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CROSSING A FITNESS VALLEY AS A METASTABLE TRANSITION
IN A STOCHASTIC POPULATION MODEL1

BY ANTON BOVIER∗,2, LOREN COQUILLE†,3 AND CHARLINE SMADI‡,§

Rheinische Friedrich-Wilhelms-Universität Bonn∗, Univ. Grenoble Alpes†,
Irstea‡ and Complex Systems Institute of Paris Ile-de-France§

We consider a stochastic model of population dynamics where each in-
dividual is characterised by a trait in {0,1, . . . ,L} and has a natural reproduc-
tion rate, a logistic death rate due to age or competition and a probability of
mutation towards neighbouring traits at each reproduction event. We choose
parameters such that the induced fitness landscape exhibits a valley: mutant
individuals with negative fitness have to be created in order for the population
to reach a trait with positive fitness. We focus on the limit of large population
and rare mutations at several speeds. In particular, when the mutation rate is
low enough, metastability occurs: the exit time of the valley is an exponen-
tially distributed random variable.

1. Introduction. The biological theory of adaptive dynamics aims at studying
the interplay between ecology and evolution through the modeling of three basic
mechanisms: heredity, mutations and competition. It was first developed in the
1990s, partly heuristically, by Metz, Geritz, Bolker, Pacala, Dieckmann, Law and
coauthors [6, 7, 24, 25, 29, 39].

A rigorous derivation of the theory was achieved over the last decade in the
context of stochastic individual-based models, where the evolution of a popula-
tion of individuals characterised by their phenotypes under the influence of the
evolutionary mechanisms of birth, death, mutation and ecological competition in
an inhomogeneous “fitness landscape” is described as a measure valued Markov
process. Using various scaling limits involving large population size, small muta-
tion rates and small mutation steps, key features described in the biological theory
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of adaptive dynamics, in particular the canonical equation of adaptive dynamics
(CEAD), the trait substitution sequence (TSS) and the polymorphic evolution se-
quence (PES) were recovered; see [3, 14–17, 28]. Extensions of those results for
more structured populations were investigated, for example, in [36, 47].

Contrarily to the population genetics approach, individual-based models of
adaptive dynamics take into account varying population sizes as well as stochastic-
ity, which is necessary if we aim at better understanding of phenomena involving
small populations, such as mutational meltdown [21], invasion of a mutant pop-
ulation [14], evolutionary suicide and rescue [1], population extinction time [18,
20] or recovery phenomena [4, 8].

The emerging picture allows us to give the following description of the evolu-
tionary fate of a population starting in a monomorphic initial state: first, on a fast
ecological time scale, the population reaches its ecological equilibrium. Second,
if mutations to types of positive invasion fitness (the invasion fitness is the aver-
age growth rate of an individual born with this trait in the presence of the current
equilibrium population) are possible, these eventually happen and the population
is substituted by a fitter type once a mutant trait fixates (if coexistence is not pos-
sible). This continues, and the monomorphic population moves according to the
TSS (resp., the CEAD, if mutations steps are scaled to zero) until an evolution-
ary singularity is reached: here two types of singularities are possible: either, the
singularity is stable, in the sense that no further type with positive invasion fit-
ness can be reached, or there are several directions with equal positive fitness that
can be taken. In the latter case, the population splits into two or more subpopula-
tions of different types which then continue to move on until again an evolutionary
singularity is reached. If the mutation probability is small enough, all this hap-
pens on a time scale of order 1/(μK), where μ is the mutation probability and
K is the carrying capacity, which is a measure of the maximal population size
that the environment can sustain for a long time. This process goes on until all
subpopulations are located in stable evolutionary singularities. At this stage, no
single mutation can lead to a trait with positive invasion fitness. Nonetheless, there
may be traits with positive invasion fitness that can be reached through several
consecutive mutation steps [22, 37]. Our purpose is to present a precise analy-
sis of how such an escape from a stable singularity happens in various scaling
regimes.

As we will show, three essentially different dynamics may occur. In the first one,
the mutation probability is so large that many mutants (a number of order μK) are
created in a time of order 1. In this case, the fixation time scale is dominated by
the time needed for a successful mutant to invade (which is of order log 1/μ).
The second scenario occurs if the mutation probability is smaller, but large enough
so that a fit mutant will appear before the resident population dies out. In this
case, the fixation time scale is exponentially distributed and dominated by the time
needed for the first successful mutant to be born. The last possible scenario is the
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extinction of the population before the fixation of the fit mutant, which occurs
when the mutation probability is very small (smaller than e−CK for a constant C

to be made precise later).
In the sequel, we denote by N the set of integers {1,2,3, . . .}, by N0 the

set N ∪ {0}, and by R+ = {x ∈ R : x ≥ 0} the set of nonnegative real num-
bers. For n,m ∈ N0 such that n ≤ m, we also introduce the notation �n,m� :=
{n,n + 1, . . . ,m}.

2. Model. In this paper, we analyse the escape problem in a specific simple
model situation that, however, captures the key mechanisms. We consider a finite
trait space �0,L� on which the population evolves. To each trait i ∈ �0,L�, we
assign:

• a clonal birth rate: (1 − μ)bi ≥ 0, where 0 ≤ μ ≤ 1 is the mutation probability;
• a natural death rate: di ≥ 0.

An individual can also die from type-dependent competition. We assign to each
pair (i, j) ∈ �0,L�2

• a competition kernel: cij ≥ 0, where cii, ci0, ciL > 0, for all i ∈ �0,L�.

To be able to scale the effective size of a population, the competition kernel is
scaled down by the so-called carrying capacity, K , that is, the competitive pressure
exerted by an individual of type j on an individual of type i is cij /K . Finally, to
represent mutations, we assign to each pair (i, j) ∈ �0,L�2:

• a mutation kernel: (mij )(i,j)∈�0,L�2 satisfying mij ∈ [0,1], for all (i, j) ∈ �0,L�2

and
∑

j∈�0,L� mij = 1. We will focus on two cases:

(2.1) m
(1)
ij = δi+1,j or m

(2)
ij = 1

2
(δi+1,j + δi−1,j ),

where δi,j is the Kronecker delta (1 if i = j , 0 otherwise).

We denote the stochastic process with the above mechanisms by X. The state of
a population is an element of N0

L+1. As we will see, before the population ex-
tinction, which is of an exponential order (see Section 3.3), the total population
size has the same order as the carrying capacity K . Hence, it will be more con-
venient to study the rescaled process XK = (XK

0 (t), . . . ,XK
L (t)) = X/K and to

think of this as an element of R
L+1. Let ei denote the ith unit vector in R

L+1.
The generator of XK acts on bounded measurable functions f :RL+1+ →R, for all
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XK ∈ (N0/K)L+1, as

(2.2)

(
L(K)f

)(
XK) = (1 − μ)K

L∑
i=0

(
f
(
XK + ei/K

)− f
(
XK))

biX
K
i

+ K

L∑
i=0

(
f
(
XK − ei/K

)− f
(
XK))(

di +
L∑

j=0

cijX
K
j

)
XK

i

+ μK

L∑
i=0

L∑
j=0

(
f
(
XK + ej /K

)− f
(
XK))

bimijX
K
i .

A key result, due to Ethier and Kurtz [27], is the law of large numbers when
K ↑ ∞ (for fixed μ and fixed time intervals), which we recall now.

PROPOSITION 2.1 ([27], Chapter 11, Theorem 2.1). Suppose that the ini-
tial conditions converge in probability to a deterministic limit, that is,
limK→∞ XK(0) = x(0). Then, for each T ∈ R+, the rescaled process (XK(t),0 ≤
t ≤ T ) converges in probability, as K → ∞, to the deterministic process xμ =
(x

μ
0 , . . . , x

μ
L) which is the unique solution to the following dynamical system:

(2.3)
dx

μ
i

dt
=

(
(1 − μ)bi − di −

L∑
i=0

cij x
μ
j

)
x

μ
i + μ

∑
j

mjibjx
μ
j , i = 0, . . . ,L,

with initial condition x(0).

There will be two important quantities associated with our processes. The equi-
librium density of a monomorphic i-population is

(2.4) x̄i := bi − di

cii

∨ 0.

The effective growth rate (or selective advantage or disadvantage) of a small mu-
tant population with trait i in a j -population at equilibrium, is the so-called inva-
sion fitness, fij , given by

(2.5) fij := bi − di − cij x̄j .

The importance of the above two quantities follows from the properties of the
limiting competitive Lotka–Volterra system (2.3) with μ = 0. Namely, if we as-
sume

(2.6) x̄1 = b1 − d1

c11
> 0 and f01 < 0 < f10,

then the system (2.3) with μ = 0 and L = 1 has a unique stable equilibrium, (x0 =
0, x1 = x̄1), and two unstable steady states, (x0 = x̄0, x1 = 0) and (x0 = 0, x1 = 0).
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We are interested in the situation where x̄0 > 0, fi0 < 0, 1 ≤ i ≤ L− 1, fL0 > 0
and f0L < 0. Under these assumptions, all mutants created by the initial popula-
tion initially have a negative growth rate, and thus tend to die out. However, if
by chance such mutants survive long enough to give rise to further mutants, such
that eventually an individual will reach the trait L, it will find a population at this
trait that, with positive probability, will grow and eliminate the resident population
through competition. Our purpose is to analyse precisely how this process hap-
pens. The process that we want to describe can be seen as a manifestation of the
phenomenon of metastability (see, e.g., the recent monograph [9] and references
therein). The initial population appears stable for a long time and makes repeated
attempts to send mutants to the trait L, which will eventually be reached and take
over the entire population. As we will see, this leads to several features known
from metastable phenomena in other contexts: exponential laws of the transition
times, fast realisation of the final “success run”, and the realisation of this run by a
“most likely” realisation. As usual in the context of metastability, we need a scaling
parameter to make precise asymptotic statements. In our case, this is the carrying
capacity, K , which allows us to scale the population size to infinity. Apart from
scaling the population size by taking K ↑ ∞, we are also interested in the limit of
small mutation probabilities, μ = μK ↓ 0, with possibly simultaneous time rescal-
ing. This gives rise to essentially different asymptotics, depending on how μ tends
to zero as a function of K .

3. Results. Before stating our main results, let us make our assumptions pre-
cise:

ASSUMPTION 1.

• Viability of the resident population: x̄0 > 0.
• Fitness valley: All traits are unfit with respect to 0 except L:

(3.1) fi0 < 0 for i ∈ �1,L − 1� and fL0 > 0.

• All traits are unfit with respect to L:

(3.2) fiL < 0 for i ∈ �0,L − 1�.

• The following fitnesses are different:

fi0 �= fj0 for all i �= j,(3.3)

fiL �= fjL for all i �= j.(3.4)

See Figure 1.
Note that conditions (3.3) and (3.4) are imposed in order to lighten the analysis

of the deterministic system (see Lemma 6.1). Similar results are probably true
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FIG. 1. Example of a fitness landscape satisfying Assumption 1 with L = 6. Blue curve: i 
→ fi0,
red curve: i 
→ fiL.

without these assumptions but the proofs would be unnecessarily more technical.
Similar hypotheses are made in the article [26].

Before proceeding to the statements of our results, let us show that Assump-
tion 1 can be realised with well-chosen birth, death and competition rates. A pos-
sibility is to fix birth and death rates associated to every trait to be 1 and 0,
respectively. In that case, Assumption 1 imposes constraints on the competition
rates (ci0)i∈�1,L� and (ciL)i∈�0,L−1�, which must be equal to (1 − fi0)i∈�1,L� and
(1 − fiL)i∈�0,L−1�, respectively. We complete the competition matrix by taking
symmetric values (except for c0L and cL0 which are now fixed and different) and
by choosing cij = 1, for all pairs (i, j) ∈ �1,L − 1�2.

3.1. Deterministic limit (K,μ) → (∞,μ), then μ → 0. The first regime we
are interested in is the case when μ is small but does not scale with the population
size. From a biological point of view, this corresponds to high mutation probabil-
ities. Note that a similar scaling has been studied in [10] and [26]. In both papers,
the context was very different since these authors considered the arrival of fitter
rather than unfitter mutants, as we do here. In [10], individuals only suffer com-
petition from the nearest neighbouring traits. In [26], an exponentially growing
population of tumor cells is modeled by a Moran model with immigration, and
back mutations are not considered.

THEOREM 3.1. Suppose that Assumption 1 holds. Take as initial condition

(3.5) xμ(0) = (x̄0,0, . . . ,0).

Then, for i ∈ �0,L�, as μ → 0, uniformly on bounded time intervals,

(3.6)
log[xμ

i (t · log(1/μ))]
log(1/μ)

→ xi(t),

where xi(t) is piecewise linear. More precisely:
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1. In the case of 1-sided mutations, mij = m
(1)
ij , for i ∈ �0,L − 1�,

xi(t) =
⎧⎨
⎩

−i for 0 ≤ t < L/fL0,

−i − (t − L/fL0) min
k∈�0,i�

|fkL| for t > L/fL0,
(3.7)

and

xL(t) =
{−L + fL0t for 0 ≤ t < L/fL0,

0 for t > L/fL0.
(3.8)

2. In the case of 2-sided mutations, mij = m
(2)
ij : consider the sequence

{i1, . . . , ir} of “fitness records”, defined recursively by i1 = 0, ik = min{i ∈
�0,L − 1� : fiL < fik−1L},

(3.9) xi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i ∨ (−L − (L − i) + fL0t
)

for 0 ≤ t < L/fL0,

−(L − i) ∨ max
k∈�0,i�

{−i − |fkL|(t − L/fL0)
}

∨ max
k∈�1,r�

{−ik − |i − ik| − |fikL|(t − L/fL0)
}

for t > L/fL0.

