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This paper is the discrete time counterpart of the previous work in the
continuous time case by Guillin, Léonard, the second named author and Yao
[Probab. Theory Related Fields 144 (2009), 669–695]. We investigate the fol-
lowing transport-information TV I inequality: α(TV (ν,μ)) ≤ I (ν|P,μ) for
all probability measures ν on some metric space (X , d), where μ is an invari-
ant and ergodic probability measure of some given transition kernel P(x, dy),
TV (ν,μ) is some transportation cost from ν to μ, I (ν|P,μ) is the Donsker–
Varadhan information of ν with respect to (P,μ) and α : [0,∞) → [0,∞] is
some left continuous increasing function. Using large deviation techniques,
we show that TV I is equivalent to some concentration inequality for the oc-
cupation measure of the μ-reversible Markov chain (Xn)n≥0 with transition
probability P(x, dy). Its relationships with the transport-entropy inequalities
are discussed. Several easy-to-check sufficient conditions are provided for
TV I . We show the usefulness and sharpness of our general results by a num-
ber of applications and examples. The main difficulty resides in the fact that
the information I (ν|P,μ) has no closed expression, contrary to the continu-
ous time or independent and identically distributed case.

1. Introduction. Let M1(X ) be the space of all probability measures on the Polish space
X and consider a cost function c(x, y) : X 2 → [0,+∞] with c(x, x) = 0 (for all x ∈ X ),
which is lower semicontinuous on X 2. Given μ,ν ∈ M1(X ), the transportation cost Tc(ν,μ)

from ν to μ with respect to (w.r.t. in short) the cost function c is defined by

(1.1) Tc(ν,μ) = inf
π∈M1(X 2):π0=ν,π1=μ

∫∫
X 2

c(x, y)π(dx, dy),

where π0(dx) = π(dx ×X ), π1(dy) = π(X × dy) are the marginal distributions of π .
When c(x, y) = dp(x, y) where d is a metric on X which is lower semicontinuous on X 2

(not necessarily compatible with the topology of X ) and p ≥ 1, (Tc(ν,μ))1/p = Wp,d(ν,μ)

is the Lp-Wasserstein distance between ν and μ. Throughout the paper we write in short
Wp(ν,μ) for Wp,d(ν,μ) for the given metric d , and keep the notation Wp,ρ(ν,μ) for the
other metric ρ.

The relative entropy (or Kullback information) of ν with respect to μ is given by

(1.2) H(ν|μ) :=
⎧⎪⎨
⎪⎩
∫
X

f logf dμ if ν � μ and f := dν

dμ
,

+∞ otherwise.

The usual transport inequality for a given μ ∈ M1(X ), called transport-entropy inequality in
this paper, compares the Wasserstein metric Wp(ν,μ) with the relative entropy H(ν|μ). It
was introduced by Marton [36, 37] and Talagrand [51] as a powerful tool for showing the con-
centration of measure for the deviation of a Lipschitzian observable from its median. Bobkov
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and Götze [2] characterizes the transport inequality W1H(C) (see Corollary 2.6 below) by
the Gaussian bound of the Laplace transform of Lipschitzian function, which implies the
Gaussian concentration inequality of a Lipschitzian observable from its expectation. Gozlan
and Léonard [22] completed the circle by proving that the Gaussian concentration inequality
implies W1H(C).

The following extension of these inequalities,

(TcH ) α
(
Tc(ν,μ)

)≤ H(ν|μ) ∀ν ∈ M1(X ),

has been proposed and developed by Gozlan and Léonard [22]. Here α : [0,∞) → [0,+∞]
is some left continuous and nondecreasing function with α(0) = 0. It is proved in [22] that
(TcH ) is equivalent to some concentration inequality for the empirical measure of a sequence
of independent and identically distributed (i.i.d. in short) random variables (Xn)n≥0, with
common law μ. Their main idea comes from large deviations of i.i.d. sequences. The reader is
referred to the books by Ledoux [28], Villani [52, 53] and the survey by Gozlan and Léonard
[23] for literature on this topic.

Guillin et al. [24–26] proposed the following transport information inequality:

(TcI ) α
(
Tc(ν,μ)

)≤ I (ν|μ) ∀ν ∈ M1(X )

for some given probability measure μ. Here I (ν|μ) is the Fisher–Donsker–Varadhan infor-
mation of ν with respect to μ

(1.3) I (ν|μ) =
{
E(
√

f ,
√

f ) if ν = f μ,
√

f ∈ D(E),

+∞ otherwise

associated with the Dirichlet form E on L2(μ) with domain D(E). It is proved that (TcI )
is equivalent to some concentration inequality for the empirical measure of the continuous-
time μ-reversible Markov process (Xt)t≥0, associated with the Dirichlet form E . Furthermore
several useful sufficient conditions for (TcI ) and its relationships with functional inequalities
are established.

The main common point between (TcH ) and (TcI ) is: ν → H(ν|μ) is the rate function
governing the large deviation principle of the empirical measure Ln := 1

n

∑n−1
k=0 δXk

of an
i.i.d. sequence (Xn)n≥0 of common law μ (Sanov’s theorem); whereas ν → I (ν|μ) is the rate
function governing the large deviation principle of the empirical measure Lt := 1

t

∫ t
0 δXsds

(Donsker–Varadhan’s theorem) of the continuous-time μ-reversible Markov process (Xt)t≥0
associated with E . Here δ· is the Dirac measure at point ·.

The main purpose of this paper. This paper is a sequel to [24–26]. Our main purpose is to
generalize the results in the continuous time in [24–26] to discrete time Markov chains. Let
(Xn)n≥0 be a Markov chain valued in X with transition probability kernel P(x, dy), and μ be
an invariant and ergodic probability measure of P . Let I (ν|P,μ) be the Donsker–Varadhan
information (or entropy) of ν w.r.t. (P,μ) (see Section 2 for definition). The counterpart of
(TcI ) above becomes

(TcI ) α
(
Tc(ν,μ)

)≤ I (ν|P,μ) ∀ν ∈ M1(X ).

The objective of this paper is twofold:

(i) to characterize (TcI ) above by the concentration inequality on the trapeze-type em-
pirical measure

(1.4) L̃n := 1

n

(
1

2
(δX0 + δXn) +

n−1∑
k=1

δXk

)
, n ≥ 1;
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(ii) to present several easy-to-check sufficient conditions for (TcI ):

(a) Poincaré inequality;
(b) Lipschitzian spectral gap;
(c) hypercontractivity or hyperboundedness;
(d) Lyapunov function condition.

Related literature for concentration of Markov chains. We mention two lines of develop-
ments. The first one for obtaining concentration of Markov chains is to establish transport-
entropy inequalities in the process level. This was begun again by Marton [36], who proved
the transport-entropy inequality in process level for contracting (in the Dobrushin sense)
Markov chains by means of coupling (known today as Marton’s coupling). Her result was
generalized to φ-mixing sequences by Rio [48] and Samson [50]. Djellout, Guillin and the
second named author [12] further extended those results w.r.t. a general metric rather than
the discrete one. Ollivier [42] introduced and studied the Ricci curvature of Markov chains,
and Joulin and Ollivier [27] proved the concentration inequalities for Markov chains of pos-
itive Ricci curvature, with the constant more close to the best possible one—the variance
(in the central limit theorem) for non large deviation, rather than that in [12]. Wintenberger
[58] obtained the Bernstein-type concentration inequalities by introducing weak transport
inequalities.

Another line is to use the spectral gap for concentration of Markov chains. Gillman
[21] used the perturbation theory of operators to obtain deviation inequalities of symmet-
ric Markov chains. The successive refinements of techniques allowed Dinwoodie [11] and
Lezaud [31] to improve this bound. In the reversible case, the definite result is due to Léon
and Perron [30]: they obtained a sharp Chernoff (or Hoeffding) concentration inequality by
comparison with a two-states Markov chain. More recently Paulin [44, 45] improved the
Bernstein inequality of Lezaud [31] in the nonsymmetric case (another aspect of his work
generalized the results of Samson [50] by coupling method of Marton), and Miasojedow [39]
and Fan et al. [47] extended the result of Léon and Perron [30] to the nonsymmetric case.
This line is particularly fruitful in the continuous time case because of functional inequali-
ties: see the second named author [60], Lezaud [32], Guillin et al. [26] etc, where the reader
could find sharp concentration inequalities of different types. There are less recent works on
concentration inequalities of discrete time Markov chains in this line, just because of lack of
functional inequalities (except spectral gap) in the discrete time.

Our study of the transport-information inequality will benefit from those two lines of de-
velopments.

Organization of the paper. This paper is organized as follows. We present the main re-
sults in the next section. At first we characterize (TcI ) in the symmetric case, by means of
concentration inequalities for the trapeze-type empirical mean L̃n(u) of observable u, ex-
tending Gozlan–Léonard’s result from i.i.d. sequences to discrete time Markov chains. Some
transport-information inequality in the nonsymmetric case is also proposed for obtaining con-
centration inequalities of the empirical mean Ln(u). Next we propose several easy-to-check
sufficient conditions for the transport-information inequality. In Section 3 we apply our gen-
eral results to a series of examples, showing the usefulness and sharpness of those theoretical
results.

The last four sections (from Section 4 to Section 7) are devoted to the proofs of the results
in Section 2.
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Convention and notation. Throughout this paper (X , d) is a complete separable metric
space with the associated Borel σ -field B.

– The space of all real bounded and B-measurable functions is denoted by bB. For μ ∈
M1(X ), Lp(μ) := Lp(X ,B,μ).

– The functions to be considered later are assumed to be measurable without warning.
– For a measurable function f on X , μ(f ) := ∫ f dμ = ∫X f (x) dμ(x).
– For μ,ν ∈ M1(X ), ‖ν − μ‖TV := supu:|u|≤1

∫
ud(ν − μ) is the total variation norm.

– Throughout this paper a cost function c is a nonnegative lower semicontinuous function
on X 2 such that c(x, x) = 0 for all x ∈ X .

– For a function f , ‖f ‖p denotes its norm in Lp(μ); and for a bounded operator A on
Lp(μ), ‖A‖p is the operator norm on Lp(μ).

2. Main results.

2.1. Markov chains, Donsker–Varadhan information, Feynman–Kac semigroup.

Markov chain. Our probabilistic object is a discrete time Markov chain (Xn)n∈N taking
values on X , defined on (	,F, (Px)x∈X ), with the probability transition kernel P(x, dy) and
with an invariant and ergodic probability measure μ, where Px(X0 = x) = 1, ∀x ∈ X . Here
the invariance of μ means μP = μ, and the ergodicity of μ means that if a real bounded and
measurable function f on X (say f ∈ bB) satisfies Pf = f,μ-a.s., then f is constant μ-a.s.

For an initial probability measure β , Pβ(·) := ∫ Px(·) dβ(x) and Eβ(·) = ∫ ·dPβ , Ex(·) :=
Eδx (·).

Donsker–Varadhan information. The following definition is motivated by standard large
deviation results ([16–18]).

DEFINITION 2.1. The Donsker–Varadhan information of ν with respect to (P,μ) is de-
fined by

(2.1) I (ν|P,μ) :=
⎧⎪⎨
⎪⎩

sup
1≤u∈bB

∫
X

log
u

Pu
dν if ν � μ;

+∞ otherwise.

When the context is clear (i.e., P , μ are fixed), we write in short I (ν) in place of I (ν|P,μ).

REMARK 2.2 (I as rate function). ν 
→ I (ν) is exactly the modified Donsker–Varadhan
information, that is, the rate function governing the local large deviation principle of the
empirical measure

(2.2) Ln := 1

n

n−1∑
k=0

δXk

under Pβ with initial measure β � μ, in the τ -topology for large time n. This was proved by
Donsker and Varadhan [16–18] for the weak convergence topology under some conditions
of absolute continuity and regularity of P(x, dy), and established in full generality by the
second named author [61].

REMARK 2.3 (Relation with relative entropy). The following identity is well known ([9,
10, 16, 17]): ∀ν � μ,

(2.3) I (ν|P,μ) = inf
Q∈M1(X 2),Q0=Q1=ν

H(Q|ν ⊗ P),
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where Q0, Q1 are respectively the marginal law of the first coordinate and the second of Q

on X 2, and ν ⊗ P(dx, dy) = ν(dx)P (x, dy). In the i.i.d. case P(x, dy) = μ(dy),

I (ν|P,μ) = H(ν|μ).

Feynman–Kac semigroups. We consider three kinds of Feynman–Kac semigroups for u ∈
bB. The first one is g → euPg for which we have for all n ≥ 1,

(2.4)
(
euP

)n
g(x) = Exg(Xn) exp

(
n−1∑
k=0

u(Xk)

)
= Exg(Xn) exp

(
nLn(u)

)
,

where Ln is given in (2.2); and the second one is g → P(eug) for which we have for all
n ≥ 1,

(2.5)
(
Peu)ng(x) = Exg(Xn) exp

(
n∑

k=1

u(Xk)

)
= Exg(Xn) exp

(
nLn(u) ◦ θ

)
,

where θ is the shift on 	 such that Xn ◦ θ = Xn+1. Though those two are often used in
large deviations ([9, 10]), whereas in the symmetric case, we will use the third one: g →
eu/2P(eu/2g) =: P ug for which we have for all n ≥ 1,

(2.6)

(
P u)ng(x) = Exg(Xn) exp

(
u(X0) + u(Xn)

2
+

n−1∑
k=1

u(Xk)

)

= Exg(Xn) exp
(
nL̃n(u)

)
,

where L̃n is the trapeze-type empirical measure given by (1.4).

2.2. Transportation cost TV and transport-information inequality. The Kantorovich–
Rubinstein duality theorem (see [52]) states that for any ν,μ ∈ M1(X ) so that Tc(ν,μ) <

+∞,

(2.7) Tc(ν,μ) = sup
(u,v)∈Vc

∫
udν −

∫
v dμ,

where

Vc := {(u, v) ∈ (bB)2 : u(x) − v(y) ≤ c(x, y),∀(x, y) ∈ X 2}.
In particular for c(x, y) = d(x, y), we have

(2.8) W1(ν,μ) = sup
g:‖g‖Lip=1

∫
g d(ν − μ).

This motivates the introduction of the following general transportation cost (slightly more
general than that in [22]):

(2.9) TV(ν,μ) = sup
(u,v)∈V

∫
udν −

∫
v dμ,

where V is some given family of couples (u, v) ∈ (bB)2 such that u ≤ v. It may be negative.
The main objective of this paper is to investigate the following transport-information in-

equality:

(α-TVI ) α
(
TV(ν,μ)

)≤ I (ν|P,μ) ∀ν ∈ M1(X ),

where α : R → [0,∞] is some nondecreasing left-continuous convex function with α(r) = 0
for r ≤ 0, that will be assumed throughout the paper except explicit contrary statement.
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When (α-TVI ) holds, we say that α is a TVI -deviation function. Sometimes we write in
short TVI in place of (α-TVI ). In the i.i.d. case this inequality becomes the transport-entropy
inequality (α-TVH ) introduced by Gozlan–Léonard [22].

Let us consider the convex conjugate

(2.10) α∗(λ) := sup
r∈R
(
λr − α(r)

)
.

We have α∗(λ) = +∞ for λ < 0 and

(2.11) α∗(λ) = sup
r≥0

(
λr − α(r)

)
, λ ≥ 0.

2.3. Characterization of (α − TVI ) in the symmetric case. The objective of this subsec-
tion is to illustrate the probabilistic meaning of the transport-information inequalities. We
begin with the symmetric case.

THEOREM 2.4. Assume that P is symmetric on L2(μ), that is, the Markov chain
(Xn)n≥0 is μ-reversible. Let α :R → [0,∞] be a left continuous nondecreasing convex func-
tion such that α(r) = 0 for r ≤ 0, V as above. Then the following properties are equivalent:

(a) (α-TVI ) holds.
(b) For all (u, v) ∈ V and all λ ≥ 0, n ≥ 1

(2.12)
∥∥(P λu)n∥∥

2 ≤ en[λμ(v)+α∗(λ)],

where P u(x, dy) = e(u(x)+u(y)]/2P(x, dy) and α∗ is defined by (2.10).
(b′) For all (u, v) ∈ V and all λ ≥ 0

lim sup
n→∞

1

n
logEμ exp

(
λnL̃n(u)

)≤ λμ(v) + α∗(λ).

