p̂p|η|−1∗∗ .

If η(0) = 0, define

(4.51) τ := inf
{
n ∈ N : N(X̄n, n) ≥ 1

} ∈ [1,∞].
Setting η̄τ (x) = N(X̄τ + x, τ ), use the Markov property and (4.50) to write

Pη(τ < ∞,G∞ ∩ �∞) ≥ Eη

[
1{τ<∞}1�τPητ (G∞ ∩ �∞)

]
≥ p•p̂p|η|−1∗∗ Pη(τ < ∞,�τ ).

(4.52)

Now note that G∞ occurs if τ = ∞ and use (4.52) to obtain

Pη(G∞ ∩ �∞) = Pη(τ = ∞,�∞) + Pη(τ < ∞,G∞ ∩ �∞)

≥ p•p̂p|η|−1∗∗
{
Pη(τ = ∞,�∞) + Pη(τ < ∞,�∞)

}= p|η|∗∗ ,
(4.53)

concluding the proof. �

Next we use Lemma 4.7 to show that, if |η| is sufficiently small and is empty in an interval
of radius �L around 0, then one of the G

(0,Ti)
T1

’s occurs with large probability.

LEMMA 4.9. There exist δ, ε, c > 0 such that

(4.54) inf
η : |η|≤δ logL,

η(z)=0 ∀z∈[−�L,�L]
Pη

( ⋃
i∈[0,ML−1]

G
(0,Ti)
T1

∩ �
(0,Ti )
T1

)
≥ 1 − ce−c−1Lε

.

PROOF. For p∗ is as in Lemma 4.7, fix δ > 0 such that δ log 1
p∗ < α − β . Fix η with

|η| ≤ δ logL, η(z) = 0 for all z ∈ [−�L, �L].
Put ηt (x) := N(x, t) and use the Markov property to write, for k ≥ 0,

Pη

(
k+1⋂
i=0

(
G

(0,Ti )
T1

∩ �
(0,Ti )
T1

)c ∩ {ηTi+1(0) = 0
})

≤ Eη

[
k∏

i=0

1
(G

(0,Ti )

T1
∩�

(0,Ti )

T1
)c∩{ηTi+1 (0)=0}PηTk+1

(
(GT1 ∩ �T1)

c)].
(4.55)
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Since |ηTk+1 | = |η| ≤ δ logL and ηTk+1(0) = 0 inside the integral, by Lemma 4.7 we may
bound (4.55) from above by

(4.56)
(
1 − Lδ logp∗)Pη

(
k⋂

i=0

(
G

(0,Ti )
T1

∩ �
(0,Ti )
T1

)c ∩ {ηTi
(0) = 0

})
.

We conclude by induction that

Pη

(�ML�−1⋂
i=0

(
G

(0,Ti)
T1

∩ �
(0,Ti )
T1

)c ∩ {ηTi
(0) = 0

})≤ (1 − Lδ logp∗)�ML�

≤ ce− 1
c
Lε∗

,

(4.57)

where ε∗ := α − β + δ logp∗ > 0 by our choice of δ. Now, using standard random walk
estimates as in the proof of Lemma 4.5, we obtain

(4.58) Pη

(∃t ∈ [0,Lα] : ηt (0) > 0
)≤ ce−c−1Lε′

for some ε′ > 0, so we may take ε := ε′ ∧ ε∗. �

Finally, we gather all results of this section to prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. Note that, if X− ≥ −Lβ +1, then �
(X−,Ti )
T1

⊂ {X̄(X−,Ti )
T1

≥
Lβ}. Therefore, by Lemma 4.4, it is enough to show that

(4.59) P
L

− 1
16
( ⋂

i∈[0,ML−1]

(
G

(X−,Ti )
T1

∩ �
(X−,Ti )
T1

)c ∩ {X− ≥ −Lβ + 1
})≤ ce−c−1(logL)2

.

By a union bound and translation invariance, the left-hand side of (4.59) is at most

Lβ
P

L
− 1

16
( ⋂

i∈[0,ML−1]

(
G

(0,Ti )
T1

∩ �
(0,Ti )
T1

)c ∩ EL

)
(4.60)

where EL := {N(z,0) = 0 ∀z ∈ [−�L, �L]}.
Recalling the definition of Ti , �L in (4.4), we note that, since all our random walks are

1-Lipschitz, there exists c1 > 0 such that the indicator functions of G
(0,Ti)
T1

,�
(0,Ti)
T1

and EL are

functionals of UA,N(A) with A := [−c1L
β, c1L

β] × [0,Lα] ∩Z
2.