Moreover,

(
x

μ
0

(
t log(1/μ)

)
, x

μ
L

(
t log(1/μ)

)) →
{
(x̄0,0) for 0 ≤ t < L/fL0,

(0, x̄L) for t > L/fL0.
(3.10)

The shape of x(t) := (x0(t), . . . , xL(t)) can be seen on Figures 2 and 3 in the
1-sided and 2-sided cases, respectively.

In the 1-sided case, the rescaled deterministic process x(t) can be explained as
follows: In the first phase, the 0-population stays close to x̄0 until the L-population
reaches order one. As competition between the populations of type i and j for
i, j �= 0 is negligible in comparison to competition between type i and type 0, for
i ∈ �1,L�, the i-population first stabilises around O(μi) in a time of order o(1),
then the L-population, starting from a size O(μL), grows exponentially with rate
fL0 until reaching order one (which takes a time L/fL0) while the other types
stay stable. Next, a swap between populations 0 and L (two-dimensional Lotka–
Volterra system) is happening in a time of order o(1), and finally, for i �= L, the
i-population decays exponentially from O(μi) with a rate given by the lowest
(negative) fitness of its left neighbours, (minj∈�0,i� |fjL|) while the L-population
approaches its equilibrium density x̄L. To understand the rate of decrease during
the last phase, let us consider only the 0- and 1-populations. The competition ex-
erted by populations j ∈ �0,L − 1� on the 0- and 1-populations is negligible with
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FIG. 2. Graph of x(t) in the 1-sided case mij = m
(1)
ij for L = 6 and f60 = 1,

(f06, f16, f26, f36, f46, f56) = (−5,−1,−0.25,−1.5,−2,−0.05), which is the fitness landscape
depicted in Figure 1.

FIG. 3. Graph of x(t) in the 2-sided case mij = m
(2)
ij for L = 6 and f60 = 1,

(f06, f16, f26) = (−5,−1,−0.25), which is (compatible with) the fitness landscape depicted in Fig-
ure 1.

respect to the competition exerted by the L-population, which has a size of order 1.
As a consequence, x

μ
0 has a dynamics close to this of the solution to

(3.11) ˙̃x0(t) = f0Lx̃0(t),
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that is to say, x0(t) ≈ x0(0)ef0Lt , and x1 has a dynamics close to this of the solution
to

(3.12) ˙̃x1(t) = f1Lx̃1(t) + μx̃0(t) = f1Lx̃1(t) + μx̃0(0)ef0Lt ,

that is to say

(3.13) x1(t) ≈ x1(0)ef1Lt + μ
x0(0)

f0L − f1L

(
ef0Lt − ef1Lt ).

From these heuristics, we get that

(3.14)
x

μ
1

(
t log(1/μ)

) ≈ x
μ
1 (0)μ|f1L|t + μ

x
μ
0 (0)

|f1L| − |f0L|
(
μ|f0L|t − μ|f1L|t )

= μ

(
C1μ

|f1L|t + C0

|f1L| − |f0L|
(
μ|f0L|t − μ|f1L|t )),

where C0 and C1 are of order 1. We thus see that the leading order is
μ1+inf{|f0L|,|f1L|}t . Reasoning in the similar way for the other populations yields
that the leading order for the variation of the i-population size (i ∈ �0,L − 1�) is
μi+inf{|f0L|,|f1L|,...,|fiL|}t .

In the 2-sided case, a modification of the order of magnitude of the i-population
(for i �= L) happens due to backward mutations. The reasoning is similar to the
heuristics we have just described, except that mutants from the i-population (i ∈
�1,L�) might also have an impact on the decrease rate of the (i − 1)-population.
This is the case if x

μ
i /x

μ
i−1 ≥ C/μ, for a positive constant C. Under this condition,

the number of type-(i −1) individuals produced by mutations of type i-individuals
has the same order as the type (i − 1) population size.

3.2. Stochastic limit (K,μ) → (∞,0). When the mutation probability is
small, the dynamics and time scale of the invasion process depends on the scaling
of the mutation probability per reproductive event, μ, with respect to the carrying
capacity K . We consider in this section mutation probabilities with two possible
forms. Either,

(3.15) μ = f (K)K−1/α with α ≥ 1 and
∣∣lnf (K)

∣∣ = o(lnK),

or

(3.16) μ = o(1/K).

For simplicity, in Sections 3.2 and 3.3 we only consider the mutation kernel m
(1)
ij =

μδi+1,j .

For v ≥ 0 and 0 ≤ i ≤ L, let T
(K,i)
v denote the first time the i-population reaches

the size �vK�,

(3.17) T (K,i)
v := inf

{
t ≥ 0,Xi(t) = �vK�}.
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In a time of order one, there will be of order Kμi mutants of type i, provided
that this number is larger than 1. In particular, there will be of order KμL fit L-
mutants at time one, if L/α < 1. This is the regime of large mutation probability.
In this case, the time for the L-population to hit a size of order K is of order logK .
We obtain a precise estimate of this time, as well as of the time for the trait L to
outcompete the other traits under the same assumptions. Let us introduce

(3.18) t (L,α) := L

α

1

fL0
+ sup

{(
1 − i

α

)
1

|fiL| ,0 ≤ i ≤ L − 1
}
,

and the time needed for the populations at all sites but L to get extinct,

(3.19) T
(K,�)
0 := inf

{
t ≥ 0,

∑
0≤i≤L−1

Xi(t) = 0
}
.

With this notation, we have the following asymptotic result.

THEOREM 3.2. Assume that (3.15) holds and that L < α < ∞. Then there
exist two positive constants ε0 and c such that, for every 0 < ε ≤ ε0,

(3.20) lim inf
K→∞ P

(
(1−cε)

1

α

L

fL0
<

T
(K,L)
ε

logK
<

T
(K,L)
x̄L−ε

logK
< (1+cε)

1

α

L

fL0

)
≥ 1−cε.

Moreover,

(3.21)
T

(K,�)
0

logK
→ t (L,α) in probability, (K → ∞)

and there exists a positive constant V such that

(3.22) lim sup
K→∞

P

(
sup

t≤eKV

∣∣XL

(
T

(K,L)
x̄L−ε + t

)− x̄LK
∣∣ > cεK

)
≤ cε.

In other words, it takes a time of order t (L,α) logK for the L-population to out-
compete the other populations and enter in a neighbourhood of its monomorphic
equilibrium size x̄LK . Once this has happened, it stays close to this equilibrium
for at least a time eKV , where V is a positive constant.

Note that the constant t (L,α) can be intuitively computed from the determinis-
tic limit. Indeed, for α > L, we prove that the system performs small fluctuations
around the deterministic evolution studied above: the i-population first stabilises
around O(Kμi) in a time of order one, then the L-population grows exponen-
tially with rate fL0 until reaching order K (supercritical branching process, needs
a time close to L logK/(αfL0)) while the other types stay stable, the swap between
populations 0 and L then takes a time of order one, and finally, for i �= L, the i-
population decays exponentially from O(Kμi) to extinction with a rate given by
the lowest (negative) fitness of its left neighbours (subcritical branching process,
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needs a time close to (supj∈�0,i�(1 − j/α)/|fjL|) logK). Thus, the time until ex-
tinction of all non-L populations is close to the constant (3.18) times logK .

Note that Theorem 3.2 is close in spirit to the results of Durrett and Mayberry in
[26], and some of our techniques of proof are similar. However, the processes they
consider differ from ours at many levels. More precisely, they consider a Moran
model with either fixed or growing population size (with a growth independent of
the composition in traits of the population), and mutants with increasing fitnesses,
while we work with a model with varying population size (where variations depend
on the population composition via trait dependent competitive interactions) and
allow negative fitnesses. Moreover in [26], all mutations have the same effect and
back mutations are not considered, whereas it leads to interesting behaviour and
more technicalities in our case. Finally, the way mutations are encoded in Moran-
like models do not allow to distinguish between effects due to birth rate, death rate
and competition. The class of models we consider allow a much wider variety of
mutations (see Section 3 in [11] for a detailed discussion on these aspects).

Next, we consider the case of small mutation probability, when L/α > 1. In this
case, there is no L-mutant at time one, and the fixation of the trait L happens on
a much longer time scale. In this section, we are interested in the case where the
mutation L goes to fixation with a probability close to one. In particular, the first
L-mutant has to be born before the extinction of the population.

We define, for 0 < ρ < 1,

(3.23) λ(ρ) :=
∞∑

k=1

(2k)!
(k − 1)!(k + 1)!ρ

k(1 − ρ)k+1,

and, for �α� + 1 ≤ i ≤ L − 1, set ρi := bi/(bi + di + ci0x̄0).

THEOREM 3.3.

• Assume that (3.15) holds, α /∈ N and 1 <α < L. Then there exist two positive
constants ε0 and c, and two exponential random variables E− and E+ with
parameters

(3.24)

(1 + cε)
x̄0b0 · · ·b�α�−1

|f10| · · · |f�α�0|
fL0

bL

L−1∏
i=�α�+1

λ(ρi) and

(1 − cε)
x̄0b0 · · ·b�α�−1

|f10| · · · |f�α�0|
fL0

bL

L−1∏
i=�α�+1

λ(ρi),

such that, for every ε ≤ ε0,

(3.25) lim inf
K→∞ P

(
E− ≤

(
T

(K,L)
x̄L−ε ∨ T

(K,�)
0

)
KμL ≤ E+

)
≥ 1 − cε.
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• There exists a positive constant V such that if μ satisfies

(3.26) Kμ � 1 and eV K � 1/KμL,

then the same conclusion holds, with the corresponding parameters, for E− and
E+:

(3.27) (1 + cε)x̄0
fL0

bL

L−1∏
i=1

λ(ρi) and (1 − cε)x̄0
fL0

bL

L−1∏
i=1

λ(ρi).

Moreover, under both assumptions, there exists a positive constant V such that

lim sup
K→∞

P

(
sup

t≤eKV

∣∣XL

(
T

(K,L)
x̄L−ε + t

)− x̄LK
∣∣ > cεK

)
≤ cε.

In the first case, the typical trajectories of the process are as follows: mutant
populations of type i, for 1 ≤ i ≤ �α�, reach a size of order Kμi � 1 in a time
of order bi−1 logK/fi0 (they are well approximated by birth-death processes with
immigration and their behaviour is then close to the deterministic limit), and mu-
tant populations of type i, for �α� + 1 ≤ i ≤ L, describe a.s. finite excursions,
whose a proportion of order μ produces a mutant of type i + 1. Finally, every
L-mutant has a probability fL0/bL to produce a population which outcompetes
all other populations. The term λ(ρi) is the expected number of individuals in an
excursion of a subcritical birth and death process of birthrate bi and death rate
di + ci0x̄0 excepting the first individual. Hence, μλ(ρi) is the approximated prob-
ability for a type i-population (�α� + 1 ≤ i ≤ L − 1) to produce a mutant of type
i + 1, and the overall time scale can be recovered as follows:

1. The last ‘large’ population is the �α�-population, which reaches a size of
order Kμ�α� after a time which does not go to infinity with K .

2. The �α�-population produces an excursion of an (�α� + 1)-population at a
rate of order Kμ�α�+1, which has a probability of order μ to produce an excursion
of a (�α� + 2)-population, and so on,

giving the order KμL.
Notice that Theorem 3.3 implies that, for any mutation rate which converges

to zero more slowly than e−V K/K , the population crosses the fitness valley with
probability tending to 1, as K → ∞. Our results thus cover a wide range of bio-
logically relevant cases.

In fact, we believe that the results hold as long as Kμ � ρ0(K), where ρ0(K)

is the inverse of the mean extinction time of the 0-population starting at its quasi-
stationary distribution (see the next section for a precise definition). However, we
are not able to control precisely enough the law of X0 before its extinction (but see
[18] for results in this direction).

We also think that α /∈ N is only a technical assumption which could be sup-
pressed but would bring more technicalities into the proof. Namely, in this case,
the �α� population size would not be large, but of order one, and we would have
to control its size more carefully.
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3.3. On the extinction of the population. One of the key advantages of stochas-
tic logistic birth and death processes on constant size processes when dealing with
population genetics issues is that we can compare the time scale of mutation pro-
cesses and the population lifetime. In particular, for the case of fitness valley cross-
ing, we can show that if the mutation probability μ is too small, the population gets
extinct before the birth of the first mutant of type L.

The quantification of the lifetime of populations with interacting individuals is
a tricky question (see [18, 19] for recent results) and we are not able to determine
necessary and sufficient conditions for the L-mutants to succeed in invading before
the population extinction. However, we provide some bounds in the next results.

The previous theorem (Theorem 3.3) provided a wide range of mutation prob-
abilities μ for which the type L mutant fixates. The following theorem (Theo-
rem 3.4) provides a small range for which the population dies before the birth of
the first L-mutant. Before stating it, we introduce a parameter scaling the extinc-
tion time of the 0-population,

(3.28) ρ0(K) := √
K exp

(−K
(
b0 − d0 + d0 ln(d0/b0)

))
.

More precisely, it is stated in [18] that Eν[T (mono)
0 ] = 1/ρ0(K), where ν is the

stationary distribution of a monomorphic 0-population, and T
(mono)

0 its extinction
time. We also need to introduce the two stopping times

(3.29)
T0 := inf

{
t ≥ 0,Xi(t) = 0,∀ 0 ≤ i ≤ L

}
and

BL := inf
{
t ≥ 0,XL(t) > 0

}
,

as well as the following assumption.

ASSUMPTION 2. The birth and death rates satisfy the conditions

(3.30) bi < di, 1 ≤ i ≤ L − 1.

Then we have the following result.

THEOREM 3.4. Suppose that Assumption 1 holds.