(c) For any initial measure β � μ with dβ/dμ ∈ L2(μ) and for all (u, v) ∈ V , the fol-
lowing concentration inequality holds:

(2.13) Pβ

(
L̃n(u) > μ(v) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2
e−nα(r) ∀r > 0, n ≥ 1.

(c′) For all (u, v) ∈ V and for any r > 0, there exists β ∈ M1(X ) such that β � μ,
dβ/dμ ∈ L2(μ) and

lim sup
n→∞

1

n
logPβ

(
L̃n(u) > μ(v) + r

)≤ −α(r).

In the i.i.d. case, as I (ν|P,μ) = H(ν|μ), the result above is Gozlan–Léonard’s character-
ization of (α-TVH) in [22].

The characterization (2.13) of the transport-information inequality (TVI ) gives a robust
concentration inequality for the trapeze-type empirical mean L̃n(u). In practice, if ‖dβ/dμ‖2
is too big, one may run the Markov chain till step N such that ‖d(βP N)/dμ‖2 is not so big
(possible if the Poincaré inequality holds), and consider L̃n ◦ θN (see [26, 27] for explana-
tion).

We explain now why the equivalences above work for the trapeze empirical mean L̃n(u),
but not for Ln(u). One crucial reason is: as P u = eu/2Peu/2 is again symmetric on L2(μ),
we have the remarkable equality ‖(P u)n‖2 = ‖P u‖n

2 for all n ∈ N
∗ (by the spectral decom-

position of a bounded symmetric operator). The other reason will be given after Lemma 4.3
(due to [29] under the uniform integrability of P on L2(μ)). However euP and Peu are no
longer symmetric, the previous equality is lost.

It seems that Lei [29] was the first to use L̃n(u) instead of Ln(u).
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REMARK 2.5. As will be seen from the proof of Theorem 2.4, we have

(a) =⇒ (b) =⇒ (
b′), (a) =⇒ (c) =⇒ (

c′)
without the convexity of α; and (c′) =⇒ (a) holds true even in the nonsymmetric case and
without the convexity of α.

Furthermore since |Ln(u) − L̃n(u)| ≤ supx |u(x)|/n, (c′) is equivalent to
(c′′) For all (u, v) ∈ V and for any r > 0, there exists β ∈ M1(X ) such that β � μ,

dβ/dμ ∈ L2(μ) and

lim sup
n→∞

1

n
logPβ

(
Ln(u) > μ(v) + r

)≤ −α(r).

From Theorem 2.4 we derive easily

COROLLARY 2.6 (The inequalities (W1I (C)) and (W2I (C))). Let C > 0 and assume the
symmetry of P on L2(μ).

(1) The statements below are equivalent:

(a) the following (W1I (C)) inequality holds true:

(W1I (C)) W 2
1 (ν,μ) ≤ 2CI (ν|P,μ) ∀ν ∈ M1(X );

(b) for all bounded Lipschitzian function u on X with ‖u‖Lip ≤ 1 and all λ ≥ 0, n ≥ 1,∥∥(P λu)n∥∥
2 ≤ exp

(
n
[
λμ(u) + Cλ2/2

]);
(c) for all bounded and Lipschitzian function u on X with ‖u‖Lip ≤ 1, μ(u) = 0 and

all λ ≥ 0,

lim sup
n→+∞

1

n
logEμ exp

(
λnL̃n(u)

)≤ Cλ2/2;

(d) for all bounded Lipschitzian function u on X , r > 0 and β ∈ M1(X ) such that
dβ/dμ ∈ L2(μ),

Pβ

(
L̃n(u) > μ(u) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
− nr2

2C‖u‖2
Lip

)
.

(2) Assume that the metric d generates the topology of X . The statements below are equiva-
lent:

(a) the following (W2I (C)) inequality holds true:

(W2I (C)) W2(ν,μ)2 ≤ 2CI (ν|P,μ) ∀ν ∈ M1(X );
(b) for any v ∈ bB, ∥∥(P 1

2C
Qv)n∥∥

2 ≤ e
n

2C
μ(v) ∀n ≥ 1,

where Qv(x) = infy∈X {v(y) + d2(x, y)} is the so-called “inf-convolution” of v;
(c) for any u ∈ bB, ∥∥(P 1

2C
u)n∥∥

2 ≤ e
n

2C
μ(Su) ∀n ≥ 1,

where Su(y) = supx∈X {u(x) − d2(x, y)} is the so-called “sup-convolution” of u.
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In the i.i.d. case, WpI (C) becomes WpH(C) (p = 1,2), and the equivalence between (a)
and (b) both in part (1) and in part (2) of this corollary is the well-known characterization of
Bobkov and Götze [2]. W2H(C) is known often as Talagrand’s T2-transport inequality.

REMARK 2.7. From part (1.d), we see that the best constant C in (W1I (C)) is just the
best sub-Gaussian constant in the concentration inequality of L̃n(u) for Lipschitzian ob-
versable u with ‖u‖Lip ≤ 1. In the i.i.d. case, the best constant CG in (W1I (C)) coincides
with the best constant CH(μ) in W1H(C), called sub-Gaussian constant of μ in Bobkov,
Houdré and Tetali [3]. Following them,

DEFINITION 2.8. We call the best constant C in (W1I (C)), sub-Gaussian constant of
(P,μ), denoted by CG(P,μ), or CG if without ambiguity.

Let us give immediately a lower bound of CG. Let σ 2
n (u) := nVarPμ

(L̃n(u)) and

(2.14) σ 2(u) := lim
n→∞σ 2

n (u) = Varμ(u) + 2
∞∑

k=1

〈
u − μ(u),P ku

〉
μ

if the last series is convergent, where Varμ(u) is the variance of u under μ. σ 2(u) is the
asymptotic variance in the central limit theorem. If (W1I (C)) holds, using part (1.b) above
and looking at the second order Taylor expansion, we have

(2.15) CG ≥ sup
n≥1

sup
‖u‖Lip=1

σ 2
n (u) ≥ sup

‖u‖Lip=1
σ 2(u) =: V (P,μ).

2.4. Nonsymmetric case. We now turn to the nonsymmetric case.
In the continuous time case the unique choice of symmetrization of a Markov generator

L is (L + L∗)/2. In the discrete time case, one has three choices: P σ = (P + P ∗)/2, P ∗P ,
PP ∗. For instance P σ turns out to be the best one for the Poincaré inequality and for the
central limit theorem (ref. the second named author [59]), whereas PP ∗ (or P ∗P ) is the best
tool for convergence of P n to μ in L2(μ).

DEFINITION 2.9. The symmetrized Donsker–Varadhan information of ν w.r.t. the in-
variant and ergodic probability measure μ of P is defined as

Iσ (ν) := 1

2
I
(
ν|PP ∗,μ

)
,

where P ∗ is the adjoint operator of P on L2(μ).

We begin with exhibiting a relationship between H , Iσ and I .

PROPOSITION 2.10.

(a) It holds always that

(2.16) Iσ (ν) ≤ I (ν) ∀ν ∈ M1(X ).

(b) If P is symmetric and nonnegative definite on L2(μ), then

(2.17) I (ν|P,μ) ≤ 2H(ν|μ) ∀ν ∈ M1(X ).

In particular if (α − TVI ) holds, then α(TV(ν,μ)) ≤ 2H(ν|μ).
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(c) Without the symmetry of P , the following inequality always holds:

(2.18) Iσ (ν) ≤ H(ν|μ) ∀ν ∈ M1(X ).

In particular if (α-TVIσ ) below holds

(α-TVIσ ) α
(
TV(ν,μ)

)≤ Iσ (ν|μ) ∀ν ∈ M1(X )

then the transport-entropy inequality α(TV(ν,μ)) ≤ H(ν|μ), ∀ν ∈M1(X ) holds.

REMARK 2.11. In Proposition 2.10(b), without the nonnegative definiteness of P , (2.17)
does not hold. A counter example is as follows: let X = {0,1},

P =
(

0 1
1 0

)

then μ(0) = μ(1) = 1/2. By (2.3), I (ν|P,μ) = +∞ for all ν �= μ. Hence (2.17) does not
hold.

From Proposition 2.10, we see that under some mild condition our transport information
inequality is stronger than transport entropy TVH inequality. This means roughly that if a
Markov chain with the invariant and ergodic measure μ is concentrated, then the i.i.d. se-
quence of common law μ is concentrated: a quite natural idea.

Below we explain the probabilistic meaning of (α − TVIσ ).

THEOREM 2.12. Without the symmetry of P on L2(μ) nor convexity of α, assume (α −
TVIσ ). Then for any initial measure β � μ with dβ/dμ ∈ L2(μ) and for all (u, v) ∈ V and
r > 0, n ≥ 1,

(2.19) Pβ

(
Ln(u) > μ(v) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2
e−nα(r).

More generally if for some N ≥ 1,

(2.20) α
(
TV(ν,μ)

)≤ 1

2N
I
(
ν|P N (P ∗)N,μ

) ∀ν ∈ M1(X ),

the concentration inequality (2.19) still holds for all n ≥ N .

REMARK 2.13. As seen in its proof, when α is moreover convex, (α − TVIσ ) is in fact
equivalent to ∥∥eλuP

∥∥
2 ≤ exp

(
λμ(v) + α∗(λ)

) ∀(u, v) ∈ V, λ ≥ 0.

Having explained the probabilistic meaning of the transport-information inequality TVI or
TVIσ above, let us now present several easy-to-check sufficient conditions for TVI or TVIσ .

2.5. Poincaré inequality is equivalent to Hoeffding’s deviation inequality. Let
σ(P |L2(μ)) be the spectrum of P on L2(μ). The largest element λ0(P ) of σ(P |L2(μ)) is
1. If P is symmetric, the second one denoted by λ1(P ), is the supremum of σ(P |L2(μ))\{1}.
Its relation with the Poincaré inequality

(2.21) Varμ(g) ≤ cP
〈
g, (I − P)g

〉
μ ∀g ∈ L2(μ)

is: the best constant cP coincides with (1 − λ1(P ))−1.
We now state the sharp Hoeffding’s inequality of León and Perron [30] under the spectral

gap condition in the transport-information inequality form, extend it to the nonsymmetric
case, and show especially that the converse is also true.
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THEOREM 2.14. Let ((Xn)n≥0,Pμ) be a stationary ergodic Markov chain.

(a) (a variant of León and Perron [30], Theorem 1) Assume that P is symmetric on L2(μ)

and λ+
1 := max{0, λ1(P )} < 1 (the spectral gap condition). Then

(2.22) ‖ν − μ‖2
TV ≤ 2

1 + λ+
1

1 − λ+
1

I (ν) ≤ 4cPI (ν) ∀ν ∈ M1(X ).

In particular for u ∈ bB, for any initial probability measure β � μ with dβ/dμ ∈ L2(μ)

and for all r > 0 and n ≥ 1,

(2.23) Pβ

(
L̃n(u) > μ(u) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
−n

2r2(1 − λ+
1 )

‖u‖2
osc(1 + λ+

1 )

)
,

where ‖u‖osc := supx,y∈X |u(x) − u(y)| is the oscillation of u.
(b) Without the symmetry of P , if for some N ≥ 1, some δ ∈ [0,1),

(2.24) Varμ
(
P Nu

)≤ δ2Varμ(u) ∀u ∈ L2(μ)

then

(2.25) ‖ν − μ‖2
TV ≤ 2

1 + δ2

1 − δ2 I
(
ν|P N (P ∗)N,μ

) ∀ν ∈ M1(X )

in particular for u ∈ bB, and all n ≥ N , r > 0

(2.26) Pβ

(
Ln(u) > μ(u) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
−n

(1 − δ2)r2

N(1 + δ2)‖u‖2
osc

)
.

(c) Conversely in the symmetric case, if α(‖ν − μ‖TV) ≤ I (ν|P,μ), ∀ν ∈ M1(X ), for
some nonnegative nondecreasing left-continuous function α : R+ → [0,+∞] with α(1) > 0,
then the Poincaré inequality (2.21) holds with

(2.27) cP ≤ 1

1 − e−α(1)
or equivalently λ1(P ) ≤ e−α(1).

REMARK 2.15.

(i) For Markov chains with finite states, Lezaud [32] proved a Bernstein-type (Gaussian-
exponential for small and large deviations respectively) concentration inequality for Ln(u).
For reversible Markov chains with finite states, León and Perron [30], Theorem 1, using com-
parison with a two-states Markov chain, proved an optimal concentration inequality which
implies in particular the following sharp Hoeffding’s inequality:

(2.28) Pμ

(
Ln(u) > μ(u) + r

)≤ exp
(
−2n

r2

‖u‖2
osc

1 − λ+
1

1 + λ+
1

)
, r > 0, n ≥ 1,

which is generalized to general state space reversible Markov chains by Miasojedow [39]
and Fan et al. [47]; please refer to them for the detailed proof. That implies the transport-
information inequality (2.22) by Theorem 2.4[(c′) =⇒ (a)] (taking the discrete metric
d(x, y) = 1x �=y ). In other words part (a) in Theorem 2.14 is a reformulation of their result.
Let V = {(u,u) ∈ (bB)2; ‖u‖osc ≤ 1} and d(x, y) = 1x �=y (the discrete metric). Then

1

2
‖ν − μ‖TV = W1(ν,μ) = TV(ν,μ).

Hence (2.22) is exactly the inequality (W1I (C)) with C = 1+λ+
1

4(1−λ+
1 )

. The concentration in-

equality (2.23) is a direct consequence of (2.22) by Corollary 2.6.
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The part (b) above generalizes the result of León and Perron [30], Theorem 1, to the
nonsymmetric case. Miasojedow [39] and Fan et al. [47] already generalized the result of
León-Perron to the nonsymmetric case, but only for N = 1. We mention that Paulin [44, 45]
generalized the Bernstein-type inequality of Lezaud in the nonsymmetric case. Our proof,
based on part (a), will be very short and completely different from those. The converse part
(c) is new and completes this long history on Hoeffding’s inequality of Markov chains under
the spectral gap condition.

(ii) In the i.i.d. case, as λ1(P ) = 0, (2.22) above yields

‖ν − μ‖2
TV ≤ 2H(ν|μ)

which is the famous CKP (Csiszär–Kullback–Pinsker) inequality.
(iii) If one imposes the Dobrushin contraction condition as in Marton [36]

1

2

∥∥P(x, ·) − P(y, ·)∥∥TV ≤ rD < 1 ∀x, y ∈ X

by [36] we have for any u with ‖u‖osc ≤ 1,

Pβ

(
Ln(u) > EβLn(u) + r

)≤ exp
(−2n(1 − rD)2r2)

which, with β = μ, implies by Theorem 2.4.

(2.29)
1

2
(1 − rD)2‖ν − μ‖2

TV ≤ I (ν).

Let us compare (2.22) and (2.29) in the symmetric case. Since ‖P nu‖osc ≤ rn
D‖u‖osc, by

[62], Lemma 5.4, the spectrum of P in L2(μ) is contained in [−rD, rD]. Thus λ+
1 ≤ rD and

1+λ+
1

1−λ+
1

≤ 1+rD
1−rD

≤ 1
(1−rD)2 . Hence the inequality (2.22) is better than (2.29), especially when rD

is close to 1.
The condition “rD < 1” implies the L2-contraction condition (2.24) with N = 1, δ2 =

rD in the nonsymmetric case, by applying Del Moral et al. [8] to P . Thus for any u with
‖u‖osc ≤ 1,

(2.30) Pβ

(
Ln(u) > μ(u) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
−n

1 − rD

1 + rD
r2
)
,

where the constant in the exponential is better than the one in Marton’s concentration in-
equality above when rD > 1/

√
2, but worse otherwise.

The condition rD < 1 is much stronger than the L2-contraction condition (2.24). For ex-
ample, let (Pt ) be the standard Ornstein–Uhlenbeck semigroup generated by � − x · ∇ , for
P = P1, (2.24) is satisfied with δ = e−1 but rD = 1. The advantage of Marton’s result is
that her transport-entropy inequality is in process level, which implies the concentration in-
equality for all nonlinear Lipschitzian functionals (rather than the only additive functionals,
here).