Let B := Z \ [−(c1 + 1)Lβ, (c1 + 1)Lβ], put

(4.61) N̂L :=∑
z∈B

∑
i≤N(z,0)

1{∃s∈[0,Lα] : S
z,i
s ∈[−c1L

β,c1L
β ]}

and, analogously to (4.36),

(4.62) ηB(x) :=
{
N(x,0) if x /∈ B,

0 otherwise.

Lemmas 4.8 and 4.9 imply that

P
L

− 1
16

(�ML�−1⋂
i=0

(
G

(0,Ti )
T1

∩ �
(0,Ti )
T1

)c ∩ EL

)

≤ P
L

− 1
16

(N̂L > 0) +E
L

− 1
16

[
1EL

PηB

(�ML�−1⋂
i=0

(
G

(0,Ti )
T1

∩ �
(0,Ti )
T1

)c)](4.63)

≤ P
L

− 1
16

(N̂L > 0) + P
L

− 1
16 (∣∣ηB

∣∣> δ logL
)+ ce−c−1Lε

.
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Reasoning as in the proof of Lemma 4.5 (see (4.23)–(4.25)), we obtain

(4.64) P
L

− 1
16

(N̂L > 0) ≤ ce−c−1L2β−α

,

while, since |ηB | has under PL
− 1

16 a Poisson law with parameter at most cL−(1/16−β),

(4.65) P
L

− 1
16 (∣∣ηB

∣∣> δ logL
)≤ (cL−(1/16−β))δ logL ≤ ce−c−1(logL)2

.

Combining (4.60)–(4.65), we obtain (4.59) and finish the proof. �

4.2. Perturbations of impermeable systems. In this section, we assume q0 = 0. As al-
ready mentioned, the main strategy in the proof of Theorem 3.2 is a comparison with an
infection model, which we now describe.

Recall the random walks Sz,i from Section 2. Define recursively a random process
ξ(z, i, n) ∈ {0,1}, z ∈ Z, i ∈ N, n ∈ N by setting

ξ(z, i,0) = 1 if z ≥ 0, z ∈ 2Z and i ≤ N(z,0),

ξ(z, i,0) = 0 otherwise,
(4.66)

and, supposing that ξ(z, i, n) is defined for all z ∈ Z, i ∈ N,

(4.67) ξ(z, i, n + 1) =

⎧⎪⎪⎨⎪⎪⎩
1

if i ≤ N(z,0) and

∃z′ ∈ Z, i′ ∈ N with η(z′, i ′, n) = 1, Sz′,i′
n = Sz,i

n ,

0 otherwise.

The interpretation is that, if ξ(z, i, n) = 1, then the particle Sz,i is infected at time n, and
otherwise it is healthy. Then (4.67) means that, whenever a group of particles shares a site at
time n, if one of them is infected then all will be infected at time n + 1.

We are interested in the process X̄ = (X̄n)n∈Z+ defined by

(4.68) X̄n = min
{
Sz,i

n : z ∈ Z, i ≤ N(z,0) and ξ(z, i, n) = 1
}
,

that is, X̄n is the leftmost infected particle at time n. We call X̄ the front of the infection.
Note that, by (4.66) and since q0 = 0, all infected particles live on 2Z. In particular, X̄n ∈

2Z for all n ≥ 0. This implies the following.

LEMMA 4.10. If p• = 0, then Xn ≤ X̄n for all n ≥ 0.

PROOF. Since the processes are one-dimensional, proceed by nearest-neighbour jumps,
are ordered at time 0 and the difference in their positions lies in 2Z, we only need to consider
what happens at times s when Xs = X̄s . For such times, Xs+1 = Xs − 1 since p• = 0, and
thus Xs+1 ≤ X̄s+1. �

The advantage of the comparison above becomes clear in light of the following.

PROPOSITION 4.11. For any ρ̂ > 0, there exist v̂ < 0, c > 0 such that

(4.69) P
ρ̂ (X̄L > v̂L) ≤ c exp

{−(logL)3/2/c
} ∀L ∈ N.

