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CORRECTION NOTE: A STRONG ORDER 1/2 METHOD FOR
MULTIDIMENSIONAL SDES WITH DISCONTINUOUS DRIFT

BY GUNTHER LEOBACHER1 AND MICHAELA SZÖLGYENYI2

University of Graz and University of Klagenfurt

There is a gap in the proof of [3], Theorem 3.20. For closing this gap, weak
additional assumptions on the regularity of the exceptional set � are needed. In
this note, we close the gap and state the corrected version of the main theorems
of [3]. The changes we state below only apply from Section 3 onward. The one-
dimensional case in Section 2 is not affected.

For the multidimensional case, the function φ : R → R defined in [3], equation
(2), needs to be C3; we define

φ(u) =
{
(1 + u)4(1 − u)4 if |u| ≤ 1,

0 else.
(1)

This function has the properties:

1. φ is C3 on all of R;
2. φ(0) = 1, φ′(0) = 0, φ′′(0) = −8;
3. φ(u) = φ′(u) = φ′′(u) = φ′′′(u) = 0 for all |u| ≥ 1.

With this, we define for some c ∈ (0, reach(�)) and for all x ∈ �c,

(2) G(x) := x + (
x − p(x)

) · n(
p(x)

)∥∥x − p(x)
∥∥φ(‖x − p(x)‖

c

)
α

(
p(x)

)
,

where for all ξ ∈ �,

α(ξ) := lim
h→0+

μ(ξ − hn(ξ)) − μ(ξ + hn(ξ))

2n(ξ)�σ(ξ)σ (ξ)�n(ξ)
.(3)

Note that (3) replaces [3], equation (6), and G has precisely the same form as in
[3], equation (5), only now we use the new versions of α, φ.

Due to the change in the definition of φ, the following lemma needs to be
adapted.
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LEMMA 1 (Replaces [3], Lemma 3.18). Assume [3], Assumptions 3.1–3.4. Fix
κ > 1 and let

c0 := min
(

1,
ε0

κmax(K,1)
,

(
1 + d

3
sup
ξ∈�

(
max

1≤i≤d

∣∣αi(ξ)
∣∣ + d

4

κ

κ − 1
max

1≤i,j≤d

∣∣∣∣∂αi(ξ)

∂xj

∣∣∣∣
))−1)

.

Then for every choice of c ∈ (0, c0) we have that G′(x) is invertible for every
x ∈ R

d .

PROOF. Note that c0 > 0, since α and α′ are bounded by [3], Assumption 3.4.
Let x ∈ R

d and recall equation (7) from the proof of [3], Theorem 3.14,

G′(x) = idRd + φ̄′(∥∥x − p(x)
∥∥)

α
(
p(x)

)
n
(
p(x)

)�
+ φ̄

(∥∥x − p(x)
∥∥)

α′(p(x)
)
Iξ

(
T −1(x)

)(
idRd −n

(
p(x)

)
n
(
p(x)

)�)
=: 1 +A(x).

We begin by estimating the operator norm of A(x) for given c ∈ (0, c0).∥∥A(x)
∥∥

≤ ∥∥φ̄′(∥∥x − p(x)
∥∥)∥∥d max

1≤i≤d

∣∣αi

(
p(x)

)∣∣
+ φ̄

(∥∥x − p(x)
∥∥)‖Iξ‖

∥∥idRd −n
(
p(x)

)
n
(
p(x)

)�∥∥d2 max
1≤i,j≤d

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣
≤ cd

3
max

1≤i≤d

∣∣αi

(
p(x)

)∣∣ + c2d2

12

1

1 − |y1|‖n′‖ max
1≤i,j≤d

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣,
where we used that ‖φ̄′(‖x − p(x)‖)‖ ≤ c

3 and |φ̄(‖x − p(x)‖)| ≤ c2

12 for x ∈ �c

(by estimating the maxima), and that ‖ idRd −n(p(x))n(p(x))�‖ ≤ 1. Further-
more, ‖Iξ‖ ≤ 1

1−|y1|‖n′‖ , since ‖y1n
′‖ < 1

κ
< 1 by c <

ε0
κmax(K,1)

, [3], Lemma
3.17, and [3], Remark 3.16. Hence

1

1 − |y1|‖n′‖ ≤ κ

κ − 1
.