It may be amusing to give:

A DIRECT PROOF OF (2.29). For any ν ∈ M1(X ), we have

‖ν − μ‖TV ≤ ‖ν − νP‖TV + ‖νP − μP‖TV ≤ ‖ν − νP‖TV + rD‖ν − μ‖TV

then by the CKP inequality,

(1 − rD)‖ν − μ‖TV ≤ ‖ν − νP‖TV ≤
√

2H(ν|νP ) ≤
√

2I (ν|P,μ),

where the last inequality follows by (2.3). �
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2.6. Lipschitzian spectral gap criteria. The carré-du-champs operator associated with
the generator L = P − I is

�(G)(x) = 1

2

∫ (
G(y) − G(x)

)2
P(x, dy)

= 1

2

{
VarP(x,·)(G) + (PG(x) − G(x)

)2}
.

Besides the given metric d , consider another metric ρ such that:

(2.31) sup
G:‖G‖Lip(ρ)=1

∥∥√�(G)
∥∥∞ ≤ M.

So the constant M bounds the spread rate of the Markov chain viewed from ρ-Lipschitzian
functions G with ‖G‖Lip(ρ) := supx �=y

|G(x)−G(y)|
ρ(x,y)

= 1 (while the Lipschitzian norm ‖G‖Lip

is taken always w.r.t. the metric d). We denote by CLip(X , ρ) (resp. CLip,0(X , ρ)) the space
of all ρ-Lipschitzian functions G (resp. with moreover μ(G) = 0). When ρ = d , we write
simply CLip(X ) := CLip(X , d), CLip,0(X ) := CLip,0(X , d).

Notice that (2.31) is satisfied once if

(2.32)
1

2

∫
ρ2(x, y)P (x, dy) ≤ M2 ∀x ∈ X .

Introduce

(2.33) Ic(ν) :=
⎧⎪⎨
⎪⎩
〈√

f , (I − P)
√

f
〉
μ = 〈√f ,

(
I − P σ )√f

〉
μ if ν � μ,f := dν

dμ
,

+∞ otherwise

which is the Donsker–Varadhan–Fisher information of the continuous time symmetric
Markov process generated by P σ − I := P+P ∗

2 − I ([26]).

THEOREM 2.16. Assume that P is μ-symmetric, and ρ is a metric on X satisfying (2.31)
and

∫ [d2(x, x0) + ρ2(x, x0)]dμ(x) < +∞, where x0 ∈ X is some fixed point. Suppose that
the Poisson operator (I − P)−1 is bounded from CLip,0(X , d) to CLip,0(X , ρ), that is, there
is some best constant cLip(d, ρ) < +∞ such that for any bounded g ∈ CLip,0(X , d), there is
G ∈ CLip,0(X , ρ) solving the Poisson equation (I − P)G = g, μ-a.s. and satisfying

(2.34) ‖G‖Lip(ρ) ≤ cLip(d, ρ)‖g‖Lip(d).

Then

(2.35) W1(ν,μ)2 ≤ 4
(
McLip(d, ρ)

)2
Ic(ν) ≤ 4

(
McLip(d, ρ)

)2
I (ν) ∀ν ∈M1(X ).

In particular for any bounded Lipschitzian function g, and n, r > 0,

(2.36) Pβ

(
L̃n(g) > μ(g) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
− nr2

4(McLip(d, ρ)‖g‖Lip)2

)
.

The inequality in the result above may be sharp, as seen from the discrete cube model
in Section 3. We present at first a geometric application (a counterpart of Bonnet–Myers
diameter theorem).

COROLLARY 2.17. Assume the μ-symmetry of P , the condition (2.31) and cLip(d, ρ) <

+∞. Assume also that μ charges all nonempty open subsets of X . Then the diameter
Diam(X ) := supx,y∈X d(x, y) of X is bounded and

(2.37) Diam(X ) ≤ 4McLip(d, ρ).
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As a consequence of this Corollary, any reversible ergodic Markov chain of bounded range
(i.e., the diameter of the topological support of P(x, dy) is bounded by some constant R for
all x) on a unbounded space (X , d) has no Lipschitzian spectral gap, that is,

cLip := cLip(d, d) = +∞.

PROOF. For any l < Diam(X ), we can find δ > 0 and x1, x2 ∈ X such that d(x1, x2) >

l + 2δ. Since μ charges all nonempty open subsets, then consider the balls B(xi, δ) = {x ∈
X ;d(x, xi) < δ}, i = 1,2 and the probability measures

νi = 1B(xi ,δ)

μ(B(xi, δ))
μ, i = 1,2.

We see clearly that W1(ν1, ν2) ≥ l. On the other hand for any μ-probability density f ,

Ic(f μ) = 〈√f , (I − P)
√

f
〉
μ ≤ μ(f ) = 1,

hence by (2.35) in Theorem 2.16, we have

l ≤ W1(ν1, ν2) ≤ W1(ν1,μ) + W1(ν2,μ) ≤ 4McLip(d, ρ).

As l < Diam(X ) is arbitrary, the desired result follows. �

Another application of Theorem 2.16 is:

COROLLARY 2.18 (Bernstein-type inequality). In the context of Theorem 2.16, assume
moreover that cP < +∞ (i.e., the spectral gap exists). Then for any bounded d-Lipschitzian
function g with ‖g‖Lip(d) = 1,

(2.38)
ν(g) − μ(g) ≤

√
Ic(ν)

[
2Vc(g) + 4

[
McLip(d, ρ)

]2√
cP Ic(ν)

]
≤
√

I (ν)
[
2Vc(g) + 4

[
McLip(d, ρ)

]2√
cP I (ν)

] ∀ν ∈ M1(X ),

where

(2.39) Vc(g) = 2
〈
g − μ(g),G

〉
μ = σ 2(g) + Varμ(g),

where σ 2(g) is the asymptotic variance in the central limit theorem, given by (2.14). Equiva-
lently (by Theorem 2.4 with V = {(g, g)}) for all n ≥ 1, r > 0,

(2.40) Pβ

(
L̃n(g) > μ(g) +

√
r
[
2Vc(g) + 4

[
McLip(d, ρ)

]2√
cP r

])≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2
e−nr .

The following result is inspired by Djellout et al. [12], Theorem 2.11, and based on the
Lyons–Meyer–Zheng forward-backward martingale decomposition developed in [59].

PROPOSITION 2.19. Assume the μ-symmetry of P . Suppose that (I − P)−1 is bounded
from CLip,0(X,d) to CLip,0(X,ρ) with the norm denoted by cLip(d, ρ), and P(x, ·) satisfies
the transport-entropy inequality w.r.t. the metric ρ uniformly over x, that is, there is a positive
constant cH (P,ρ) such that for all x ∈ X , ν ∈ M1(X ),

(2.41) W 2
1,ρ

(
ν,P (x, ·))≤ 2cH (P,ρ)H

(
ν|P(x, ·)).

Then

(2.42) W 2
1 (ν,μ) ≤ 2

(
cLip(d, ρ)

)2
cH (P,ρ)I (ν) ∀ν ∈ M1(X )

or equivalently for any bounded d-Lipschitzian function g with ‖g‖Lip(d) = 1 and all n ≥ 1,
r > 0,

(2.43) Pβ

(
L̃n(g) > μ(g) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
−n

r2

2(cLip(d, ρ))2cH (P,ρ)

)
.
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Let us make some comments on the results above and related works.

REMARK 2.20. Let us compare Proposition 2.19 with Djellout et al. [12], Theorem 2.11,
for dependent tensorization of transport-entropy inequality. The Lipschitzian spectral gap
condition here for P is weaker than the coupling condition there in the symmetric case (just
look at periodic Markov chains); but the Hoeffding’s concentration inequality in Proposition
2.19 holds only for additive functionals.

REMARK 2.21. The W1H condition (2.41) on P is imposed in almost all known
works for the Gaussian concentration inequality of Markov chains since Marton [37] and
Djellout et al. [12]. It is equivalent to the exponential integrability of ρ2(y1, y2) under
P(x, dy1)P (x, dy2) by [12]. But for the Gaussian concentration inequality (2.36) in The-
orem 2.16, only the uniform square integrability condition (2.32) of ρ(x, y) under P(x, dy)

is demanded. That is a little bit curious even in the i.i.d. case. Take ρ = d , below. In the
i.i.d. case, cLip(d, d) = 1, and when X is a closed subset of RN equipped with the Euclidean
metric d(x, y) = |x − y|, since

∫ |x − y|2 dμ(y) = |x − μ(y)|2 + ∫ |y − μ(y)|2 dμ(y), the
uniform square integrability condition (2.32) is equivalent to the boundedness of X . In other
words the uniform square integrability condition (2.32), so weak in appearance, is in fact a
very strong condition in the i.i.d. case. This condition is not well adapted to the i.i.d. case, but
well adapted for Markov chains: it means that starting from X0 = x, Exd

2(X0,X1)
2 ≤ 2M2,

that is, X1 should be not very far from x.
Therefore Theorem 2.16 is a complement to [12], Theorem 2.11, in the symmetric Markov

chain case.

REMARK 2.22. Ollivier [42] called

κ(x, y) = 1 − W1(P (x, ·),P (y, ·))
d(x, y)

Ricci curvature of the Markov chain (w.r.t. the metric d). If the Ricci curvature lower bound
κ := infx �=y κ(x, y) > 0, then ‖P‖CLip(X,d) ≤ 1 − κ . Using

(I − P)−1 =
∞∑

n=0

P n on CLip,0(X , d)

we see that cLip(d, d) ≤∑∞
n=0 ‖P n‖CLip(X,d) ≤∑∞

n=0(1 − κ)n ≤ 1/κ , which can be also de-
rived from the results of Paulin [46]. This is a simple way for estimating cLip(d, d). But there
are many situations where the Ricci curvature lower bound κ ≤ 0, whereas cLip(d, d) is fi-
nite. For example if X is finite, cLip(d, ρ) < +∞ (by the theory of matrices); moreover any
nearest-neighbor random walk (i.e., P(x, y) > 0 iff x, y are neighbors) on a finite connected
sub-graph of Zm (m here denotes the dimension) or on the discrete circle Z/(NZ) (N ≥ 4),
we see that κ = 0 (it is enough to look at W1(P (x, ·),P (y, ·)) for two neighbors x, y).

Joulin and Ollivier [27] established some concentration inequalities for general Markov
chains of positive Ricci curvature without the symmetry, improving the constant estimate in
[12], Theorem 2.11, for non-large deviations. As our constant M uses only the Lipschitzian
functions (without the bounded range condition in [27]), Theorem 2.16 generalizes theirs, but
only in the symmetric case.

Notice that if d(x, y) = 1x �=y , ‖P‖CLip,0(X,d) coincides with the Dobrushin contraction
coefficient rD in Remark 2.15(iii), and (2.43) yields (2.29).
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REMARK 2.23. About the Bonnet–Myers diameter theorem, Ollivier proved in [42],
Prop. 23, with an argument of one line

Diam(X ) ≤ 2 supx W1(δx,P (x, ·))
κ

.

See also Lin, Lu and Yau [33], Theorem 4.1, for a similar bound. We compare this result
with ours in Corollary 2.17 on a connected and at most countable graph X equipped with the
graph distance d = dG. If (Xn) is a nearest-neighbor random walk, that is, P(x, y) > 0 iff
dG(x, y) = 1, we see that the condition (2.31) is satisfied for ρ = dG with M = 1/

√
2. Thus

by Corollary 2.17,

Diam(X ) ≤ 2
√

2cLip(dG, dG)

which is not greater than 2
√

2/κ if κ > 0. So in the positive curvature case the result of
Ollivier [42], Prop. 23, above is better. Our result in terms of cLip(dG, dG) generalizes their
result to the case where κ may be not positive, but only in the symmetric case.

REMARK 2.24. For symmetric P , we have always cP ≤ cLip(d, d) (by [62], Lemma
5.4). This is an important tool for estimating the Poincaré constant cP , see the second named
author [64] for diffusions on Riemannian manifolds, Liu and Ma [34] for birth-death pro-
cesses, Djellout and the second named author [13] for one-dimensional diffusions.

REMARK 2.25. In the range of moderate deviations, that is,

1/
√

n � t =
√

r
[
2Vc(g) + 4

[
McLip(d, ρ)

]2√
cP r

]� 1

our Bernstein-type inequality (2.40) in Corollary 2.18 gives a Gaussian upper bound
exp(−nt2/2[Vc(g) + ε]). But as Vc(g) = σ 2(g) + Varμ(g) > σ 2(g) if g is not constant, it
is not sharp in moderate deviations. It is however better than the Gaussian concentration
inequality in Theorem 2.16 for small r > 0, because Vc(g) ≤ 2(McLip(d, ρ))2, by Guillin
et al. [26]. We mention that recently Paulin [45] proved the Bernstein-type inequality with
σ 2(g) + 0.8 Varμ(g) < Vc(g) in place of Vc(g), in the discrete metric d(x, y) = 1x �=y case.
However for large deviation t > 0, the upper bound in (2.40) becomes O(exp(−nct4/3)),
better than the exponential-type bound e−nct in the usual Bernstein inequality. This curious
phenomenon, pointed out by a referee, is not strange: for large deviation t , even the Gaussian
bound exp(−nct2) holds by Theorem 2.16.

How to obtain the sharp Bernstein inequality in the discrete time Markov chains (as in the
i.i.d. or continuous time reversible Markov processes [19]) remains an open question.

2.7. Transport-information inequalities TVI under hyperboundedness or ultra-bounded-
ness. What is the counterpart of the log-Sobolev inequality in the discrete time Markov
chain case? By Gross’ Theorem the reader can naturally guess that it is the hypercontrac-
tivity, that is, for some p > 2, ‖P‖2,p = supf :‖f ‖2≤1 ‖Pf ‖p = 1. The question is: in many
cases, one can check easily that ‖P‖2,p < +∞ (i.e., P is hyperbounded on L2(μ)), but the
hypercontractivity is much more difficult to verify. A practical criterion for bounding ‖P‖2,p

is: if P(x, dy) = p(x, y)μ(dy) is an absolutely continuous transition kernel, then

‖P‖2,p ≤
[∫ (∫

p(x, y)2 dμ(y)

)p/2
dμ(x)

]1/p

, p ≥ 2

which is a direct consequence of Hölder’s inequality. The finiteness of the right hand side
above implies that P is of Hilbert–Schmidt type.
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Note that in the actual absolute continuous case, the spectral gap exists (i.e., cP < +∞)
once P is hyperbounded, by the uniform integrability criterion in [61].

Recall that in the continuous time case, the hyperboundedness of transition semigroup is
equivalent to the defective log-Sobolev inequality, which can be tightened in terms of the
Poincaré inequality by Rothaus lemma.

THEOREM 2.26. Without the symmetry of P , assume that P is hyperbounded, that is,
‖P‖2,p := ‖P ‖L2(μ)→Lp(μ) < ∞ for some p ∈ (2,+∞). Then the following defective log-
Sobolev inequality holds:

(2.44) H(ν|μ) ≤ 2p

p − 2

[
Iσ (ν) + log‖P‖2,p

] ∀ν ∈ M1(X ).

In particular

(a) (Hypercontractivity) If ‖P‖2,p = 1 and α(TV(ν,μ)) ≤ H(ν|μ) for all ν ∈ M1(X ) (the
(α-TVH ) inequality holds), then

α
(
TV(ν,μ)

)≤ 2p

p − 2
Iσ (ν) = p

p − 2
I
(
ν|PP ∗,μ

) ∀ν ∈ M1(X ).

In particular for any u : X → R such that μ(u) = 0, |u| ≤ 1, the following Bennett-type
inequality holds: for all N,n ≥ 1, r > 0,

(2.45) Pβ

(
Ln(u) ◦ θN > r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
qN

exp
(
−n

(p − 2)r

4p
log
(

1 + r

μ(u2)

))
,

where qN := 1
1−(2N−1/pN)

is the conjugate number of pN = pN/2N−1.
(b) (Hyperboundedness) Assume moreover that for some γ ∈ (0,1),

(2.46) ‖Pu‖2 ≤ γ ‖u‖2 ∀u ∈ L2
0(μ) := {f ∈ L2(μ);μ(f ) = 0

}
that is, P is contractive in L2

0(μ). If g ∈ L1(μ) satisfies the Gaussian integrability condition:

b(δ) := 1

δ
log
∫

exp
{
δ
(
g − μ(g)

)2}
dμ < +∞

for some δ > 0, then for V = {(g, g)},
(2.47) TV(ν,μ) = ν(g) − μ(g) ≤

√
2CG(g)Iσ (ν) =

√
CG(g)I

(
ν|PP ∗),

where the sub-Gaussian constant CG(g) is bounded by

CG(g) ≤ 2p

δ(p − 2)
+ 2

1 − γ 2

{
Varμ(g) + b(δ) + 2p

δ(p − 2)
log‖P‖2,p

}
.