PROOF. This is just an adaptation of the statement of Proposition 1.2 of [12] once we
map 2Z to Z and apply reflection symmetry. Its proofs follow exactly the same lines as in
there. �
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We are now ready to finish the:

PROOF OF THEOREM 3.2. Fix ρ̂ > 0 and L̂ ∈ N. Suppose first that p• = 0. By
Lemma 4.10 and Proposition 4.11, there exist v̂ < 0, c > 0 independent of L̂ such that

P
ρ̂ (X

L̂
> v̂L̂) ≤ P

ρ̂ (X̄
L̂

> v̂L̂) ≤ ce−(log L̂)3/2/c.(4.70)

Note now that, since X
L̂

is supported in a finite space-time box, the probability in the left-
hand side of (4.70) is a continuous function of p•. Thus we can find p� > 0 such that, if
p• ≤ p�, then (4.70) holds with c replaced by 2c, concluding the proof. �

5. Regeneration: Proof of Theorem 1.4. In this section, we extend the results of Sec-
tion 4 of [21] to the case v• < v◦ and give the proof of Theorem 1.4 under the conditions of
item (a). The definition of the regeneration time τ given next is exactly as in [21]. Differences
appear only in Section 5.1, where the tail of τ is controlled.

Fix ρ > 0. We assume that (1.5) holds with v� > 0 and some γ > 1. We assume addition-
ally that p• > 0. In the sequel, we abbreviate P = P

ρ .
Define v̄ = 1

3v�. For x ∈ R and n ∈ Z, let ∠(x, n) be the cone in the first quadrant based at
(x, n) with angle v̄, that is,

(5.1) ∠(x, n) =∠(0,0) + (x, n), where ∠(0,0) = {(x, n) ∈ Z
2+;x ≥ v̄n

}
,

and

∠

(x, n) the cone in the third quadrant based at (x, n) with angle v̄, that is,

(5.2)

∠

(x, n) = ∠

(0,0) + (x, n), where

∠

(0,0) = {(x, n) ∈ Z
2− : x < v̄n

}
.

(See Figure 2.) Note that (0,0) belongs to ∠(0,0) but not to
∠

(0,0).
Fixed y ∈ Z

2, define the following sets of trajectories in W :

(5.3)

W∠
y = trajectories that intersect ∠(y) but not

∠

(y),

W

∠

y = trajectories that intersect

∠

(y) but not ∠(y),

W �
y = trajectories that intersect both ∠(y) and

∠

(y).

Note that W∠
y , W

∠

y and W �
y form a partition of W . We write Yn to denote Y 0

n . For y ∈ Z
2,

define the sigma-algebras

(5.4) GI
y = σ

(
ω(A) : A ⊂ WI

y ,A ∈ W
)
, I = ∠,

∠

, �,

and note that these are jointly independent under P. Define also the sigma-algebras

(5.5)
U∠

y = σ
(
Uz : z ∈ ∠(y)

)
,

U

∠

y = σ
(
Uz : z ∈ ∠

(y)
)
,

FIG. 2. An illustration of the sets ∠(y) (represented by white circles) and

∠

(y) (represented by filled black
circles), with y = (x,n) ∈ Z

2.
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and set

(5.6) Fy = G

∠

y ∨ G �y ∨ U

∠

y .

Next, define the record times

(5.7) Rk = inf
{
n ∈ Z+ : Xn ≥ (1 − v̄)k + v̄n

}
, k ∈ N,

that is, the time when the walk first enters the cone

(5.8) ∠k := ∠
(
(1 − v̄)k,0

)
.

Note that, for any k ∈ N, y ∈ ∠k if and only if y + (1,1) ∈ ∠k+1. Thus Rk+1 ≥ Rk + 1, and
XRk+1 − XRk

= 1 if and only if Rk+1 = Rk + 1.
Define a filtration F = (Fk)k∈N by setting

(5.9) Fk = {B ∈ σ(ω,U) : ∀y ∈ Z
2,∃By ∈Fy s.t. B ∩ {YRk

= y} = By ∩ {YRk
= y}},

that is, Fk is the sigma-algebra generated by YRk
, all Uz with z ∈ ∠

(YRk
) and all ω(A) such

that A ⊂ W

∠

YRk
∪ W �

YRk
. In particular, (Yi)0≤i≤Rk

∈ Fk .
Finally, define the event

(5.10) Ay = {Yy
i ∈ ∠(y) ∀i ∈ Z+

}
,

in which the walker remains inside the cone ∠(y), the probability measure

(5.11) P
∠(·) = P

(·|ω(W �
0

)= 0,A0),
the regeneration record index

(5.12) I = inf
{
k ∈ N : ω

(
W �

YRk

)= 0,AYRk occurs
}

and the regeneration time

(5.13) τ = RI .

The following two theorems are our key results for the regeneration time.

THEOREM 5.1. Almost surely on the event {τ < ∞}, the process (Yτ+i − Yτ )i∈Z+ under
either the law P(· | τ, (Yi)0≤i≤τ ) or P∠(· | τ, (Yi)0≤i≤τ ) has the same distribution as that of
(Yi)i∈Z+ under P∠(·).