1. If Kμ � ρ0(K), then P(T0 < BL) →
K→∞ 1.

2. If Assumption 2 holds and KμL � ρ0(K), then P(T0 < BL) →
K→∞ 1.

If KμL � ρ0(K) but the intermediate mutants are fitter, the pattern is less clear.
For instance, one of the intermediate mutants could fix before being replaced (or
not) by the type L mutant.
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4. Generalisations. Our results can be generalised to the following settings:

• If the fitness landscape is such that coexistence is allowed between populations
of traits 0 and L, that is, if fL0 > 0 and f0L > 0, then the analysis of the invasion
phase is the same, but the fixation phase differs in such a way that traits 0 and L

become macroscopic and stabilise around their common equilibrium (n∗
0, n

∗
L),

the nontrivial fixed point of the 2-species Lotka–Volterra system. Moreover, the
unfit mutant populations stay microscopic if we assume fi,{0,L} := bi − di −
ci0n

∗
0 − ciLn∗

L < 0, for all i = 1, . . . ,L − 1. In the 1-sided case, those stay of
order Kμi , while in the 2-sided case, they stay of order Kμmin{i,L−i}. There is
no complicated decay phase as in Section 6.3.2, and its stochastic analog.

• If the mutation probability μ depends on the trait i, while still fulfilling the
prescribed scalings associated to our different theorems, those still hold.

• Consider the biologically relevant case (especially for cancer) where deleterious
mutations accumulate until a mutant individual gathers L different mutations, in
which case it becomes fit. Each individual bearing k mutations can then be la-
beled by the trait k. The main difference with our setting is that there are now
L! ways of reaching an individual of trait L with a sequence of L mutations.
Thus, the invasion time of the population L is divided by L! in the small muta-
tion regime (Theorem 3.3) and will stay the same in the large mutation regime
(Theorem 3.2).

5. Biological context. The existence of complex phenotypes often involve in-
teractions between different genetic loci. This can lead to cases, where a set of
mutations are individually deleterious but in combination confer a fitness benefit.
To acquire the beneficial genotype, a population must cross a fitness valley by first
acquiring the deleterious intermediate mutations. Empirical examples of such phe-
nomena have been found in bacteria [38, 43] and in viruses [30, 41], for instance.

To model those phenomena, several authors considered the case of the sequen-
tial fixation of intermediate mutants, as it appeared to be the most likely scenario
to get to the fixation of the favorable mutant [40, 49, 52], especially when the
population size is small or the mutants neutral or weakly deleterious.

A scenario where a combination of mutations fixates simultaneously without the
prior fixation of one intermediate mutant was first suggested by Gillepsie [31]. He
observed that the rate of production of fit genotypes is proportional to the popula-
tion size, and because in the population genetic models the probability of fixation
of a beneficial allele is independent of the population size, he deduced that the
expected time for the fixation of the fit mutant decreases as population size in-
creases. Thus, it could be a likely process in the evolution of large populations.
This scenario, called stochastic tunneling by Iwasa and coauthors [35], has been
widely studied since then (see [13, 32, 33, 50, 51] and references therein) by means
of constant size population genetic models. But the use of such models hampers
taking into account several phenomena.
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First, an important question is the lifetime of the population under study. If the
mutation probability is too small, the population can get extinct before the appear-
ance of the first favourable mutant. Imposing a constant (finite or infinite) popu-
lation size is thus very restrictive in this respect. In the case of logistic processes
that we are studying in this work, the total population size typically remains in the
order of the carrying capacity K during a time of order eKV (with V a positive
constant depending on the model’s parameters), before getting extinct.

Second, in population genetic models, a fitness is assigned to each type, inde-
pendently of the population state. In the case of the Moran model, which is used in
the series of papers we just mentioned, the probability for a given individual to be
picked to replace an individual who dies is proportional to its fitness. If we want
to compare our result with this setting, we have to assume

(5.1) bi = b and |fij | = |fji | ∀ 0 ≤ i, j ≤ L,

thus restricting the type of fitnesses we could take into account (see Section 3 in
[11] for a detailed discussion on this topic).

Another series of papers [2, 34, 42, 44, 45] focuses on initially large populations
doomed for rapid extinction (for instance, cancer cells subject to chemotherapy or
viruses invading a new host while not being adapted to it), except if they manage to
accumulate mutations to produce a fit variant (for instance, resistant to treatments).
The authors use multitype branching processes. This approach has the advantage
to lead to explicit expressions, as the branching property makes the calculations
easier, but has two main drawbacks: first, it neglects interactions between individ-
uals, whereas it is well known that they are fundamental in processes such as tumor
growth; second, branching processes either go to extinction or survive forever with
an exponentially growing size, which is not realistic for biological populations.

A last point we would like to comment is the possibility of back mutations. They
are ignored in all papers we mentioned, usually accompanied with the argument
that they would not have a macroscopic effect on the processes under considera-
tion. However, it has been shown that, when the mutation probabilities are large
enough, scenarios where some loci are subject to two successive opposite muta-
tions are likely to be observed (for an example, see [23]). This is why we included
the possibility of back mutations in the case of high mutation probabilities in Sec-
tion 3.1.

6. Proof of Theorem 3.1. We give the detailed proof for L even and mention
the modifications which have to be made for L odd during the proof. A key step in
the proof of Theorem 3.1 is the following lemma.

LEMMA 6.1. Let ζ ∈ {1,2}, (b0, . . . , bL) ∈ (R+)L+1, (
0, . . . , 
L) ∈
(R+)L+1, (p0, . . . , pL) ∈ (R+)L+1 and (f0, . . . , fL) ∈ R

L+1 such that

fi �= fj for all i �= j.(6.1)
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Let

(6.2) Mζ(μ,L) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 − b0μ 0 0 0 0
μ

ζ
b0 f1 − b1μ 0 0 0

0
μ

ζ
b1 f2 − b2μ 0 0

0 0
. . .

. . . 0

0 0 0
μ

ζ
bL−1 fL − bLμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the solution to the linear system

(6.3)
dy

dt
= Mζ(μ,L)y,

with initial condition

(6.4) y(0) = (

0μ

p0, . . . , 
LμpL
)
,

satisfies

(6.5) lim
μ→0

log(yi(t log(1/μ)))

log(1/μ)
= −mi(t) := − min

γ,α∈�0,L�:

γ �=0,γ≤α≤i

{i − γ + pγ − tfα},

with the convention p/0 = ∞, for p ≥ 0.

Note that Assumption 6.1 intuitively ensures that contributions coming from
mutants of different traits are different (when computing the growth or decrease
rate of a given trait). It is then clear which one wins in equation (6.5). If this
assumption does not hold, it could happen that prefactors (in front of powers of
μ) matter, and we do not want to enter into such an analysis. Mathematically, it
ensures the matrix Mζ in (6.2) to be diagonalisable for μ small enough, and thus
to obtain explicit expressions for change of basis matrices in the proof below.

PROOF OF LEMMA 6.1. Under assumption (6.1), the matrix Mζ in (6.2) is
diagonalisable for μ small enough: it can be checked that Mζ = SDS−1 with

D = (
(fi − biμ)δij

)
0≤i,j≤L,(6.6)

S =
((

ζ

μ

)L−i
∏L

k=i+1(fj − fk) + μ(bk − bj )∏L−1

=i b


1[i≥j ]
)

0≤i,j≤L

(6.7)
=: (μi−LCij 1[i≥j ]

)
0≤i,j≤L,

S−1 =
((

μ

ζ

)L−j
∏L−1


=j b
∏L
k=j,k �=i(fi − fk) + μ(bk − bi)

1[i≥j ]
)

0≤i,j≤L

(6.8)
=: (μL−jC′

ij 1[i≥j ]
)
0≤i,j≤L.
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The solution to the system (6.3) can then be written in the form

(6.9) y(t) = exp(tMζ )y(0) = S exp(tD)S−1y(0),

which reads in coordinates, for i = 0, . . . ,L,

(6.10)

yi(t) =
L∑

α,γ=0

Siαet (fα−bαμ)S−1
αγ 
γ μpγ

= ∑
γ :
γ �=0

∑
γ≤α≤i

μi−γ+pγ et (fα−bαμ) · CiαC′
αγ 
γ .

Thus,

yi

(
t log(1/μ)

) = ∑
γ :
γ �=0

∑
γ≤α≤i

μi−γ+pγ −t (fα−bαμ) · (CiαC′
αγ 
γ

)
.(6.11)

As μ tends to zero, the sum is dominated by the term with the smallest exponent
of μ, which by definition is mi(t), defined in (6.5). Thus, there exists a constant
C > 0, such that

(6.12) yi

(
t log(1/μ)

) = Cμmi(t)
(
1 + o(1)

)
,

which implies the assertion of (6.5) and concludes the proof of the lemma. �

6.1. Before the swap.

6.1.1. Time interval 0 ≤ t ≤ T −
L−1. If mij = m

(2)
ij , let ζ = 2 and

(6.13)
τ−
L−1(ε,μ) = inf

{
t : ∃ i ∈ �0,L� s.t. x

μ
i (t) > μi−ε}

∧ inf
{
t : ∣∣xμ

0 (t) − x̄0
∣∣ > ε

}∧ inf
{
t : xμ

L(t) > μL−2+ε},
while if mij = m

(1)
ij let ζ = 1 and

(6.14)
τ−
L−1(ε,μ) = inf

{
t : ∃ i ∈ �0,L� s.t. x

μ
i (t) > μi−ε}

∧ inf
{
t : ∣∣xμ

0 (t) − x̄0
∣∣ > ε

}∧ inf
{
t : xμ

L(t) > ε
}

and define

(6.15) T −
L−1 := lim

ε→0
lim
μ→0

τ−
L−1(ε,μ)

log(1/μ)
.

There exists a finite C such that on the time interval [0, τ−
L−1(ε,μ)], for i ∈ �0,L�,

(6.16)
dx

μ
i

dt
≥ (fi0 − Cε)x

μ
i + μ

(
bi−1

ζ
x

μ
i−1 − bix

μ
i

)
.
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Hence, by the Gronwall lemma, xμ is bigger than the solution to dy
dt

= Mζy with
fi = fi0 − Cε. Applying Lemma 6.1 with y(0) = (x̄0,0, . . . ,0), and thus 
0 = x̄0,
p0 = 0, 
i = 0 for i �= 0, we get, using (3.1), for ε small enough and t > 0,

(6.17) lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≥
{−i − Cεt for i = 0, . . . ,L − 1,

−L + t (fL0 − Cε) for i = L.

On the other hand, on the same time interval, we have, for some positive C, the
upper bound

(6.18)
dx

μ
i

dt
≤ (fi0 + Cε)x

μ
i + μ

(
bi−1

ζ
x

μ
i−1 − bix

μ
i

)
+ Ei,

where, until τ−
L−1, with κ := supbi/2,

(6.19) (E, ζ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
κμ · (μ1−ε,μ2−ε, . . . ,μL−1−ε,μL−2+ε,0

)
,2
)

if mij = m
(2)
ij ,(

(0,0, . . . ,0),1
)

if mij = m
(1)
ij .

Again by the Gronwall lemma, xμ is smaller than the solution to dy
dt

= Mζy + E,
where the fi in Mζ are given by fi = fi0 +Cε. The variation of parameters method
yields

(6.20)

y(t) = etMζ

(
y(0) +

(∫ t

0
e−sMζ ds

)
E

)

= etMζ y(0) + S

(∫ t

0
e(t−s)D ds

)
S−1E

= etMζ y(0) + S

(
e(fi−biμ)t

fi − biμ
δij

)
S−1E − S

(
1

fi − biμ
δij

)
S−1E.

Now we compute the order of magnitude of each term as in (6.11) in the proof of
Lemma 6.1 and show that the two terms in (6.20) involving E are negligible with
respect to the main term. Set

(6.21) e1(t) := S
(
e(fi−biμ)t δij

)
S−1E, e2 := S(δij )S

−1E.

In the case mij = m
(2)
ij , we have, for i �= L, from Lemma 6.1 that

(6.22)

(
e1
(
t log(1/μ)

)∨ e2
)
i

= O
(
μminγ∈�0,L−1�,γ≤i{i−γ+(2+γ−ε)1[γ<L−1]+{i−γ+(γ+ε)}1[γ=L−1]})

= O
(
μ(i+ε)1[i=L−1]+(i+2−ε)1[i<L−1]) = o

(
μi),
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and if i = L we get(
e1
(
t log(1/μ)

)∨ e2
)
L = O

(
μL−t (fL0+Cε)+ε) = o

(
μL−t (fL0+Cε)).(6.23)

Consequently, proceeding as for the lower bounding ODE, we get

(6.24)

lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≤ lim

μ→0

log(yi(t log(1/μ)))

log(1/μ)

=
{−i+Cεt for i = 0, . . . ,L − 1,

−L + t (fL0 + Cε) for i = L.

Finally, observe that, as the only growing population is the one with trait L,

(6.25) T −
L−1 = lim

ε→0
lim
μ→0

τ−
L−1(ε,μ)

log(1/μ)
=

⎧⎨
⎩

2/fL0 for mij = m
(2)
ij ,

L/fL0 for mij = m
(1)
ij .

In the case mij = m
(1)
ij , the proof continues directly with Section 6.2.

6.1.2. Time interval T −
L−1 ≤ t ≤ T −

L−2. Let mij = m
(2)
ij and

(6.26)

τ−
L−2(ε,μ) = inf

{
t : ∃ i ∈ �0,L − 1� s.t. x

μ
i (t) > μi−ε}

∧ inf
{
t : ∣∣xμ

0 (t) − x̄0
∣∣ > ε

}∧ inf
{
t : xμ

L−1(t) > μL−3+ε}
∧ inf

{
t : xμ

L(t) > μL−4+ε}
and define

(6.27) T −
L−2 := lim

ε→0
lim
μ→0

τ−
L−2(ε,μ)

log(1/μ)
.