In particular for all N,n ≥ 1, r > 0,

Pβ

(
Ln(g) ◦ θN > μ(g) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
qN

‖P‖
p

p−2
2,p exp

(
−n

r2

2CG(g)

)
,

where qN is given in Part (a).
Furthermore, if for some δ > 0,

(2.48) L(δ) := 1

δ
log
∫

exp
{
δ

(∫
d(x, y) dμ(y)

)2}
dμ(x) < +∞

then

(2.49) W1(ν,μ)2 ≤ 2Cσ
GIσ (ν) = Cσ

GI
(
ν|PP ∗,μ

) ∀ν ∈ M1(X ),
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where the (symmetrized) sub-Gaussian constant Cσ
G satisfies

(2.50)

Cσ
G ≤ 2p

δ(p − 2)

+ 2

1 − γ 2

{
1

2

∫∫
d2(x, y) dμ(x) dμ(y) + L(δ) + 2p

δ(p − 2)
log‖P‖2,p

}
.

In the theorem above, as qN approaches to 1 exponentially fast in N , ‖dβ/dμ‖qN
ap-

proaches to ‖dβ/dμ‖1 = 1 also exponentially fast as N goes to infinity if dβ/dμ ∈ L1+δ(μ)

for some δ > 0. That improves the factor constant ‖dβ/dμ‖2 when this latter term is too big
in practice.

When ‖P‖2,∞ < +∞, P is said to be ultrabounded. It is related to the inequalities of
Sobolev, Nash, Gagliardo–Nirenberg, etc., in the continuous time case; see Saloff–Coste [49].
If ‖P‖2,∞ < +∞, then P(x, dy) = p(x, y)μ(dy) for μ-a.e. x (absolutely continuous) and

‖P‖2,∞ = esssup
x∈X

(∫
p(x, y)2 dμ(y)

)1/2

(see Wang [56]). By Jensen’s inequality if (Xn) is not i.i.d. under Pμ, then ‖P‖2,∞ > 1.

THEOREM 2.27 (Ultraboundedness). Assume that ‖P‖2,∞ < +∞, P is contractive on
L2

0(μ), that is, verifies (2.46), and the metric d satisfies the Gaussian integrability condi-
tion (2.48). Then for any d-Lipschitzian function g with ‖g‖Lip = 1, any initial probability
measure β � μ and for all n, r > 0,

(2.51) Pβ

(
Ln(g) ◦ θ > μ(g) + r

)≤ ‖P‖2,∞ exp
(
−n

r2

2Cσ
G

)
,

where Cσ
G is some positive constant bounded by the limit of the right hand side of (2.50) as

p → ∞.

REMARK 2.28. The inequality (2.44) is exactly the counterpart of the usual defective
log-Sobolev inequality in the discrete time case. For applications of log-Sobolev inequality
in concentration, Otto and Villani [43] proved that the log-Sobolev inequality implies Tala-
grand’s W2H (or T2) inequality (for generalizations, see Bobkov, Gentil and Ledoux [1] for
an ingenious approach basing on Hamilton–Jacobi’s equation and Wang [54]). The second
named author [60] showed that log-Sobolev inequality implies the concentration inequality
of the empirical mean as in the i.i.d. case, and Gao et al. [19] established the sharp Bernstein
inequality, both for continuous time Markov processes.

REMARK 2.29. We have seen in Proposition 2.10 that the transport-information inequal-
ity (α−TVIσ ) is stronger than the transport-entropy inequality (α-TVH). Hence the Gaussian
integrability condition (2.48) of the metric d is necessary to the W1I

σ inequality (2.49), by
Djellout et al. [12], Theorem 2.3, for the transport-entropy inequality (W1H(C)).

Part (a) of Theorem 2.26 shows that the converse of Proposition 2.10 is true under the
hypercontractivity, and it says that the Markov chain has the same type concentration in-
equalities as in the i.i.d. case, extending the same result of [60] from the continuous time to
discrete time. For applying (a) above, the reader is referred to Djellout et al. [12], Bolley and
Villani [4] and Gozlan and Léonard [22, 23] for numerous known results on WpH and TVH .
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REMARK 2.30. There are few criteria for the hypercontractivity of a single kernel P

(see however Remark below), but there are many for that of semigroups (Pt )t≥0 by means of
the log-Sobolev inequality. In the latter continuous time situation, one approaches μ(u) by
the empirical mean (1/T )

∫ T
0 u(Xt) dt . This last object is not what is used numerically: one

may use (1/n)
∑n−1

k=0 u(Xkh) where h > 0 is small and nh = T . To this last process (Xnh)n≥0
our result above applies and yields sharp concentration inequalities.

REMARK 2.31. If ‖P m‖2,p = 1 for some m ≥ 1, then we can apply part (a) above to P m

for obtaining the concentration inequality by Theorem 2.12. F. Y. Wang [56], Theorem 5.2.1,
showed that λ1(P

∗P) < 1 and ‖P N‖2,4 = 1 for some N ≥ 1 once if ‖P‖4
2,4 < 2 without the

absolute continuity condition.
Furthermore, if ‖P k‖2,p < +∞ only for some k ≥ 1 (i.e., the case for the Markov chain

(Yn = (Xn,Xn+1)) even if P is hyperbounded), the spectral gap of P k (i.e., 1 is an iso-
lated eigenvalue in the spectrum of P k on L2(μ)) exists by L. Miclo [40] and F. Y. Wang
[55], so for P . If P is moreover aperiodic, we will get ‖P m − μ‖2 ≤ Ce−δm for some
positive constants C, δ and for all m ≥ 1. Then for some m ≥ k, ‖P m‖L2

0(μ) < 1 and

‖P m‖2,p ≤ ‖P k‖2,p < +∞. One can apply part (b) above to P m instead of P to obtain the
transport-information inequality of type (2.20) with quadratic α and then derive the Gaussian
concentration inequality by Theorem 2.12.

REMARK 2.32. It is well known that the log-Sobolev inequality implies the Poincaré
inequality. In the discrete time case, if ‖P‖2,p = 1 for some p > 2, by the CKP inequality
and (2.44), we have

‖ν − μ‖2
TV ≤ 2H(ν|μ) ≤ 2p

p − 2
I
(
ν|PP ∗,μ

)
which implies by Theorem 2.14(c)

λ1
(
PP ∗)≤ exp

(
−p − 2

2p

)
.

2.8. Lyapunov function criterion. Djellout et al. [12] proved that μ satisfies the W1H -
inequality W1(ν,μ)2 ≤ 2CH(ν|μ), ∀ν ∈ M1(X ) if there is some constant δ > 0 such that

(2.52)
∫

eδd(x,x0)
2
dμ(x) < +∞

and later Bolley and Villani [4] obtained the following better estimate of W1H -constant C

under (2.52):

(2.53) C = inf
δ>0,x0∈X

1

δ

(
1 + log

∫
eδd(x,x0)

2
dμ(x)

)
.

For progresses on this subject, see E. Milman [41] for the corresponding dimension free
estimate.

At first glance this criterion is quite far from the well-known Lyapunov function method for
the ergodicity of Markov chains (see Meyn and Tweedie [38]). But as H is just the Donsker–
Varadhan’s entropy for the i.i.d. sequence, we will show that this is indeed a special case of a
general Lyapunov function method.

We state the Lyapunov condition for geometric ergodicity as follows:

(H) There exist a measurable function U : X → [1,+∞), a nonnegative function φ and
a constant b > 0 such that PU(x) < +∞, μ-a.s. and

log
U

PU
≥ φ − b, μ-a.s.
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When the process is irreducible and the constant b is replaced by b1C for some “small set”
C, then it is well known that the existence of a positive φ such that infX\C φ > 0 in (H) is
equivalent to the geometric ergodicity of the Markov chain ([38]), or the Poincaré inequality
(2.21) in the symmetric case ([62]).

THEOREM 2.33. Assume that P is μ-symmetric and satisfies Poincaré inequality (2.21)
with best constant cP < ∞ and the Lyapunov condition (H) holds. Suppose moreover that
φ ∈ L1(μ). Then

(2.54)
∥∥√φ(ν − μ)

∥∥2
TV ≤ 2CI (ν) ∀ν ∈ M1(X ); C = 2

[
1 + cP

(
μ(φ) + b

)]
.

In particular, if there are x0 ∈ X and δ > 0 such that δd(x, x0)
2 ≤ φ, ∀x ∈ X , then

(2.55) W1(ν,μ)2 ≤ 2C̃I (ν) ∀ν ∈ M1(X ); C̃ := 2

δ

[
1 + cP

(
μ(φ) + b

)]
.

REMARK 2.34. In the i.i.d. case, under condition (2.52), choose U := exp(δd2(x, x0)),
we have

log
U

PU
= δd2(x, x0) − log

∫
eδd2(x,x0) dμ(x).

In other words (H) holds with b := log
∫

eδd2(x,x0) dμ(x) and φ = δd2(x, x0). This condi-
tion (H) is exactly the necessary and sufficient condition in Djellout et al. [12] for W1H -
inequality. Moreover as cP = 1, (2.55) is read as W1(ν,μ)2 ≤ 2C̃H(ν|μ), ∀ν ∈ M1(X )

where

C̃ := 2

δ

[
1 + δμ

(
d2(·, x0)

)+ log
∫

eδd2(x,x0) dμ(x)

]
.

This constant is slightly worse than that of Bolley–Villani’s (2.53).
We did not manage to generalize another transport inequality in Bolley and Villani [4],

although we tried our best. In the actual Makov chains setting, it may be read as: in the
framework of Theorem 2.33,∥∥φ(ν − μ)

∥∥
TV ≤ C1

√
I (ν) + C2I (ν) ∀ν ∈ M1(X ).

That was successfully proved in [26] for continuous time symmetric Markov processes. The
main difficulty in extending such results outside of the cases of i.i.d. or continuous time
symmetric Markov processes resides in the fact that I (ν) = I (ν|P,μ) has no longer closed
expression.

The explicit constants in the inequalities of this theorem, produced by the Lyapunov func-
tion condition (H), are in general far from being optimal, but may be correct in order, as seen
in the actual i.i.d. case.

REMARK 2.35. Since ‖ψ(ν − μ)‖TV = supu:|u|≤ψ

∫
ud(ν − μ) for any ψ ≥ 0, the in-

equality (2.54) in this theorem may be regarded as TVI in Theorem 2.4 with V = {(u,u);u ∈
bB, |u| ≤ φ1/2}. Furthermore as noticed by Gozlan and Léonard [22], ‖ψ(ν − μ)‖TV =
W1,dψ (ν,μ) where dψ(x, y) = 1x �=y(ψ(x) + ψ(y)), we can also interpret (2.54) as a
(W1I (C))-inequality.

REMARK 2.36. As

(2.56) W1(ν,μ) ≤ inf
x0∈X

∥∥d(·, x0)(ν − μ)
∥∥

TV

(see [52]), we see that the W1I -inequality (2.55) is a direct consequence of (2.54).
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2.9. Comparison with the continuous case. As the reader sees, the results of this paper
in the discrete time case are quite similar to those in the continuous time case in [26]. In fact
the main idea of this paper is to show that many approaches in continuous time work again
in the discrete time.

But apart from the similarity in appearance, there are several important differences. At first
the empirical mean L̃n of trapeze-type used here is different. The most important difference is
that the information I (ν|P,μ) has now no longer explicit expression: this creates many new
difficulties. The third one is: functional inequalities are powerful tools to prove the transport-
information inequalities in the continuous time case, but there are no counterparts of usual
functional inequalities in the discrete time case (except the Poincaré inequality).

In the discrete time case, we did not manage to prove the tensorization of the TVI inequal-
ity, although we tried our best. This important dimension-free property remains one main
open question in our investigation.

The reader will see more clearly those differences between discrete and continuous time
cases, in the examples and proofs below.

3. Several examples. Given (P,μ), in this section we apply the general results of Sec-
tion 2 to a series of examples and our main purpose is to give estimates of the sub-Gaussian
constant—the best (or least) constant CG = CG(P,μ) in the (W1I (C)) inequality

W 2
1 (ν,μ) ≤ 2CGI (ν) ∀ν ∈ M1(X ).

Assume that P is symmetric on L2(μ), we note (by the inequality (2.15) and Proposition
2.10),

(3.1) CG ≥ V (P,μ), and CG ≥ CH(μ)/2 if P is nonnegative definite,

where CH(μ) is the best constant in W1(ν,μ)2 ≤ 2CH(μ)H(ν|μ) (transport-entropy in-
equality), and V (P,μ) is the maximal asymptotic variance of 1-Lipschitzian function u given
in (2.15).

3.1. Two points model. We begin with the simplest Markov chain on X = {0,1}
equipped with the discrete metric d (then d(0,1) = 1), with transition matrix P = ( 1−a a

b 1−b

)
,

where a, b ∈ (0,1]. Notice that P is symmetric w.r.t. μ given by

μ(0) = b

a + b
=: q, μ(1) = a

a + b
=: p.

Though this model is simple, but its study is abundant: for the Dirichlet form

EP (g, g) = 〈g, (I − P)g
〉
μ = ab

a + b

(
g(1) − g(0)

)2
associated with the continuous time Markov process generated by L = P − I ,

(1) the best log-Sobolev constant is known, see [49];
(2) the best constant CH(p) in W1(ν,μ)2 ≤ 2CH(p)H(ν|μ) is obtained by Bobkov,

Houdré and Tetali [3]:

(3.2) CH(p) = p − q

2(logp − logq)
(:= 1/4 if p = q);

(3) the best rate κ > 0 in the exponential entropy convergence H(νPt |μ) ≤ e−κtH(ν|μ)

is unknown, and only some accurate estimates are known, see Chen [6].

(4) the best constant C in W1(ν|μ)2 ≤ 2CIc(ν) (where Ic(ν) = 〈(I −P)
√

dν
dμ

,
√

dν
dμ

〉μ) is
known: C = 1/[2(a + b)] by the work [26].
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In those works, it is enough to work with the Dirichlet form E0(g, g) := (g(1) − g(0))2 and
then essentially only p = μ(1) is important.

Since the second largest eigenvalue λ1(P ) is equal to 1− (a +b), by the sharp Hoeffding’s
inequality of León and Perron [30], Proposition 1, for two states model and Corollary 2.6, the
best sub-Gaussian constant CG in W1(ν|μ)2 ≤ 2CGI (ν) is given by

(3.3)
CG ≤ 2 − (a + b)

4(a + b)
, if a + b ≤ 1;

CG ≤ 1

4
, if a + b > 1.

Let us see what give the Lipschitzian spectral gap criteria. If (I − P)G = g where μ(g) = 0,
then G(1) − G(0) = (a + b)−1(g(1) − g(0)), so

cLip(d, d) = cP = (a + b)−1,

σ 2(g) = 2〈G,g〉μ − Varμ(g) =
(

2

a + b
− 1
)

ab

(a + b)2

[
g(1) − g(0)

]2
(however its Ricci curvature κ = 1−|1−(a+b)|). The constant M appearing in the condition
(2.32) equals to

√
(a ∨ b)/2. Hence Theorem 2.16 gives us

CG ≤ a ∨ b

(a + b)2 ,

which is slightly worse. A sharp estimate of the W1I -constant is given by Proposition 2.19:
since the best constant cH (P ) appearing in the condition (2.41) is (by (3.2))

cH (P ) = max
{
CH(a),CH (b)

}
= max

{
a − (1 − a)

2(loga − log(1 − a))
,

b − (1 − b)

2(logb − log(1 − b))

}
,

and then

(3.4) CG ≤ max{CH(a),CH (b)}
(a + b)2

which becomes equality if a + b = 1 (i.e., i.i.d. case, for CH(a) = CH(b) = CH(μ)).
By the calculation of σ 2(g) and the lower bound in (3.1), we have

CG ≥
(

2

a + b
− 1
)

ab

(a + b)2 .