THEOREM 5.2. There exists a constant c0 > 0 such that

(5.14) E
[
ec0(log τ)γ ]< ∞

and the same holds under P∠.

Theorem 5.1 is proved exactly as in [21]. Theorem 5.2 was proved in [21] in the
nonnestling case and in the case v• ≥ v◦. In the following Section 5.1, we will fill the re-
maining gap by showing that it also holds when v◦ > 0 ≥ v•.

We may now conclude the:

PROOF OF THEOREM 1.4. Defining

(5.15) v = E
∠[Xτ ]
E∠[τ ] , σ 2 = E

∠[(Xτ − τv)2]
E∠[τ ] ,

one may follow the proof of Theorem 1.4 in [21] (Section 4.3 therein). �
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REMARK 5.3 (Continuity of v and σ ). Careful inspection of the proof of Theorem 5.2
will reveal the following uniformity property: fix q0, p◦, p• > 0 and assume that (1.5) holds
for some ρ�, v� > 0 (e.g., as given by Theorem 1.2). Then the expectation in (5.14) is uni-
formly bounded over ρ ∈ [0, ρ�]. Together with (5.15), this may be used to show that both
v and σ are continuous functions of ρ in the interval [0, ρ�]. In the interest of brevity, we
will not pursue this here but only sketch a proof strategy. For a full proof of similar state-
ments, see [17], Section 6.4. The key points are as follows: first note that the expectation of
any bounded local function of N,U is continuous in ρ (where local means that the function
only depends on the values of N,U inside a finite space-time box). This can be shown by
simultaneously coupling systems with all values of ρ, and applying the dominated conver-
gence theorem. The crux of the argument is thus to approximate (uniformly over ρ ∈ [0, ρ�])
the expectations in (5.15) by expectations of bounded local functions, which can be done
using the uniform version of (5.14) together with the Lipschitz property of all random walks
involved.

5.1. Proof of Theorem 5.2. In this section, we control the tail of the regeneration time τ

in the case p• > 0, v• < v◦, in particular proving Theorem 5.2. The proof strategy is the same
as in [21]; the main technical difference is the definition of good record times given in (5.26)–
(5.29) below. Otherwise, the proof proceeds almost identically as in [21]. For completeness,
we provide all details here.

Let us motivate why a different definition of good record times is necessary. The reason
stems from the different monotonicity properties of the model with respect to the presence
of particles. Indeed, when v• > v◦, adding particles to the system always pushes the random
walker to the right, so that, when estimating from below conditional probabilities for the
random walker to move ballistically, one may ignore particles it met in the past, thus losing
memory. When v◦ > v•, monotonicity is reversed, so this strategy is no longer feasible. In-
stead, we control conditional probabilities for auxiliary random walkers that, by construction,
ignore all particles from the distant past. Since meeting such particles is extremely unlikely,
it turns out that, when the record time is good, the true random walker equals the auxiliary
random walker with overwhelming probability. Details are carried out below.

In what follows, constants may depend on v◦, v•, v� and ρ. Define the influence field at a
point y ∈ Z

2 as

(5.16) h(y) = inf
{
l ∈ Z+ : ω

(
W �

y ∩ W �
y+(l,l)

)= 0
}
.

LEMMA 5.4 (Lemma 4.3 of [21]). There exist constants c1, c2 > 0 (depending on v�, ρ

only) such that, for all y ∈ Z
2,

(5.17) P
[
h(y) > l

]≤ c1e
−c2l , l ∈ Z+.

Set

(5.18) δ = 1

4 log( 1
p• )

, ε = 1

4
(c2δ ∧ 1),

and put, for T > 1,

(5.19) T ′ = ⌊T ε⌋, T ′′ = �δ logT �.
Define the local influence field at (x, n) as

(5.20) hT (x,n) = inf
{
l ∈ Z+ : ω

(
W∠

x−�(1−v̄)�T ′,n ∩ W �
x,n ∩ W �

x+l,n+l

)= 0
}
.

Then we have the following.
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LEMMA 5.5 (Lemma 4.4 of [21]). For all T > 1 it holds P-a.s. that

(5.21) P
(
hT (y) > l | Fy−(�(1−v̄)�T ′,0)

)≤ c1e
−c2l ∀y ∈ Z

2, l ∈ Z+,

where c1, c2 are the same constants of Lemma 5.4.

