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HYDRODYNAMIC LIMIT AND PROPAGATION OF CHAOS FOR
BROWNIAN PARTICLES REFLECTING FROM A NEWTONIAN BARRIER

BY CLAYTON L. BARNES

Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology, cbarnes@campus.technion.ac.il

In 2001, Frank Knight constructed a stochastic process modeling the one-
dimensional interaction of two particles, one being Newtonian in the sense
that it obeys Newton’s laws of motion, and the other particle being Brown-
ian. We construct a multi-particle analog, using Skorohod map estimates in
proving a propagation of chaos, and characterizing the hydrodynamic limit
as the solution to a PDE with free boundary condition. This PDE resembles
the Stefan problem but has a Neumann type boundary condition. Stochastic
methods are used to show existence and uniqueness for this free boundary
problem.

1. Introduction.

1.1. Description of the model. Consider n Brownian particles X
(n)
1 (t), . . . ,X

(n)
n (t) on

the real line, reflecting from the same side of a moving barrier Y (n)(t). The moving barrier is
“massive” in the sense that it is not Brownian but obeys Newton’s laws of motion.

By this we mean the barrier is modeled to have momentum, and that it experiences an
impulse upon colliding with one of the Brownian particles. Impulse is equivalent to change
in momentum, and in Newtonian physics is proportional to the change in velocity. In this
way the Brownian particles drive the massive barrier by increasing (or decreasing, depending
on sign) its velocity. We assume the Brownian particles have an equal “mass” of n−1 so the
total mass of the system remains at unity, and we fix a constant K ≥ 0, the impulse constant,
which determines the strength of the Brownian particles’ interaction with the massive barrier.
Increasing K will give the Brownian particles more ability to increase the massive barrier’s
velocity. If K = 0 the Brownian particles have no influence on the barrier, the Brownian
particles become independent reflecting Brownian motions while the barrier will travel with
constant speed. If K > 0, however, the Brownian particles are dependent. This can be seen
intuitively, for in the event that one Brownian particle happens to impart a large impulse to
the massive barrier, it influences the barrier’s trajectory and alters the region where the other
Brownian particles are allowed to disperse themselves.

To formally describe the above scenario, we begin by assuming the standard setting: a fil-
tered probability space (�,F, (Ft )t≥0,P) supporting i.i.d. Ft -adapted Brownian motions
B(1), . . . ,B(n), and where Ft satisfies the usual conditions. Fix a coefficient K ≥ 0, the im-
pulse constant, and an initial velocity v ∈ R for the massive particle. Consider continuous
Ft adapted processes which satisfy the following system for all t ∈ [0, T ] and i = 1, . . . , n,
almost surely:

X
(n)
i (t) = B(i)(t) + L

(n)
i (t),

dY (n)(t)

dt
= V (n)(t) := v − K

n

n∑
i=1

L
(n)
i (t),(1.1)
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FIG. 1. Simulations of 20, 40 and 200 Brownian particles reflecting from the Newtonian barrier. The images
were generated by the author.

X
(n)
i (t) ≥ Y (n)(t),

L
(n)
i is nondecreasing and flat off

{
s : X(n)

i (s) = Y (n)(s)
}
.

The last condition means L
(n)
i is nondecreasing and increases only when X

(n)
i makes contact

with Y (n). That is, ∫
R

1
(
X

(n)
i (s) > Y (n)(s)

)
dL

(n)
i (s) = 0.

The local times are given by

L
(n)
i (t) = lim

ε→0

1

2ε

∫ t

0
1[0,ε]

(
X

(n)
i (s) − Y (n)(s)

)
ds for all t ∈ [0, T ],

almost surely, which is our definition of the local time of X
(n)
i on Y (n). That such a system

of SDEs exists with the above definition of local time is proved in Proposition 2.10. We as-
sume the initial condition Y (n)(0) = 0,V (n)(0) = v, and assume X

(n)
i (0), i = 1, . . . , n are F0

measurable i.i.d. nonnegative random variables with finite q > 1 moment. We require F0 to
be large enough to contain σ {X(n)

i (0) : 1 ≤ i ≤ n}. See Figure 1 for sample path realizations.
Existence of a strong solution to this system is proved in Proposition 2.10.

A system (X
(n)
1 , . . . ,X

(n)
n , Y (n),V (n)) satisfying (1.1) above will be called a system of

Brownian particles reflecting from a massive barrier with impulse coefficient K . The pro-
cesses X

(n)
1 , . . . ,X

(n)
n are the Brownian particles, Y (n) is the reflecting barrier with V (n) its

velocity.

1.2. Free boundary problem. In Theorem 1.2 we characterize the hydrodynamic limit
of the empirical process together with the random barrier. The hydrodynamic limit is the
solution to a free boundary problem given as a pair (p(t, x), y(t)), both of which interact
according to the PDE below. We think of p(t, x) as the temperature at time-space location
(t, x) and y(t) as an insulating barrier. The heat is concentrated above the insulating barrier,
so p(t, ·) is supported on [y(t),∞). We assume our initial condition π0(dx) is the distribution
of a random variable with finite qth moment for q > 1.

∂p(t, x)

∂t
= 1

2

∂2p(t, x)

∂x2 , x > y(t),

∂+p(t, x)

∂x+ = −2y′(t)p(t, x), x = y(t),

y′′(t) = −(K/2)p
(
s, y(s)

)
, y(0) = 0, y′(0) = v ∈R,

lim
t↓0

p(t, x)dx = π0(dx).

(1.2)
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Here

∂+p(t, x)

∂x+ = lim
h↓0

p(t, x + h) − p(t, x)

h

is the one sided derivative on the positive side. This second condition is mathematically equiv-
alent to conservation of heat so the function y(t) acts as an insulating barrier. Informally, one
can see this by taking the time derivative of

∫
y(t) p(t, x)dx and applying Leibniz integral

rule. The factor of two in the second line cancels with the heat diffusion factor of one-half.
The third condition says the insulating barrier has an acceleration proportional to its temper-
ature. The last condition should be interpreted Wp(π0,p(t,dx)) → 0 as → 0, where Wp is
the Wasserstein/Kantorovich distance defined in Section 1.3 and q > p ≥ 1, q 	= 2p. See Re-
mark 4.4. (This odd conditions comes from Theorem 3.20.) The unique solution will be one
in which the equalities above hold in the classical sense. That is, p(t, x) is a differentiable
function in its domain {(t, x) : 0 ≤ t ≤ T ,x ≥ y(t)}, which is C1 in time, C2 in space, and
y ∈ C2([0, T ],R).

1.3. Main results.

THEOREM 1.1. There exists a unique classical solution to the free boundary problem
(1.2).

For the hydrodynamic limit we consider the empirical measure

π
(n)
t = 1

n

n∑
i=1

δ{X(n)
i (t)}.

For fixed t ≥ 0, π
(n)
t is a random variable with values in the space Pp(R). For a time horizon

T > 0, {π(n)
t : t ∈ [0, T ]} is a process with paths in the space C([0, T ], (Pp,Wp)) with metric∥∥ν′ − ν′′∥∥[0,T ] := max

t∈[0,T ]Wp

(
ν′(t), ν′′(t)

)
.

That this process indeed has a.s. continuous paths is proved in Lemma 3.12. In other words,
{π(n)

t : t ∈ [0, T ]} is a continuous measure-valued process. As such, π(n) induces a probability
measure on C([0, T ], (Pp,Wp)). The hydrodynamic limit characterizes this distribution for
large n.

THEOREM 1.2. Let q > p ≥ 1, q 	= 2p. Assume that for some probability measure π0

on [0,∞) with finite qth moment, π
(n)
0 → π0 in Wp . Then,(

π(n), Y (n)) −→ (
p(t,w)dw,y(t)

)
as n → ∞,(1.3)

in distribution on C([0, T ], (Pp,Wp)×R), where y ∈ C2([0, T ],R), p(t, x) is a probability
density supported in [y(t),∞), and with (p(t, x), y(t)) solving (1.2).

The proof is in Section 3.2.
The third result is the propagation of chaos, which means the dependence of any finite

collection of tagged particles disappears as the number of particles tends to infinity.

THEOREM 1.3 (Propagation of chaos). Assume for every n, X
(n)
i (0) = ξi, i = 1, . . . , n,

where ξi, i ∈ N are i.i.d. samples of a nonnegative integrable random variable. Fix positive
integers i1, . . . , ik . Then (

X
(n)
i1

, . . . ,X
(n)
ik

) −→ (
X

(∞)
i1

, . . . ,X
(∞)
ik

)
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in distribution on C([0, T ],Rk), as n → ∞, and where the limit consists of independent
processes X

(∞)
i1

, . . . ,X
(∞)
ik

. Furthermore, X
(∞)
ik

are independent Brownian motions reflecting
from a deterministic function y. That is,

X
(∞)
i1

(t) = y(t) + m(t) + Bi1(t) + X
(∞)
i1

(0),

where

y′(t) = v − KEm(t) for all t ∈ [0, T ],
m(t) = sup

0≤s≤t

((
B(i1)(s) + X

(∞)
i1

(0)
) − y(s)

)−
,

and X
(∞)
i1

d= π0(dx).

The ξi are given so the processes have an initial condition which does not depend on
n in the triangular array. This ensures that after n ≥ max ik the initial conditions for the
X

(n)
i1

, . . . ,X
(n)
ik

are all defined and unchanging with n. Like Theorem 1.2, the proof of Theo-
rem 1.3 is in Section 3.2.

REMARK 1.4. For fairly general exchangeable particle systems, propagation of chaos is
equivalent to weak convergence of the empirical measures to the limiting law P(t) of one

particle in the space C([0, T ],P). Here X(t)
d= P(t) and P is the space of measures, on the

appropriate target space, with the metric of weak convergence. See [27] for a good survey
and proof of this in some important examples. This is weaker than the mode of convergence
with we consider.

1.4. Organization of paper. The paper is organized as follows. Section 1.5 contains a
historical background for the origin of our model and on related hydrodynamic limits.

In Section 2, we construct the processes X
(n)
i pathwise on any probability space supporting

an infinite sequence of i.i.d. Brownian motions B(1),B(2), . . . ,B(n), and the initial random
variables X

(n)
i (0) for all i = 1, . . . , n, n ∈ N. We do this by constructing a functional to which

we apply pathwise to the n Brownian motions B(1), . . . ,B(n). In Proposition 2.10 we show
this pathwise construction gives a system of processes satisfying (1.1). Such a method for
reflected processes is called a Skorohod map since Skorohod used the method to construct
a reflected Brownian motion on the positive half-line R+ := [0,∞). For instance, if B(t) is
a standard Brownian motion and m(t) = sup0<s<t max{−B(s),0}, then B(t) + m(t) has the
same distribution as X, where dX = dB + dL and L is the semimartingale local time of X at
zero; see [20], Section 3.6C, and the original paper by Skorohod [33]. Here m(t) would be
the Skorohod map which corresponds to reflected Brownian motion.