Notice that if a = b = 1, cH (P ) = 0 and then CG = 0 by (3.4).
We do not know the exact expression of CG.
Before moving further, let us notice the following consequence of the estimate (3.2) of

Bobkov, Houdré and Tetali [3]:

LEMMA 3.1. On an arbitrary probability space (X ,B,μ) equipped with the discrete
metric d , CH(μ) = supA∈B CH(μ(A)) = CH(p), where p = sup{μ(A);A ∈ B,μ(A) ≤
1/2}.

PROOF. At first for any A ∈ B, restricting μ to σ {A} (the σ -algebra generated by
A), we have CH(μ(A)) ≤ CH(μ). Conversely for any ν = f μ, letting A := {f > 1},
f̄ := E

μ(f |σ {A}) and ν̄ = f̄ μ, we have

W1(ν,μ) = 1

2

∫
|f − 1|dμ =

∫
f >1

(f − 1) dμ =
∫
f̄ >1

(f̄ − 1) dμ = W1(ν̄,μ)
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and now apply (3.2): the right-hand side (r.h.s. in short) above is not larger than√
2CH

(
μ(A)

)
H(ν̄|μ) ≤

√
2CH

(
μ(A)

)
H(ν|μ)

by the convexity of H . The desired result follows for CH(μ(A)) = CH(1 − μ(A)). �

3.2. Complete graph. Let X be the complete graph of N (≥ 3) vertices, that is, any two
vertices are connected by an edge and then the graph distance is given by d(x, y) = 1x �=y (the
discrete metric). The probability transition matrix is given by P(x, y) = 1

N−1 for all y �= x. It
is symmetric w.r.t. the uniform measure μ(x) = 1/N (for each x ∈ X ). It is easy to see that

(I − P)G = N

N − 1

(
G − μ(G)

)
.

Thus cP = N−1
N

= cLip(d, d). By the spectral gap criterion in Theorem 2.14, we have

CG ≤ N − 1

2N
.

By Lemma 3.1, the W1H constant cH (P ) of P(x, ·) in condition (2.41) is given as

cH (P ) = 1/4, if N is odd;

cH (P ) = 1

2(N − 1)[logN − log(N − 2)] ≤ 1

4
, if N is even.

Proposition 2.19 yields the better

(3.5) CG ≤ 1

4
·
(

N − 1

N

)2
.

Let us compare it with the best Gaussian constant CH(μ) in the i.i.d. case. By Lemma 3.1, if
N is even, CH(μ) = 1/4; and if N is odd,

CH(μ) = 1

2N(log(N + 1) − log(N − 1))
≥ N − 1

4N
.

Thus in both cases, CH(μ) ≥ CG. In other words on the complete graph, the Markov chain
is more concentrated than the i.i.d. sequence.

The estimate (3.5) is sharp for large N . Indeed it is very easy to calculate the asymptotic
variance of g from the expression of (I − P)G above:

σ 2(g) = N − 2

N
Varμ(g).

Now for even N , sup‖g‖Lip=1 Varμ(g) = 1/4; and for odd N ,

sup
‖g‖Lip=1

Varμ(g) = (1 − N−2)/4,

we get

CG ≥ V (P,μ) =

⎧⎪⎪⎨
⎪⎪⎩

N − 2

4N
if N is even;

N − 2

4N

(
1 − 1

N2

)
if N is odd.
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3.3. Discrete cube. Let X = {0,1}N (N ≥ 2) equipped with the Hamming metric:
d(x, y) := ∑N

k=1 1xk �=yk
, and μ = α⊗N (product measure) where α(1) = p, α(0) = q =

1 − p (Bernoulli law). The Markov transition kernel is described at follows: starting from
x = (x1, . . . , xN) ∈ X , next pick at random 1 ≤ k ≤ N and change xk according to the distri-
bution α with the other coordinates the same as those of x; or equivalently

Pg(x) = 1

N

N∑
k=1

μk(g),

where μk(g)(x) = ∫{0,1} g(x) dα(xk). We claim that

(3.6) (2N − 1)Npq ≤ CG ≤ max{p,q}N2.

We begin with the calculus of the Lipschitzian spectral gap constant cLip(d, d). Since (P −
I )g = 1

N
Lg, where Lg :=∑N

k=1(μk(g)−g), by [63], Proposition 2.5, we get cLip(d, d) ≤ N .
But for g(x) := SN − Np where SN =∑N

k=1 xk , it is easy to check that (I − P)Ng = g and
then N ≤ cP ≤ cLip(d, d) ≤ N .

Since M2 = max{p,q}/2 (see (2.32) for the definition of M2), Theorem 2.16 entails CG ≤
max{p,q}N2, the upper bound in (3.6). For the lower bound take g(x) = SN − Np whose
Lipschitzian coefficient w.r.t. the Hamming metric d is 1. Since (I −P)−1g = Ng (in CLip,0)
as noted above, we have

σ 2(g) = 2
〈
(I − P)−1g,g

〉
μ − 〈g,g〉μ = (2N − 1)Varμ(SN) = (2N − 1)Npq.

Thus CG ≥ σ 2(g) = (2N − 1)Npq , the lower bound in (3.6).
When p = q = 1/2 and N is large, (3.6) shows that the general result (i.e., Theorem 2.16)

is sharp. Recall that by tensorization and (3.2), CH(μ) = NCH(p) which is only of order N ,
in contrast with (3.6). That is quite natural: in this Monte Carlo Markov Chain (MCMC in
short), one requires at least N steps so that the law of XN is close to μ, instead of one only
step in the i.i.d. case.

3.4. Line random walks on N ∩ [0,N]. Consider the Markovian random walk on X :=
N∩[0,N] where 3 ≤ N ∈N∪{+∞}, whose transition probabilities are given by for ∀k ∈ X ,

P(k, k − 1) = ak > 0, P (k, k + 1) = bk > 0, P (k, k) = ck ≥ 0, ak + bk + ck = 1,

where −1 is identified with 0 and N + 1 is identified with N if N is finite. When ck > 0, the
walker is lazy. Then (P − I )g(k) = bk(g(k +1)−g(k))+ak(g(k −1)−g(k)), that is, P − I

is the generator of a birth-death process with birth rate bk and death rate ak . So we can profit
from the rich theory of birth-death processes [5, 7]. At first P is symmetric w.r.t. the measure
m given by

(3.7) m(0) = 1, m(n) = b0b1 · · ·bn−1

a1a2 · · ·an

, 1 ≤ n ∈ X .

Of course we assume that m(N) = ∑
n≥0 m(n) < +∞ if N = +∞ (or equivalently the

process is positively recurrent) and denote the unique invariant probability measure by
μ(n) = m(n)/m(N ∩ [0,N]). Given now an increasing function h : X → R in L2(μ), con-
sider the metric d(i, j) := dh(i, j) := |h(j) − h(i)|. Liu and Ma [34] have given the exact
Lipschitzian spectral gap constant w.r.t. the metric dh:

(3.8) cLip(dh, dh) = sup
i≥1

∑N
k=i μ(k)(h(k) − μ(h))

μ(i)ai(h(i) − h(i − 1))
=: cLip(h)

(though they have studied only the infinite case, but their proof works for finite N ). Notice
that if N = +∞ and h(n) = n, cLip(h) = +∞ by Corollary 2.17..
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REMARK 3.2.

(1) Note that the r.h.s. of (3.8) is exactly the Lipschitzian coefficient of the solution G to
the Poisson equation (I − P)G = h − μ(h) (see Liu and Ma [34]).

(2) Chen–Wang’s variational formula for spectral gap in L2 ([5, 34]) can be read as

cP = inf
h

cLip(h).

From Theorem 2.16, Proposition 2.19 and Lemma 3.1 we get immediately

COROLLARY 3.3. Let d = dh. Assume that cLip(h) < +∞.

(a) If

M2 := 1

2
sup
k∈N
{
ak

[
h(k) − h(k − 1)

]2 + bk

[
h(k + 1) − h(k)

]2}
< +∞,

then

(3.9) W1(ν,μ)2 ≤ 4
[
cLip(h)M

]2
I (ν) ∀ν ∈ M1(X ).

(b) If cH := cH (P ) < +∞ w.r.t. the metric dh is finite, then

(3.10) W1(ν,μ)2 ≤ 2
[
cLip(h)

]2
cH I (ν) ∀ν ∈ M1(X ).

EXAMPLE 3.4 (Uniform distribution). Let ak = bk = p, ck = 1 − 2p (0 < p ≤ 1/2) and
N ≥ 3 finite. Consider the Euclidean metric d(i, j) = |i − j | which corresponds to h(i) = i.
Then μ(n) = 1/(N + 1) for all 0 ≤ n ≤ N . We claim that

(3.11)
N4

60p

(
1 − ε(N)

)≤ CG ≤ 1

2p

{([N/2] + 1
)(

N − [N/2])}2 ≤ 1

32p
(N + 2)4,

where [x] denotes the integer part of x ∈ R and limN→∞ ε(N) = 0. For the upper bound we
have at first M2 = p. From (3.8) it is easy to see that

cLip(d, d) = 1

2p

([N/2] + 1
)(

N − [N/2]).
Hence from (3.9) we get the upper bound in (3.11). For the lower bound let g(k) = k − N/2.
It is easy to check (see [34]) that the solution G of the Poisson equation (I −P)G = g verifies

G(i + 1) − G(i) = −
∑i

j=0 μ(j)g(j)

μ(i + 1)ai+1
= − 1

p

i∑
j=0

(
j − N

2

)
= − 1

2p
(i + 1)(i − N).

Now using σ 2(g) = 2〈G,g〉μ − 〈g,g〉μ and the fact that 〈g,g〉μ = N2+2N
12 and

〈G,g〉μ = 〈G,(I − P)G
〉
μ = ∑

0≤i<j≤N

(
G(j) − G(i)

)2
μ(i)P (i, j)

= p

N + 1

N−1∑
i=0

(
G(i + 1) − G(i)

)2 = 1

4p(N + 1)

N−1∑
i=0

(
(i + 1)(N − i)

)2

≥ 1

4p(N + 1)

∫ N

0
x2(N − x)2 dx = N5

120p(N + 1)

we obtain the lower bound in (3.11).
Since cH (P (k, ·)) ≥ VarP(k,·)(h) = 2p = 2M2 for 1 ≤ k ≤ N − 1, Proposition 2.19 does

not furnish better upper bound of CG. The above bound in p is quite natural: the case p = 1/2
is the most mixing and CG should increase if p close to 0 (i.e., when the walker is very lazy).
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EXAMPLE 3.5 (Binomial distribution). Let X = N ∩ [0,N] (with N ≥ 3 finite) be
equipped with the Euclidean metric, ak = kq/N (1 ≤ k ≤ N ), bk = (N −k)p/N (0 ≤ k < N )
and a0 = q , bN = p and ck = 1 − (ak + bk), where p ∈ [1/2,1) and q = 1 − p. The corre-
sponding matrix P is symmetric w.r.t. the binomial distribution with success probability p:
μ(k) = Ck

NpkqN−k , 0 ≤ k ≤ N , by the formula (3.7).
Let us calculate cLip(h) with h(k) = k. Instead of using (3.8), let us look at directly the

Poisson equation (I −P)G = h−μ(h) and as recalled in Remark 3.2, cLip(h) = ‖G‖Lip(dh) =
max0≤k<N |G(k + 1) − G(k)|.

The equation (I − P)G = h − μ(h) says that for each 0 ≤ k < N ,

bk

(
G(k + 1) − G(k)

)+ ak

(
G(k − 1) − G(k)

)= Np − k.

Hence G(1) − G(0) = Np/b0 = N . And if G(k) − G(k − 1) = N , then

bk

[
G(k + 1) − G(k)

]= Np − k + akN = Np − kp = bkN,

where it follows that G(k + 1) − G(k) = N . By recurrence G(k + 1) − G(k) = N for all
k = 0, . . . ,N − 1. Thus cLip(h) = N and h − μ(h) is an eigenfunction of I − P associated
with the eigenvalue 1/N . Hence N ≤ cP ≤ cLip(h) = N , that is, cP = N too.

σ 2(h) = 2
〈
G,h − μ(h)

〉
μ − Varμ(h) = (2N − 1)Varμ(h) = (2N − 1)Npq.

On the other hand the quantity M2 given in Corollary 3.3(a) equals to p/2. Thus Corollary
3.3(a) yields (recalling that p ∈ [1/2,1))

(3.12) (2N − 1)Npq = σ 2(h) ≤ CG ≤ 2
[
cLip(h)M

]2 = N2p.

This example shows the sharpness of Corollary 3.3(a) (and of Theorem 2.16 again).

EXAMPLE 3.6 (Geometric distribution). Let X = N, ak = a, bk = b = 1 − a for all
k ≥ 0 such that a > 1/2. The invariant measure μ is the geometric distribution: μ(n) = qnp,
∀n ∈ N, q = b/a, p = 1 − q .

(1) Euclidean metric. Consider the Euclidean metric d(i, j) = |i − j |. In this metric CG =
+∞, because otherwise we would have for h(k) = k and λ > 0 (by Corollary 2.6)∫

eλh dμ ≤ ∥∥eλhP eλh
∥∥

2 ≤ e2λμ(h)+2λ2CG

which implies μ(h > 2μ(h) + r) ≤ e−r2/(8CG) for all r > 0, the Gaussian tail. That is im-
possible for the geometric distribution μ. It is worth mentioning that cLip(h) = +∞ for the
Euclidean metric by Corollary 2.17.

(2) Discrete metric. As it is well known that cP = (
√

b − √
a)2 ([7], Example 9.22), we

have CG ≤ cP /2 = (
√

b − √
a)2/2 for the discrete metric d(x, y) = 1x �=y , by Theorem 2.14.

3.5. A random scan Gibbs sampler under the Dobrushin’s uniqueness condition.
Throughout the subsection (E,B) is a Polish space equipped with the Borel field B, and d is
a metric which is lower semicontinuous on E2 (not necessarily compatible with the topology
of E). Let μ be a Gibbs probability measure on X = EN equipped with the product topology
and the sum-metric

dl1(x, y) :=
N∑

i=1

d
(
xi, yi), x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ EN.

We always assume that for some x0 ∈ EN ,
∫
EN d2

l1
(x, x0) dμ(x) < ∞. Consider the local

specification {μi(·|x);x ∈ EN, i = 1, . . . ,N} where each μi is a regular conditional distribu-
tion of xi knowing (xj , j �= i) under μ. It is very difficult to calculate the high-dimensional
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integral μ(f ). Our purpose is to propose a random scan Gibbs sampler (a Markov chain
Monte Carlo algorithm) for approximating μ(f ), and to establish its concentration inequal-
ity (i.e., the estimate of CG).

The corresponding Markov chain (Xn)n≥0 can be described as follows: if Xn = x ∈ EN ,
then choose randomly an index i among {1, . . . ,N} (uniformly), and once i is chosen,
Xn+1 = (x1, . . . , xi−1,Zi, xi+1, . . . , xN) where the random variable Zi is generated accord-
ing to the conditional distribution μi(dzi |x) (knowing Xn = x and the index i).

The d-Dobrushin interdependence matrix C := (cij )i,j=1,...,N is defined by

(3.13) cij := sup
x=y off j

W1,d (μi(·|x),μi(·|y))

d(xj , yj )
, i, j = 1, . . . ,N.

Obviously cii = 0. Then the Dobrushin uniqueness condition (see [14, 15]) is

(H1) ‖C‖1 := max
1≤j≤N

N∑
i=1

cij < 1.

Let Pg(x) = 1
N

∑N
k=1 μkg(x), μkg(x) = ∫E μk(dzk|x)g(x(zk)), k = 1, . . . ,N , where

(3.14)
(
x
(
zk))i :=

{
zk if i = k,

xi if i �= k.

Let Lg =∑N
k=1(μk(g) − g), then (P − I )g = 1

N
Lg. By [63], Propsition 2.5, we have the

following:

LEMMA 3.7. Under (H1), cLip(dl1, dl1) ≤ N
1−‖C‖1

.

PROOF.

cLip(dl1, dl1) = ∥∥(I − P)−1∥∥
Lip =

∥∥∥∥
(
− 1

N
L
)−1∥∥∥∥

Lip

= N
∥∥(−L)−1∥∥

Lip

≤ N

∫ ∞
0

e−t (1−‖C‖1) dt = N

1 − ‖C‖1
,

where the third inequality holds by [63], Proposition 2.5. �

COROLLARY 3.8. Under (H1), if

M2 := 1

2N
sup

x∈EN

N∑
k=1

∫
E

μk

(
dzk|x)d2(xk, zk)< ∞,

then

CG ≤ 2
(
McLip(dl1, dl1)

)2 ≤ 2
(

MN

1 − ‖C‖1

)2
.