For y ∈ Z
2, denote by

(5.22) κ(y) := max{k ∈ N : y ∈ ∠k}
the index of the last cone containing y. Note that κ(YRk

) = k. Then define, for t ∈ N, the
space-time parallelogram

(5.23) Pt (y) = (∠(y) \∠κ(y)+t

)∩ (y + {(x, n) ∈ Z
2 : n ≤ t/v̄

})
and its right boundary

(5.24) ∂+Pt (y) = {z ∈ Z
2 \Pt (y) : z − (1,0) ∈ Pt (y)

}
.

We say that “Yy exits Pt (y) through the right” when the first time i at which Y
y
i /∈ Pt (y)

satisfies Y
y
i ∈ ∂+Pt (y). Note that, if y = YRk

, this implies Y
y
i = YRk+t

.
In order to adapt the argument in [21], we will need to modify the definition of good record

times given there. For this, we need some additional definitions.
For y ∈ Z

2, let

(5.25) W̃y := ⋃
z∈∂+PT ′ (y)

W∠
z−(�(1−v̄)�T ′,0) ∩ W �

z ∩ W �
z+(T ′′,T ′′)

and, for y1, y2 ∈ Z
2, denote by T̃y1,y2 the trace of all trajectories in ω that do not belong

to W̃y1 or intersect

∠

(y2). Let Ỹ y1,y2 be the analogous of Yy2 defined using T̃y1,y2 instead
of T . Note that, since v◦ > v•, by monotonicity we have X̃

y1,y2
t ≥ X

y2
t for all y1, y2 ∈ Z

2 and
t ∈ Z+.

We say that Rk is a good record time (g.r.t.) when

hT (y) ≤ T ′′ ∀y ∈ ∂+PT ′(YRk−T ′ ),(5.26)

UYRk
+(l,l) ≤ p• ∀l = 0, . . . , T ′′ − 1,(5.27)

ω
(
W∠

YRk
∩ W �

YRk+(T ′′,T ′′)
)= 0,(5.28)

Ỹ k exits PT ′(YRk+(T ′′,T ′′)) through the right,(5.29)

where Ỹ k := Ỹ y1,y2 with y1 = YRk−T ′ , y2 = YRk+(T ′′,T ′′). Note that (5.26) is the same as
{ω(W̃YR

k−T ′ ) = 0} and that, when (5.27) happens, YRk+T ′′ = YRk
+ (T ′′, T ′′). Figure 3 il-

lustrates a good record time. The main differences with respect to the analogous definition in
[21] are:

1. In (5.26), we require a small local field not exactly at YRk
but in every point of

∂+PT ′(YRk−T ′ ), a set to which YRk
belongs with large probability.

2. We do not require (5.29) for Y but only for Ỹ ; we will see that, if the record time is
good, then the same holds for Y with large probability.

We will need the following consequence of (1.5).

LEMMA 5.6.

(5.30) P(Xn ≥ nv� ∀n ∈ Z+) > 0.
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FIG. 3. Illustration of a good record time Rk . Note the validity of the conditions (5.26), (5.27) and (5.29). The
gray region illustrates the set ∂+PT ′(YRk−T ′ ).

PROOF. Fix L > 1 large enough such that

(5.31) P
(∃n ∈ Z+ : Xn < nv� − L(1 − v�)

)≤ 1

2
,

which is possible by (1.5). If t > L, then

P(Xn ≥ nv� ∀n ∈ Z+)

≥ P
(
U(i,i) ≤ p• ∀i = 0, . . . ,L − 1,X(L,L)

n − L ≥ nv� − (1 − v�)L ∀n ∈ Z+
)

= pL•
{
1 − P
(∃n ∈ Z+ : Xn < nv� − (1 − v�)L

)}
≥ 1

2
pL• > 0

(5.32)

as desired. �

As in [21], the following proposition is the main step to control the tail of the regeneration
time.

PROPOSITION 5.7. There exists a constant c3 > 0 such that, for all T > 1 large enough,

(5.33) P[Rk is not a g.r.t. for all 1 ≤ k ≤ T ] ≤ e−c3
√

T .

PROOF. First we claim that there exists a c > 0 such that, for any k ≥ T ′,
(5.34) P[Rk is a g.r.t.|Fk−T ′ ] ≥ cT δ log(p•) a.s.