In Section 3.1 we introduce the lemmas and propositions used in the proofs of Theorems
1.2 and 1.3. The proofs of these two theorems are contained in Section 3.2. We use the es-
timates derived in the second section to demonstrate almost sure convergence of the barrier
Y (n) to a unique deterministic function y in the form of a functional strong law of large
numbers; see Propositions 3.4 and 3.3. Here we introduce properties of the measure-valued
process π(n) mentioned above. In Proposition 3.18, we prove uniform stochastic equicon-
tinuity, which is stronger than the typical stochastic equicontinuity necessary for tightness
of processes in some metric space. We conclude the paper with Section 4, where we use
our stochastic representation to prove uniqueness of the free boundary problem described in
Section 1.2.
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1.5. Background. Knight introduced the model (1.1) in the case of one Brownian par-
ticle [24]. He studied density of the final velocity of the inert particle Y (1). Later, White
[40] generalized Knight’s construction and studied several related processes. This inspired a
higher dimensional version of a reflected process whose velocity vector is proportional to the
boundary local time, and the stationary distribution of its position and velocity was studied
by Bass, Burdzy, Chen and Hairer [2].

Historically, the study of macroscopic behavior for systems of randomly interacting parti-
cles began in 1956 by Kac [18] and continued with McKean [26] in 1969. This was followed
by fundamental contributions during the 1980’s by Sznitman [35, 36], Tanaka [37], Gärtner
[15] and many others. The hydrodynamic limit of a system of interacting particles is some-
times referred to as the macroscopic behavior of the system or the asymptotic behavior of
the empirical measures, such a result is closely related to propagation of chaos, and the two
are equivalent when the system of interacting particles satisfies an exchangability condition
(cf. Sznitman, Méléard). For a history of hydrodynamic limits, see [16] and [6]. Systems of
randomly interacting particles are probabilistic models originally motivated by statistical me-
chanics and statistical thermodynamics, particularly the theory explored by Maxwell, Boltz-
mann and Vlasov who describe the deterministic evolution of the distribution of gas. A good
review of interacting particle systems of the McKean–Vlasov type is found in Méléard [27].
For instance, such systems are given by prescribing that the particles X

(n)
i exhibit mean-field

interaction. That is, the diffusivity and drift of each particle is a function of the particles’
location and the empirical (energy) profile π(n)(·). For i = 1, . . . , n,

(1.4) X
(n)
i (t) = X

(n)
i (0) +

∫ t

0
b
(
X

(n)
i (s),π(n)(s)

)
ds +

∫ t

0
σ

(
X

(n)
i (s),π(n)(s)

)
dBi(s),

where B1, . . . ,BN are independent d-dimensional Brownian motions and b(·, ·) σ (·, ·) de-
termine the drift and diffusivity, respectively. One usually assumes the initial conditions are
i.i.d., or an appropriate asymptotic condition, to allow the propagation of chaos to hold at the
initial time. For a fixed time t , π(n)(t) is in the space of probability measures on Rd , denoted
by Pp(Rd). One places a metric on Pp(Rd), typically the metric of weak convergence. For a
finite time horizon T ∈ [0,∞), {π(n)(t) : t ∈ [0, T ]} is a measure valued process with paths
in C([0, T ],Pp(Rd)). Oelschläger [29] characterized the large-scale behavior of the system
in (1.4) assuming b,σ are sufficiently regular by demonstrating that π(n)(t) converges in dis-
tribution to P(t) in the space C([0, T ],Pp(Rd)). Here P(t) is the law of the process Z(t) at
time t , where

Z(t) = Z(0) +
∫ t

0
b
(
Z(s),P (s)

)
ds +

∫ t

0
σ

(
Z(s),P (s)

)
dB(s)(1.5)

for a d-dimensional Brownian motion B , and Z(0)
d= limN→∞ X

(n)
1 (0). This matches intu-

ition upon inspection of (1.4). The time varying distribution P(s) is the solution to the Vlasov
equation, thus giving one example of the macroscopic behavior of randomly interacting parti-
cles converging to a deterministic time varying distribution [27]. Furthermore, the individual
processes X

(n)
1 converge to a process with time varying law P .

For other results on convergence of empirical processes, see [38], where Varadhan uses
entropy methods to examine a spin system on a lattice when the mesh goes to zero. Entropy
and relative entropy methods are general methods. However, these are not always feasible.
For instance, see [6], where Chen and Fan study a system of particles reflecting from a sepa-
rating interface. For an introductory reading on hydrodynamic limits, see the book [23] where
Kipnis and Landim present a self contained treatment of hydrodynamic limits via the study of
the generalized exclusion process and the zero-range process. These processes are continuous
time and discrete in space with spacial distance decreasing to zero. Other hydrodynamic limit
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results have biological motivations in neuron modeling. See [7, 30], and [17], Chapter 4.3.
Hydrodynamic limits are related to the theory of partial differential equations since the em-
pirical measure of the particles converge to a solution of a PDE or free boundary problem.
In [5] Chayes and Swindle study the one-dimensional model of hot random walkers which
are emitted by a source and which annihilate cold particles which remain stationary. When
a Brownian scaling is introduced, the density of the hot particles together with the cold re-
gion converge to the solution of the Stefan problem. The Stefan problem is a free boundary
problem modeling the melting of ice next to a heat source. The heat particles are killed upon
reaching the ice boundary, that is, a Dirichlet boundary condition is imposed at the ice barrier,
while the melting of this ice barrier is proportional to the flux of heat across it. In this way
the density of heat and the ice barrier interact, producing the free boundary effect. The hy-
drodynamic limit we study in this paper resembles that of the Stefan problem but with some
distinctive features; see (1.2). In contrast with the Stefan problem our barrier reflects the heat
back into the domain rather than absorbing it, and our barrier has an acceleration proportional
to its temperature as opposed to its velocity being proportional to the heat flux.

There is a large variety of interacting particle systems giving rise to many different limiting
behaviors. See the above-mentioned works of Tanaka [37], Sznitman [35, 36], as well as Sko-
rohod [34], Nadtochiy and Shkolnikov [28], Chen and Fan [6] to mention some. For related
models of interacting particles with rank dependence, see Sarantsev [31, 32], Karatzas, Pal
and Shkolnikov [19], and Cabezas et al., who study out-of-equilibrium behavior of particles
interacting through their ranks [4].

We briefly bring attention to the relatively recent study of stochastic free boundary prob-
lems. These are essentially SPDE’s with a free boundary. See [22] and also in [21], who
introduce a stochastic Stefan problem.

This article is the first in which continuity properties of Skorohod maps are used to demon-
strate a hydrodynamic limit; see Section 2. By applying this method with a stochastic repre-
sentation (Corollary 3.10), we prove existence and uniqueness of the free boundary problem
without relying on existence and uniqueness theorems from the theory of PDEs. See Sec-
tion 4 where uniqueness if proven. Properties of the transition density for Brownian motion
reflected in a time varying domains is a key ingredient for a stochastic representation of the
PDE with free boundary; see [3]. This is the first existence and uniqueness result for the free
boundary problem we study, as it seems not to be subsumed by known results in the analysis
literature; see [8–10], for existence and uniqueness of the Stefan problem.

1.6. Notation. For ease of reference we introduce notation which will be used throughout
the paper. First, let (E,d) be a metric space. Anytime Rn is given we assume the standard
norm.

1.1. C(E1,E2) is the space of continuous functions from (E1, d1) to (E2, d2), equipped
with the uniform metric unless otherwise stated. We abbreviate C([0, T ],R) as C[0, T ].

1.2. P(E) is the space of probability measures on E. We may abbreviate P(R) as P .
1.3. For f ∈ C[0, T ] and [a, b] ⊂ [0, T ]

‖f ‖[a,b] := max
x∈[a,b]

∣∣f (x)
∣∣.

1.4. For f = (f1, . . . , fn) ∈ C([0, T ],Rn) and [a, b] ⊂ [0, T ]

‖f ‖[a,b] :=
n∑

i=1

‖fi‖[a,b].
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1.5. For p ≥ 1, we denote Pp(E) as the space of probability measures on E with finite
pth moments, and let Pp = Pp(R). We write (Pp(E),Wp) for the space together with the
Wasserstein-p distance

Wp(μ, ν) :=
(

inf
(X,Y )

Ed(X,Y )p
)1/p

,

where the infimum is taken over random variables X and Y coupled on the same probability

space, such that X
d= μ and Y

d= ν. If (E,d) is complete then so is (Pp(E),Wp). We consider
p ≥ 1. See [39].

1.6. For f ∈ C([0, T ], (E, d)) and δ > 0 we define the modulus of continuity for f by

ω(E,d)(f, δ) := sup
0≤s<t≤T|t−s|<δ

d
(
f (t), f (s)

)
.

1.7. When νt ∈ C([0, T ], (Pp,Wp)) we let ω′(ν, δ) := ω(Pp,Wp)(ν, δ).
1.8. a+ = max{a,0} and a− = max{−a,0} are, respectively, the positive and negative

part of a. For a function f we denote this as (f (x))±.

2. Skorohod map: Construction and estimates. In this section we construct the system
given in (1.1) by applying a Skorohod map to the collection of Brownian paths. First, we
recall the classical Skorohod equation from [20], Chapter 3.6.

LEMMA 2.1. Let f ∈ C([0, T ],R) with f (0) ≥ 0. There is a unique continuous nonde-
creasing function mf (t) such that

xf (t) = f (t) + mf (t) ≥ 0,

mf (0) = 0,mf (t) is flat off
{
s : xf (s) = 0

}
.

In particular,

mf (t) = sup
0≤s≤t

(
f (s)

)−
.

REMARK 2.2. The solution of the Skorohod equation has a time shift property: For any
0 ≤ s ≤ t ≤ T ,

xf (t) = xg(t − s),

where g(t) = xf (s) + f (t) − f (s). In other words, if τx : C[0, T ] → C[0, T − x] is the shift
operator defined by h ◦ τx(t) = h(t + x), then for any s ∈ [0, T ]

xf ◦ τs = xg,

where g = f ◦ τs + xf (s) − f (s).

The following lemmas will be useful later when proving tightness of our processes; see
Lemma 3.1.

LEMMA 2.3. Let f,g ∈ C([0, T ],R) and assume that f ≥ g. Then

mf (t) ≤ mg(t) for all t ∈ [0, T ].
PROOF. From Lemma 2.1,

mf (t) = sup
0≤u≤t

(
f (u)

)− ≤ sup
0≤u≤t

(
g(u)

)− = mg(t). �
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LEMMA 2.4. Let f, y1, y2 ∈ C([0, T ],R) and assume that y1(0) = y2(0), f (0) +
y1(0) ≥ 0, and

y1(t) − y1(s) ≥ y2(t) − y2(s) for all 0 ≤ s < t ≤ T .(2.1)

Then

mf +y2(t) − mf +y2(s) ≥ mf +y1(t) − mf +y1(s) for all 0 ≤ s < t ≤ T ,

where mf +yi
, i = 1,2 correspond to the solution of the Skorohod problem provided by

Lemma 2.1.