PROOF. Given x ∈ EN ,

1

2

∫
EN

d2
l1
(x, y)P (x, dy) = 1

2N

N∑
k=1

∫
E

μk

(
dzk|x)d2

l1

(
x, x(zk)

)

= 1

2N

N∑
k=1

∫
E

μk

(
dzk|x)d2(xk, zk)≤ M2.
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Thus (2.32) holds with M2 given in the corollary. By Lemma 3.7 and Theorem 2.16, we
complete the proof. �

REMARK 3.9. For the discrete metric on E, we have M2 ≤ 1
2 , and so

CG ≤
(

N

1 − ‖C‖1

)2
.

On the other hand the transportation-entropy inequality is known (due to the second named
author [63], Theorem 4.3):

CH(μ) ≤ N

2(1 − ‖C‖1)2 .

REMARK 3.10. When (E,d) is unbounded, then M = +∞ in the free case (i.e., when
μ is a product measure). In that case how this MCMC is concentrated remains to be studied.

We show at first that N2 is the correct order of the sub-Gaussian concentration constant
CG.

EXAMPLE 3.11 (No interaction). Let E = {0,1}, d is the discrete metric on E, and
μ = α⊗N where α(1) = p, α(0) = 1 − p, 0 < p < 1. For this model (discrete cube), the
Dobrushin matrix C = 0 and since M2 ≤ max{p,1 −p}/2, we have CG ≤ max{p,1 −p}N2

by Corollary 3.8. This upper bound coincides with that in (3.6), and CG ≥ (2N − 1)Np(1 −
p). In other words N2 is the correct order of CG.

EXAMPLE 3.12 (Interaction). Let E = {1,−1}, d is the trivial metric on E, and μ is the
probability measure on {1,−1}N given by

μ(x) = exp(−∑S⊂{1,...,N} J (S)xS)∑
y∈{1,−1}N exp(−∑S⊂{1,...,N} J (S)yS)

, x ∈ {1,−1}N,

where J (S) is a function in S, and xS :=∏i∈S xi .
For this model, by [20, 63], the Dobrushin matrix C satisfies

(3.15) ‖C‖1 ≤ sup
i∈{1,...,N}

∑
S:S�i

(|S| − 1
)

tanh
∣∣J (S)

∣∣.
Hence if the last quantity is less than one, we can apply the corollary above.

It is well known that the Dobrushin uniqueness condition is sharp for the phase transition
of the mean field models (ref. [20]).

4. Some preparations. Though the Donsker–Varadhan information I (ν) := I (ν|P,μ)

has no closed expression in the actual discrete time case, we establish several properties
necessary to the results of this paper. Throughout this section, μ is a fixed invariant and
ergodic probability measure of P .
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4.1. Cramer functionals. Let

P V g := eV/2P
(
eV/2g

)
or P V (x, dy) = e[V (x)+V (y)]/2P(x, dy).

Consider the Cramer functionals on V ∈ bB,

�β(V |P) := lim sup
n→∞

1

n
log
∫ (

P V )n1dβ = lim sup
n→∞

1

n
logEβenL̃n(V );(4.1)

�p(V |P) := lim
n→∞

1

n
log
∥∥(P V )n∥∥

p.(4.2)

Notice that for (eV P )(x, dy) := eV (x)P (x, dy), eV Pf = eV/2P V e−V/2f , and then the spec-
trum of eV P is the same as that of P V on Lp(μ) (for V ∈ bB) and(

eV P
)n

f = eV/2(P V )n(e−V/2f
)
.

Similarly (P eV )nf := e−V/2(P V )n(eV/2f ). Then

(4.3) �p(V |P) = lim
n→∞

1

n
log
∥∥(eV P

)n∥∥
p = lim

n→∞
1

n
log
∥∥(PeV )n∥∥

p.

LEMMA 4.1. For any initial distribution β � μ, let � be one of �β(·|P) or �p(·|P)

where 1 ≤ p ≤ ∞. Then for any ν ∈ Mb(X ), the space of all bounded and signed measures
on (X ,B), the Legendre transform of � is given by

(4.4) �∗(ν) := sup
{
ν(V ) − �(V );V ∈ bB

}=
{
I (ν|P,μ) if ν ∈ M1(X ),

+∞ otherwise.

In particular for all ν ∈ M1(X ),

(4.5) I (ν|P,μ) = I
(
ν|P ∗,μ

)
,

where P ∗ is the adjoint operator of P on L2(μ).

PROOF. (4.4) is essentially contained in Wu [61]. In fact in [61], Proposition B.9 and
remarks, it is proved that for any β � μ, (4.4) holds for � = �β(·|P) or �∞(·|P). Now for
any p ∈ [1,+∞) fixed, as �μ(V |P) ≤ �p(V |P), we have(

�p(·|P)
)∗

(ν) ≤ (�μ(·|P)∗(ν) = Ī (ν|P,μ), ν ∈ Mb(X ),

where Ī (ν|P,μ) defined over Mb(X ) is defined by the r.h.s. of (4.4). For the converse in-
equality, notice that for any 1 ≤ u ∈ bB, letting Vu := log u

Pu
, we have

P Vu(
√

uPu) =
√

u

Pu
P

(√
u

Pu
· √uPu

)
= √

uPu.

That means
√

uPu (≥ 1) is a positive eigenfunction of P Vu associated with the eigenvalue 1,
on Lp(μ). Therefore by Perron–Frobenius theorem for positive operators, the spectral radius
of P Vu on Lp(μ) is 1, that is (Gelfand’s formula),

lim
n→∞

1

n
log
∥∥(P Vu

)n∥∥
p = log 1 = 0.

Thus �p(Vu|P) = 0 and

(
�p(·|P)

)∗
(ν) ≥ sup

1≤u∈bB

∫
Vu dν − �p(Vu|P) = sup

1≤u∈bB

∫
log

u

Pu
dν = I (ν|P,μ).

We have so proved (4.4) for � = �p(·|P).
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Since (P V )∗ = (P ∗)V ,

�μ(V |P) = lim sup
n→∞

1

n
log
〈
1,
(
P V )n1

〉
μ

= lim sup
n→∞

1

n
log
〈[(

P ∗)V ]n1,1
〉
μ = �μ

(
V |P ∗),

hence I (ν|P,μ) = [�μ(·|P)]∗(ν) = [�μ(·|P ∗)]∗(ν) = I (ν|P ∗,μ), that is, (4.5) holds. �

LEMMA 4.2. Let P1, . . . ,Pn be Markov operators on L2(μ). Then

(4.6) I (ν|P1 · · ·Pn;μ) ≤
n∑

k=1

I (ν|Pk;μ).

In particular

(4.7) Iσ (ν) := 1

2
I
(
ν|PP ∗;μ)≤ I (ν|P ;μ).

PROOF. Let Q0 = I and for each 1 ≤ k ≤ n, let Qk = Pn−k+1 · · ·Pn which is again
Markovian. For any ν ∈ M1(X ), ν � μ and 1 ≤ u ∈ bB, we have by the definition of
I (ν|Pk,μ),

∫
log

u

Qnu
dν =

n∑
k=1

∫
log

Qk−1u

Pn−k+1(Qk−1u)
dν ≤

n∑
k=1

I (ν|Pn−k+1;μ),

where (4.6) follows by taking the supremum over all 1 ≤ u ∈ bB. Finally (4.7) is a direct
consequence of (4.6) by (4.5). �

The following lemma, due to Lei [29], Lemma 3.1(b), under the uniform integrability
condition of P on L2(μ) (a notion introduced in [61]), plays a basic role in Theorem 2.4.

LEMMA 4.3. Assume that P is μ-symmetric. Then

(4.8) log
∥∥P V

∥∥
2 = �2(V |P) = sup

ν∈M1(X )

(
ν(V ) − I (ν|P,μ)

) ∀V ∈ bB

and in particular, for any initial measure β � μ with dβ/dμ ∈ L2(μ), r > 0 and n ≥ 1,

(4.9) Pβ

(
L̃n(V ) > μ(V ) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−nIV

(
μ(V ) + r

))
, r > 0,

where

(4.10) IV (x) := inf
{
I (ν)|ν(V ) = x

}
, x ∈R.

The continuous time counterpart of this lemma is due to [60].

PROOF. We begin with the proof of (4.8). At first since P V = eV/2PeV/2 is symmetric,
its norm coincides with its spectral radius, where the first equality in (4.8) follows. Next by
[62], Lemma 5.3,

(4.11) �2(V ) := �2(V |P) = lim sup
n→∞

1

n
logEμf (X0)g(Xn) exp

(
nL̃n(V )

)
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for any couple (f, g) of nonnegative functions so that μ(f ),μ(g) > 0 (under the ergodicity
assumption). By Lemma 4.1, the Legendre transform �∗

2 of �2 is given by

�∗
2(ν) := sup

{
ν(V ) − �2(V );V ∈ bB

}=
{
I (ν) if ν ∈M1(X );
+∞ otherwise

for any ν ∈ Mb(X ). If the large deviation principle of Ln in the τ -topology holds (i.e., the
case under the uniform integrability condition by [61]), the r.h.s. of (4.11) with f = g = 1
coincides with the r.h.s. of (4.8) by Varadhan’s Laplace principle. Our problem here is without
the uniform integrability condition.

If �2 were lower semicontinuous (l.s.c. in short) on bB w.r.t. the weak topology
σ(bB,Mb(X )), that is, the weakest topology so that V → ν(V ) is continuous for every
ν ∈ Mb(X ), then by the convexity of �2 on bB and the Fenchel–Legendre theorem,

�2(V ) = �∗∗
2 (V ) = sup

{
ν(V ) − I (ν);ν ∈M1(X )

}
the desired second equality in (4.8).

Let us prove the lower semicontinuity of �2 on bB w.r.t. the weak topology σ(bB,

Mb(X )). We recall [35], Lemma 3.4.
Let � : bB → (−∞,+∞] be a convex functional such that

(i) if V1 = V2, μ-a.s. on X , �(V1) = �(V2);
(ii) if V1 ≤ V2, then �(V1) ≤ �(V2).

Then � is lower semicontinuous on bB w.r.t. the weak topology σ(bB,Mb(X )), iff �

is increasingly continuous, that is, for any nondecreasing sequence (Vn) in bB such that
supn Vn = V ∈ bB, �(Vn) → �(V ).

In the actual symmetric case, we have by the Perron–Frobenius theorem, the largest spec-
tral point e�2(V ) of P V satisfies

e�2(V ) = sup
{〈
f,P V f

〉
μ;f ≥ 0,‖f ‖2 = 1

}
,

where the increasing continuity of �2 follows immediately.
Next let us derive (4.9) from (4.8), by following Lei [29]. At first by the definition (4.10)

of IV , we have for any λ ∈ R,

�2(λV ) = log
∥∥P λV

∥∥
2 = sup

{
λν(V ) − I (ν);ν ∈ M1(X )

}
= sup

r∈R
(
λr − IV (r)

)= (IV )∗(λ).

Consequently for any λ > 0 and r > 0,

Pβ

(
L̃n(V ) > μ(V ) + r

)≤ e−λn(μ(V )+r)
EβeλnL̃n(V )

= e−nλ(μ(V )+r)

〈
dβ

dμ
,
(
P λV )n1

〉
μ

≤ e−nλ(μ(V )+r)

∥∥∥∥ dβ

dμ

∥∥∥∥
2

∥∥P λV
∥∥n

2

=
∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−n

[
λ
(
μ(V ) + r

)− I ∗
V (λ)

])
.

Taking the infimum over all λ > 0 we get

Pβ

(
L̃n(V ) > μ(V ) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(
−n sup

λ>0

[
λ
(
μ(V ) + r

)− (IV )∗(λ)
])

.
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As IV ≥ 0 is convex and IV (μ(V )) = 0, IV is nondecreasing on [μ(V ),+∞). And we have
for any r > 0,

sup
λ>0

[
λ
(
μ(V ) + r

)− (IV )∗(λ)
]= sup

λ∈R
[
λ
(
μ(V ) + r

)− (IV )∗(λ)
]

= (IV )∗∗(μ(V ) + r
)= IV

((
μ(V ) + r

)−),
where the first equality follows by the fact that (I ∗

V )(λ) = �2(λV ) ≥ λμ(V ) (Jensen’s
inequality), the second is derived by the Fenchel–Legendre theorem and the fact that
IV (x−) := limε→0+ IV (x − ε) is exactly the lower semicontinuous modification of IV for
x ∈ (μ(V ),+∞). So by the nondecreasingness of IV on [μ(V ),+∞), we have for all
r, δ > 0, IV ((μ(V ) + r + δ)−) ≥ IV (μ(V ) + r), and then

Pβ

(
L̃n(V ) > μ(V ) + r

)= lim
δ→0+Pβ

(
L̃n(V ) > μ(V ) + r + δ

)

≤ lim
δ→0+

∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−nIV

((
μ(V ) + r + δ

)−))

≤
∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−nIV

(
μ(V ) + r

))
. �

4.2. Comparison with a continuous time Markov process. Consider the continuous time
Markov process (Yt ) with generator L = P σ − I , that is, its transition probability semigroup
is given by et(P σ −I ). This process can be constructed very easily: Yt = ZN(t) where (Zn) is
the Markov chain with transition P σ = (P +P ∗)/2, N(t) is a Poisson process with parameter
1, independent of (Zn)n≥0.

The associated Donsker–Varadhan information Ic : M1(X ) → [0,+∞] is given by:

(4.12) Ic(ν) := sup
1≤u∈bB

∫
(I − P σ )u

u
dν

if ν � μ and Ic(ν) := +∞ otherwise. In the symmetric case, we have (see [61], Corollary
B.11): for ν = f μ,

(4.13) Ic(ν) = 〈√f ,
(
I − P σ )√f

〉
μ.

That is the definition given in (2.33). We have the following simple observation.

LEMMA 4.4. For any ν ∈ M1(X ),

(4.14) Ic(ν) ≤ I
(
ν|P σ ,μ

)≤ I (ν|P,μ).

From the point of view of large deviations, in the symmetric case, (4.14) means that the
mixing rate of the discrete time Markov chain (Xn) is more rapid than that of the correspond-
ing continuous time Markov process (Yt ).

PROOF. The second inequality in (4.14) follows by (4.5) and the the convexity of
I (ν|P,μ) in P . For the first inequality, we observe that for any 1 ≤ u ∈ bB, by the ele-
mentary inequality that log(1 + x) ≤ x for x > −1,

log
u

P σu
= − log

(
1 + (P σ − I )u

u

)
≥ (I − P σ )u

u
,

hence (4.14) follows. �
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4.3. An upper bound of the second eigenvalue. Throughout this paragraph P is μ-
symmetric. The largest (first) eigenvalue λ0(P ) of P in L2(μ) is 1. The second one denoted
by λ1(P ), being the supremum of σ(P |L2(μ))\{1} where σ(P |L2(μ)) is the spectrum of P on
L2(μ), is given by Rayleigh’s formula,

(4.15) λ1(P ) = sup
0�=u∈L2

0(μ)

〈u,Pu〉μ
〈u,u〉μ ,

where L2
0(μ) := {u ∈ L2(μ);μ(u) = 0}.

LEMMA 4.5. Assume that P is μ-symmetric. Then

(4.16) λ1(P ) ≤ sup
A∈B:μ(A)∈(0,1/2]

λ0(A),

where λ0(A) is the supremum of the spectrum σ(1AP 1A|L2(A,μ)) of 1AP 1A on L2(A,μ).
Furthermore

(4.17) λ0(A) = μ-esssup
x∈A

lim sup
n→∞

[
Px(σA = n)

]1/n
,

where σA := inf{n ≥ 0;Xn /∈ A} is the first exit time of A.

Its counterpart in the continuous time case, due to Lawler, is well known. See also [5] for
extensions.

PROOF. At first (4.17) is contained in [62], Theorem 5.5(b), (the condition (A1) therein
is not used for this conclusion as seen from its proof). For (4.16) we may assume that λ1 =
λ1(P ) > 0 (trivial otherwise). Assume at first that λ1 := λ1(P ) is an eigenvalue, that is, there
were some 0 �= u ∈ L2

0(μ) such that

Pu = λ1u.