To prove (5.34), we will find c > 0 such that

P
[
(5.26)|Fk−T ′

]≥ c a.s.,(5.35)

P
[
(5.27)|(5.26),Fk−T ′

]≥ T δ log(p•) a.s.,(5.36)

P
[
(5.28)|(5.26), (5.27),Fk−T ′

]≥ c a.s.,(5.37)

P
[
(5.29)|(5.26), (5.27), (5.28),Fk−T ′

]≥ c a.s.(5.38)
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(5.35): Fix B ∈ Fk−T ′ . Summing over the values of YRk−T ′ and using a union bound we
may write

P
(
(5.26)c,B

)≤ ∑
y1∈Z2

∑
y2∈∂+PT ′ (y1)

P
(
hT (y2) > T ′′, YRk−T ′ = y1,By1

)
.(5.39)

Noting that y2 − (�(1 − v̄)�)T ′,0) − y1 ∈ Z
2+ for large enough T , we may use Lemma 5.5

and |∂+Pt (y)| ≤ t/v̄ to further bound (5.39) by

c1

v̄
T ′e−c2T

′′
P(B) ≤ c1

v̄
ec2T − 3

4 δc2P(B),(5.40)

where the last inequality uses the definition of ε. Thus, for T large enough, (5.35) is satisfied
with for example, c = 1/2.

(5.36): This follows from the fact that (UYRk
+(l,l))l∈N0 is independent of the sigma-algebra

σ(ω(A) : A ⊂ W̃YR
k−T ′ ) ∨Fk with respect to which (5.26) is measurable.

(5.37): We may ignore the conditioning on (5.27) since this event is independent of the
others. Since (5.26) is equivalent to ω(W̃YR

k−T ′ ) = 0, for B ∈Fk−T ′ we may write

P
(
(5.28), (5.26),B

)= P
(
ω
(
W∠

YRk
∩ W �

YR
k+T ′′ \ W̃YR

k−T ′
)= 0, (5.26),B

)
= ∑

y1,y2∈Z2 :
y2−y1∈N2

P
(
ω
(
W∠

y2
∩ W �

y2+(T ′′,T ′′) \ W̃y1

)= 0,

YRk
= y2, YRk−T ′ = y1,ω(W̃y1) = 0,By1

)
= ∑

y1,y2∈Z2 :
y2−y1∈N2

P
(
ω
(
W∠

y2
∩ W �

y2+(T ′′,T ′′) \ W̃y1

)= 0
)

× P
(
YRk

= y2, YRk−T ′ = y1,ω(W̃y1) = 0,By1

)
≥ P
(
ω
(
W �

0

)= 0
)
P
(
(5.26),B

)
,

(5.41)

where the second equality uses the independence between σ(ω(A) : A ⊂ W∠
y2

\ W̃y1) and
Fy2 ∨ σ(ω(A) : A ⊂ W̃y1), and the last step uses the monotonicity and translation invariance
of ω.

(5.38): We may again ignore (5.27) in the conditioning since this event is independent
of all the others. Note that (5.26) ∩ {YRk−T ′ = y} = (5.26)y ∩ {YRk−T ′ = y} where (5.26)y ∈
σ(ω(A) : A ⊂ W̃y), and similarly (5.28) ∩ {YRk

= y} = (5.28)y ∩ {YRk
= y} with (5.28)y ∈

Fy+(T ′′,T ′′). Now take B ∈ Fk−T ′ and write

P
(
(5.29), (5.28), (5.26),B

)
= ∑

y1,y2∈Z2 :
y2−y1∈N2

P
(
Ỹ y1,y2+(T ′′,T ′′) exits PT ′

(
y2 + (T ′′, T ′′)) through the

right, YRk
= y2, YRk−T ′ = y1, (5.28)y2, (5.26)y1

,By1

)
.

(5.42)
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Since Ỹ y,z is independent of Fz ∨ σ(ω(A) : A ⊂ W̃y), the last line equals∑
y1,y2∈Z2 :
y2−y1∈N2

P
(
Ỹ y1,y2+(T ′′,T ′′) exits PT ′

(
y2 + (T ′′, T ′′)) through the right

)

× P
(
YRk

= y2, YRk−T ′ = y1, (5.28)y2, (5.26)y1
,By1

)
≥ P(Xn ≥ nv�∀n ∈ Z+)P

(
(5.28), (5.26),B

)
,

(5.43)

where for the last step we use X̃
y,z
t ≥ Xz

t and translation invariance. Now (5.38) follows from
(5.43) and Lemma 5.6.