There exists a positive C such that on the time interval [τ−
L−1(ε,μ), τ−

L−2(ε,μ)],

(6.28)

dx
μ
i

dt
≥ (fi0 − Cε)x

μ
i

+ μ

(
bi−1

2
x

μ
i−11[i<L−1] + bi+1

2
x

μ
i+11[i=L−1] − bix

μ
i

)
.

Hence, by the Gronwall lemma, and notation 6.3, xμ is bigger than the solution
to

(6.29)
dy

dt
=

(
Mleft(L − 2) 0

0 Mright(1)

)
y =: M ′(L − 2,1)y,

where Mleft(L − 2) = M2(L − 2) with fi = fi0 − Cε and

(6.30) Mright =
⎛
⎝fL−1,0 − Cε

μ

2
bL

0 fL0 − Cε

⎞
⎠ .
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Applying then twice Lemma 6.1, once with Mleft(L−2) and yleft = (y0, . . . , yL−2)

and once with Mright(1) (treated as M(1) with “reversed indices”, that is, fi , bi

replaced by fL−i , bL−i ) and yright = (yL−1, yL), with

(6.31) y(0) = (
x̄0,μ,μ2, . . . ,μL−1,μL−2),

up to oε(1) terms in the powers of μ due to the range of possible initial conditions
coming from the previous phase (those however do not change anything to the
calculations), we get

(6.32)

lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)

≥

⎧⎪⎪⎨
⎪⎪⎩

−i − Cεt for i = 0, . . . ,L − 2,

−(L − 1) + t (fL0 − Cε) for i = L − 1,

−(L − 2) + t (fL0 − Cε) for i = L.

On the other hand, we have the upper bound

(6.33)

dx
μ
i

dt
≤ (fi0 + Cε)x

μ
i

+ μ

(
bi−1

2
x

μ
i−11[i<L−1] + bi+1

2
x

μ
i+11[i=L−1] − bix

μ
i

)
+ Ei,

where until τ−
L−2 we have

(6.34) E = μ · (μ1−ε,μ2−ε, . . . ,μL−2−ε,μL−3+ε,μL−2−ε,μL−3+ε).
By the Gronwall lemma, xμ is smaller than the solution to dy

dt
= M ′y + E with

fi = fi0 + Cε. Using the same method as above (variation of constants in the
two blocks), we get (6.32) also as an upper bound, with fL0 − Cε replaced by
fL0 + Cε, and −i − Cεt replaced by −i + Cεt . Finally, observe that

(6.35) T −
L−2 = lim

ε→0
lim
μ→0

τ−
L−2(ε,μ)

log(1/μ)
= 4

fL0
.

6.1.3. Induction until T −
L/2. In this section, if L is odd, then L/2 has to be

replaced by �L/2�. For k ∈ {3, . . . ,L/2}, we treat the time interval T −
L−k ≤ t ≤

T −
L−(k+1). Let mij = m

(2)
ij and

(6.36)

τ−
L−k(ε,μ) = inf

{
t : ∃ i ∈ �0,L − k + 1� s.t. x

μ
i (t) > μi−ε}

∧ inf
{
t : ∣∣xμ

0 (t) − x̄0
∣∣ > ε

}
∧ inf

{
t : ∃ j ∈ �1, k� s.t. x

μ
L−k+j (t) > μ(L−k+j)−2j+ε}
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and define

(6.37) T −
L−k := lim

ε→0
lim
μ→0

τ−
L−k(ε,μ)

log(1/μ)
.

For t ∈ [τ−
L−k(ε,μ), τ−

L−k−1(ε,μ)], we have the lower bound

(6.38)

dx
μ
i

dt
≥ (fi0 − Cε)x

μ
i

+ μ

(
bi−1

2
x

μ
i−11[i<L−k+1] + bi+1

2
x

μ
i+11[i≥L−k+1] − bix

μ
i

)
.

Hence, by the Gronwall lemma, xμ is bigger than the solution to

(6.39)
dy

dt
=

(
Mleft(L − k) 0

0 Mright(k − 1)

)
y =: M ′(L − k, k − 1)y,

where Mleft(L − k) = M2(L − k) with fi = fi0 − Cε and

(6.40) Mright(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

fL−k,0 − Cε
μ

2
bL−k+1 0

. . .
. . .

fL−1,0 − Cε
μ

2
bL

0 fL0 − Cε

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Applying twice Lemma 6.1, once with Mleft and yleft = (y0, . . . , yL−k−1) and
once with Mright (treated as M(k) with “reversed indices”, fi , bi replaced by fL−i ,
bL−i ) and yright = (yL−k, . . . , yL), with

(6.41) y(0) = (
x̄0,μ,μ2, . . . ,μL−k,μL−k+1,μL−k,μL−k−1, . . . ,μL−2k),

up to oε(1) terms in the powers of μ due to the range of possible initial conditions
coming from the previous phase, we get

(6.42)

lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)

≥
{−i − Cεt for i = 0, . . . ,L − k,

−i + j − 1 + t (fL0 − Cε) for i = L − k + j, j = 1, . . . , k.

On the other hand, we have the upper bound

(6.43)

dx
μ
i

dt
≤ (fi0 + Cε)x

μ
i

+ μ

(
bi−1

2
x

μ
i−11[i<L−k+1] + bi+1

2
x

μ
i+11[i≥L−k+1] − bix

μ
i

)
+ Ei,
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where on the time interval [τ−
L−k(ε,μ), τ−

L−k−1(ε,μ)] we have

(6.44)
E = μ · (μ1−ε,μ2−ε, . . . ,μL−k−ε,μL−k−1+ε,μL−k−ε,

μL−k−1+ε,μL−k−2+ε, . . . ,μL−1−2(k−1)+ε).
By the Gronwall lemma, xμ is thus smaller than the solution to dy

dt
= M ′y + E

with fi = fi0 + Cε. Using the same method as above (variation of the constant in
the two blocks), we get (6.42) also as an upper bound, with fL0 − Cε replaced by
fL0 + Cε, and −i − Cεt replaced by −i + Cεt . Finally, observe that

(6.45) T −
L−k = lim

ε→0
lim
μ→0

τ−
L−k(ε,μ)

log(1/μ)
= 2k

fL0
.

6.2. The swap. Let mij = m
(2)
ij and

(6.46)

τ s(ε,μ) = inf
{
t : ∃ i ∈ �0,L/2� s.t. x

μ
i (t) > μi−ε}∧ inf

{
t : xμ

0 (t) < ε
}

∧ inf
{
t : ∃ i ∈ �L/2,L� s.t. x

μ
i (t) > μL−i−ε}

∧ inf
{
t : xμ

L(t) > x̄L − ε
}
,

or mij = m
(1)
ij and

(6.47)
τ s(ε,μ) = inf

{
t : ∃ i ∈ �0,L − 1� s.t. x

μ
i (t) > μi−ε}

∧ inf
{
t : xμ

0 (t) < ε
}∧ inf

{
t : xμ

L(t) > x̄L − ε
}
.

For t ∈ [τ−
L/2(ε,μ), τ s(ε,μ)] and χ ∈ {0,L}, we have the lower bounds

dx
μ
χ

dt
≥ (

bχ − dχ − cχ0x
μ
0 − cχLx

μ
L − Cμ

)
xμ
χ − C′μ1−ε(6.48)

and the upper bounds

dx
μ
χ

dt
≤ (

bχ − dχ − cχ0x
μ
0 − cχLx

μ
L

)
xμ
χ + C′μ1−ε.(6.49)

Let (x̃0, x̃L) denote the solution of the unperturbed system, that is, of

dxχ

dt
= (bχ − dχ − cχ0x0 − cχLxL)xχ .(6.50)

By (3.1) and (3.2), we know that this system has a unique stable equilibrium
(0, x̄L). Moreover, the time needed to enter an ε-neighbourhood of this equilib-
rium from initial conditions (x̄0 − ε, ε) is of order O(1). Applying the Gronwall
lemma to the function |xμ

0 (t)− x̃0(t)|2 +|xμ
L(t)− x̃L(t)|2, (6.48) and (6.49) imply

that on any compact time interval (x
μ
0 , x

μ
L) → (x̃0, x̃L) as μ ↓ 0. Moreover, for all



CROSSING A FITNESS VALLEY 3563

μ small enough, the system (x
μ
0 , x

μ
L) has a stable equilibrium that converges to

(0, x̄L), as μ ↓ 0.
For the populations (x

μ
1 , . . . , x

μ
L−1), we have, for t ∈ [τ−

L/2(ε,μ), τ s(ε,μ)], the
lower bounds

(6.51)

dx
μ
i

dt
≥ (bi − di − ci0x̄0 − ciLx̄L − Cε)x

μ
i

+ μ

(
bi−1

2
x

μ
i−11[i<L/2] + bi+1

2
x

μ
i+11[i≥L/2] − bix

μ
i

)
,

in the case mij = m
(2)
ij and

dx
μ
i

dt
≥ (bi − di − ci0x̄0 − ciLx̄L − Cε)x

μ
i + μ

(
bi−1x

μ
i−1 − bix

μ
i

)
,(6.52)

in the case mij = m
(1)
ij . We have decoupled traits 0 and L from traits 1, . . . ,L − 1.

We still have to show that the functions (x
μ
i , i ∈ �1,L−1�) stay smaller than μ1−ε .

By the Gronwall lemma, the following hold:

1. In the case mij = m
(1)
ij , the solution (x

μ
1 , . . . , x

μ
L−1) is smaller than the solu-

tion to

(6.53)
dy

dt
= M1(L − 2)y

with fi = bi − di − ci0x̄0 − ciLx̄L − Cε < 0 and initial conditions:

(6.54) y(0) = (
μ,μ2, . . . ,μL−1)

up to oε(1) terms in the powers of μ due to the range of possible initial conditions
coming from the previous phase. Applying Lemma 6.1, we get

(6.55) lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≥ −i+t sup

1≤α≤i

fα for i = 1, . . . ,L − 1.

But we just mentioned that the swap has a duration of order 1. Thus, the t to be
considered is negligible with respect to 1, and

(6.56) lim
t→0

lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≥ −i for i = 1, . . . ,L − 1.

2. In the case mij = m
(2)
ij , the solution (x

μ
1 , . . . , x

μ
L−1) is thus smaller than the

solution to

(6.57)
dy

dt
=

(
Mleft(L/2 − 2) 0

0 Mright(L/2 − 1)

)
y =: M ′(L/2 − 2,L/2 − 1)y

with fi = bi − di − ci0x̄0 − ciLx̄L − Cε < 0 and initial conditions

(6.58) y(0) = (
μ,μ2, . . . ,μL/2+1,μL/2,μL/2−1 . . . ,μ

)
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up to oε(1) terms in the powers of μ due to the range of possible initial conditions
coming from the previous phase. Here, if L is odd, then the initial condition has to
be replaced by

(6.59) y(0) = (
μ,μ2, . . . ,μ�L/2�,μ�L/2�,μ�L/2�−1 . . . ,μ

)
and matrix dimensions have to be modified accordingly, but the proof stays the
same. Applying Lemma 6.1 twice (in the two blocks), and letting t go to 0 as the
swap has a duration of order 1, we get

(6.60) lim
t→0

lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≥ −min{i,L − i} for i = 1, . . . ,L − 1.

On the other hand, we have the upper bound

(6.61)
dx

μ
i

dt
≤ Fx

μ
i + μ1−ε,

with some F > 0. Thus, by the Gronwall lemma,

(6.62) x
μ
i (t) ≤ μi−ε for t <

ε

F
log(1/μ) and for i = 1, . . .L/2

and similarly for i = L/2, . . . ,L − 1 (no population changes its order of mag-
nitude of more than ε during any time of order O(1)). We deduce that, for
i = 1, . . . ,L − 1,

(6.63) lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≤
⎧⎨
⎩

−min{i,L − i} if mij = m
(2)
ij ,

−i if mij = m
(1)
ij .

The duration of the swap vanishes (on the time scale log(1/μ)) in the limit μ → 0.
We thus have T s = T −

L/2.

6.3. After the swap.

6.3.1. Case mij = m
(1)
ij . Let

(6.64)
τ+(ε,μ) = inf

{
t : ∃ i ∈ �1,L − 1� s.t. x

μ
i (t) > μi−2ε}

∧ inf
{
t : ∣∣xμ

L(t) − x̄L

∣∣ > ε
}
.

For t ∈ [τ s(ε,μ), τ+(ε,μ)], we have the lower bound

(6.65)
dx

μ
i

dt
≥ (fiL − Cε)x

μ
i + μ

(
bi−1x

μ
i−1 − bix

μ
i

)
.

Hence, by the Gronwall lemma, and notation (6.3), xμ is bigger than the solution
to dy

dt
= M1y with fi = fiL − Cε. Applying Lemma 6.1 with

(6.66) y(0) = (
ε,μ, . . . ,μL−1, x̄L − ε

)
,
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up to oε(1) terms in the powers of μ due to the range of possible initial conditions
coming from the previous phase (and thus pi = i − Lδi,L), we get using Assump-
tion 1,

(6.67)
lim
μ→0

log(x
μ
i (t log(1/μ)))

log(1/μ)
≥ −min

α≤i

{
i − Lδi,L − t (fαL − Cε)

}
= −i + Lδi,L − t min

α∈�0,i�
|fαL|+tCε.

In the same way, we get the corresponding upper bound with fαL − Cε replaced
by fαL + Cε.