We may assume μ(u > 0) ≤ 1
2 (consider −u otherwise). Setting A := [u > 0], we have

μ(A) > 0 and

λ11Au = λ1u
+ = (Pu)+ ≤ Pu+ = P(1Au)

which yields to λn
1(1Au) ≤ (1AP 1A)n(1Au) for all n ≥ 1. Thus

λ1 ≤ lim
n→∞

(∥∥(1AP 1A)n
∥∥

2

)1/n = λ0(A).

In the general case, consider an increasing sequence of sub-algebras (Bn) of B, each of
which is finitely generated, and Png := EnPEng, where Eng = E

μ(g|Bn). By the martingale
convergence theorem, Png → Pg in L2(μ) for all g ∈ L2(μ). Thus by Rayleigh’s formula
(4.15) and the fact that Pn can be represented as a finite symmetric matrix,

λ1(P ) ≤ lim inf
n→∞ λ1(Pn) ≤ lim inf

n→∞ sup
A∈Bn:μ(A)∈(0,1/2]

λ0(1APn1A)

≤ sup
A∈B:μ(A)∈(0,1/2]

λ0(1AP 1A)

because λ0(1APn1A) = λ0(En1AP 1AEn) ≤ λ0(1AP 1A) for all A ∈ Bn. �
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5. Proofs of Theorem 2.4, Proposition 2.10 and Theorem 2.12.

5.1. Proofs of Theorem 2.4 and Corollary 2.6.

PROOF OF THEOREM 2.4. The proof of this result is similar to Gozlan–Léonard’s [22],
Theorems 2 and 15, in the i.i.d. case, and essentially the same as that of [26], Theorem 2.4,
for the continuous time symmetric Markov processes, except using Lei’s lemma 4.3 in place
of [26], Lemma 6.1. For the convenience of the reader we give the detailed proof.

Step 1. In this part we show (without the convexity of α),

(a) =⇒ (b) =⇒ (
b′); (a) =⇒ (c) =⇒ (

c′).
• (a) ⇒ (b): For u ∈ bB, let

(5.1) Iu(r) := inf
{
I (ν)|ν(u) = r

}
we notice that (α − TVI ) implies that for any (u, v) ∈ V ,

(5.2) Iu

(
μ(v) + r

)≥ α(r) ∀r ∈R.

Indeed it is trivial for r ≤ 0 (as α(r) = 0 for r ≤ 0). Now for any r > 0 and ν ∈ M1(X ) such
that ν(u) = μ(v) + r , TVI implies that

I (ν) ≥ α
(
TV(ν,μ)

)≥ α
(
ν(u) − μ(v)

)= α(r),

where (5.2) follows. Now by Lemma 4.3, for λ > 0,

log
∥∥P λu

∥∥
2 = sup

{
λν(u) − I (ν)|ν ∈ M1(X )

}
= sup

a∈R
[
λa − Iu(a)

]≤ sup
r∈R
[
λ
(
μ(v) + r

)− α(r)
]} = λμ(v) + α∗(λ)

(that still holds for λ < 0 for α∗(λ) = +∞). Then ‖(P λu)n‖2 ≤ ‖P λu‖n
2 ≤ en[λμ(v)+α∗(λ)],

that is, the statement (b).
• (a) ⇒ (c): This follows from (4.9) in Lemma 4.3 and (5.2), for μ(u) ≤ μ(v).
• (b) ⇒ (b′) and (c) ⇒ (c′): They are trivial.
Step 2. (c′) ⇒ (a) and (b′) ⇒ (c′).
• (c′) ⇒ (a) (without the μ-symmetry of P ). By the large deviation lower bound in [61],

Theorem B.1, we have for any initial probability measure β � μ,

lim inf
n→∞

1

n
logPβ

(
L̃n(u) > μ(v) + r

)≥ − inf
{
I (ν);ν(u) > μ(v) + r

}
.

This together with (c′) implies that for any r > 0,

inf
{
I (ν);ν(u) > μ(v) + r

}≥ α(r).

Fix now ν such that r0 = TV(ν,μ) > 0 (otherwise TVI is obviously true). Choosing a se-
quence (un, vn) ∈ V so that ν(un) − μ(vn) > r0 − 1/n, for all n large enough we get

α(r0 − 1/n) ≤ I (ν),

hence TVI follows by letting n → ∞ and by the left-continuity of α.
• (b′) ⇒ (c′): Without loss of generality, we assume that β = μ. As α is assumed to be

convex and is lower semicontinuous, supλ>0(λr − α∗(λ)) = α∗∗(r) = α(r) for r ≥ 0. By the
Chebyshev’s inequality and (b′), (c′) is proved. This completes the proof of the theorem. �

PROOF OF COROLLARY 2.6. As (W1I (C)) is the same as (α − TVI ) with α(r) =
r2/(2C) and V := {(u,u);u is bounded and ‖u‖Lip ≤ 1}, part (1) is a direct consequence of
Theorem 2.4.
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For part (2), notice that (W2I (C)) is the same as (α − TVI ) with α(r) = r/(2C) and
V := {(u, v);u, v are bounded and u(x) − v(y) ≤ d2(x, y),∀x, y ∈ X }. Then

α∗(λ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ λ ≤ 1

2C
;

+∞ if λ >
1

2C
.

Since inf-convolution Qv is upper semicontinuous and sup-convolution Su is lower semi-
continuous (as d(x, y) is continuous on X 2 by our assumption here), they are measurable.
Now we can obtain part (2) directly by noting that for any (u, v) ∈ V , u ≤ Qv and v ≥ Su.

�

5.2. Proof of Proposition 2.10.

PROOF OF PROPOSITION 2.10. (a) is contained in Lemma 4.2.
(b) For all V,g ∈ bB, as 0 ≤ 〈g − μ(g),P [g − μ(g)]〉μ = 〈g,Pg〉μ − [μ(g)]2 by the

assumed nonnegative definiteness of P , we have[
μ
(
eV )]2 ≤ 〈eV ,P eV 〉

μ = μ
[
P 2V 1

]≤ ∥∥P 2V
∥∥

2.

But log‖P 2V ‖2 = �μ(2V |P,μ) in the actual symmetric case, by Lemma 4.3 (the first equal-
ity in (4.8)). We get by the well-known variational formula of entropy (of Donsker–Varadhan)

H(ν|μ) = sup
V ∈bB

(
ν(V ) − logμ

(
eV ))

≥ sup
V ∈bB

(
ν(V ) − 1

2
�μ(2V |P,μ)

)
= 1

2
I (ν|P,μ).

(c) Applying part (b) to PP ∗ which is symmetric and nonnegative definite on L2(μ), we
have

2Iσ (ν|μ) = I
(
ν|PP ∗,μ

)≤ 2H(ν|μ)

the desired result. �

5.3. Proof of Theorem 2.12. Part I. We prove at first (2.19) under (α − TVI ), that is, the
condition (2.20) with N = 1.

Step 1. We notice that

(5.3)
∥∥euP

∥∥
2 = ∥∥P ∗(eu·)∥∥2 =

√∥∥euPP ∗(eu·)∥∥2 =
√∥∥(PP ∗)2u∥∥

2

and by Lemma 4.3 (and the symmetry of PP ∗)

(5.4)

2 log
∥∥euP

∥∥
2 = log

∥∥(PP ∗)2u∥∥
2

= sup
{
2ν(u) − I

(
ν|PP ∗,μ

);ν ∈ M1(X )
}

= 2 sup
{
ν(u) − Iσ (ν);ν ∈ M1(X )

}=: 2
(
Iσ )∗(u).

Thus if α is moreover convex, by the proof of Theorem 2.4, (α − TVIσ ) is equivalent to

(5.5)
∥∥eλuP

∥∥
2 ≤ exp

(
λμ(v) + α∗(λ)

)
, λ ≥ 0, (u, v) ∈ V.

That is Remark 2.13. By (5.4),

log
∥∥(PP ∗)2λu∥∥

2 = sup
{
2λν(u) − I

(
ν|PP ∗,μ

);ν ∈ M1(X )
}

= 2 sup
r∈R
(
λr − Iσ

u (r)
)= 2

(
Iσ
u

)∗
(λ),
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where

(5.6) Iσ
u (r) := inf

{
Iσ (ν) = 1

2
I
(
ν|PP ∗,μ

) ∣∣∣ ν ∈ M1(X ), ν(u) = r

}
.

Consequently for any λ > 0 and r > μ(u),

Pβ

(
Ln(u) > r

)≤ e−λnr
EβeλnLn(u) = e−nλr

〈
dβ

dμ
,
(
eλuP

)n1
〉
μ

≤ e−nλr

∥∥∥∥ dβ

dμ

∥∥∥∥
2

∥∥eλuP
∥∥n

2 = e−nλr

∥∥∥∥ dβ

dμ

∥∥∥∥
2
· ∥∥(PP ∗)2λu∥∥n/2

2

=
∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−n

[
λr − (Iσ

u

)∗
(λ)
])

.

With this crucial inequality in hand, we get by repeating the proof of (4.8) =⇒ (4.9) in
Lemma 4.3,

(5.7) Pβ

(
Ln(u) > r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−nIσ

u (r)
)
.

Step 2. Having (5.7) in hand, we can now prove easily the desired result (2.19). In fact, for
any (u, v) ∈ V and r > 0, noting that Iσ

u (μ(v) + r) ≥ α(r) by our assumed TVIσ (as in the
proof of (5.2)) we have by (5.7),

Pβ

(
Ln(u) > μ(v) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2

exp
(−nIσ

u

(
μ(v) + r

))≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2
e−nα(r)

the desired (2.19).
Part II. The general N ≥ 1 case. We work now under the condition (2.20) for general

N ≥ 1.
For each n ≥ N let Ij = {k = lN + j ≤ n − 1; l = 0, . . . , [(n − 1)/N]} ([x] being the

greatest integer bounded by x), j = 0,1, . . . ,N − 1. By Hölder’s inequality,

logEβ exp

(
n−1∑
k=0

u(Xk)

)

= logEβ exp

(
1

N

N−1∑
j=0

∑
k∈Ij

Nu(Xk)

)

≤ 1

N

N−1∑
j=0

logEβ exp
(∑

k∈Ij

Nu(Xk)

)

= 1

N

N−1∑
j=0

logβP j [(eNuP N )|Ij |1
]

≤ 1

N

N−1∑
j=0

(
log
∥∥∥∥d(βP j )

dμ

∥∥∥∥
2
+ |Ij | sup

ν∈M1(X )

{
ν(Nu) − 1

2
I
(
ν|P N (P ∗)N,μ

)})

≤ log
∥∥∥∥ dβ

dμ

∥∥∥∥
2
+ n sup

ν∈M1(X )

{
ν(u) − 1

2N
I
(
ν|P N (P ∗)N,μ

)}
,

where the fourth line inequality follows by applying (5.4) to eNuP N . The remained proof is
exactly the same as N = 1 case above, so omitted.
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6. Relations with spectral gaps and hypercontractivity.

6.1. Poincaré inequality is equivalent to W1I : Proof of Theorem 2.14.

PROOF OF THEOREM 2.14.

• (a) Let V = {(u,u) ∈ (bB)2; ‖u‖osc ≤ 1}, since ‖ν − μ‖TV = 2W1(ν,μ) = 2TV(ν,μ)

and ‖u‖Lip = ‖u‖osc w.r.t. the discrete metric d(x, y) = 1x �=y , (2.23) follows by (2.22) by
Corollary 2.6. The transport inequality (2.22) holds because the León and Perron inequality
(2.28) holds for the general state space Markov chain by Miasojedow [39] and Fan et al.
[47] (see the detailed proof therein), according to Theorem 2.4[(c′) =⇒ (a)], as explained in
Remark 2.15(i).

• (b) The condition (2.24) says exactly that

λ1
(
P N (P ∗)N )= λ1

((
P ∗)NP N )≤ δ2 < 1.

Applying part (a) to P N(P ∗)N , we get

‖ν − μ‖2
TV ≤ 2

1 + δ2

1 − δ2 I
(
ν|P N (P ∗)N,μ

)
that is the inequality (2.25). Now it remains to apply Theorem 2.12 to conclude the concen-
tration inequality (2.26).

• (c) In the actual symmetric case and with the notation in Lemma 4.5, we have

cP = 1

1 − λ1(P )
≤ sup

A:μ(A)∈(0,1/2]
1

1 − λ0(A)
.

Fix A ∈ B with 0 < μ(A) ≤ 1/2. Since for any a > lim supn→∞ 1
n

logPμ(σA > n),

ha(x) :=
∞∑

n=1

Px(σA > n)e−an ∈ L1(μ)

ha(x) < +∞, μ-a.s. Thus

lim sup
n→∞

1

n
logPx(σA > n) ≤ a, μ-a.s.

and then lim supn→∞ 1
n

logPx(σA > n) ≤ lim supn→∞ 1
n

logPμ(σA > n), μ-a.s. Now by
(4.17) in Lemma 4.5, we have

logλ0(A) = μ-esssup
x∈A

lim sup
n→∞

1

n
logPx(σA = n + 1)

≤ lim sup
n→∞

1

n
logPμ(σA ≥ n + 1)

= lim sup
n→∞

1

n
logPμ

(
L̃n

(
Ac)= 0

)
≤ − lim

ε→0+ inf
{
I (ν)|ν ∈ M1(X ), ν

(
Ac)≤ ε

}
,

where the last inequality follows by Lemma 4.3 (the inequality (4.9)) by setting V = −1Ac

and r = μ(Ac) − ε.
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Now by our assumed (α − TVI ), for any ν ∈ M1(X ) with ν(Ac) ≤ ε, ‖ν − μ‖TV ≥
2[μ(Ac)−ν(Ac)] > 1−2ε, so I (ν) ≥ α(‖ν −μ‖TV) ≥ α(1−2ε). Hence logλ0(A) ≤ −α(1)

by the left-continuity of α. Plugging it into the previous estimate of cP , we obtain finally

cP ≤ 1

1 − e−α(1)

the desired result. �

REMARK 6.1. Recall the following inequality in [26]: for ∀μ-probability density f , that
is, f ≥ 0 and μ(f ) = 1:

(6.1) ‖f μ − μ‖2
TV ≤ 4 Varμ(

√
f ) ≤ 4cP Ic(ν) ≤ 4cP I (ν)

which is slightly less sharp than that of Léon–Perron in part (a) of Theorem 2.14.

6.2. Lipschtzian spectral gap criteria.

PROOF OF THEOREM 2.16. The first inequality in (2.35) is established in [24]. For the
completeness we give the details. Given a probability measure ν = f μ and h = √

f , for
any bounded and d-Lipschitzian function g with ‖g‖Lip ≤ 1 and μ(g) = 0, letting G be the
solution of Poisson equation (I − P)G = g with μ(G) = 0, we have

ν(g) = 〈g,f 〉μ = 〈(I − P)G,f
〉
μ

= 1

2

∫∫
X 2

(
G(y) − G(x)

)(
h(y) − h(x)

)(
h(x) + h(y)

)
μ(dx)P (x, dy)

=
∫∫

X 2

(
G(y) − G(x)

)(
h(y) − h(x)

)
h(x)μ(dx)P (x, dy)

≤
√∫∫

X 2

(
h(y) − h(x)

)2
μ(dx)P (x, dy)

•
√∫∫

X 2

(
G(y) − G(x)

)2
h2(x)μ(dx)P (x, dy).

The first square root is exactly
√

2Ic(ν), and the second is
√

2
∫

�(G)h2 dμ. In other words
we have proved

(6.2) ν(g) ≤ 2
√

Ic(ν) ·
√∫

�(G)dν.

Since ∫
X

�(G)(x)ν(dx) ≤ ∥∥�(G)
∥∥∞ ≤ [cLip(d, ρ)M

]2
,

thus taking the supremum over all such g, we get

W1(ν,μ)2 ≤ 4
(
McLip(d, ρ)

)2
Ic(ν).