Thus, (5.34) is verified. To conclude, note that {Rk is a g.r.t.} ∈ Fk+c̄T ′ for some c̄ ∈ N

independent of T . Indeed, this can be verified for each (5.26)–(5.29) using the observation
that, if an event A ∈ F∞ satisfies A ∩ {YRk

= y} = Ay ∩ {YRk
= y} with Ay ∈ Fy+(t,t), then

A ∈ Fk+t+1. Hence we obtain

P(Rk is not a g.r.t. for any k ≤ T )

≤ P

(
R(c̄+1)kT ′ is not a g.r.t. for any k ≤ T

(c̄ + 1)T ′
)

(5.44)

≤ exp
{
− c

c̄ + 1

T 1+δ log(p◦∧p•)

T ′
}

≤ exp
{
− c

c̄ + 1
T

1
2

}
by our choice of ε and δ. �

With the previous results in place, only few modifications to [21] are necessary to conclude
the proof of Theorem 5.2. The details are given next.

PROOF OF THEOREM 5.2. Since P
∠(·) = P(·|�0) with P(�0) > 0, it is enough to prove

the statement under P. To that end, define the subsets

Hv�,t := {(x, n) ∈ Z
2 : x < −t + v�n

}
, t ∈ N,

and, for y ∈ Z
2, the events{

Yy touches y +Hv�,t

} := {∃n ∈ N : Yy
n − y ∈Hv�,t

}
.

Note that, by (1.1), there is a constant c > 0 such that

(5.45) P
ρ(Yy touches y +Hv�,�T ′/2�

)≤ c−1e−c(logT )γ for all T > 1.

Define the events

E1 = {∃y ∈ [−T ,T ] × [0, T ] ∩Z
2 : h(y) ≥ T ′/2

}
,

E2 = {∃y ∈ [−T ,T ] × [0, T ] ∩Z
2 : Yy touches y +Hv�,�T ′/2�

}
.

(5.46)

By Lemma 5.4, (5.45) and a union bound, there is a c > 0 such that

(5.47) P(E1 ∪ E2) ≤ c−1e−c(logT )γ ∀T > 1.

Let us show that, for T large enough and on the event Ec
1 ∩ Ec

2, if Rk is a g.r.t. with k ≤ v̄T

then τ ≤ Rk+T ′′ ≤ T . Indeed, if T ′′ < T ′ < v̄T /2, then on Ec
2 it must be that R�v̄T �+T ′′ ≤ T ,

as otherwise Y would touch Hv�,�T ′/2�. Thus we only need to verify that, under the conditions
stated,

(5.48) ω
(
W �

YR
k+T ′′
)= 0
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and

(5.49) A
YR

k+T ′′ occurs.

Note that, on Ec
2, YRk

∈ ∂+PT ′(YRk−T ′ ). Together with (5.26) this implies that T̃y,z coincides
with T inside ∠(z), where y = YRk−T ′ and z = YRk+T ′′ . It follows that, on Ec

2 and by (5.29),

Y z
t = Ỹ k

t ∈ ∠(z) for all t ∈ Z+, that is, A
YR

k+T ′′ occurs. Now note that, given (5.28), (5.48) is
equivalent to

(5.50) ω
(
W �

YRk
∩ W �

YRk+(T ′′,T ′′)
)= 0.

But since

W �
YRk

∩ W �
YRk+(T ′′,T ′′) = (W �

YRk
∩ W∠

YRk
−(�(1−v̄)T ′�,0) ∩ W �

YRk+(T ′′,T ′′)
)

∪ (W �
YRk

∩ W �
YRk

−(�(1−v̄)T ′�,0) ∩ W �
YRk+(T ′′,T ′′)

)
,

(5.50) follows on Ec
1 from the facts that YRk

∈ ∂+PT ′(YRk−T ′ ), and that (5.26) is equivalent
to ω(W̃YR

k−T ′ ) = 0 (recall (5.25)).
To conclude, use (5.46) and Proposition 5.7 to write, for T large enough,

P(τ > T ) ≤ P(E1 ∪ E2) + P(Rk is not a g.r.t. ∀k ≤ v̄T )

≤ c−1e−c(logT )γ + e−c3(v̄T )1/2
.(5.51) �

APPENDIX

In this Appendix we state a result taken from [12] that is used as a tool in the proofs of
Theorems 1.2 and 1.3. Its proof is presented in [12] and will not be reproduced here.

First we need to define a sequence of scales which is used in the renormalization scheme
in [12]:

(A.1) L0 = 1050 and Lk+1 = ⌊L1/2
k

⌋
Lk, for k ≥ 0.

Recall the definition of nonincreasing and nondecreasing events in (2.1).