6.3.2. Case mij = m
(2)
ij . In this phase, the system cannot be approximated by a

piecewise block-triangular linear system anymore. Let us study the ODE followed
by the rescaled process. Let

(6.68)

τ+(ε,μ) = inf
{
t > T s : ∃ i ∈ �0,L − 1� : xμ

i (t) > ε
}

∧ inf
{
t : ∣∣xμ

L(t) − x̄L

∣∣ > ε
}
.

For t ∈ [τ s(ε,μ), τ+(ε,μ)], we have the lower bound

(6.69)
dx

μ
i

dt
≥ (fiL − Cε)x

μ
i + μ

(
bi−1

2
x

μ
i−1 + bi+1

2
x

μ
i+1 − bix

μ
i

)
and a similar upper bound where fiL − Cε is replaced by fiL + Cε. Let

(6.70) x̃
μ
i := log[xμ

i (t · log( 1
μ
))]

log( 1
μ
)

.

We thus have

(6.71)
dx̃

μ
i

dt
≥ fiL − Cε − μ + bi−1

2
μ1+x̃

μ
i −x̃

μ
i−1 + bi+1

2
μ1+x̃

μ
i −x̃

μ
i+1

and a similar upper bound, with initial condition (we reset the time of the swap to
0 from now on):

(6.72)

x̃μ(0) =
(

log ε

log(1/μ)
,−1,−2, . . . ,

− L/2,−L/2 + 1, . . . ,−1,
log(x̄L − ε)

log(1/μ)

)

up to oε(1) terms due to the range of possible initial conditions coming from the
previous phase. Here, if L is odd, then the initial condition has to be replaced by

(6.73)

x̃μ(0) =
(

log ε

log(1/μ)
,−1,−2, . . . ,

− �L/2�,−�L/2�, . . . ,−1,
log(x̄L − ε)

log(1/μ)

)
,
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but the proof idea stays the same. Let δ > 0 and T in
i (δ,μ) := inf{t > 0 : x̃

μ
i >

x̃
μ
i−1 − (1 − δ) or x̃

μ
i > x̃

μ
i+1 − (1 − δ)}. Then, for t ∈ [0, T in

i ], that is, when x̃
μ
i is

above one of its neighbours minus 1 − δ, then, for μ and δ small enough, the slope
of x̃

μ
i is prescribed by the fitness of trait i with respect to trait L (up to a multiple

of ε). Indeed, by (6.71),

(6.74)
dx̃

μ
i /dt ≥ fiL − Cε − μ ≥ fiL − 2Cε,

dx̃
μ
i /dt ≤ fiL + Cε − μ + bi−1

2
μδ + bi+1

2
μδ ≤ fiL + 2Cε.

Let T out
i (δ,μ) := inf{t > T s : x̃

μ
i < x̃

μ
i−1 − (1 + δ) or x̃

μ
i < x̃

μ
i+1 − (1 + δ)}, we

call it the exit time of the security region. Let us show that, for μ small enough,
we have T out

i = ∞, for all i ∈ {0, . . . ,L}.
Assume by contradiction that inf{T out

i , i ∈ {0, . . . ,L}} < ∞.
Among the indices i that reach the infimum, consider the one such that

x̃
μ
i (T out

i ) is maximal, that is, x̃
μ
i is the highest population among those which

exit the security region first. By continuity of the solutions, at t = T out
i we have

min{1+ x̃
μ
i − x̃

μ
i−1,1+ x̃

μ
i − x̃

μ
i+1} = −δ. Suppose that x̃

μ
i exits its security region

by falling below its left neighbour minus one, that is,

(6.75) 1 + x̃
μ
i − x̃

μ
i−1 = −δ and 1 + x̃

μ
i − x̃

μ
i+1 > −δ,

the two other possibilities (right neighbour or both) are similar. By (6.71), for μ

small enough,

dx̃
μ
i

dt

(
T out

i

) ≥ fiL − Cε − μ + min
{
bi−1

2
,
bi+1

2

}
μ−δ = O

(
μ−δ),(6.76)

dx̃
μ
i−1

dt

(
T out

i

) = fi−1,L − Cε − μ + bi−2

2
μ1+x̃

μ
i−1−x̃

μ
i−2 + bi

2
μ2+δ

(6.77)

≤ bi−2

2
o
(
μ−δ)+ bi

2
μ2+δ = o

(
μ−δ),

where the upper bounds in (6.77) come from the assumption that x̃
μ
i is the highest

population among these exiting their security region. Indeed, if in (6.77) we had
1 + x̃

μ
i−1 − x̃

μ
i−2 = −δ then, by definition, x̃

μ
i−1 would exit its security region, thus

we would have x̃
μ
i−1 ≤ x̃

μ
i , which contradicts (6.75). Thus, 1 + x̃

μ
i−1 − x̃

μ
i−2 > −δ.

The equations (6.76) and (6.77) imply that the derivative d
dt

(x̃
μ
i − x̃

μ
i−1)(T

out
i ) is

as large as needed. Thus, again by the continuity of the solutions, this implies the
existence of some t ′ < t such that x̃

μ
i (t ′) < x̃

μ
i−1(t

′) − (1 + δ). Hence, t ′ < T out
i ,

which is a contradiction. This implies that T out
i = ∞, for all i ∈ {0, . . . ,L}.

This allows us to describe the limit of x̃μ as μ → 0. A helpful example is given
in Figure 3. First, as fLL = 0, equation (6.74) and the previous reasoning imply
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that until τ+(ε,μ),

(6.78)
dx̃

μ
L

dt
≥ −Cε and

dx̃
μ
L

dt
≤ +Cε,

which implies that x̃
μ
L → 0 (take the limits ε → 0 after μ → 0). Now the ini-

tial condition (6.72) and Assumption 1 imply that x̃
μ
i → −(L − i), for i =

L/2, . . . ,L − 1. Indeed, x̃
μ
L is close to 0, and x̃

μ
i (0) = −(L − i) for those indices,

so the only possibility to maintain a difference of less than one with their nearest
neighbours and having a negative fitness fi,L is to stay constant. The shape of the
first L/2 coordinates of the process is less trivial to formulate: each x̃

μ
i behaves

piecewise linearly in the limit μ → 0 and given the sequence (f0L, . . . , fL−1,L)

one can construct the successive slopes by following the rule “x̃μ
i tries to decay

with slope fiL while being at distance at most 1 of x̃
μ
i−1 and x̃

μ
i+1; if it is not

possible, then it stays parallel to the largest of its neighbours, either x̃
μ
i−1 or x̃

μ
i+1”.

More precisely, consider the sequence {i1, . . . , ir} of “fitness records” defined
recursively by i1 = 0, ik = min{i ∈ �0,L − 1� : fiL < fik−1L}. Then the previous
reasoning implies that, for any ε > 0, as μ → 0, the process (x̃μ(t))t>0, starting
with initial condition (6.72), stays in an ε-neighbourhood of the deterministic pro-
cess x(t) given by

(6.79) xi(t) = −(L− i)∨ max
k∈�0,i�

{−i −|fkL|t}∨ max
k∈�1,r�

{−ik −|i − ik|− |fikL|t}.
Once again, Figure 3 provides a helpful example to compute the formula.

7. Proofs of Theorems 3.2 and 3.3. In this section, we focus on mutation
probabilities scaling as a negative power of K times a slowly varying function
(recall (3.15)).

7.1. Poisson representation. In the vein of Fournier and Méléard [28], we rep-

resent the population process in terms of Poisson measures. Let (Q
(b)
k ,Q

(m)
k ,Q

(d)
k ,

0 ≤ k ≤ L) be independent Poisson random measures on R
2+ with intensity ds dθ ,

and recall that (ei,0 ≤ i ≤ L) is the canonical basis of RL+1. We decompose on
possible jumps that may occur: births without mutation, birth with mutation and
deaths of individuals. For simplicity, we write

(7.1) dK
i (x) = DK

i (x)xi =
(
di +

L∑
j=0

cij

K
xj

)
xi,

for the total death rate of the subpopulation i. Recall that in this regime, we only
consider the mutation kernel m

(1)
ij = μδi+1,j . The process X admits the following

representation. For every real-valued function h on R
L+1+ such that h(X(t)) is
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integrable,

(7.2)

h
(
X(t)

) = h
(
X(0)

)+
L∑

k=0

∫ t

0

∫
R+

(
h
(
X
(
s−)+ ek

)− h
(
X
(
s−)))

× 1θ≤(1−μ)bkXk(s
−)Q

(b)
k (ds, dθ)

+
L∑

k=1

∫ t

0

∫
R+

(
h
(
X
(
s−)+ ek

)− h
(
X
(
s−)))

× 1θ≤μbk−1Xk−1(s
−)Q

(m)
k (ds, dθ)

+
L∑

k=0

∫ t

0

∫
R+

(
h
(
X
(
s−)− ek

)− h
(
X
(
s−)))

× 1θ≤DK
k (X(s−))Xk(s

−)Q
(d)
k (ds, dθ).

Let us now introduce a finite subset of N containing the equilibrium size of the
0-population,

(7.3) IK
ε :=

[
K

(
x̄0 − 2ε

sup1≤i≤L c0i

c00

)
,K

(
x̄0 + 2ε

sup1≤i≤L c0i

c00

)]
∩N,

and the stopping times T K
ε and SK

ε , which denote respectively the hitting time of
�εK� by the total mutant population (X1 + · · · + XL) and the exit time of IK

ε by
the resident 0-population,

(7.4)
T K

ε := inf
{
t ≥ 0,

∑
1≤i≤L

Xi(t) = �εK�
}
,

SK
ε := inf

{
t ≥ 0,X0(t) /∈ IK

ε

}
.

As shown in [14], we know that as long as the total mutant population size
is smaller than εK , the resident population size stays close to its monomorphic
equilibrium with a probability close to 1 (see Lemma A.1). This is a fundamen-
tal property of the population process, as it implies that the populations live in
an almost constant environment and are subject to an almost constant competi-
tive pressure from other individuals, ci0x̄0. This allows us to couple i-population
sizes (1 ≤ i ≤ L − 1) with subcritical branching processes with migration X

(−)
i

and X
(+)
i to control their dynamics. Moreover, after the first growing phase for

the L-population, if the sum of the 1- to (L − 1)-mutant population sizes stays
smaller than εK , whereas the L-mutant population size exceeds the size εK , the
0 and L populations behave as if they were the only ones in competition. As a
consequence, the remaining time needed for the L-population to replace the 0-
population is close to logK/|f0L| (see, for instance, [14] and later in this paper for
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a precise statement). Hence, the first step consists in estimating the time needed
for the mutant population to reach the size �εK�. There are essentially two possi-
bilities:

• Either KμL � 1; in this case there is a (large) number of order KμL of L-type
individuals. Hence, the outcome is similar to a large resident population pro-
ducing recurrently favourable mutants, studied in details in [46]. The fixation
time of the trait L is of order logK , and we provide couplings with appropri-
ate birth-death processes (without competition) with immigration to control the
subpopulation sizes.

• Or KμL � 1; in this case, some of the mutant-population size dynamics con-
sist in small excursions separated with periods with no individual. Indeed, the
i-population with i ≤ α is again well approximated by a birth-death process
(without competition) with immigration, which is close to the deterministic
limit, while, for the i-population with i > α, the immigration term is not large
enough and the population is well described, at each arrival of a single mutant,
by a subcritical birth-death process. Each excursion of the sum of populations
i ∈ �α,L − 1� has the same probability to produce a L-mutant which may gen-
erate a large population and invade. In this case, the time to invasion is close to
a geometric random variable, with a mean of order 1/(KμL), much larger than
logK .

7.2. Proof of Theorem 3.2. The time needed for the favourable mutation to in-
vade the population depends strongly on the mutation probability per reproductive
event, μ.

To study the case when KμL � 1, we couple each population size Xi , 0 ≤ i ≤
L − 1 with two processes such that, for every 0 ≤ i ≤ L − 1 and t ≤ T K

ε ∧ SK
ε ,

(7.5) X
(−)
i (t) ≤ Xi(t) ≤ X

(+)
i (t) a.s.

By definition of the population process in (7.2) and of the stopping times T K
ε

and SK
ε in (7.4), the following processes satisfy (7.5):

(7.6) X
(±)
0 (t) = K

(
x̄0 ± 2ε

sup1≤i≤L c0i

c00

)
=: x(±)

0 K,

and, for 1 ≤ i ≤ L − 1 and ∗ ∈ {−,+},

(7.7)

X
(∗)
i (t) =

∫ t

0

∫
R+

1
θ≤(1−μ)biX

(∗)
i (s−)

Q
(b)
k (ds, dθ)

+
∫ t

0

∫
R+

1
θ≤μbi−1X

(∗)
i−1(s

−)
Q

(m)
k (ds, dθ)

−
∫ t

0

∫
R+

1
θ≤(di+ci0x

(∗̄)
0 +1{∗=−}ε sup1≤j≤L cij )X

(∗)
i (s−)

Q
(d)
k (ds, dθ),
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where ∗̄ = {−,+} \ ∗ and we used the same Poisson measures as in (7.2). Note
that from this representation, we get directly the classical semimartingale decom-
position for X

(−)
i and X

(+)
i : for ∗ ∈ {−,+},

(7.8) X
(∗)
i (t) = M

(∗)
i (t) + A

(∗)
i (t),

where M
(∗)
i is a square integrable martingale and A

(∗)
i is a finite variation process,

namely

M
(−)
i (t) =

∫ t

0

∫
R+

1
θ≤(1−μ)biX

(−)
i (s−)

(
Q

(b)
k (ds, dθ) − ds dθ

)

+
∫ t

0

∫
R+

1
θ≤μbi−1X

(−)
i−1(s

−)

(
Q

(m)
k (ds, dθ) − ds dθ

)
(7.9)

−
∫ t

0

∫
R+

1
θ≤(di+ci0x

(+)
0 +ε sup1≤j≤L cij )X

(−)
i (s−)

× (
Q

(d)
k (ds, dθ) − ds dθ

)
,

A
(−)
i (t) = μbi−1

∫ t

0
X

(−)
i−1(s) ds

(7.10)

+
(
(1 − μ)bi − di − ci0x

(+)
0 − ε sup

1≤j≤L

cij

)∫ t

0
X

(−)
i (s) ds,

and the same expression for M
(+)
i and A

(+)
i by replacing the (−)’s by (+)’s and

the terms

(7.11) di + ci0x
(+)
0 + ε sup

1≤j≤L

cij

by

(7.12) di + ci0x
(−)
0 .