As Ic(ν) ≤ I (ν) by Lemma 4.4, the second inequality in (2.35) holds. Finally (2.36) follows
from (2.35) by Corollary 2.6. �
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PROOF OF COROLLARY 2.18. At first let g, G be as in the proof of Theorem 2.16. Since
the oscillation ‖�(G)‖osc of �(G) is less than or equal to M2(cLip(d, ρ))2, by (6.1) we have∫

X
�[G](x)ν(dx) ≤ μ

(
�(G)

)+ (McLip(d, ρ)
)2√

cP Ic(ν)

= 1

2
Vc(g) + (McLip(d, ρ)

)2√
cP Ic(ν)

substituting this estimate into (6.2), we get

ν(g) ≤√Ic(ν) ·
√

2Vc(g) + 4
(
McLip(d, ρ)

)2√
cP Ic(ν)

which is the first inequality in (2.38). The second inequality in (2.38) holds for Ic(ν) ≤ I (ν).
Finally the last Bernstein-type concentration inequality in this corollary follows from (2.38)
by Theorem 2.4. �

PROOF OF PROPOSITION 2.19. We shall apply the technique of forward-backward mar-
tingale decomposition in the second named author’s previous work [59]. Given a Lips-
chitzian function g with μ(g) = 0, ‖g‖Lip = 1, let G be the solution of the Poisson equation
(I − P)G = g. Consider

Mn :=
n∑

k=1

[
G(Xk) − PG(Xk−1)

]
, M∗

n =
n−1∑
k=0

[
G(Xk) − PG(Xk+1)

]

which are respectively Pμ forward and backward martingales. We see

Mn + M∗
n = ((I − P)G(X0) + (I − P)G(Xn)

)+ 2
n−1∑
k=1

(I − P)G(Xk)

= 2nL̃n(g).

Since Mn, M∗
n have the same law, we have by Jensen’s inequality that for any convex function

� on R,

(6.3) Eμ�
(
nL̃n(g)

)= Eμ�

(
Mn + M∗

n

2

)
≤ Eμ�(Mn).

Applying it to �(x) = eλx , λ > 0, we get

EμeλnL̃n(g) ≤ EμeλMn.

But by the assumed W1H -inequality for P(x, ·)
Eμ

(
eλMn |Fn−1

)≤ eλMn−1 exp
(
λ2cH (P,ρ)‖G‖2

Lip(ρ)/2
)

≤ eλMn−1 exp
(
λ2cH (P,ρ)

(
cLip(d, ρ)

)2
/2
)

and successively we get

EμeλMn ≤ exp
(
nλ2cH (P,ρ)

(
cLip(d, ρ)

)2
/2
)
.

Now it remains to apply Theorem 2.4((b′) =⇒ (a)). �
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6.3. Hyperbounedness implies TVI . Recall that the norm of P from Lp(μ) to Lq(μ) is
‖P‖p,q := supf :‖f ‖p=1 ‖Pf ‖q , where 1 ≤ p,q ≤ ∞.

LEMMA 6.2. Assume that for some p > 2, ‖P‖2,p < +∞. Then for any N ≥ 1,

∥∥P N
∥∥

2,pN
≤ (‖P‖2,p

) 2
p0

+ 2
p1

+···+ 2
pN−1 ≤ (‖P‖2,p

) p
p−2 ,

∥∥∥∥d(βP N)

dμ

∥∥∥∥
2
≤ (‖P‖2,p

) p
p−2

∥∥∥∥ dβ

dμ

∥∥∥∥
qN

,

where pN := pN/2N−1, qN = 1
1−2N−1/pN (N ≥ 0) as in Theorem 2.26.

PROOF. Since ‖P‖∞,∞ = 1, by Riesz–Thorin’s theorem we have

‖P‖pk,pk+1 ≤ ‖P‖2/pk

2,p , k ≥ 1

and it holds trivially for k = 0 (since p0 = 2). Thus

∥∥P N
∥∥

2,pN
= ∥∥P N

∥∥
p0,pN

≤
N−1∏
k=0

‖P‖pk,pk+1 ≤ (‖P‖2,p

) 2
p0

+ 2
p1

+···+ 2
pN−1 .

Since ‖(P ∗)N‖qN ,2 = ‖P N‖2,pN
and d(βP N)

dμ
= (P ∗)N dβ

dμ
, we conclude this lemma. �

PROOF OF THEOREM 2.26. By (5.3), ‖eV P‖2
2 = ‖(PP ∗)2V ‖2. For any g ∈ L2(μ) with

‖g‖2 ≤ 1, by Hölder’s inequality we have for c(p) := p/(p − 2) (the conjugate number of
p/2), ∫ (

eV Pg
)2

dμ ≤ ‖Pg‖2
p

(∫
e2c(p)V dμ

)1/c(p)

≤ ‖P‖2
2,p

(∫
e2c(p)V dμ

)1/c(p)

,

where it follows that

�μ

(
2V |PP ∗)= log

∥∥(PP ∗)2V ∥∥
2 ≤ 1

c(p)
log
∫

e2c(p)V dμ + 2 log‖P‖2,p.

Thus by Lemma 4.1,

Iσ (ν) = 1

2
sup

V ∈bB

{
ν(2V ) − log

∥∥(PP ∗)2V ∥∥
2

}

≥ sup
V ∈bB

{
ν(V ) − 1

2c(p)
log
∫

e2c(p)V dμ

}
− log‖P‖2,p

= 1

2c(p)
H(ν|μ) − log‖P‖2,p,

where the desired inequality (2.44) follows.
Part (a) The first transport-information inequality is obvious by (2.44). For (2.45), recall

the classical Bennett’s inequality in the i.i.d. case: if μ(u) = 0, |u| ≤ 1,

Pμ

(
Ln(u) > r

)≤ exp
(
−n

r

2
log
(

1 + r

μ(u2)

))
∀n, r > 0

which, by Gozlan–Léonard’s theorem (i.e., Theorem 2.4 in the i.i.d. case), is equivalent to

α
(
ν(u) − μ(u)

)≤ H(ν|μ), α(r) := r

2
log
(

1 + r

μ(u2)

)
.
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Hence we have α(ν(u)−μ(u)) ≤ 2c(p)Iσ (ν), ∀ν ∈ M1(X ), which yields (2.45) by Theorem
2.12 (applied to V = {(u,u)}) and Lemma 6.2.

Part (b). For (2.47), we may assume that g is bounded by approximation. Given a bounded
measurable function g, let u = g − μ(g). For any ν = f μ, we have

ν(u) = 〈u,f 〉μ = 1

2

∫∫ (
u(y) − u(x)

)(
f (y) − f (x)

)
dμ(x) dμ(y)

=
∫∫ (

u(y) − u(x)
)(√

f (y) −
√

f (x)
)√

f (x) dμ(x)dμ(y)

(6.4)

≤
√∫∫ (

u(y) − u(x)
)2

f (x) dμ(x)dμ(y) ·
∫∫ (√

f (y) −
√

f (x)
)2

dμ(x) dμ(y)

=
√

2Varμ(
√

f )

[
μ
(
u2
)+ ∫ u(x)2f (x) dμ(x)

]
.

By Donsker–Varadhan’s variation formula of entropy and (2.44), we have for any δ > 0,∫
u(x)2f (x) dμ(x) ≤ 1

δ

[
H(ν|μ) + log

∫
eδu2

dμ

]

≤ 2p

δ(p − 2)

[
Iσ (ν) + log‖P‖2,p

]+ b(δ),

where b(δ) := 1
δ

log
∫

eδu2
dμ. Substituting it into (6.4), we get

(6.5) ν(u) ≤
√

2Varμ(
√

f )

{
μ
(
u2
)+ 2p

δ(p − 2)

[
Iσ (ν) + log‖P‖2,p

]+ b(δ)

}
.

Let us bound Varμ(
√

f ) in terms of Iσ (ν). At first Varμ(
√

f ) = 1 − μ(
√

f )2 ≤ 1.
Since ‖P‖L2

0(μ) = ‖P ∗‖L2
0(μ) = √‖PP ∗‖L2

0(μ), by the contraction condition (2.46) we have

‖PP ∗‖L2
0(μ) ≤ γ 2 < 1. Thus

Varμ(
√

f ) ≤ 1

1 − γ 2

〈√
f − μ(

√
f ),

(
I − PP ∗)(√f − μ(

√
f )
)〉

μ

= 1

1 − γ 2

〈√
f ,
(
I − PP ∗)√f

〉
μ

≤ 1

1 − γ 2 I
(
ν|PP ∗)= 2

1 − γ 2 Iσ (ν),

where the inequality in the third line follows by applying Lemma 4.4 to the symmetric ker-
nel PP ∗. Hence we obtain Varμ(

√
f ) ≤ min{1, 2

1−γ 2 Iσ (ν)}. Plugging it into the inequality
above we get

(6.6)

ν(u)

≤
√

2
[

2p

δ(p − 2)
+ 2

1 − γ 2

{
μ
(
u2
)+ b(δ) + 2p

δ(p − 2)
log‖P‖2,p

}]
· Iσ (ν)

which is exactly (2.47). By Theorem 2.12 applied to V = {(g, g)}, the inequality above im-
plies that for all n, r > 0,

Pβ

(
Ln(g) ◦ θN > μ(g) + r

)= PβP N

(
Ln(g) > μ(g) + r

)
≤
∥∥∥∥dβP N

dμ

∥∥∥∥
2

exp
(
−n

r2

2CG(g)

)
.
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As ‖dβPN

dμ
‖2 ≤ ‖ dβ

dμ
‖qN

‖P‖
p

p−2
2,p by Lemma 6.2, we get the concentration inequality in part

(b).
Taking the supremum in (6.6) over all bounded Lipschitzian functions g such that ‖g‖Lip =

1, we get the desired W1I
σ -inequality (2.49) with the sub-Gaussian constant Cσ

G satisfying
(2.50). �

PROOF OF THEOREM 2.27. ‖P‖2,∞ = supp>2 ‖P‖2,p = limp→∞ ‖P‖2,p , so the W1I
σ -

inequality (2.49) holds with the constant Cσ
G bounded by the limit of the r.h.s. of (2.50) as

p → ∞. Now the concentration inequality (2.51) follows by Theorem 2.12 and the fact that∥∥∥∥d(βP )

dμ

∥∥∥∥
2
= ∥∥P ∗∥∥

1,2 ·
∥∥∥∥ dβ

dμ

∥∥∥∥
1
= ‖P‖2,∞. �

7. Lyapunov function criterion: Proof of Theorem 2.33. The starting point is the fol-
lowing large deviation result.

LEMMA 7.1. For every measurable function U ≥ 1 such that log U
PU

≥ −b, μ-a.e. for
some constant b > 0, then

(7.1)
∫

log
U

PU
dν ≤ I (ν) ∀ν ∈ M1(X ).

PROOF. When U is bounded, this is contained in the definition (2.1) of I (ν) =
I (ν|P,μ). Now for U unbounded, considering U ∧ N for each N ≥ 1, we have

I (ν) ≥
∫

log
U ∧ N

P(U ∧ N)
dν.

By Fatou’s lemma, it remains to show that {log U∧N
P(U∧N)

,N ≥ 1} is bounded from below by

some constant. Since P(U ∧ N) ≤ (PU) ∧ N and U ≥ (PU)e−b, we see that if PU ≤ N ,

log
U ∧ N

P(U ∧ N)
≥ log

U ∧ N

(PU) ∧ N
≥ log

e−bPU

PU
= −b

and if PU > N ,

log
U ∧ N

P(U ∧ N)
≥ log

U ∧ N

N ∧ PU
≥ log

Ne−b

N
= −b

that is the desired lower boundedness. �

PROOF OF THEOREM 2.33. As noticed in Remark 2.36, it is enough to show (2.54). To
that end we may assume that I (ν) = I (ν|P,μ) < +∞, then ν is absolutely continuous w.r.t.
μ with density f . Now for any u : X → R such that u2 ≤ φ, we have by Cauchy–Schwarz’s
inequality ∫

ud(ν − μ) =
∫

u(f − 1) dμ

≤
(∫

u2(
√

f + 1)2 dμ

∫
(
√

f − 1)2 dμ

)1/2

≤
(

2
∫

u2(f + 1) dμ · 2
[
1 − μ(

√
f )
])1/2

.
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But by Lemma 7.1,∫
u2(f + 1) dμ ≤ μ

(
u2)+ ∫ φf dμ ≤ μ(φ) +

∫ (
b + log

U

PU

)
f dμ

≤ μ(φ) + b + I (ν)

and 1 − μ(
√

f ) ≤ 1 − (μ(
√

f ))2 = Varμ(
√

f ) ≤ min{1, cP I (ν)} by the Poincaré inequality
and Lemma 4.4, we get thus(∫

ud(ν − μ)

)2
≤ 4
(
μ(φ) + b + I (ν)

)
min

{
1, cP I (ν)

}
,

hence (2.54) follows by taking the supremum over all u so that |u| ≤ √
φ. �

Added Remark. One of the referees informed us of the paper [57] by S. Watanabe and
M. Hayashi, that we were unaware of. Watanabe and Hayashi established not only the con-
centration inequality (upper bound) in [57], Theorem 8.1, but also the lower bound [57], The-
orem 8.2, for the Markov chains in the finite states space. Their upper bound is sharp both in
the range of large deviations and in that of moderate deviations. Let us do some comparisons
of [57] with our work.

(a) For V = {(u,u)} where u ∈ bB is fixed, by Lemma 4.3 (due to Lei [29] under the
uniform integrability of P on L2(μ)), we have

(7.2) Pβ

(
L̃n(u) > μ(u) + r

)≤ ∥∥∥∥ dβ

dμ

∥∥∥∥
2
· e−nIu(μ(u)+r), r > 0, n ≥ 1,

where Iu(x) := inf{I (ν);ν(u) = x}, x ∈ R. Equivalently (α − TVI ) holds for α(r) =
Iu((μ(u) + r)−) := limε→0+ Iu((μ(u) + r) − ε) for r > 0 (and α(r) = 0 for r ≤ 0 by our
convention).

As Iu is the rate function governing the large deviation principle of L̃n(u), this concen-
tration inequality is sharp in the domain of large deviations. When the spectral gap of P on
L2(μ) exists, by [65], the moderate large deviation principle for Ln(u) or L̃n(u) holds, and

I ′
u

(
μ(u)

)= 0, I ′′
u

(
μ(u)

)= 1

σ 2(u)
,

where σ 2(u) = limn→∞ nVarPμ
(Ln(u)) is the asymptotic variance in the central limit the-

orem. Hence the concentration inequality above is also sharp in the domain of moderate
deviations.

In comparison with the concentration inequality [57], Theorem 8.1, of S. Watanabe and M.
Hayashi in the finite states space case, which, applied to Ln(u) ◦ θ , is read as: for all r > 0,
λ > 0, n ∈ N

∗,

(7.3) Pβ

(
Ln(u) ◦ θ > μ(u) + r

)≤ β(vλ) · exp
(−n

[
λ
(
μ(u) + r

)− �u(λ)
])

,

where vλ is the eigenfunction with minimum equal to 1 of eλuP associated with its largest
eigenvalue e�u(λ). Their exponentially (in n) small term, if optimized over λ > 0, equals
to e−nα(r). But their constant factor term β(vλ), instead of our ‖dβ/dμ‖2, depends upon
the eigenfunction vλ. The latter is very difficult to be controlled in the general states
space (already difficult in the case of finite states space). We emphasize that their re-
sult works in the nonreversible case and is also valid for 1

n

∑n
k=1 g(Xk,Xk+1) (note that

(Yk := (Xk,Xk+1))k∈N forms a nonreversible Markov chain even if (Xk) is reversible). The
concentration inequality (7.2) succeeds in avoiding their difficult-to-bound constant factor
(because of the use of L̃n(u) instead of Ln(u)), but only in the symmetric case.
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(b) Our investigation is in the spirit of transport inequalities and our purpose is the clas-
sical concentration inequalities such as those of Hoeffding, Bernstein, Bennett etc. That is
why our deviation function α(r) is simple and explicit (even quadratic in the most part of
our investigation as in Hoeffding’s inequality), valid for a class of functions. Their devia-
tion function is in a variational form (Legendre transform), only for V = {(u,u)}, a single
function.

(c) Our method is completely different from theirs: our starting point is Theorem 2.4 and
then all our studies are concentrated on proving the transport-information inequalities; their
method consists in the control of the log-Laplace transform, as in [11, 21, 30, 31] when the
spectral gap exists.

(d) Their lower bound, new and original, is not at all studied in our paper because of the
limitation of our method.
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