PROOF. We first show that xf +y1(t) ≥ xf +y2(t) for all t ∈ [0, T ]. That this holds for
t = 0 is guaranteed by the assumption on the initial conditions, which implies xf +y1(0) =
xf +y2(0). Assume the converse, that there is some t∗ ∈ [0, T ] such that xf +y2(t

∗) >

xf +y1(t
∗) ≥ 0. Let

τ = sup
{
t < t∗ : xf +y2(t) = 0

}
be the last zero of xf +y2 before time t∗. Continuity of xf +y2 implies τ < t∗. It follows by
definition that mf +y2 is flat on the interval [τ, t∗]. In other words,

0 = mf +y2

(
t∗

) − mf +y2(τ ) ≤ mf +y1

(
t∗

) − mf +y1(τ ).(2.2)

By shifting the Skorohod solution by time τ as in Remark 2.2, using (2.2), the fact that
xf +y1(τ ) ≥ 0 = xf +y2(τ ), and assumption (2.1),

xf +y1

(
t∗

) = xf +y1(τ ) + f
(
t∗

) − f (τ) + y1
(
t∗

) − y1(τ ) + mf +y1

(
t∗

) − mf +y1(τ )

≥ xf +y2(τ ) + f
(
t∗

) − f (τ) + y2
(
t∗

) − y2(τ ) + mf +y2

(
t∗

) − mf +y2(τ )

= xf +y2

(
t∗

)
which contradicts the definition of t∗. Therefore xf +y1(t) ≥ xf +y2(t) for all t ∈ [0, T ].

For a fixed s ∈ [0, T ] let

gi(t) = xf +yi
(s) + f (t) − f (s) + yi(t) − yi(s) for s ≤ t ≤ T ,

and i = 1,2. The assumption (2.1) on yi together with the fact that xf +y1 ≥ xf +y2 imply
g1(t) ≥ g2(t). Apply Lemma 2.3 to g1, g2 and shift time by s as in Remark 2.2 to see

mf +y1(t) − mf +y1(s) = mg1(t − s) ≤ mg2(t − s) = mf +y2(t) − mf +y2(s),

proving the result. �

THEOREM 2.5. Corresponding to each f = (f1, . . . , fn) ∈ C([0, T ],Rn), with fi(0) ≥
0, and v ∈ R,K ≥ 0 is a pair of continuous functions(

I
(n)
f (t),V

(n)
f (t)

) =: �nf (t) ∈ C
([0, T ],R2)

satisfying

xi(t) := fi(t) + I
(n)
f (t) + mi(t) ≥ 0,(2.3)

mi(t) is flat off
{
t : xi(t) = 0

}
,(2.4)

V
(n)
f (t) = −v + K

n

n∑
i=1

mi(t), v ∈ R,(2.5)

I
(n)
f (t) =

∫ t

0
V

(n)
f (s)ds,(2.6)

for all t ∈ [0, T ].
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REMARK 2.6. It follows from the classical Skorohod equation that

mi(t) = sup
0≤s<t

(
fi(s) + I (n)(s)

)−
.

This is used in the proof of Proposition 2.10 below.

PROOF OF THEOREM 2.5. Uniqueness: We prove a continuity estimate which holds
for any solutions of (2.3)–(2.6). Assume that (2.3)–(2.6) hold for two functions f =
(f1, . . . , fn), g = (g1, . . . , gn) ∈ C([0, T ],Rn) and let (I

(n)
f ,V

(n)
f ), (I

(n)
g ,V

(n)
g ) denote the

pairs corresponding to (2.5) and (2.6) for f and g, respectively. We are assuming such solu-
tions exist for f,g. By Remark 2.6, m

f
i (t) is the running minimum of fi + I

(n)
f below zero

until time t , and the same holds for m
g
i (t). Hence∥∥mf

i − m
g
i

∥∥[0,t] ≤ ∥∥(
fi + I

(n)
f

) − (
gi + I (n)

g

)∥∥[0,t].(2.7)

By the triangle inequality, (2.5), (2.6) and (2.7)

α(t) :=
n∑

i=1

∥∥(
fi + I

(n)
f

) − (
gi + I (n)

g

)∥∥[0,t]

≤
n∑

i=1

(‖fi − gi‖[0,t]
) + n

∥∥I (n)
f − I (n)

g

∥∥[0,t]

≤ ‖f − g‖[0,t] + K

∫ t

0

n∑
i=1

∣∣mf
i (s) − m

g
i (s)

∣∣ ds

≤ ‖f − g‖[0,t] + K

∫ t

0

n∑
i=1

∥∥mf
i − m

g
i

∥∥[0,t]

≤ ‖f − g‖[0,t] + K

∫ t

0
α(s)ds.

(2.8)

Now apply Grönwall’s inequality to obtain

α(t) ≤ ‖f − g‖[0,t] exp(Kt).

Consequently,

∥∥V (n)
f − V (n)

g

∥∥[0,t] ≤ K

n

n∑
i=1

∣∣mf
i (t) − m

g
i (t)

∣∣ ≤ K

n
α(t)

≤ K‖f − g‖[0,t]
n

exp(Kt).

(2.9)

This holds for any f,g and any two pairs (I
(n)
f ,V

(n)
f ), (I

(n)
g ,V

(n)
g ) solving the equations

(2.3)–(2.6). Taking g = f in (2.9) shows (I
(n)
f ,V

(n)
f ) is unique, and �n is well defined as-

suming solutions to (2.3)–(2.6) exist.

REMARK 2.7. The case n = 1 is in [40].

Existence: To demonstrate existence, we approximate with the processes I
(n)
f ,V

(n)
f that

define the map �n. Informally, we break the interval [0, T ] into small intervals of size ε and
construct I

(n,ε)
f by updating its velocity V

(n,ε)
f every ε step. We do this by letting the average
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minimum of I
(n,ε)
f + fi , i = 1, . . . , n, accumulate between the steps of size ε and adding an

appropriate proportion (depending on K,n) of this accumulated amount to the velocity at the
end of each step. For a fixed ε > 0, define the functions I ε

Mε,V
ε
Mε recursively in the intervals

[0, ε], [ε,2ε], . . . , [(M − 1)ε,Mε] as follows.

2.1. On the interval [0, ε], let I ε
ε (t) = vt and V ε

ε = v.
2.2. Assume we are given I ε

Mε,V
ε
Mε . Let

I ε
(M+1)ε|[0,Mε) = I ε

Mε and V ε
(M+1)ε |[0,Mε) = V ε

Mε.

For t ∈ [Mε, (M + 1)ε) let

V ε
(M+1)ε(t) = K

n

n∑
i=1

max
0≤u≤Mε

(
fi(u) + I ε

Mε(u)
)−

be the average of the running minimum below zero of fi + I ε
Mε until time Mε. Notice that

V ε
(M+1)ε is piecewise constant on subintervals of [0, T ] of the form [jε, (j + 1)ε), j ∈ N.
2.3. Extend I ε

(M+1)ε to [Mε, (M + 1)ε) linearly by giving it slope V ε
(M+1)ε .

2.4. Set I
(n,ε)
f ,V

(n,ε)
f as the functions produced once the recursion covers the interval

[0, T ]. This occurs when M reaches �T/ε�.

A couple observations follow easily from this construction. First,

I (n,ε)(t) =
∫ t

0
V (n,ε)(s)ds.

Second, V (n,ε) is monotonically increasing, and I (n,ε) is differentiable and convex. By con-
struction ∥∥V (n,ε)

∥∥[0,T ] ≤ |v|T + K

n

n∑
i=1

max
0≤u≤T

(
fi(u)

)−
< ∞

for every ε > 0, and therefore {‖V (n,ε)‖[0,T ] : ε > 0} is a bounded set. Consequently the
collection {I (n,ε) : ε > 0} is uniformly Lipschitz, and since I (n,ε)(0) = 0 for all ε > 0 it
is pointwise bounded as well. Hence the family {I (n,ε) : ε > 0} satisfies the Arzelà–Ascoli
criterion. By taking a subsequence εk → 0 there is a continuous function I (n) such that∫ t

0
V (n,εk)(s)ds =: I (n,εk)(t) −→ I (n)(t)

uniformly for t in [0, T ]. By the construction of V (n,εk), this implies

V (n,εk)(t) = K

n

n∑
i=1

max
0≤u≤�t/εk�εk

(
fi(u) + I (n,εk)(u)

)−
−→ K

n

n∑
i=1

max
0≤u≤t

(
fi(u) + I (n)(u)

)−
uniformly for t in [0, T ], as εk → 0. Set

mi(t) = max
0≤u≤t

(
fi(u) + I (n)(u)

)−
,

so that

V (n)(t) = v + K

n

n∑
i=1

mi(t).
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We know mi is flat off {s : fi(s) + I (n)(s) + mi(s) = 0} by Lemma 2.1. By the dominated
convergence theorem,

I (n)(t) =
∫ t

0
V (n)(s)ds,

and clearly fi(t) + I (n) + mi(t) ≥ 0. Therefore (I (n),V (n)) satisfy the equations (2.3)–(2.6).
�

Note that (2.9) implies the map g �→ V
(n)
g is Lipschitz as a map between function spaces

C([0, T ],Rn) → C([0, T ],R) with Lipschitz constant (K/n) exp(KT ). Recall

PROPOSITION 2.8 (Lipschitz property of V (n)). For any v ∈ R,K ≥ 0, take f,g ∈
C([0, T ],Rn). We have∥∥V (n)

f − V (n)
g

∥∥[0,T ] ≤ (
K‖f − g‖[0,T ]/n

)
exp(KT ),(2.10)

and consequently ∥∥I (n)
f − I (n)

g

∥∥[0,T ] ≤ (
K‖f − g‖[0,T ]/n

)
T exp(KT ).(2.11)

PROOF. The first bound (2.10) was shown as (2.9). Notice (2.10) implies (2.11), since∥∥I (n)
f − I (n)

g

∥∥[0,T ] = sup
0≤u≤T

∣∣∣∣∫ u

0
V

(n)
f (s) − V (n)

g (s)ds

∣∣∣∣
≤ sup

0≤u≤T

∫ u

0

∣∣V (n)
f (s) − V

(n)
f (s)

∣∣ ds

≤
∫ T

0

∥∥V (n)
f − V (n)

g

∥∥[0,T ] ds

≤ T
(
K‖f − g‖[0,T ]/n

)
exp(KT ). �

Consider the sequence I
(n,ε)
f for a given n and f = (f1, . . . , fn) ∈ Rn defined by 2.1–2.4

in the proof of Theorem 2.5. By Proposition (2.8), I
(n,ε)
f converges in the uniform norm on

C([0, T ],R) to a unique continuous function as ε → 0. The Proposition below says this rate
of convergence only depends on K,T , and ‖f ‖[0,T ].

PROPOSITION 2.9. Consider the sequence I
(n,ε)
f defined in the proof of Theorem 2.5.

Let f = (f1, . . . , fn) ∈ C([0, T ],Rn). If l < m, then∥∥I (n,2−l )
f − I

(n,2−m)
f

∥∥[0,T ] ≤ (
(2 + K)‖f ‖[0,T ]/n

)
2−l exp(KT ).