Finally, we recall the expression of the quadratic variation of M
(−)
i ,

(7.13)

〈
M

(−)
i

〉
t = μbi−1

∫ t

0
X

(−)
i−1(s) ds

+
(
(1 − μ)bi + di + ci0x

(+)
0 + ε sup

1≤j≤L

cij

)∫ t

0
X

(−)
i (s) ds,

and the one of M
(+)
i is obtained by similar modifications as before.

Let us now introduce, for 1 ≤ k ≤ L − 1, the following notation:

(7.14)
−s

(+)
k0 := (1 − μ)bk − dk − ck0x

(−)
0 and

−s
(−)
k0 := (1 − μ)bk − dk − ck0x

(+)
0 − ε sup

1≤j≤L

ckj ,
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as well as for ∗ ∈ {−,+}:

(7.15) x
(∗)
k := (1 ∗ ε)k

b0 · · ·bk−1x
(∗)
0 μk

s
(∗)
10 · · · s(∗)

k0

and t (k)
ε := | ln ε|

s
(−)
k0

.

Notice that s
(+)
k0 ≤ s

(−)
k0 and that s

(+)
k0 and s

(−)
k0 are positive, for ε small enough, by

Assumption (A2).

LEMMA 7.1. For every 0 ≤ i ≤ L − 1,

x
(−)
i K ≤ E

[
X

(−)
i (s)

]
, s ≥ t (1)

ε + · · · + t (i)ε

and

E
[
X

(+)
i (s)

] ≤ x
(+)
i K, s ≥ 0.

PROOF. We prove this lemma by induction. The property is true for i = 0.
Recall (7.7), (7.14) and (7.15). Then we get, for 1 ≤ i ≤ L − 1,

d

dt
E
[
X

(∗)
i (t)

] = bi−1μE
[
X

(∗)
i−1(t)

]− s
(∗)
i0 E

[
X

(∗)
i (t)

]
, E

[
X

(∗)
i (0)

] = 0.

By the induction hypothesis, this yields, for every t ≥ 0,

d

dt
E
[
X

(+)
i (t)

] ≤ μbi−1x
(+)
i−1K − s

(+)
i0 E

[
X

(+)
i (t)

]
, E

[
X

(∗)
i (0)

] = 0

and, for every t ≥ t
(1)
ε + · · · + t

(i)
ε ,

d

dt
E
[
X

(−)
i (t)

] ≥ μbi−1x
(−)
i−1K − s

(−)
i0 E

[
X

(−)
i (t)

]
, E

[
X

(∗)
i (0)

] = 0,

which completes the proof. �

LEMMA 7.2. Let 0 ≤ i < L such that limK→∞ Kμi = ∞, and introduce the
two counting processes:

(7.16) R
(±)
i (t) :=

∫ t

0

∫
R+

1
θ≤μbiX

(±)
i (s−)

Q
(m)
i+1(ds, dθ)

and

(7.17) R̄
(±)
i (t) :=

∫ t

0

∫
R+

1
θ≤μbiE[X(±)

i (s−)]Q
(m)
i+1(ds, dθ),

where we use the same Poisson point measure as in (7.2). Then M
(±)
i := R

(±)
i −

R̄
(±)
i is a martingale and

E
[(

M
(±)
i (t)

)2] ≤ 2μbix
(±)
i Kt.
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PROOF. We have

M
(±)
i (t) =

∫ t

0

∫
R+

(1
θ≤μbiX

(±)
i (s−)

− 1
θ≤μbiE[X(±)

i (s−)])Q
(m)
i+1(ds, dθ)

=
∫ t

0

∫
R+

(1
θ≤μbiX

(±)
i (s−)

− 1
θ≤μbiE[X(±)

i (s−)])Q̃
(m)
i+1(ds, dθ)

+ μbi

∫ t

0

(
X

(±)
i (s) −E

[
X

(±)
i (s)

])
ds.

Hence, M
(±)
i is a martingale. We can compute its quadratic variation via

〈
M

(±)
i

〉
t =

∫ t

0

∫
R+

(1
θ≤μbiX

(±)
i (s)

− 1
θ≤μbiE[X(±)

i (s)])
2 ds dθ

= μbi

∫ t

0

(
X

(±)
i (s) +E

[
X

(±)
i (s)

]− 2
(
X

(±)
i (s) ∧E

[
X

(±)
i (s)

]))
ds

= μbi

∫ t

0

∣∣X(±)
i (s) −E

[
X

(±)
i (s)

]∣∣ds

As a consequence,

E
[(

M
(±)
i (t)

)2] = E
[〈
M

(±)
i

〉
t

] ≤ μbi

∫ t

0
E
[
X

(±)
i (s) +E

[
X

(±)
i (s)

]]
ds

= 2μbi

∫ t

0
E
[
X

(±)
i (s)

]
ds,

and we complete the proof applying Lemma 7.1. �

We have now the tools needed to prove Theorem 3.2.

PROOF OF THEOREM 3.2. From (7.5) and Lemma 7.1, we know that the L-
population has a size of order KμL after a time of order ln(1/ε), for ε small
enough (not scaling with K). The proof of the asymptotics

lim inf
K→∞ P

(
(1 − cε)

1

α

L

fL0
<

T
(K,L)
ε

logK
< (1 + cε)

1

α

L

fL0

)
≥ 1 − cε

follows this of Lemma 6.1 in [46]. To end the proof of Theorem 3.2, two more steps
are needed. The first one is the study of the swap between 0 and L-populations,
which leads to the first statement (3.20) of Theorem 3.2, and the second one is the
study of the extinction phase of the unfit mutants, which leads to the second and
third statements (3.21) and (3.22) of Theorem 3.2.

First, we need to show that once the L-population size has reached the value
εK , the rescaled populations XK

0 and XK
L behave as if they were the only ones
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in competition and follow a dynamics close to the solutions to (2.3) with L = 1,
μ = 0 and initial conditions satisfying

(7.18) xL(0) = ε and
∣∣x0(0) − x̄0

∣∣ ≤ 2ε
sup1≤i≤L c0i

c00
.

This stays true until a time when XK
L is close to its monomorphic equilibrium

size x̄L and XK
0 is smaller than ε2. During this time interval, the i-population

sizes, for 1 ≤ i ≤ L − 1, do not evolve a lot. More precisely, there exists a con-
stant ε0 such that, for ε ≤ ε0 and 1 ≤ i ≤ L − 1, with a probability close to
one, μi+ε ≤ XK

i (t) ≤ μi−ε , where t describes an interval with a duration of or-
der 1, which is the time needed for the rescaled population sizes (XK

0 ,XK
L ) to hit

the set ((0, ε2], [x̄L − ε, x̄L + ε]) from an initial state close to (x̄0, ε). To prove
that, the idea is to show that the total population size stays of order K , and as
a consequence with a probability close to one, we can find a positive A such
that −AE[XK

i (t)] ≤ dE[XK
i (t)]/dt ≤ AE[XK

i (t)] (for rigorous arguments, see
the proof of Lemma 10 in [5]). This leads to the following rigorous statement:
there exist a positive ε0 and a function f : x 
→ f (x) ∈ (0, x2) such that, for ε ≤ ε0,
there exist a stopping time UK

ε and an event E such that

(7.19)
UK

ε fL0

logK
→

K→∞ 1 in probability, P(E) ≥ 1 − ε,

and almost surely on E ,

(7.20)
f (ε) < XK

0
(
UK

ε

)
< ε2,

∣∣XK
L

(
UK

ε

)− x̄L

∣∣ ≤ ε,

Kμε < XK
i

(
UK

ε

)
/μi < Kμ−ε, 1 ≤ i ≤ L − 1.

This proves part (3.20) of Theorem 3.2.
Second, we need to approximate the time for the i-populations (0 ≤ i ≤ L − 1)

to get extinct after the time UK
ε . Let us define two stopping times:

V K
ε := inf

{
t ≥ UK

ε ,
∣∣XK

L (t) − x̄L

∣∣ > 2ε
}

and

WK
ε := inf

{
t ≥ UK

ε ,
∑

0≤i≤L−1

XK
i (t) > ε

}
.

We will prove the following property: there exist ε0,C,V > 0 such that, for ε ≤ ε0,

(7.21) lim inf
K→∞ P

(
eKV <

(
WK

ε ∧ V K
ε

)) ≥ 1 − oε(1),

where oε(1) is a function of ε which goes to 0 as ε goes to 0. This allows us
to couple the i-population sizes (0 ≤ i ≤ L − 1) with subcritical birth and death
processes with inhomogeneous immigration in order to approximate their time to
extinction.
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To prove (7.21), we need to control the dynamics of two types of populations:
first, the i-populations sizes, with 0 ≤ i ≤ L − 1, which are counter-selected, and
whose initial size is smaller than O(ε2K); second, the L-population size. Let us
show that with a probability converging to 1 as K → ∞, WK

ε < V K
ε . To this aim,

notice that on the time interval [0,V K
ε ], the death rate of the i-population (0 ≤ i ≤

L − 1) satisfies

(7.22) di +
L∑

j=0

cij

K
Xj ≥ di + ciL(x̄L − 2ε).

Moreover, we know that almost surely on the event E , we have X0(U
K
ε ) ≤ ε2K .

Hence, if we introduce, for 0 ≤ i ≤ L − 1 and k ∈ N, the notation

(7.23) T
(Xi)
k := inf

{
t ≥ UK

ε ,Xi(t) = k
}
,

and apply (A.5), we can compare the i-population process to a subcritical birth-
death process with the effective death rate given above and obtain

(7.24)
P
(
T

(X0)
εK < V K

ε |E) ≤ ((d0 + c0L(x̄L − 2ε))/b0)
ε2K − 1

((d0 + c0L(x̄L − 2ε))/b0)εK − 1

≤
(

b0

d0 + c0L(x̄L − 2ε)

)εK(1−ε)

≤ Cε,

for any constant C, K large enough and ε small enough.
Let us denote by M01 the number of type 1 mutants produced by type 0-

individuals during the time interval [UK
ε ,V K

ε ]. From (7.2), we have

(7.25) M01 =
∫ V K

ε ∧T
(X0)

0

UK
ε

1θ≤μb0X0(s
−)Q

(m)
0 (ds, dθ).

Moreover, considering all the possible orderings of T
(X0)
εK , V K

ε , T
(X0)
0 and

lnK/
√

ε, we get

P

({
T

(X0)
εK < V K

ε ∧ T
(X0)
0

}∪
{
V K

ε ∧ T
(X0)

0 < T
(X0)
εK ∧ lnK√

ε

}

∪
{

lnK√
ε

< V K
ε ∧ T

(X0)
0 < T

(X0)
εK

})
= 1.
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Hence, using the Markov inequality, (7.24), as well as the fact that a subcritical
branching process takes a time of order lnK to get extinct (see (A.4)), we get that

(7.26)

P(M01 > Kμ lnK|E)

≤ (εK)(b0μ)(lnK/
√

ε)

Kμ lnK
+ P

(
T

(X0)
εK < V K

ε |E)

+ P

(
lnK√

ε
< V K

ε ∧ T
(X0)
0 < T

(X0)
εK

∣∣∣E)

= oε(1).

Applying again (A.5), we find that each mutant of type 1 that is produced by
a type 0 individual generates a type 1 population whose size has a probability to
reach ε/μ lnK that is bounded by(

b1

d1 + c1L(x̄L − 2ε)

)ε/μ lnK−1
.

We deduce that

P
(
T

(X1)
εK < V K

ε |E)
≤ P(M01 > Kμ lnK|E) + Kμ lnK

(
b1

d1 + c1L(x̄L − 2ε)

)ε/μ lnK−1
= oε(1).

We reiterate the reasoning for the other counter-selected mutant populations (i-
populations with 2 ≤ i ≤ L − 1) to conclude

(7.27) P
(
WK

ε < V K
ε |E) = oε(1).

By a direct application of Lemma A.1, we get the existence of a positive constant
V such that

(7.28) lim inf
K→∞ P

(
eKV < V K

ε |V K
ε ≤ WK

ε ,E
)= 1.

Using (7.27) and (7.28), we get

(7.29)

lim inf
K→∞ P

(
eKV <

(
WK

ε ∧ V K
ε

)|E)
≥ lim inf

K→∞ P
(
eKV < V K

ε ≤ WK
ε |E)

= lim inf
K→∞ P

(
eKV < V K

ε |V K
ε ≤ WK

ε ,E
)
P
(
V K

ε ≤ WK
ε |E) = 1 − oε(1).

This proves (7.21), and thus statement (3.22) of Theorem 3.2, as we recall that
P(E) ≥ 1 − ε.

