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CORRECTION NOTE: A STRONG ORDER 1/2 METHOD FOR
MULTIDIMENSIONAL SDES WITH DISCONTINUOUS DRIFT

BY GUNTHER LEOBACHER! AND MICHAELA SZOLGYENYI?

University of Graz and University of Klagenfurt

There is a gap in the proof of [3], Theorem 3.20. For closing this gap, weak
additional assumptions on the regularity of the exceptional set ® are needed. In
this note, we close the gap and state the corrected version of the main theorems
of [3]. The changes we state below only apply from Section 3 onward. The one-
dimensional case in Section 2 is not affected.

For the multidimensional case, the function ¢: R — R defined in [3], equation
(2), needs to be C3; we define

A4+ w*a —w?* if|u <1,
0 else.

) ¢ u) ={

This function has the properties:

1. ¢ is C3 on all of R;
2. (0)=1,¢'(0) =0, ¢"(0) = —8;
3. p(u) =¢'(u) =¢" () =¢" (u) =0 for all |u| > 1.

With this, we define for some ¢ € (0, reach(®)) and for all x € ®F¢,

@) G i=x+(x — p() - n(p)|x p(x>}1¢(w)a(p(x>),

where for all £ € O,

e — hn(®) — ul + hn(®))
®) = T e e ®e® e

Note that (3) replaces [3], equation (6), and G has precisely the same form as in
[3], equation (5), only now we use the new versions of «, ¢.

Due to the change in the definition of ¢, the following lemma needs to be
adapted.
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LEMMA 1 (Replaces [3], Lemma 3.18). Assume [3], Assumptions 3.1-3.4. Fix
» > 1 and let

. &0
co = mm(l, —_—,
»max(K, 1)

d x

(1+§sup(max e @)+ 5

max
—11=<i,j=d

90 (§) D)—l)

8Xj '
Then for every choice of ¢ € (0, co) we have that G'(x) is invertible for every
x e R4,

PROOF. Note that ¢o > 0, since @ and &’ are bounded by [3], Assumption 3.4.
Let x € R? and recall equation (7) from the proof of [3], Theorem 3.14,

G'(x) = idga +¢'(|x — p)|)ee(p0)n(p)) "

+¢(|x — p@|)e (p(0))Ze(F 7" (1)) (idga —n(p(0))n(p(x)) ")
=:1+ A®x).

We begin by estimating the operator norm of A(x) for given ¢ € (0, cp).
[ A
T .
<6 (Jx = P Dlld max o (po)|

] .
(1~ DT idgs —n(p)n(p) a2, mas ")

<% fax i (p(x))| + td? ! da;

I 2 1= [yl isig=dl o,

where we used that [|¢'(]lx — p(x) D] < & 5 and p(lx — p@ID <% for x € OF°
(by estimating the maxima), and that || idps —n(p(x))n( p(x))Tll 5 1. Further-
more, || Zg]| < m, since ||y1n’|| < 1; <lbyc< ﬁ?lﬁl)’ [3], Lemma
3.17, and [3], Remark 3.16. Hence

1 P24
< .
L—1Iyillln'll = 2e—1

Therefore, || A(x)|| < %(maxlgigd la; (p(x))] + Cf Sy Max|<i j<d |8“’ (P 1y

We want ¢ small enough to have || A(x)|| < 1 and to that end we choose c<l1

and
da; (p(x)) D)l
0x;

d d
< <1+§<1maxd]a,( (x))|—|——— max

11<i,j<d
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Hence G’(x) is invertible for x € ®¢ by [3], Lemma 3.17. For x € R/\©®¢, G'(x) =
ide . ‘:’

We will need the following additional assumption.

ASSUMPTION 1. The exceptional set ® of 4 is C*. Every unit normal vector
n of ® has a bounded second and third derivative.

LEMMA 2. Assume [3], Assumptions 3.1 and 3.2, and Assumption 1. Let ¢ €
(0, £90). . .

Then the function ¢: ©°\ @ — R with ¢(x) = (x — p(x)) - n(p(x))|lx —
p(x)lld)(“x_cﬂ) is three times differentiable with a bounded first, second and
third derivative.

PROOF. Forx € ©®°\ ®,wehave (x — p(x))-n(p(x))||lx — p(x)|| = sd(x, )2
with s € {—1, 1}. By [1], Corollary 4.5, d(-, ®) is C* on O° \ ©.

Since p’(x) maps into the tangent space of ® in p(x), it holds that (x —
p()) " p'(x) = 0. Thus we have (d(x, ©)%) = (lx — p()[?) =2(x — p(x) T x
(idga —p'(x)) =2(x — p(x))". Note that (x — p(x)) " is bounded by ¢ on ©F.

The function p: ®° — © is C3 by Assumption 1, [3], Assumptions 3.1 and 3.2,
and [1], Theorem 4.1.

By [3], Assumptions 3.1 and 3.2, and [3], Lemma 3.10, the first derivative of
every unit normal vector n is bounded, and by Assumption 1 the second and third
derivative of n are bounded. Now [2], Corollary 4, implies that p’, p”, and p”’ are
bounded on ©°.

Now it follows from the chain and product rule that the function x — d(x, )2
and its derivatives up to order 4 are bounded on ©¢ \ ®.

Note further that

¢(le —f(X)H)

In total, by the chain and product rule, the first three derivatives of ¢ are bounded.
g

(1402

4
3 ) d(x,0) <c,
c

0 else.

LEMMA 3. Assume [3], Assumptions 3.1, 3.2 and 3.4, and Assumption 1. Let
c e (0, ¢p).

Then the function a o p: ©°\ @ — R? is three times differentiable with a
bounded first, second and third derivative.

PROOF. By [3], Assumption 3.4, « is three times differentiable with a bounded
first, second and third derivative. As shown in the proof of Lemma 2, p: ¢ — ©
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is C3 and p’, p” and p”” are bounded on ®°. The chain and product rules now
assure that (a o p)’, (@ o p)”, (x o p)"” are bounded. [J

From now on, choose ¢ as in Lemma 1.

LEMMA 4. Let [3], Assumptions 3.1-3.5, and Assumption 1 be satisfied. Then
G" is bounded and it is differentiable with bounded derivative on ©°\©.

PROOF. A sufficient condition for this is, by the definition of G and the prod-
uct rule, that the functions x — ¢(x) and x + «(p(x)) have this property. This is
guaranteed by Lemmas 2 and 3. [J

In the proof of [3], Theorem 3.20, we write “in the same way we see that G”
is differentiable with bounded derivative on ®“\® and is therefore intrinsic Lips-
chitz by [3], Lemma 3.8. Moreover, both G” and o are bounded on ®¢ \ ®.” This
statement holds under the additional Assumption 1 and is proven in Lemma 4.

THEOREM 5 (Replaces [3], Theorem 3.20). Let [3], Assumptions 3.1-3.5, be
satisfied. In addition, let Assumption 1 hold.
Then the SDE for G (X) has Lipschitz coefficients.

THEOREM 6 (Replaces [3], Theorem 3.21). Let [3], Assumptions 3.1-3.5, be
satisfied. In addition, let Assumption 1 hold.
Then the d-dimensional SDE (1) has a unique global strong solution.

THEOREM 7 (Replaces [3], Theorem 3.23). Let [3], Assumptions 3.1-3.5, be
satisfied. In addition, let Assumption 1 hold.

Then [3], Algorithm 3.22, converges with strong order 1/2 to the solution X of
the d-dimensional SDE (1).
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