PROOF. The proof is in a similar vein as that of Proposition 2.8. We show bounds be-

tween I
(n,2−j )
f and I

j

k2−j by recursively stepping through the intervals where we update the
velocity, as described informally in the beginning of the existence section. With these recur-
sive bounds we attain an exponential bound over the entire interval [0, T ]. We make some

abbreviations in our notation. For j = l,m we will write I j in place of I
(n,2−j )
f , and I

j

k2−j in

place of I
(n,2−j )

f,k2−l . Recall I l is piecewise linear by definition. For fixed l < m, define

D(k) := sup
0≤t≤k2−l

∣∣I l(t) − Im(t)
∣∣ = 1

n

n∑
i=1

sup
0≤t≤k2−l

∣∣fi(t) + I l(t) − (
fi(t) + Im(t)

)∣∣
= 1

n

∥∥(
f + I l) − (

f + Im)∥∥[0,k2−l ].
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We develop bounds for D(k) using a recursive argument. By construction I l ≡ 0 on [0,2−l].
Due to nonegativity of Im, for any t ∈ [0, T ]

∣∣V (n,2−m)(t)
∣∣ ≤ K

n

n∑
i=1

sup
0≤u≤T

(
fi(u) + Im)−

≤ K

n

n∑
i=1

sup
0≤u≤T

(
fi(u)

)−
≤ K

n
‖f ‖[0,T ].

Therefore Im is piecewise linear with a slope not exceeding K‖f ‖/n, and so

D(1) ≤ (
K‖f ‖[0,T ]/n

)
2−l .(2.12)

Assume we are given D(k). We wish to bound the difference between I l and Im on the
interval [0, (k + 1)2−l]. We know I l|[0,k2−l ] = I l

k2−l and Im|[0,k2−l ] = Im
k2−l . Similarly the

function I l has constant slope on [k2−l , (k + 1)2−l), with its slope adjustment being at the
end of this interval at (k + 1)2−l ; so I l

k2−l = I l
(k+1)2−l on [k2−l , (k + 1)2−l]. On the other

hand, Im has a slope adjustment at each time k2−l + 2−m, k2−l + 2−m+1, . . . , (k + 1)2−l .
Note that the difference in the slope between I l, Im at time k2−l is not more than D(k), so
that ∥∥I l

(k+1)2−l − Im
k2−l

∥∥[0,(k+1)2−l] ≤ ∥∥I l
(k+1)2−l − Im

k2−l

∥∥[0,k2−l ] + KD(k)2−l

= ∥∥I l
k2−l − Im

k2−l

∥∥[0,k2−l] + KD(k)2−l

= D(k) + KD(k)2−l .

By this and the triangle inequality,

D(k + 1) = ∥∥I l
(k+1)2−l − Im

(k+1)2−l

∥∥[0,(k+1)2−l]
≤ ∥∥I l

(k+1)2−l − Im
k2−l

∥∥[0,(k+1)2−l] + ∥∥Im
k2−l − Im

(k+1)2−l

∥∥[0,(k+1)2−l]
≤ D(k) + KD(k)2−l + ∥∥Im

k2−l − Im
(k+1)2−l

∥∥[0,(k+1)2−l].

(2.13)

Let

βk = 1

n

n∑
i=1

sup
0≤t≤(k+1)2−l

(
fi(t) + Im(t)

)− − 1

n

n∑
i=1

sup
0≤t≤k2−l

(
fi(t) + Im(t)

)−
,

so that Kβk is the amount the velocity Im increases in the interval [k2−l , (k + 1)2−l]. From
this telescoping definition of βk we see that

�T 2l�∑
k=0

βk = 1

n

n∑
i=1

sup
0≤s≤T

(
f (s) + Im(s)

)− ≤ 1

n
‖f ‖[0,T ].(2.14)

Combine this with (2.13) above, we have

D(k + 1) ≤ D(k) + KD(k)2−l + Kβk2−l

= D(k) + K
(
D(k) + βk

)
2−l .

(2.15)

Set A(k) to be recursively defined with the above inequality taken as equality. That is,

A(k + 1) = A(k) + KA(k)2−l + Kβk2−l .
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We have D(k) ≤ A(k) for all k. Note that A(k) is maximized when all the mass of
∑�T 2l�

1 βk

is concentrated at β1 because this allows the entire mass to be compounded from the begin-
ning. Since the total sum of the βk does not exceed ‖f ‖[0,T ]/n,

A(1) = (
K‖f ‖[0,T ]/n

)
2−l ,

A(2) = A(1)
(
1 + K2−l) + K

2l∑
k=1

βk2−l

≤ A(1)
(
1 + K2−l) + (

K‖f ‖[0,T ]/n
)
2−l ,

A(k + 1) = A(k)
(
1 + K2−l).

Such a recursion has an exponential bound:

A
(⌈

T 2l⌉) ≤ (
A(1) + A(2)

)(
1 + K2−l)�T 2l� ≤ (

(2 + K)‖f ‖[0,T ]/n
)
2−l expKT .

Hence,

D
(⌈

T 2−l⌉) ≤ A
(⌈

T 2l⌉) ≤ (
(2 + K)‖f ‖[0,T ]/n

)
2−l expKT ,

which concludes the result. �

To construct our system (1.1) in the Introduction from Proposition 2.5, we apply the map
�n pathwise with

(f1, . . . , fn) = (
B(1) + X

(n)
1 (0), . . . ,B(n) + X(n)

n (0)
) =: �B + �X(0),

producing the pair of processes

�n

( �B + �X(0)
) = (

I
(n)
�B+ �X(0)

, Ṽ
(n)
�B+ �X(0)

)
.

Set

X
(n)
i = X

(n)
i (0) + B(i) + m

(n)
i , V (n) = −Ṽ

(n)
�B+ �X(0)

, Y (n) = −I
(n)
�B+ �X(0)

.(2.16)

Then

PROPOSITION 2.10. (X
(n)
1 , . . . ,X

(n)
n , Y (n),V (n)) satisfies (1.1), therefore giving a

strong solution to that system of SDE’s.

PROOF. We begin from (2.3)–(2.6) with the fi(t) replaced with B(i)(t) + X
(n)
i (0). The

following holds for all t ∈ [0, T ], almost surely:

X
(n)
i (t) = X

(n)
i (0) + B(i)(t) + m

(n)
i (t) ≥ Y (n)(t),(2.17)

V (n)(t) = v − K

n

n∑
i=1

m
(n)
i (t),(2.18)

Y (n)(t) =
∫ t

0
V (n)(s)ds,(2.19)

m
(n)
i is flat off of

{
t : X(n)

i (t) = Y (n)(t)
}
.(2.20)

We take v = 0 for convenience. The fact that we have a strong solution of the system follows
from the path-by-path construction. We apply a transformation of measure argument. As
mentioned in Remark 2.6, for a fixed time t ∈ [0, T ],

V (n)(t) = −K

n

n∑
i=1

sup
0≤u≤t

(
B(i)(u) + X

(n)
i (0) − Y (n)(u)

)−
,
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which, due to nonegativity of X
(n)
i (0) and the fact that Y (n) ≤ 0,

sup
u∈[0,T ]

∣∣V (n)(u)
∣∣ ≤ K

n

n∑
i=1

sup
0≤u≤T

(
B(i)(u)

)−
.

This is equivalent to saying a continuous function plus a nonnegative drift has a running
minimum below zero less than that of the continuous function. It follows from continuity of
the processes on [0, T ] that sup0≤u≤t |V (n)(u)| ≤ |V (n)(T )| < ∞ almost surely. Therefore

Z(t) = exp

(
K

n

n∑
i=1

∫ t

0
V (n)(s)dB(i)(s) − nY (n)(t)

)

is a local martingale, and therefore there exists a collection of exhaustive stopping times τk
a.s.→

∞ such that Z(t ∧τk) is a true martingale for each k. We will apply a Girsanov transformation
of measure; see [20], Chapter 3.5. Let Q be defined by dQ/dP = Z(t ∧ τk). Under Q each
B̃(i)(t ∧ τk) := B(i)(t ∧ τk) − Y (n)(t ∧ τk) has the law of a Brownian motion, and the joint
law of (X

(n)
1 , . . . ,X

(n)
n ), when stopped at τk , has the same law as X̃i(t ∧ τk) := X

(n)
i (0) +

B̃(i)(t ∧ τk) + m̃i(t ∧ τk) ≥ 0, where m̃i(t) = sup0≤u≤t (B̃
(i)(u) + X

(n)
i (0))−. The m̃i are

then equal to m
(n)
i := sup0≤u≤t (B

(i)(u) + X
(n)
i (0) − Y (n)(u))−. Because m̃i is flat off {t :

X̃i(t) = 0}, the classical Lévy’s theorem [20], Chapter 3, shows that this system (X̃1, . . . , X̃n)

is equivalent in law to processes solving

dX̃i = dB̃(i) + dL̃i, X̃i(0) = X
(n)
i (0),

when stopped at τk , and where L̃i is the local time at zero of X̃i . That is,

L̃i(t) = lim
ε→0

1

2ε

∫ t

0
1[0,ε]

(
X̃i(s)

)
ds

= lim
ε→0

1

2ε

∫ t

0
1[0,ε]

(
X

(n)
i (s) − Y (n)(s)

)
ds =: L(n)

i (t)

for all t , almost surely. Additionally, m̃i is the local time of X̃
(n)
i at zero, which by definition

is the local time of contact between X
(n)
i and Y (n). Since m̃i = m

(n)
i this shows that m

(n)
i (t) =

L
(n)
i (t) for all t , almost surely. This means that under P, as processes stopped at τk , solutions

to (2.17)–(2.19) are solutions of

dX
(n)
i = dB(i) + dL

(n)
i , dY (n) = −K

n

n∑
i=1

L
(n)
i (t)dt,

with the given initial conditions and where L
(n)
i is the local time of X

(n)
i − Y (n) at zero. This

latter process is the definition of (1.1). Since τk → ∞ almost surely, the equivalence in law
holds as processes defined on [0, T ]. �

LEMMA 2.11. Let (Y (n),V (n)) be defined as in equation (2.16), then

∥∥V (n)
∥∥[0,T ] ≤ v + K

(
vT + 1

n

n∑
i=1

mi(T )

)
,

almost surely, where mi(t) = sup0≤s≤t (B
(i)(s))−.
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PROOF. Clearly sup0≤s≤T V (n)(s) ≤ |v|, which implies that Y (n)(t) − Y (n)(s) ≤
|v|(t − s) for (s, t) ⊂ [0, T ]. From Remark 2.6, Lemma 2.4, and the fact that X

(n)
i (0) ≥ 0, we

have ∥∥V (n)
∥∥[0,T ] = sup

0≤s≤T

(
|v| − K

n

n∑
i=1

sup
0≤u≤s

(
B(i)(u) + X

(n)
i (0) − Y (n)(u)

)−)

≤ |v| + K

n

n∑
i=1

sup
0≤s≤T

(
B(i)(s) − |v|s)−

≤ |v| + K

(
|v|T + 1

n

n∑
i=1

sup
0≤s≤T

(
B(i)(s)

)−)
.

�

3. Hydrodynamic limit and propagation of chaos. In Section 3.1 we state the main
lemmas, propositions and corollaries used in the proofs of Theorems 1.2 and 1.3. Section 3.2
will contain the proofs of Theorems 1.2 and 1.3. The proofs of the statements in Section 3.1
will be given in Section 3.3.