COROLLARY A.1 (Corollary 3.11 from [12]). Let (Lk)k∈Z+ be given by (A.1). For any
γ ∈ (1,3/2], there exists an index ko = ko(γ, d) ∈ N satisfying the following. Fix two func-
tions g : � → [−1,1], H : � × Z

d → {0,1} and two nonnegative sequences v(L),ρ(L).
Assume that, for some L∗ ∈N and all L ≥ L∗, v(L)∧ρ(L) ≥ L−1/16 and, for any v̂ > 0, the
event

(A.2)
{
there exists an (L,H)-crossing � such that χ

g
� ≤ v̂
}

is measurable in σ(N(y),Uy : y ∈ [−L,2L) × [0,L)) and nonincreasing (respectively non-
decreasing). Assume additionally that, for some k̂ ≥ ko such that L

k̂
≥ L∗,

P
ρ(L

k̂
)(∃ an (L

k̂
,H)-crossing � such that χ

g
� ≤ v(L

k̂
)
)≤ exp

(−(logL
k̂
)γ
)
.

Then there exist (explicit) ρ∞, v∞ > 0 such that, for each ε > 0,

P
ρ(∃ an (L,H)-crossing � such that χ

g
� ≤ v∞ − ε

)≤ c−1 exp
(−c(logL)γ

)
for some c ∈ (0,∞), all L ∈N and all ρ ≥ ρ∞ (respectively, all ρ ≤ ρ∞).

REMARK A.2. The expression of ρ∞ is given explicitly in the proof of [12], Corol-
lary 3.11). For this article, all we need to know is that ρ∞ ≤ αρ(L

k̂
) in the nonincreasing

case and ρ∞ ≥ α−1ρ(L
k̂
) in the nondecreasing case, where α is an explicit universal con-

stant.
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[28] SINAĬ, Y. G. (1982). The limit behavior of a one-dimensional random walk in a random environment. Teor.
Veroyatn. Primen. 27 247–258. MR0657919

[29] SOLOMON, F. (1975). Random walks in a random environment. Ann. Probab. 3 1–31. MR0362503
https://doi.org/10.1214/aop/1176996444

[30] SZNITMAN, A.-S. (2002). An effective criterion for ballistic behavior of random walks in random
environment. Probab. Theory Related Fields 122 509–544. MR1902189 https://doi.org/10.1007/
s004400100177

[31] SZNITMAN, A.-S. (2004). Topics in random walks in random environment. In School and Conference on
Probability Theory. ICTP Lect. Notes, XVII 203–266. Abdus Salam Int. Cent. Theoret. Phys., Trieste.
MR2198849

http://www.ams.org/mathscinet-getitem?mr=2039946
https://doi.org/10.1214/aop/1079021467
http://www.ams.org/mathscinet-getitem?mr=2988114
https://doi.org/10.1016/j.spa.2012.09.002
http://www.ams.org/mathscinet-getitem?mr=3269994
https://doi.org/10.1214/13-AIHP561
http://www.ams.org/mathscinet-getitem?mr=3217035
https://doi.org/10.1016/j.indag.2014.04.010
http://www.ams.org/mathscinet-getitem?mr=3217337
https://doi.org/10.1214/ejp.v19-3159
http://www.ams.org/mathscinet-getitem?mr=3399831
https://doi.org/10.1214/EJP.v20-4437
http://www.ams.org/mathscinet-getitem?mr=3407222
https://doi.org/10.1214/EJP.v20-3906
http://www.ams.org/mathscinet-getitem?mr=0380998
http://www.ams.org/mathscinet-getitem?mr=0815962
http://www.ams.org/mathscinet-getitem?mr=3311216
https://doi.org/10.1214/EJP.v20-3439
http://www.ams.org/mathscinet-getitem?mr=3485384
https://doi.org/10.1214/16-ECP4426
http://www.ams.org/mathscinet-getitem?mr=3127878
https://doi.org/10.1214/12-AOP819
http://www.ams.org/mathscinet-getitem?mr=0657919
http://www.ams.org/mathscinet-getitem?mr=0362503
https://doi.org/10.1214/aop/1176996444
http://www.ams.org/mathscinet-getitem?mr=1902189
https://doi.org/10.1007/s004400100177
http://www.ams.org/mathscinet-getitem?mr=2198849
https://doi.org/10.1214/13-AIHP561
https://doi.org/10.1016/j.indag.2014.04.010
https://doi.org/10.1214/EJP.v20-4437
https://doi.org/10.1007/s004400100177

	Introduction and main results
	Construction
	Renormalization: Proof of Theorems 1.2-1.3
	Triggering: Proof of Theorems 3.1-3.2
	Permeable systems at low density
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Perturbations of impermeable systems

	Regeneration: Proof of Theorem 1.4
	Proof of Theorem 5.2

	Appendix
	Acknowledgments
	References