We may now approximate the growth rates of the i-population sizes (0 ≤ i ≤
L − 1) during the time interval [UK

ε ,V K
ε ∧ WK

ε ]. For 0 ≤ i ≤ L − 1, let us intro-
duce, for ∗ ∈ {−,+},
(7.30) −σ

(∗)
i := bi(1 − μ) − di − ciL(x̄L∗̄2ε) − 1{∗=−} sup

0≤k≤L−1
cikε,
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where ∗̄ = {−,+}� ∗. Notice that, for ε small enough the (σ
(∗)
i )0≤i≤L−1 are pair-

wise distinct by the fourth point of Assumption 1. We consider such an ε through-
out the remainder of the proof to make sure that we do not divide by 0. Notice also
that equation (7.30) ensures that there exists C > 0 such that, for ε small enough,

0 < |fiL| − Cε < σ
(+)
i < |fiL| < σ

(−)
i < |fiL| + Cε.

From the definition of the process X in (7.2) and from (7.20), we get that almost
surely on the event E and for 0 ≤ i ≤ L − 1,

(7.31) P
(−)
i (t) ≤ Xi

(
UK

ε + t
) ≤ P

(+)
i (t) ∀ UK

ε ≤ UK
ε +t ≤ V K

ε ∧ WK
ε

where, for t ≥ 0 and ∗ ∈ {−,+},

(7.32)

P
(∗)
i (t) = Xi

(
UK

ε

)+
∫ UK

ε +t

UK
ε

∫
R+

1
θ≤(1−μ)biP

(∗)
i (s−)

Q
(b)
i (ds, dθ)

+
∫ UK

ε +t

UK
ε

∫
R+

1
θ≤μbi−1P

(∗)
i−1(s

−)
Q

(m)
i (ds, dθ)

−
∫ UK

ε +t

UK
ε

∫
R+

1
θ≤((1−μ)bi+σ

(∗)
i )P

(∗)
i (s−)

Q
(d)
i (ds, dθ),

where we recall that by convention b−1 = 0.
To find a lower bound of the extinction time of the unfit mutant population size,

let us introduce

(7.33) βL :=
{
k ∈ �0,L − 1� such that

|fkL|
1 − k/α

= inf
0≤j≤L−1

{ |fjL|
1 − j/α

}}
.

We will see that the βL-population is the one which takes the longest time to get
extinct, and drives the time to extinction of the whole mutant-population. Recalling
(7.20), we know that on the event E the size at time UK

ε of the βL-population is

C(ε,K)KμβL with με ≤ C(ε,K) ≤ μ−ε.

From (7.31) and (7.32), we see that almost surely on E and on the time interval
[UK

ε ,V K
ε ∧WK

ε ], the βL-population size is larger than a subcritical birth and death
process with initial state C(ε,K)KμβL , individual birth rate bβL

(1 − μ), and in-

dividual death rate bβL
(1 − μ) + σ

(−)
βL

. Applying equation (A.3), we deduce that

(7.34)
lim inf
K→∞ P

(
inf

{
t ≥ 0,XβL

(
UK

ε +t
) = 0

} ≥
(

1 − βL

α

)
(1 − ε)

σ
(−)
βL

lnK
∣∣∣E)

≥ 1 − ε.

The last step of the proof consists in finding a bound for E[P (+)
i (t)] for large

t , to show that the total unfit mutant population size takes a time of order at most
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(1 + lε)(1 − βL/α) lnK/σ+
βL

, for some positive l (to be made precise later, see
(7.39)) to get extinct. To simplify notation, let us introduce, for 0 ≤ i ≤ L − 1 and
∗ ∈ {−,+},
(7.35) f

(∗)
i := inf

{
σ

(∗)
j ,0 ≤ j ≤ i

}
.

We will see that the mutant population whose size decreases the slowest provides
the leading term and scale the time needed for all but the L populations to get
extinct. To prove that, we now show by induction that there exists ε0 > 0 and a
sequence of positive functions, (g0 : x 
→ x2, g1, . . . , gL−1), such that, for every
0 ≤ i ≤ L − 1, ε ≤ ε0 and t ≥ 0,

(7.36) E
[
P

(+)
i (t)

] ≤ gi(ε)Kμi−εe−f
(+)
i t.

For i = 0, from definitions (7.30), (7.32) and property (7.20), we get

E
[
P

(+)
0 (t)

] ≤ ε2Ke−σ
(+)
0 t = ε2Ke−f

(+)
0 t .

Let us assume that (7.36) holds for every i such that 0 ≤ i ≤ i0 < L−1. Then from
(7.30), (7.32) and the induction hypothesis, for t ≥ 0,

(7.37)

d

dt
E
[
P

(+)
i0+1(t)

] ≤ −σ
(+)
i0+1E

[
P

(+)
i0+1(t)

]+ μbi0E
[
P

(+)
i0

(t)
]

≤ −σ
(+)
i0+1E

[
P

(+)
i0+1(t)

]+ μbi0gi0(ε)Kμi0−εe
−f

(+)
i0

t

= −σ
(+)
i0+1E

[
P

(+)
i0+1(t)

]+ bi0gi0(ε)Kμi0+1−εe−f
(+)
i0

t
.

Applying the method of variation of parameters, we get, for every t ≥ 0,

(7.38)

E
[
P

(+)
i0+1(t)

] ≤ E
[
P

(+)
i0+1(0)

]
e
−σ

(+)
i0+1t

+ bi0gi0(ε)Kμi0+1−ε

σ
(+)
i0+1 − f

(+)
i0

(
e
−S(+)

i0
t − e

−σ
(+)
i0+1t

)

≤ Kμi0+1−ε

(
e
−σ

(+)
i0+1t + bi0gi0(ε)

σ
(+)
i0+1 − f

(+)
i0

(
e
−f

(+)
i0

t − e
−σ

(+)
i0+1t

))
,

where the last inequality is a consequence of (7.20). Hence, the i0 + 1-population
satisfies (7.36), with f

(+)
i0+1 = f

(+)
i0

∧ σ
(+)
i0+1, according to the definition (7.35), and

gi0+1(ε) = 1 + 2bi0gi0(ε)

|σ (+)
i0+1 − f

(+)
i0

| .

Moreover, let us introduce l > 0 such that, for ε small enough and for 0 ≤ i ≤
L − 1,

(7.39)
1 − i/α + ε/α

f
(+)
i

< (1 + lε)
1 − βL/α

σ
(+)
βL

,
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(which is possible according to the definitions (7.30) and (7.33)) and define

sK := (1 + lε)

σ
(+)
βL

ln
(
KμβL

)
.

Then, applying (7.31), (7.36) and the Markov inequality, we get

(7.40)

P
(∃ i ∈ �0,L − 1�,Xi(sK) ≥ 1|E)
≤ ∑

0≤i≤L−1

P
(
Xi(sK) ≥ 1|E) ≤ ∑

0≤i≤L−1

P
(
P

(+)
i (sK) ≥ 1|E)

≤ ∑
0≤i≤L−1

E
(
P

(+)
i (sK)|E) ≤ ∑

0≤i≤L−1

gi(ε)Kμi−εe−f
(+)
i sK

= ∑
0≤i≤L−1

gi(ε)exp
[
f
(+)
i

(
1

f
(+)
i

ln
(
Kμi−ε)− (1 + lε)

σ
(+)
βL

ln
(
KμβL

))]

= ∑
0≤i≤L−1

gi(ε) exp
[
f
(+)
i

(
1 − i/α + ε/α

f
(+)
i

− (1 + lε)
1 − βL/α

σ
(+)
βL

)

× lnK
(
1 + o(1)

)]
,

where we used (3.15) in the last line. According to the definition of l, the last term
goes to 0 as K goes to infinity.

Combining (7.19), (7.21), (7.34) and (A.1) proves statement (3.21) of Theo-
rem 3.2, and thus completes the proof of this theorem. �

7.3. Proof of Theorem 3.3. Assume first that (3.15) holds and that α /∈N. The-
orem 3.3 addresses the case where KμL is small. Only the �α� first mutant popu-
lations has a large size as

Kμ�α� = f �α�(K)K1−�α�/α → ∞, K → ∞,

Kμ�α�+1 = f �α�+1(K)K1−(�α�+1)/α → 0, K → ∞.

For �α� + 1 ≤ i ≤ L − 1, the i-mutant population sizes perform excursions until a
successful L-individual is created. By successful L-individual, we mean a mutant
L which generates a population outcompeting the other populations. Here again,
the key tools are couplings with birth and death processes without competition.

Let us denote by T (i) (see definition in (7.41)) the birth time of the ith mutant
of type (�α� + 1) descended from an individual of type �α� and by X

(i)
0 the type

(�α� + 1)-population generated by this individual. Then we use the lexicographic
order to number the k-mutant populations, with �α� + 2 ≤ k ≤ L (see Figure 4 for
an illustration). More precisely:
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FIG. 4. Numbering of the successive subpopulations: in this example, the first (�α� + 1)-mutant

generates the (�α� + 1)-population X
(1)
0 . One individual of the population X

(1)
0 gives birth to an

(�α� + 2)-mutant, which generates the (�α� + 2)-population X
(1)
1 . One individual of the population

X
(1)
1 gives birth to an (�α�+3)-mutant, which generates the (�α�+3)-population X

(1)
11 . The popula-

tion X
(1)
11 gets extinct without giving birth to any (�α� + 4)-individual. The second (�α� + 1)-mutant

produced by an �α�-individual generates the (�α� + 1)-population X
(2)
0 . Two individuals of the pop-

ulation X
(2)
0 give birth to an (�α� + 2)-mutant. These mutants generate the (�α� + 2)-populations

X
(2)
1 and X

(2)
2 , respectively. And so on with the notation previously introduced.

• For j ≥ 1, X
(i)
j is the (�α� + 2)-population generated by the j th (�α� + 2)-

mutant produced by an individual of type (�α� + 1) belonging to the population
X

(i)
0 .

• For j, k ≥ 1, X
(i)
jk is the (�α� + 3)-population generated by the kth (�α� + 3)-

mutant produced by an individual of type (�α� + 2) belonging to the population
X

(i)
j . . . .

As we will see along the proof, a mutant population of type i produces typically
no (i + 1)-mutant, one (i + 1)-mutant with a probability of order μ, and more
than one (i + 1)-mutant with a probability of order μ2. The law of all trees can
be approximated by the law of a subcritical Galton–Watson process, and trees are
approximately independent. Hence, we will be able to approximate the probability
for the X

(i)
0 populations (i ≥ 1) to generate a successful mutant L by a common

probability, and the time needed for a successful L-mutant to appear is close to an
exponential random variable with mean one divided by this probability.

Recall the definition of the process R�α� in (7.16). Then the stopping time T (i)

which is the birth time of the ith (�α� + 1)-mutant produced by an �α�-individual
can be expressed as

(7.41) T (i) := inf
{
t ≥ 0,R�α�(t) ≥ i

}
.
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In particular, from (7.5), we get, for every t ≤ T K
ε ∧ SK

ε ,

(7.42) R
(−)
�α�(t) ≤ R�α�(t) ≤ R

(+)
�α�(t) a.s.,

where processes R
(±)
�α� have been defined in (7.16). Let us first, for the sake of

simplicity, replace the processes R
(±)
�α� by the processes R̄

(±)
�α� , defined in (7.17),

and introduce

T (i,±) := inf
{
t ≥ 0, R̄

(±)
�α�(t) ≥ i

}
.

We will prove later on that this does not modify the result.
Let uK be a sequence such that

uK � lnK and μ�α�+1KuK →
K→∞ 0.

Using the Markov inequality and Lemma 7.1, we get

P
(
T (1,−) ≤ uK

) ≤ P
(
R(−)(uK) ≥ 1

) ≤ μb�α�uKx̄
(+)
�α�

= (1 + ε)�α� b0 · · ·b�α�x(+)
0

s
(+)
10 · · · s(+)

�α�0

μ�α�+1KuK → 0, (K → ∞).

Following the ideas developed in Section 7.2, we may couple each k-mutant
population (�α�+1 ≤ k ≤ L−1) with two birth and death processes, independent
conditionally on their birth time. We will not detail the couplings as the ideas have
already been developed and the notation are tedious, but we nevertheless state
rigorously the resulting properties. Let us denote by (T

(i)
j

, j ∈ ⋃
n∈NN

n, i ∈ N)

the time of appearance of the populations (X
(i)
j

, j ∈ ⋃
n∈NN

n, i ∈ N). For all j ∈⋃
n∈NN

n, i ∈ N, T (i)
j

:= inf{t ≥ 0,X
(i)
j

(t) ≥ 1}. Then we introduce birth and death

processes (X
(i,∗)
j

, j ∈ ⋃
n∈NN

n, i ∈ N,∗ ∈ {−,+}) with birth and death rates((
bt(j), (1 − μ)bt(j) + σ

(∗)
t(j)

)
, j ∈ ⋃

n∈N
N

n, i ∈ N,∗ ∈ {−,+}
)
,

where the σ (∗)’s have been defined in (7.30),

t(j) := �α� + |j| + 1,

and |j| is the number of terms in j (for instance |11221| = 5).
These processes can be constructed in such a way that, for all j ∈ ⋃

n∈NN
n,

i ∈N,

(7.43) X
(i,−)
j

(t) ≤ X
(i)
j

(t) +N
(i)
j

(t) ≤ X
(i,+)
j

(t), t ≤ T K
ε ∧ SK

ε ,

where N
(i)
j

(t) is the number of mutants of type (�α� + |j| + 2) produced by the

X
(i)
j

population (which is of type (�α� + |j| + 1)) until time t . Recall that among
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the offsprings produced by the population X
(i)
j

, a fraction (1−μ) is constituted by
newborn individuals of type �α�+|j|+1, and a fraction μ by new born individuals
of type �α�+ |j|+ 2, and that at each birth event the probability to have a mutation
is independent from the past.