3.1. Propositions and lemmas.

LEMMA 3.1. Let (�,P) be a probability space supporting a sequence of i.i.d. Brownian
motions B(i), i ∈ N and initial conditions {X(n)

i (0) : 1 ≤ i ≤ n,n ∈ N} independent from these
Brownian motions and from one another. Define V (n) by the Skorohod map (2.16). For any
ε, η > 0 there is a δ > 0 such that

P
(
sup
n

ω
(
V (n), T , δ

)
> ε

)
< η.

COROLLARY 3.2. The collection {V (n)(s) : s ∈ [0, T ]} is equicontinuous with probabil-
ity 1. Furthermore, for almost every ω, the sequence {V (n)

ω : n ∈ N} satisfies the Arzela–Ascoli
criteria.

PROPOSITION 3.3 (Strong convergence). In the same setting as Lemma 3.1, there is a
continuous process V such that

V (n) −→ V,

almost surely in the uniform norm on C[0, T ]. Furthermore,

Y (n) :=
∫ ·

0
V (n)(s)ds −→

∫ ·
0

V (s)ds,

almost surely on C[0, T ].
PROPOSITION 3.4. Let (Y,V ) be the almost sure limit of (Y (n),V (n)), as guaranteed by

Proposition 3.3. Then,

(Y,V ) is deterministic,

V (t) = v − KEm(t) for all t ∈ [0, T ], where

m(t) = sup
0≤s≤t

((
B(1)(s) + X

(∞)
1 (0)

) − Y(s)
)−

,

and X
(∞)
1

d= π0(dx).
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REMARK 3.5. Since

Y (n′)(t) =
∫ t

0
V (n′)(s)ds

for all 0 ≤ t ≤ T , almost surely, we see that Y (n′) converges uniformly to some determinis-
tic Y .

The previous two propositions imply the following corollary. By an abuse of notation,
we let Wr ((Y

(n),V (n)), (Y,V )) refers to the Wasserstein-q distance between the measures
induced by (Y (n),V (n)) and (Y,V ) on C([0, T ],R2).

COROLLARY 3.6. There are deterministic functions (Y (t),V (t)) defined on t ∈ [0, T ],
with dY/dt = V , such that

Wr

((
Y (n),V (n)), (Y,V )

) −→ 0 for any r ≥ 1.

In [3], Burdzy, Chen and Sylvester study the density of Brownian motion reflected inside
a time dependent domain. They assume the boundary is C3 in both time and space; see [3],
Section 2. In our case n = 1, however, their results still hold under the weaker assumption
that the space-time boundary is C2. Let g(t) ∈ C2[0, T ] be a twice differentiable function
with g(0) = 0. Given a Brownian motion B(t) and x ≥ 0, let p(t, y) be the transition density
of the reflected Brownian motion solving dX(t) = dB(t) + dL(t), and the initial condition
X(0) = x, where L is the local time of X on g. That is, for a given Borel set A ⊂ [g(t),∞),

Px

(
X(t) ∈ A

) =
∫
A

p(t, y)dy.

PROPOSITION 3.7 ([3], Theorem 2.4). For each fixed l ∈ (0, T ) there exists constants
Kl > 0 and Cl < ∞ such that

p(t, y) ≤ Cl√
t

exp
(−Kl|x − y|2

t

)
for all 0 < t < l and (t, y) ∈ {(s, z) : s ∈ [0, l], z ≥ g(s)} and where X(0) = x ≥ 0 = g(0).

PROPOSITION 3.8 ([3], Theorem 2.9). The transition density p(t, y) defined above
solves the following heat equation in a time-dependent domain:

∂p(t, y)

∂t
= 1

2
�yp(t, y), y > g(t),

∂+p(t, y)

∂+y
= −2g′(t)p(t, y), y = g(t),

lim
t↓0

p(t, y)dy = δx(dy).

REMARK 3.9. In particular, p(t, y) has differentiability necessary for these statements
to hold in the classical sense. See Remark 4.4 for an interpretation of the limiting statement.

COROLLARY 3.10. Let ξ be a random variable with law π0(dx), independent from the
Brownian motion B , both supported on (�,P,Ft ). Let g ∈ C2([0, T ],R) and

X(t) = ξ + B(t) + m(t), m(t) = sup
0<s<t

(
ξ + B(s) − g(s)

)−
.
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Then p(t, x) := P(X(t) = dx) solves the PDE

∂p

∂t
= 1

2
�yp, y > g(t),

∂p

∂y
= −2g′(t)p, y = g(t),

lim
t↓0

p(t, y)dy = π0(dy).

(3.1)

For a given time 0 < t < T and fixed value of n, the definition of our interacting diffusions
gives us n particles X

(n)
1 (t), . . . ,X

(n)
n (t) which all lie in [Y (n)(t),∞). Recall that

π
(n)
t = 1

n

n∑
i=1

δ{X(n)
i (t)}(3.2)

denotes the empirical process of the arrangment of these particles. Similarly recall the def-
inition of Wp in 1.6. The main property of Wp we will need is that Pp is separable and

complete under Wp . Clearly π
(n)
t is a random variable with state space Pp . In this way

{π(n)
t : t ∈ [0, T ]} is a (Pp,Wp)-valued stochastic process. By Lemma 3.12 below π

(n)
t is

continuous, and (π
(n)· , Y (n)(·),V (n)(·)) has the strong Markov property.

LEMMA 3.11. For any collection xi, yi ∈ R, i = 1, . . . , n we have

Wp

(
1

n

n∑
i=1

δ{xi},
1

n

n∑
i=1

δ{yi}
)

≤
(

1

n

n∑
i=1

|xi − yi |p
)1/p

.

LEMMA 3.12. The pair {(π(n)
t , Y (n)(t),V (n)(t)) : 0 ≤ t ≤ T } is a continuous strong

Markov process on Pp ×R2 under the product metric Wp × ‖ · ‖.

As π(n) is a continuous Pp-valued process, it induces a probability measure on C([0, T ],
(Pp,Wp)). We will abuse notation, which should be clear from context, by letting π(n) de-

note the measure on C([0, T ],Pp), and π
(n)
t to denote either the stochastic process or the

element in Pp when t is fixed. Let

π̃
(n)
t := 1

n

n∑
i=1

δ{X̃(i)(t)},

where

dX̃(i) = dB(i) + dL̃(i), X
(∞)
i (0)

d= π0 for i = 1, . . . , n,(3.3)

the X
(∞)
i (0) are i.i.d. and L̃(i) is the local time of X̃

(n)
i on the function Y given in Corol-

lary 3.6.

PROPOSITION 3.13. There is a probability space supporting π(n), π̃ (n) for all n such
that

sup
0≤t≤T

Wp

(
π

(n)
t , π̃

(n)
t

) −→ 0

almost surely.
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REMARK 3.14. This implies distributional convergence of π(n) and convergence of π̃ (n)

are equivalent. They will approach the same limiting measure should one (hence both) of
them converge.

We use the following notions of modulus of continuity. For γ ∈ C([0, T ], (Pp , Wp)),

ω′(γ, T , δ) = sup
0≤t≤T|t−s|<δ

Wp(γt , γs),

and similarly for f ∈ C([0, T ],R),

ω(f,T , δ) = sup
0≤t≤T|t−s|<δ

∣∣f (t) − f (s)
∣∣.

We use pth moment bounds of ω(B,T , δ), for a Brownian motion B , in our proof of tight-
ness for the collection {π(n) : n ∈ N} ⊂ C([0, T ], (Pp(R),Wp)). See [11], where Fischer and
Nappo provide such bounds in a more general setting. These moment bounds can be con-
trasted with Lévy’s theorem on the modulus of continuity for Brownian motion that concerns
the almost sure behavior of the modulus of continuity for small δ.

THEOREM 3.15 ([11]). Let B(t) be a one-dimensional Brownian motion and T > δ > 0.
For any q > 0 there exists a positive constant Cq independent of T and δ such that

Eω(B,T , δ)q < Cq

(
δ log

T

δ

)q/2
.

Theorem 3.15 directly implies a strong law of large numbers for the modulus of continuity
ω(B(i), T , δ).

COROLLARY 3.16. Consider a sequence of independent Brownian motions {B(i) :
i ∈ N} all defined on the same probability space. We have

1

n

n∑
i=1

ω
(
B(i), T , δ

)q a.s.−→ Eω
(
B(i), T , δ

)q
< Cq

(
δ log

T

δ

)q/2

for every q > 0, every δ > 0, and some positive constant Cq depending on q only.

REMARK 3.17. Typically when Xn are continuous stochastic process on a complete
and separable metric space (E,d), one demonstrates tightness of the measures induced on
C([0, T ],E) by showing “stochastic equicontinuity”

lim
δ→0

sup
n

P
(
ω(Xn,T , δ) > ε

) = 0(3.4)

together with a compact containment condition for a countable dense set of times [0, T ]:
given any η > 0 one can find a relatively compact set �t,η ⊂ E such that

inf
n
P

(
Xn(t) ∈ �t,η

)
> 1 − η.(3.5)

Consider (3.4) and the corresponding δ for ε = 1. Repeated use of the triangle inequality
between time increments of size δ can be used to bound Xn(t) with high probability uni-
formly in n at each time t should Xn be bounded w.h.p. uniformly in n at a fixed time t0.
Since boundedness in Rd is equivalent to relative compactness, if E is Euclidean, (3.5) can
be concluded from (3.4) provided there is some time t0 such that Xn(t0) is bounded w.h.p.
uniformly in n. If E is not Euclidean, finding compact sets may not be particularly easy,
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especially if E is not locally compact. Since our processes are (Pp,Wp)-valued continuous
processes, as shown in Lemma 3.12, and since (Pp,Wp) is not locally compact, we face
similar issues. One can use the pth moment bounds on ω(B(i), T , δ) with similar arguments
as in the proof of Proposition 3.18 to demonstrate (3.4). This would need to be paired with
a compact containment condition as mentioned. We sidestep dealings with compact sets in
(Pp,Wp) by establishing almost sure pointwise convergence of subsequential limits of π

(n)
t

together with a uniform stochastic equicontinuity result Proposition 3.18 below.

PROPOSITION 3.18. For every ε, η > 0 there exists a δ > 0 such that

P
(
sup
n

ω′(π̃ (n), T , δ
) ≤ ε

)
> 1 − η.

COROLLARY 3.19. The collection {π̃ (n), n ≥ 1} is equicontinuous on C([0, T ],
(Pp,Wp)) with probability 1.

We quote one more theorem and present a lemma.

THEOREM 3.20 ([13]). For q > p ≥ 1, q 	= 2p, let {ξi : i ∈ N} be i.i.d. samples of an
Lq bounded random variable ξ with density f , all supported on the same probability space.
Then

EWp

(
1

n

n∑
i=1

δ{ξi}, f
)

→ 0 as n → ∞.

LEMMA 3.21. Let V be a continuous function, and X a solution to dX = dB+V dt +dL

where L is the local time of X at zero. Then

Z(t) = exp
(
−

∫ t

0
Vs dBs − 1

2

∫ t

0
V 2

s ds

)
is a martingale with Z(0) = 0 and E[Z(t)p] < ∞ for any p > 0.

3.2. Proofs of Theorems 1.2 and 1.3. We give the proof of Theorem 1.3 first.

PROOF OF THEOREM 1.3. We prove this assuming the results in Section 3.1. We give
the details for two particles X

(n)
1 ,X

(n)
2 . The initial conditions ξ1 and ξ2 are independent by

assumption. Recall that Y (n) converges almost surely to Y in C[0, T ]. For l = 1,2 set

ml(t) = sup
0≤u≤t

(
B(l)(u) + ξl − Y(u)

)−
,

m
(n)
l (t) = sup

0≤u≤t

(
B(l)(u) + ξl − Y (n)(u)

)−
.

By an argument similar to the one in Proposition 2.10, ξl +B(l) +m
(n)
l has the same distribu-

tion as X
(n)
l , l = 1,2. Since Y (n) → Y almost surely, m

(n)
l → ml almost surely as well. Hence

ξl +B(l)+m
(n)
l → ξl +B(l)+ml , almost surely. Clearly ξ1 +B(1)+m1 and ξ2 +B(2)+m2 are

independent as each is a Brownian motion reflected from Y , driven by different independent
Brownian motions with independent initial positions. �

PROOF OF THEOREM 1.2. We prove this assuming the results in Section 3.1. We first
show that π(n) converges in distribution to the measure induced by p(t, ·). By Proposi-
tion 3.13 it suffices to show this for π̃ (n). Take any subsequence nk . For each rational
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0 < t < T we have defined π̃
(n)
t as an empirical measure of i.i.d. random variables with

density p(t, ·) taken from Corollary 3.10 by replacing g in the Corollary statement with Y .
We will show later that Y ∈ C2[0, T ] so this Corollary can be applied. By Theorem 3.20,

EWp

(
π̃

(nk)
t , p(t, ·)) → 0 for each t ∈ [0, T ].

For each rational t ∈ [0, T ] there is a subsequence n′
k such that

Wp

(
π̃

(n′
k)

t , p(t, ·)) → 0,

almost surely. By a Cantor diagonalization applied to each subsequence for an enumeration of

the rationals, there exists a single subsequence n′′
k such that Wp(π̃

(n′′
k )

t , p(t, ·)) → 0 for each
rational t ∈ [0, T ], almost surely. Apply the uniform equicontinuity given by Corollary 3.19,
and follow the proof of Arzéla–Ascoli verbatim to see that the subsequence π̃ (n′′

k ) is totally
bounded in the space C([0, T ], (Pp,Wp)), almost surely. See [12], Chapter 4.6. Total bound-
edness in a metric space is equivalent to every sequence having a Cauchy subsequence. Con-
sequently, for almost every ω in the probability space, every subsequence of π(n′′

k )(ω) has a
Cauchy subsequence in C([0, T ], (Pp,Wp)). Because C([0, T ], (Pp,Wp)) is complete, ev-

ery subsequence of π(n′′
k )(ω) has a convergent subsequence. Since π

(n′′
k )

t (ω) already converges
to the continuous p(t, ·) along rationals, every subsequence of π(n′′

k )(ω) has a further subse-

quence converging to p(t, ·). Therefore π
(n′′

k )
t converges to p(t, ·) in C([0, T ], (Pp,Wp)) al-

most surely. This proves the claim that {π(n)
t : t ∈ [0, T ]} converges in distribution to p(t, ·).

Next, we show

V (t) = −K

2

∫ t

0
p

(
s, Y (s)

)
ds

and that V ∈ C1[0, T ]. This also demonstrates Y ∈ C2[0, T ], which we took for granted
above. We take v = 0 for simplicity. Let

m(t) = sup
0≤u≤t

(
B(1)(u) + X

(∞)
i (0) − Y(u)

)−
.

As in the proof of Proposition 2.10 we know m(t) is distributed as L̃(1)(t), the local time of

X̃(t) := B(1)(t) + X
(∞)
1 (0) + m(t)

on Y . From Corollary 3.6 we have, almost surely,

V (t) = Em1(t) = EL̃(1)(t)

= E lim
ε→0

−K

2ε

∫ t

0
1[0,ε]

(
X̃(s) − Y(s)

)
ds

= lim
ε→0

−K

2ε
E

∫ t

0
1[0,ε]

(
X̃(s) − Y(s)

)
ds

= −K

2
lim
ε→0

∫ t

0

F(s, ε)

ε
ds,

(3.6)

where F(s, ε) = P(0 ≤ X̃(s) − Y(s) ≤ ε), provided we justify the passing of the limit under
the expectation. In the proof of Proposition 2.10 we saw that X̃ − Y solves an SDE of the
form dW = dB + V dt + dL for the continuous function V , and L is the local time of W at
zero. By Propositions 3.7 and 3.8 such density φ(s, x) = p(s,Y (s) + x) exists and has an
upper bound. This allows us to write

1

ε

∫ t

0
F(s, ε)ds =

∫ t

0

1

ε

∫ ε

0
φ(s, x)dx ds.



1602 C. L. BARNES

By Proposition 3.7 we have

1

ε

∫ ε

0
φ(s, x)dx ≤ Cl√

s
,

which is integrable for s is a compact time set. By the fundamental theorem, taking limits as
ε → 0 yields

−K

2
lim
ε→0

1

ε

∫ t

0
F(s, ε)ds =

∫ t

0
φ(s,0)ds

and the bounded convergence theorem justifies the passing of the limit inside the time inte-
gral,

−K

2
lim
ε→0

∫ t

0

F(s, ε)

ε
ds = −K

2

∫ t

0
lim
ε→0

F(s, ε)

ε
ds = −K

2

∫ t

0
φ(s,0)ds.

That is,

V (t) = −K

2

∫ t

0
p

(
s, Y (s)

)
ds.

We now justify the exchange of limit in (3.6) using the definition of local time to replace the
time integral with a space integral. Let L̃(1)(s, a) denote the local time of X̃ − Y at level a

and time s. We see
1

ε

∫ t

0
1[0,ε]

(
X(s) − Y(s)

)
ds =

∫ t

0

1

ε

∫ ε

0
L̃(1)(s, z)dz ds ≤

∫ t

0
sup

z

[
L̃(1)(s, z)

]
ds.

The Lebesgue dominated convergence theorem will justify (3.6) provided we show

E

∫ t

0
sup

z

[
L̃(1)(s, z)

]
ds ≤ tE sup

z

[
L̃(1)(t, z)

]
< ∞.

We apply a Girsanov change of measure as in Lemma 3.21 which is justified because Y

satisfies the Novikov condition. So

Z(t) = exp
(
−

∫ t

0
Vs dBs − 1

2

∫ t

0
V 2

s ds

)
is an exponential martingale with |B| having the same distribution as X̃ − Y under the mea-
sure defined by the Girsanov transformation dQ/dP = Z(t). Lemma 3.21 states E[Z(T )2] =
C < ∞. From this, the change of measure formula, and Cauchy–Schwarz,

E sup
z

[
L̃(1)(t, z)

] = E
(
Z(t) sup

z
L(t, z)

)
≤ E

(
Z2(t)

)1/2
E

[(
sup

z
L(t, z)

)2]1/2

≤ C1/2E
[(

sup
z

L(t, z)
)2]1/2

,

where L(t, z) is the local time at level z of Brownian motion reflected from the origin. The
main results in [1], Theorem 3.1, demonstrate bounds on the last term, where Barlow and Yor
show the existence of a constant Cp such that

E
[(

sup
z

Lt (z)
)p]

≤ Cptp/2.

It follows that

E sup
z

[
L̃(1)(t, z)

]
< ∞,

completing the proof. �
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3.3. Proofs of lemmas and propositions. PROOF OF LEMMA 3.1. We take v = 0 for
convenience. By our representation of V (n) as (2.5), together with Remark 2.6, we apply
Lemma 2.4 with y1 = −Y (n) and y2 = 0 to show the increment V (n)(t + δ) − V (n)(t) is
not more than the change of the sample average of the signed running minimums of the n

Brownian paths.
That is, letting m1(t), . . . ,mn(t) denote the respective signed running minimum below

zero of B(1), . . . ,B(n),

0 ≤ ∣∣V (n)(t + δ) − V (n)(t)
∣∣ ≤ K

n

n∑
i=1

(
mi(t + δ) − mi(t)

)
for all t ∈ [0, T − δ]

for any positive δ, almost surely. Since V (n) and mi are a.s. nondecreasing, we have the same
inequality but for the modulus of continuity:

ω
(
V (n), T , δ

) ≤ K

n

n∑
i=1

ω(mi, T , δ) =: Sn(δ),(3.7)

almost surely. For every p > 0, there is a C(p) > 0 such that

Eω(mi, T , δ) ≤ Cδ log
(

T

δ

)1/2
.

(See Theorem 3.15.) Because ω(mi, T , δ) are i.i.d., the strong law of large numbers implies

lim sup
n→∞

ω
(
V (n), T , δ

) ≤ Cδ log
(

T

δ

)1/2
.

Consequently,

lim
δ→0

lim sup
n→∞

ω
(
V (n), T , δ

) = 0,

almost surely. This is sufficient for the statement of the lemma. �

PROOF OF COROLLARY 3.2. Let εk = 1/k, ηk = 2−k . By Lemma 3.1 one has a corre-
sponding sequence δk > 0 such that

∞∑
k=1

P
(
sup
n

ω
(
V (n), T , δk

)
> 1/k

)
< ∞.

So by Borel–Cantelli, (supn ω(V (n), T , δk) ≤ 1/k) occurs for all but finitely many k, almost
surely. Since V (n)(0) = v almost surely, we conclude the sequence V (n) satisfies Arzela–
Ascoli’s criteria almost surely. �

PROOF OF PROPOSITION 3.3. By Corollary 3.2 for almost every ω in our probability
space, the sequence V

(1)
ω ,V

(2)
ω , . . . , satisfies the Arzela–Ascoli criteria. Let n1

k(ω) and n2
k(ω)

be two (random) subsequences such that V
(n1

k)
ω ,V

(n1
k)

ω converge to V 1
ω and V 2

ω respectively.
We drop the ω for convenience. In the same way let

Y 1(t) =
∫ t

0
V 1(s)ds, Y 2(t) =

∫ t

0
V 1(s)ds

be the two limits associated with n1
k, n

2
k . That is,

lim
ni

k→∞
Y (ni

k) = Y i
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for i = 1,2. By our pathwise construction given in Theorem 2.5,

Y i = − lim
ni

k→∞
lim

2−l→0
I

(ni
k,2

−l )

(B(1)+X
(ni

k
)

1 (0),...,B
(ni

k
)+X

(ni
k
)

ni
k

(0))

.(3.8)

It follows from the strong law of large numbers and the Wq -assumption on X
(n)
i (0) that for

almost every ω there is a C(ω) < ∞ such that

1

n

∥∥(
B(1) + X

(n)
1 (0), . . . ,B(n) + X(n)

n (0)
)∥∥[0,T ] < C(ω) < ∞.

Applying Proposition 2.9 we see that∥∥I (ni
k,2

−l ) − I (ni
k,2

−m)
∥∥[0,T ] ≤ (2 + K)C(ω)2−l exp(KT ).

Let m → ∞ and we have∥∥I (ni
k,2

−l ) − I (ni
k)

∥∥[0,T ] ≤ (2 + K)C(ω)2−l exp(KT ).