Moreover, conditionally on (T
(i)
j

, j ∈ ⋃
n∈NN

n, i ∈ N), the pairs of processes

((X
(i,−)
j

,X
(i,+)
j

), j ∈ ⋃
n∈NN

n, i ∈ N) are independent. This last point allows us to
approximate the law of the random trees

T (i) := X
(i)
0

⋃
n∈N

X
(i)
Nn, i ∈ N

(an example is depicted in Figure 4) by the same law, and independently. Indeed
from equation (7.43), we get that (T (i))i∈N, can be coupled with two inhomoge-
neous birth and death processes, whose law is well known and easy to study. This
will be the object of the end of the proof.

We will now consider each tree T (i) (i ∈ N) with root X
(i)
0 independently, and

approximate its probability to end with a L-mutant subpopulation. For simplicity,
we write |0| = 0.

Consider a vertex X
(i)
j

, j ∈ {0}∪N
N of the tree T (i). Due to the coupling (7.43),

we are able to approximate the probability for this vertex to have no child, one
child or more than one child. Before the time T K

ε ∧ SK
ε , the law of the num-

ber of offsprings produced by the X
(i)
j

population is smaller (resp., larger) than
the number of offspring produced by a population initiated by one individual,
with individual birth rate bt(j) and individual death rate (1 − μ)bt(j) + σ

(+)
t(j) (resp.,

(1 − μ)bt(j) + σ
(−)
t(j) ). Moreover, each offspring is a mutant of type (t(j) + 1) with

probability μ, and is a clone with probability (1 − μ). Hence,

P
(
X

(i)
j

-pop produces 1 mutant
) ≤

∞∑
n=0

p
(bt(j),(1−μ)bt(j)+σ

(+)
t(j) )

(n)nμ(1 − μ)n−1

≤ μe(bt(j),bt(j)+σ
(+)
t(j) )

,

where p(·,·) and e(·,·) are defined in Lemma A.3. Similarly, for K large enough,

P
(
X

(i)
j

-pop produces 1 mutant
)

≥
∞∑

n=0

p
(bt(j),(1−μ)bt(j)+σ

(−)
t(j) )

(n)nμ(1 − μ)n−1

≥ μ

μ−1/2+1∑
n=0

p
(bt(j),(1−μ)bt(j)+σ

(−)
t(j) )

(n)n(1 − μ)μ
−1/2

(7.44)

≥ μ

μ−1/2+1∑
n=0

p
(bt(j),(1−μ)bt(j)+σ

(−)
t(j) )

(n)n(1 − 2
√

μ)
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= μ(1 − 2
√

μ)
(
e(bt(j),(1−μ)bt(j)+σ

(−)
t(j) ) −E

[
1{|X(i)

j
|≥μ−1/2+1}

∣∣X(i)
j

∣∣]),
where |X(i)

j
| denotes the number of offsprings (mutants or clones) produced by the

population X
(i)
j

. But Cauchy–Schwarz and Markov inequalities yield

E
2[1{|X(i)

j
|≥μ−1/2+1}

∣∣X(i)
j

∣∣] ≤ P
(∣∣X(i)

j

∣∣ ≥ μ−1/2 + 1
)
E
[∣∣X(i)

j

∣∣2]
≤ √

μE
[∣∣X(i)

j

∣∣]E[∣∣X(i)
j

∣∣2] = O(
√

μ),

as the two expectations are finite according to (A.6).
Adding (A.8), we may conclude that, as K goes to infinity,

P
(
X

(i)
j

-pop produces 1 mutant
) = e(bt(j),bt(j)+|ft(j)0|)μ

(
1 + O(ε)

)
.

Using again coupling (7.43) and (A.6), we get that

P
(
X

(i)
j

-pop produces at least 2 mutants
)

≤
∞∑

n=0

p
(bt(j),bt(j)+σ

(+)
t(j) )

(n)
n(n − 1)

2
μ2 = O

(
μ2).

From the last computations, we can infer that, for i ≥ 1, the probability for the
tree T (i) to produce a L-mutant is, for large K ,

(7.45) μL−1−�α�
(

L−1∏
k=�α�+1

e(bk,bk+|fk0|)
)(

1 + O(ε)
)
.

Indeed, the probability for each vertex to produce one child is of order μ, and the
probability to produce at least two children is of order μ2. Since there is only a
finite number of possible mutations, independent of μ, this implies that the prob-
ability for the tree T (i) to have at least one vertex with two children and end with
a L individual is of order μL−�α�, which is negligible compared to μL−1−�α�.
Moreover, we know that each L-mutant has a probability close to fL0/bL to gen-
erate a population whose size hits the value εK , and once this size is reached, the
time needed for the L-population to outcompete the other populations and hit its
equilibrium size is of order lnK (see, for instance, [14]), which is negligible with
respect to the time needed for the successful L-individual to be born. If the times
of appearance of the trees T (i) had the law of a Poisson process with inhomoge-
neous parameter close to μb�α�x�α�K (that is to say if we could consider R̄

(±)
�α�

instead of R
(±)
�α� ), this would complete the proof of the first point of Theorem 3.3.

We now need to justify that the result stays true when considering R
(±)
�α� . To achieve

this goal, it is enough to prove the existence of two sequences N1(K) and N2(K)

satisfying

(7.46) N1(K) � (
KμL)−1 and N2(K) � (

μL−1−�α�)−1
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such that

(7.47) lim
K→∞P

(
sup

s≤N1(K)

∣∣R(±)
�α�(s) − R̄

(±)
�α�(s)

∣∣ > N2(K)
)

= 0.

Indeed, this implies that during the time interval under consideration (of order
(KμL)−1), the difference between the number of ‘trees’ generated by the pro-
cesses R

(±)
�α� and R̄

(±)
�α� is much smaller than (μL−1−�α�)−1, and as each tree has

a probability of order (μL−1−�α�) to generate a successful mutant, the same tree
is at the origin of the successful mutant under the two counting processes under
consideration with a probability close to 1.

To prove (7.47), we apply Doob’s martingale inequality to M�α�. This yields

P

(
sup

s≤N1(K)

∣∣R(±)
�α�(s) − R̄

(±)
�α�(s)

∣∣ > N2(K)
)

≤ E[(M(±)
�α� (N1(K)))2]
N2

2 (K)
≤ 2μb�α�x̄(±)

�α�N1(K)

N2
2 (K)

≤ CKμ�α�+1 N1(K)

N2
2 (K)

= C
KμL

(μL−1−�α�)2

N1(K)

N2
2 (K)

μL−1−�α�,

where C is a finite constant. As μL−1−�α� goes to 0 when K tends to ∞, the
sequences N1(K) and N2(K) can be chosen in such a way that the last term in the
previous series of inequalities goes to 0 when K tends to ∞, which completes the
proof of (7.47).

To end the proof of Theorem 3.3, let us consider the case when μ � 1/K . From
Lemma A.1, we know that, for ε small enough, there exists a positive V such that
with high probability, the size of a monomorphic 0-population stays at a distance
smaller than εK from its equilibrium size n̄0K during a time larger than eKV .
As a consequence, if Kμ � e−V K , the 0-population produces a large number of
1-mutants during the time interval [0, eV K ], with a rate very close to b0n̄0Kμ.
Hence, the proof is very similar to the previous proof, where the �α�-population is
replaced by the 0-population.

8. Proofs of Section 3.3.

8.1. Proof of Theorem 3.4 point 2. Recall from (7.2) that the process X0 ad-
mits the following Poisson representation:

(8.1)

X0(t) = �x̄0K� +
∫ t

0

∫
R+

1θ≤(1−μ)b0X0(s
−)Q

(b)
0 (ds, dθ)

−
∫ t

0

∫
R+

1θ≤DK
0 (X(s−))X0(s

−)Q
(d)
0 (ds, dθ),
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where DK
0 (X) is defined in (7.1). Thus, if we introduce the process Y0 via

Y0(t) = �x̄0K� +
∫ t

0

∫
R+

1θ≤b0Y0(s
−)Q

(b)
0 (ds, dθ)

−
∫ t

0

∫
R+

1θ≤(d0+c00Y0(s
−)/K)Y0(s

−)Q
(d)
0 (ds, dθ),

we get that, almost surely, X0(t) ≤ Y0(t), for all t ≥ 0. Now consider a time vK

such that

1

ρ0(K)
� vK � 1

KμL
, K → ∞,

where ρ0(K) was defined in (3.28). If we apply inequality (3.7) of [18] to the
process Y0, we get

dTV
(
P
(
Y0(vK) ∈ ·), δ0(·)) →

K→∞ 0,

where dTV is the total variation distance. This implies

(8.2) P
(
X0(vK) > 0

) →
K→∞ 0.

Hence, to prove Theorem 3.4 point 2 it is enough to show that P(BL < vK) →
K→∞ 0.

Notice that from (8.1) we have, for every positive t ,

d

dt
E
[
X0(t)

] ≤ E

[(
b0 − d0 − c00

K
X0(t)

)
X0(t)

]

≤ (b0 − d0)E
[
X0(t)

]− c00

K
E

2[X0(t)
]
.

Thus, for all t ≥ 0, we have E[X0(t)] ≤ x̄0K . Next we bound the expectation of the
total number �1 of type 1 individuals generated by type 0 individuals by mutations
before the time vK :

(8.3) E[�1] ≤
∫ vK

0
b0μE

[
X0(s)

]
ds ≤ b0x̄0KμvK.

We want to bound the probability that at least one type 1 individual born from a
type 0 individual before time vK has a line of descent containing a type L indi-
vidual. Denote by ξi the event that the ith type 1 individual born from a type 0
individual before time vK has a descendant of type L at any time in the future. We
see that

P(BL < vK) = P

( ⋃
i≤�1

ξi

)
= E

[
P

( ⋃
i≤�1

ξi

∣∣∣�1

)]
≤ E

[ ∑
i≤�1

P(ξi |�1)

]
.

But recall that by Assumption 2, for 1 ≤ i ≤ L − 1, bi < di . Hence, using (7.45),
we see that the probability of the events (ξi)1≤i≤�1 can be bounded independently
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of �1 by

2
( ∏

1≤i≤L−1

e(bi ,di )

)
μL−1.

This yields

P(BL < vK) ≤ b0x̄0vK

( ∏
1≤i≤L−1

e(bi ,di )

)
μL →

K→∞ 0.

Adding (8.2) completes the proof.

8.2. Proof of Theorem 3.4 point 1. We introduce vK such that 1
ρ0(K)

� vK �
1

Kμ
. Then (8.3) and Markov inequality ensure that with a probability close to 1, no

type 1 mutant is produced before the population extinction. As a consequence, no
type L mutant is produced. This completes the proof.

APPENDIX. TECHNICAL RESULTS

The next lemma quantifies the time spent by a birth and death process with
logistic competition in a vicinity of its equilibrium size. It is stated in [14] Theo-
rem 3(c).

LEMMA A.1. Let b, d , c be in R
∗+ such that b − d > 0. Denote by (Wt)t≥0

a density dependent birth and death process with birth rate bn and death rate
(d + cn/K)n, where n ∈ N0 is the current state of the process and K ∈ N is the
carrying capacity. Fix 0 < η1 < (b − d)/c and η2 > 0, and introduce the stopping
time

SK = inf
{
t ≥ 0 : Wt /∈

[(
b − d

c
− η1

)
K,

(
b − d

c
+ η2

)
K

]}
.

Then there exists V > 0 such that, for any compact subset C of ](b − d)/c −
η1, (b − d)/c + η2[,
(A.1) lim

K→∞ sup
k/K∈C

Pk

(
SK < eKV ) = 0.

Let us now recall some results on hitting times of a birth and death process.
The first, third and last statements can be found in [12]. The second statement is a
consequence of the first statement.

LEMMA A.2. Let Z = (Zt )t≥0 be a birth and death process with individual
birth and death rates b and d . For i ∈ Z+, Ti = inf{t ≥ 0,Zt = i} and Pi (resp.
Ei) is the law (resp., expectation) of Z when Z0 = i. Then:
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• If d �= b ∈ R
∗+, for every i ∈ Z+ and t ≥ 0,

(A.2) Pi (T0 ≤ t) =
(

d(1 − e(d−b)t )

b − de(d−b)t

)i

.

• If 0 < b < d and Z0 = N , the following convergence holds:

(A.3) T0/ logN →
N→∞ (d − b)−1 in probability.

• If 0 < d < b, on the nonextinction event of Z, which has a probability 1 −
(d/b)Z0 , the following convergence holds:

(A.4) TN/ logN →
N→∞ (b − d)−1 a.s.

• If 0 < b < d , and (i, j, k) ∈ N
3 such that j ∈ (i, k),

(A.5) Pj (Tk < Ti) = (d/b)j−i − 1

(d/b)k−i − 1
.

The last result of this Appendix concerns the size distribution of the total num-
ber of individuals in a subcritical birth and death process. We refer the reader to
[48] (Theorem 3.13 applied to the case when X is a geometric random variable
with parameter d/(b + d)) or [12] for the proof of the two first points. The last one
is just a consequence of the mean value theorem.

LEMMA A.3. Let us consider a birth and death process with individual birth
rate b > 0 and individual death rate d > 0 satisfying b < d . Let Z denote the total
number of births during an excursion of this process initiated with one individual.
Then, for k ≥ 0,

(A.6) p(b,d)(k) := P(Z = k) = (2k)!
k!(k + 1)!

(
b

d + b

)k( d

d + b

)k+1
.

In particular,

(A.7) e(b,d) := E[Z] =
∞∑

k=1

(2k)!
(k − 1)!(k + 1)!

(
b

d + b

)k( d

d + b

)k+1
.

Moreover, there exist two positive constants c and ε0 such that, for every ε ≤ ε0, if
0 < di < bi and |bi − di | ≤ ε, i ∈ {1,2}, then

(A.8)
∣∣e(b1,d1) − e(b2,d2)

∣∣ ≤ cε.
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