In other words,

sup
ni

k≥1,i=1,2

∥∥I (ni
k,2

−l ) − I (ni
k)

∥∥[0,T ] ≤ (2 + K)C(ω)2−l exp(KT ),

and as 2−l → 0 the convergence of I (ni
k,2

−l ) to I (ni
k) is uniform over (ni

k)k≥1, almost surely.
This is sufficient to guarantee an interchange of the limiting operations in (3.8). See [25],
Theorem 6 VII.3. Hence,

Y i = − lim
2−l→0

lim
ni

k→∞
I (ni

k,2
−l ).

We will use the strong law of large numbers to show limn1
k→∞ I (n1

k,2
−l ) = limn2

k→∞ I (n2
k,2

−l ).

This can be seen by induction on [0,N2−l]: By construction of the I (ni
k,2

−l ) the two limits
are identically zero on [0,2−l]. Assume the two limits agree on [0,N2−l]. This induction
hypothesis implies the slope of I (n1

k,2
−l ) and the slope of I (n2

k,2
−l ) become arbitrarily close

as k → ∞. Since the slope of I (ni
k,2

−l ) on [N2−l , (N + 1)2−l] is the average of the positive
part of the running minimums of B(1) + I (ni

k,2
−l ), . . . ,B(ni

k) + I (ni
k,2

−l ), and because the limit
in the strong law of large numbers is independent on the subsequence chosen, the slopes of
I (n1

k,2
−l ), I (n2

k,2
−l ) become arbitrarily close on [0, (N + 1)2−l] as k → ∞. This completes the

induction step. �

PROOF OF PROPOSITION 3.4. Let (�,P, (Ft )t≥0) be a probability space support-
ing a sequence of independent Ft -adapted Brownian motions {B(i) : i ∈ N}. Define
X

(n)
i , Y (n),V (n) by (2.16). Recall that the initial conditions X

(n)
i (0), 1 ≤ i ≤ n, are i.i.d. sam-

ples with distribution π
(n)
0 and that Wq(π

(n)
0 , π0) → 0 by assumption. Let X

(∞)
i (0), i ∈ N,

be independent samples with distribution π0. By definition of the Wp metric we enlarge this

probability space to support all the processes {X(n)
i (t) : t ∈ [0, T ],1 ≤ n,n ∈N} such that

sup
1≤i≤n

E
∣∣X(n)

i (0) − X
(∞)
i (0)

∣∣q → 0 as n → ∞.

Hence,

sup
1≤i≤n

E
∣∣X(n)

i (0) − X
(∞)
i (0)

∣∣ ≤ sup
1≤i≤n

(
E

∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣q)1/q → 0,
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as n → ∞. This enlarged filtration can be constructed by taking Ft × σ {X(n)
i (0) : 1 ≤ i ≤

n,n ∈N} as our new filtration. Then,

1

n
E

n∑
i=1

∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣ ≤ sup
1≤i≤n

E
∣∣X(n)

i (0) − X
(∞)
i (0)

∣∣ −→ 0,

and so

1

n

n∑
i=1

∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣ P−→ 0.

As a consequence of this convergence in probability to zero, every sequence n′ has a further
subsequence n′

k with

1

n′
k

n′
k∑

i=1

∣∣X(n′
k)

i (0) − X
(∞)
i (0)

∣∣ −→ 0,(3.9)

almost surely. Without loss of generality we relabel such a sequence n′
k as n′. We apply

Proposition 2.8 with f = (B(1) + X
(n′)
1 (0), . . . ,B(n′) + X

(n′)
n′ (0)), g = (B(1) + X

(∞)
1 (0), . . . ,

B(n′) + X
(∞)
n′ (0)):∥∥V (n′)

(B(1)+X
(n′)
1 (0),...,B(n′)+X

(n′)
n′ (0))

− V
(n′)
(B(1)+X

(∞)
1 (0),...,B(n′)+X

(∞)

n′ (0))

∥∥[0,T ]

≤ K

n′
n′∑

i=1

∣∣X(n′)
i (0) − X

(∞)
i (0)

∣∣ exp(KT ) → 0,

almost surely. Therefore it suffices to show V
(n′)
(B(1)+X

(∞)
1 (0),...,B(n′)+X

(∞)

n′ (0))
converges to a de-

terministic limit.
Fix k ∈ N. For almost all ω in our probability space there is a constant C(ω, k) such that

‖(B(1) + X
(∞)
1 (0), . . . ,B(k) + X

(∞)
k (0))‖[0,T ] < C(ω, k) < ∞. This follows from continuity

of the B(i) and the assumption that the initial samples X
(∞)
i (0) come from an almost surely

finite, in fact, an Lp bounded, random variable. Apply Proposition 2.8 with

f = (
B(1) + X

(∞)
1 (0), . . . ,B(n′) + X

(∞)
n′ (0)

)
,

g = (
0, . . . ,0,B(k+1) + X

(∞)
k+1B

(n′) + X
(∞)
n′ (0)

)
,

that is, the first k coordinates of g are zero, and η = ‖f −g‖[0,T ] < C(ω, k) to give the almost
sure bound∥∥V (n′)

(B(1)+X
(∞)
1 (0),...,B(n′)+X

(∞)

n′ (0))
− V

(n′)
(0,...0,B(k+1)+X

(∞)
k+1(0),...,B(n′)+X

(∞)

n′ (0))

∥∥[0,T ]

≤ (
KC(ω, k)/n′) exp(KT ) → 0 as n′ → ∞.

Therefore

V = lim
n′→∞V (n′)(0, . . . ,0,B(k+1) + X

(∞)
k+1(0), . . . ,B(n′) + X

(∞)
n′ (0)

) ∈ Fk+1,∞
T ,

where Fk,∞
T is the sigma-field generated by {B(i)(t) + X

(∞)
i (0) : 0 ≤ t ≤ T , k ≤ i}. By def-

inition this means the continuous function V is adapted to the tail sigma-field of the infinite
sequence of i.i.d. processes. Hence {V (t) : t ∈ [0, T ]} is adapted to a trivial sigma-field, so it
is deterministic. Consequently Y is also deterministic.
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To prove the equalities in the proposition statement, we take v = 0 for simplicity. For
i = 1, . . . , n′, define

m
(n)
i (t) = sup

0≤u≤t

((
B(i)(u) + X

(n)
i (0)

) − Y (n)(u)
)−

,

m̃i(t) = sup
0≤u≤t

((
B(i)(u) + X

(∞)
i (0)

) − Y(u)
)−

.

Since

V (n′)(t) = −K

n

n′∑
i=1

m
(n′)
i (t),

we compute∥∥∥∥∥K

n′
n′∑

i=1

m̃i − V (n′)
∥∥∥∥∥[0,T ]

≤ K

n′
n′∑

i=1

∥∥m̃i − m
(n′)
i

∥∥
≤ K

n′
n′∑

i=1

(∣∣X(∞)
i (0) − X

(n′)
i (0)

∣∣ + ∥∥Y (n′) − Y
∥∥[0,T ]

)
−→ 0,

(3.10)

almost surely. In words, V (n′) and the average of the running minimum of the i.i.d. Brownian
paths below the curve Y become arbitrarily close in the uniform distance. By the strong law
of large numbers 1

n′
∑n′

i=1 m̃i(t) → Em̃i(t) almost surely for each t . That is,

lim
n′→∞V (n′)(t) = − lim

n′→∞
K

n′
n′∑

i=1

m̃i(t) = −KEm̃i(t) almost surely.(3.11)

By (3.10), V (n′)(·) converges in the uniform norm to −KEm̃i(·), almost surely. �

PROOF OF COROLLARY 3.6. Convergence in Wr for any r ≥ 1 is shown once we can
establish that Y (n) and V (n) converge almost surely and in Lr to Y and V , respectively,
in some probability space supporting a sequence of i.i.d. Brownian motions and the initial
conditions {X(n)

i (0) : 1 ≤ i ≤ n,m ∈ N}. We already know Y (n) −→ Y almost surely. The
convergence in Wr comes from the bound indicated in the proof of Proposition 2.10, that∣∣V (n)(t)

∣∣ ≤ K

n

n∑
i=1

L′
i (t),

where the Li are i.i.d. local times at zero of Brownian motion. Now use the fact that
1
n

∑n
i=1 L′

i converges almost surely and in Lr to its mean function and apply the (general-
ized) dominated convergence theorem [12], Chapter 2.3. �

PROOF OF COROLLARY 3.10. As in the proof of Proposition 2.10, it follows from Lévy’s
theorem applied after a Girsanov change of measure that X is distributed as a Brownian
motion reflected from the curve g. Now apply Proposition 3.8 after conditioning on ξ . See
Remark 4.4 for a brief discussion of the last condition. �

PROOF OF LEMMA 3.11. This follows from coupling (X,Y ) with

X
d= 1

n

n∑
i=1

δ{xi}, Y
d= 1

n

n∑
i=1

δ{yi}

so that X has mass on {xi} exactly when Y has mass on {yi}. �
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PROOF OF LEMMA 3.12. The strong Markov property follows from the strong Markov
property of (X

(n)
1 , . . . ,X

(n)
n , Y (n),V (n)). We need only show continuity of π(n) since

(Y (n),V (n)) is continuous. By Lemma 3.11,

Wp

(
π

(n)
t , π(n)

s

) ≤
(

1

n

n∑
i=1

∣∣X(n)
i (t) − X

(n)
i (s)

∣∣p)1/p

,(3.12)

and continuity follows from the continuity of the X
(n)
i . �

PROOF OF PROPOSITION 3.13. Consider the probability space supporting all the
{B(i)(t) : 0 ≤ t ≤ T } together with the initial conditions {X(n)

i (0) : 1 ≤ i ≤ n,n ∈ N}. This
space will then support Y (n), Y as well. By Corollary 3.6 we may also assume Y (n) → Y

almost surely. As in the proof of Proposition 3.4, {X(∞)
i (0) : i ∈ N} are i.i.d. samples with

distribution π0. By our assumption that π
(n)
0 → π0 in (Pp,Wp), we may further choose our

probability space so that

1

n

n∑
i=1

∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣p → 0(3.13)

in probability. Using the Skorohod representation theorem we can find a supporting proba-
bility space where this holds almost surely. We use the same representation of our processes
as in the proof of the propagation of chaos. That is,

X
(n)
i (t) = X

(n)
i (0) + B(i)(t) + m

(n)
i (t),(3.14)

X̃(i)(t) = X
(∞)
i (0) + B(i)(t) + m̃i(t)(3.15)

for i = 1, . . . , n, and t ∈ [0, T ], where

m
(n)
i (t) = sup

0≤u≤t

((
B(i)(u) + X

(n)
i (0)

) − Y (n)(u)
)−

,(3.16)

m̃i(t) = sup
0≤u≤t

((
B(i)(u) + X

(∞)
i (0)

) − Y(u)
)−

.(3.17)

By the triangle inequality∥∥m(n)
i − m̃i

∥∥[0,t] ≤ ∣∣X(n)
i (0) − X̃

(∞)
i (0)

∣∣ + ∥∥Y (n) − Y
∥∥[0,t](3.18)

for any t ∈ [0, T ]. For any nonnegative numbers a and b, (a + b)p ≤ (2 max{a, b})p ≤
2p(ap + bp). Using (3.18), Lemma 3.11, (3.13) and the fact that ‖Y (n) − Y‖[0,T ] → 0 al-
most surely,

sup
0≤t≤T

Wp

(
π

(n)
t , π̃

(n)
t

) ≤ sup
0≤t≤T

(
1

n

n∑
i=1

∣∣X(n)
i (t) − X̃(i)(t)

∣∣p)1/p

≤ sup
0≤t≤T

(
1

n

n∑
i=1

(∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣ + ∥∥m(n)
i − m̃i

∥∥[0,t]
)p)1/p

=
(

1

n

n∑
i=1

2p+1∣∣X(n)
i (0) − X

(∞)
i (0)

∣∣p + 2p
∥∥Y (n) − Y

∥∥p
[0,T ]

)1/p

−→ 0,

almost surely. �
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PROOF OF PROPOSITION 3.18. Recall the role of v in (1.1). From Lemma 3.11 and the
definitions of ω,ω′ the following holds almost surely,

ω′(π̃ (n), T , δ
) := sup

0≤t≤T|t−s|<δ

Wp

(
π̃ (n)

s , π̃
(n)
t

)

≤ sup
0≤t≤T|t−s|<δ

(
1

n

n∑
i=1

[∣∣B(i)(s) − B(i)(t)
∣∣ + ∣∣m̃i(s) − m̃i(t)

∣∣]p)1/p

≤
(

1

n

n∑
i=1

sup
0≤t≤T|t−s|<δ

[∣∣B(i)(s) − B(i)(t)
∣∣ + ∣∣m̃i(s) − m̃i(t)

∣∣]p)1/p

≤
(

2p

n

n∑
i=1

sup
0≤t≤T|t−s|<δ

[∣∣B(i)(s) − B(i)(t)
∣∣p + ∣∣m̃i(s) − m̃i(t)

∣∣p])1/p

≤
(

2p

n

n∑
i=1

sup
0≤t≤T|t−s|<δ

∣∣B(i)(t) − B(i)(s)
∣∣p + sup

0≤t≤T|t−s|<δ

∣∣m̃i(t) − m̃i(s)
∣∣p)1/p

=
(

2p

n

n∑
i=1

ω
(
B(i), T , δ

)p + ω(m̃i, T , δ)p

)1/p

.

Because dY/dt ≤ |v|, applying Lemma 2.4 with y1 = −Y and y2(t) = |v|t , we have

ω(m̃i, T , δ) ≤ ω
(
B(i) + y2, T , δ

) ≤ |v|δ + ω
(
B(i), T , δ

)
.

That is, the maximum change the Brownian path makes below Y until time T , in the span
of δ time, is bounded by the change made by the line |v|t in addition to the change of the
Brownian path. This gives

ω′(π̃ (n), T , δ
) ≤

(
2pvδ + 2p+1

n

n∑
i=1

ω
(
B(i), T , δ

)p)1/p

,

almost surely. For simplicity we take v = 0 in the remaining argument. Setting Iε =
(εp/2p+1,∞),

P
(

sup
n>N

ω′(π̃ (n), T , δ
)
> ε

)

≤ P

(
sup
n>N

1

n

n∑
i=1

ω
(
B(i), T , δ

)p
>

εp

2p+1

)

= E1Iε

{
sup
n>N

1

n

n∑
i=1

ω
(
B(i), T , δ

)p}
.

By Corollary 3.16 and the dominated convergence theorem,

lim
N→∞E1Iε

{
sup
n>N

1

n

n∑
i=1

ω
(
B(i), T , δ

)p}

= E1Iε

{
Eω

(
B(i), T , δ

)p}
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≤ E1Iε

{
Cp

(
δ log

T

δ

)p/2}

= 1Iε

{
Cp

(
δ log

T

δ

)p/2}
.

In other words,

lim
N→∞P

(
sup
n>N

ω′(π̃ (n), T , δ
)
> ε

)
≤ 1Iε

{
Cp

(
δ log

T

δ

)p/2}
,(3.19)

which is 0 when δ satisfies

δ log
T

δ
<

ε2

4(p+1)/pC
2/p
p

.

With this chosen value of δ, take N large enough so that

P
(

sup
n>N

ω′(π̃ (n), T , δ
)
> ε

)
< η/2,

then appropriately shrink δ until

N∑
i=1

P
(
ω′(π̃ (i), T , δ

)
> ε

)
< η/2,

to conclude that

P
(
sup
n

ω′(π̃ (n), T , δ
)
> ε

)
< η. �

PROOF OF LEMMA 3.21. Since V is continuous, it is bounded, and so it follows from
Novikov’s condition that Z is a martingale. In fact, if M(t) is a continuous local martin-
gale, Z′ := exp(M − 1

2〈M〉) is a local martingale from Itô’s lemma. Because it is nonneg-

ative we may apply Fatou’s lemma to an exhaustive sequence of local times Tn
a.s.→ ∞ to

see E(Z′(t)|Fs) ≤ limn→∞E(Z′(t ∧ Tn)|Fs) = limn→∞ Z′(s ∧ Tn) = Z′(s). That is, Z′ is a
supermartingale. Take any p,q, q ′ > 0 with 1

q
+ 1

q ′ = 1. Then

E
[
Z(t)p

] = E

[
exp

(
−p

∫ t

0
Vs dBS − qp2

2

∫ t

0
V 2

s ds

)
exp

(
p(qp − 1)

2

∫ t

0
V 2

s ds

)]
.

Now apply Holder’s inequality with q, q ′

E
[
Z(t)p

] ≤ E

[
exp

(
−pq

∫ t

0
Vs dBs − q2p2

2

∫ t

0
V 2

s ds

)]1/q

×E

[(
pq ′(qp − 1)

2

∫ t

0
V 2

s ds

)]1/q ′

≤ 1 ·E
[
exp

(
pq ′(qp − 1)

2

∫ t

0
V 2

s ds

)]1/q ′

= exp
(

pq ′(qp − 1)

2

∫ t

0
V 2

s ds

)
< ∞.

Here

E

[
exp

(
−pq

∫ t

0
Vs dBs − q2p2

2

∫ t

0
V 2

s ds

)]
≤ 1,
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since

M(t) = −pq

∫ t

0
Vs dBs, 〈M〉(t) = q2p2

∫ t

0
V 2

s ds

and because exp(M(t) − 1
2〈M〉(t)) is a supermartingale as explained above. �

4. Uniqueness of the heat equation with free-boundary. In this section we give exis-
tence and uniqueness for the PDE with free boundary condition (p(t, ·), y(t)) which is the
solution of our hydrodynamic limit given by (1.2). If (p, y) is a solution and p(t, ·) represents
the distribution of heat, then the equation in Theorem 1.2 is interpreted as saying the accel-
eration of the moving barrier y(t) is proportional to its temperature. The hydrodynamic limit
already yields existence of such a solution. In that statement of Theorem 1.2 (π(n), Y (n))

converges in some sense to a solution of (1.2). Here we show this is the only solution by
demonstrating uniqueness of this PDE with free boundary.

REMARK 4.1. For any solution (p, y) of (1.2) make a substitution u(t, x) = p(t, x +
y(t)) and see (u, y) is a classical solution to

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2 + y′(t)∂u(t, x)

∂x
when x > 0,

∂+u(t, x)

∂x+ = −2y′(t)u(t, x) at x = 0,

y′′(t) = −K

2
u(t,0), y(0) = 0, y′(0) = v ∈ R, y′′ ∈ C

([0, T ],R)
,

lim
t↓0

u(t, x) = f (x)dx, f ∈ L1(R+).

(4.1)

In this way the two problems are equivalent.

THEOREM 4.2. The PDE problem (4.1), and equivalently that in (1.2), has a unique
solution for any K ≥ 0.

REMARK 4.3. The regularity of the boundary plays an important role because if y′′
exists then the solution to (1.2) has a stochastic representation given from Corollary 3.10. We
exploit this to show uniqueness.

PROOF OF THEOREM 4.2. Theorem 1.2 gives existence. To show uniqueness we will
prove the corresponding barriers y1, y2 of any two solutions are in fact equal. Assume that
(p1(t, ·), y1(t)), (p2(t, ·), y2(t)) are pairs solving the PDE with the given initial conditions.
Following Corollary 3.10 above we know that the transition density pi(t, x) of Brownian
motion reflecting from yi satisfies the PDE

∂pi

∂t
= 1

2
�ypi, y > yi(t),

∂+pi

∂y+ = −2y′
i (t)pi, y = yi(t),

lim
t↓0

pi(t, y)dy = f (y)dy ∈ Lp(R+), p ≥ 1.

(4.2)
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REMARK 4.4. Given a C2 function y solving classical solution to the above PDE, one
sees from Propositions 3.8 and 3.7 that p(t, x) is density of Brownian motion reflecting from

y with initial condition ξ
d= f (dx). (For fixed y there is a unique such p(t, x), see Friedman

[14], Theorem 15, Chapter 2.) Consequently, the second condition in (4.2) is interpreted as
convergence of the density of Brownian motion reflecting above y to its value at time zero.
From an analysis perspective, we have Wp(f (x)dx,p(t, x)dx) → 0, as t → 0, which can
easily be gathered from Propositions 3.8 and 3.7. In particular, once we show this solution
is unique, the stochastic representation shows

∫ ∞
y(t) p(t, x)dx = 1 and

∫ ∞
y(t) x

pp(t, x)dx < ∞
for all t ∈ [0, T ].

Without loss of generality we assume
∫

f (y)dy = 1. Let (�,F, (Ft )t≥0,P) be a prob-
ability space supporting an Ft -adapted Brownian motion B(t) and an independent random
variable ξ with distribution determined by f (y)dy. As in the proof of Theorem 1.2, or Propo-
sition 3.4, we know

y′
i (t) = v − K

2
Emi(t) where mi(t) = max

u∈[0,t]
(
B(u) + ξ − yi(u)

)−
.

Linearity of expectation yields the following comparison between y′
1, y

′
2:

∣∣y1(t) − y2(t)
∣∣ ≤

∫ t

0

∣∣y′
1(s) − y′

2(s)
∣∣ ds

= K

2

∫ t

0

∣∣E(
m1(s) − m2(s)

)∣∣ ds

≤ K

2

∫ t

0
‖y1 − y2‖[0,s] ds ≤ K

2
t‖y1 − y2‖[0,t].

Because the right hand is nondecreasing this inequality holds when the left hand is maxi-
mized across time, so

‖y1 − y2‖[0,t] ≤ K

2
t‖y1 − y2‖[0,t].

Therefore ‖y1 − y2‖[0,t] ≤ C‖y1 − y2‖[0,t] for some C < 1 as long as 0 ≤ t < t∗ < 2/K . As
a result ‖y1 − y2‖[0,t∗] = 0 for all t∗ ∈ [0,

√
2/K]. In other words, the barriers y1 and y2 are

identical up until this fixed positive time. Repeating this argument shows that y1 and y2 are
identical across the entire interval [0, T ]. That is, there is a unique boundary y associated
to any pair (p, y) solving (1.2). Fixing y, uniqueness of p follows as a special case of the
uniqueness result in Friedman [14] (or [3], Theorem 2.3, Theorem 15, Chapter 2). �
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