Therefore, ‖A(x)‖ ≤ cd
3 (max1≤i≤d |αi(p(x))| + cd

4
κ

κ−1 max1≤i,j≤d | ∂αi(p(x))
∂xj

|).
We want c small enough to have ‖A(x)‖ < 1 and to that end we choose c < 1

and

c <

(
1 + d

3

(
max

1≤i≤d

∣∣αi

(
p(x)

)∣∣ + d

4

κ

κ − 1
max

1≤i,j≤d

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣
))−1

.
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Hence G′(x) is invertible for x ∈ �c by [3], Lemma 3.17. For x ∈ R
d\�c, G′(x) =

idRd . �

We will need the following additional assumption.

ASSUMPTION 1. The exceptional set � of μ is C4. Every unit normal vector
n of � has a bounded second and third derivative.

LEMMA 2. Assume [3], Assumptions 3.1 and 3.2, and Assumption 1. Let c ∈
(0, ε0).

Then the function φ̃ : �c \ � → R with φ̃(x) = (x − p(x)) · n(p(x))‖x −
p(x)‖φ(

‖x−p(x)‖
c

) is three times differentiable with a bounded first, second and
third derivative.

PROOF. For x ∈ �c \�, we have (x −p(x)) ·n(p(x))‖x −p(x)‖ = sd(x,�)2

with s ∈ {−1,1}. By [1], Corollary 4.5, d(·,�) is C4 on �c \ �.
Since p′(x) maps into the tangent space of � in p(x), it holds that (x −

p(x))�p′(x) = 0. Thus we have (d(x,�)2)′ = (‖x − p(x)‖2)′ = 2(x − p(x))� ×
(idRd −p′(x)) = 2(x − p(x))�. Note that (x − p(x))� is bounded by c on �c.

The function p : �c → � is C3 by Assumption 1, [3], Assumptions 3.1 and 3.2,
and [1], Theorem 4.1.

By [3], Assumptions 3.1 and 3.2, and [3], Lemma 3.10, the first derivative of
every unit normal vector n is bounded, and by Assumption 1 the second and third
derivative of n are bounded. Now [2], Corollary 4, implies that p′, p′′, and p′′′ are
bounded on �c.

Now it follows from the chain and product rule that the function x 	→ d(x,�)2

and its derivatives up to order 4 are bounded on �c \ �.
Note further that

φ

(‖x − p(x)‖
c

)
=

⎧⎪⎨
⎪⎩

(
1 − d(x,�)2

c2

)4
d(x,�) < c,

0 else.

In total, by the chain and product rule, the first three derivatives of φ̃ are bounded.
�

LEMMA 3. Assume [3], Assumptions 3.1, 3.2 and 3.4, and Assumption 1. Let
c ∈ (0, ε0).

Then the function α ◦ p : �c \ � → R
d is three times differentiable with a

bounded first, second and third derivative.

PROOF. By [3], Assumption 3.4, α is three times differentiable with a bounded
first, second and third derivative. As shown in the proof of Lemma 2, p : �c → �
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is C3 and p′, p′′ and p′′′ are bounded on �c. The chain and product rules now
assure that (α ◦ p)′, (α ◦ p)′′, (α ◦ p)′′′ are bounded. �

From now on, choose c as in Lemma 1.

LEMMA 4. Let [3], Assumptions 3.1–3.5, and Assumption 1 be satisfied. Then
G′′ is bounded and it is differentiable with bounded derivative on �c\�.

PROOF. A sufficient condition for this is, by the definition of G and the prod-
uct rule, that the functions x 	→ φ̃(x) and x 	→ α(p(x)) have this property. This is
guaranteed by Lemmas 2 and 3. �

In the proof of [3], Theorem 3.20, we write “in the same way we see that G′′
is differentiable with bounded derivative on �c\� and is therefore intrinsic Lips-
chitz by [3], Lemma 3.8. Moreover, both G′′ and σ are bounded on �c \ �.” This
statement holds under the additional Assumption 1 and is proven in Lemma 4.

THEOREM 5 (Replaces [3], Theorem 3.20). Let [3], Assumptions 3.1–3.5, be
satisfied. In addition, let Assumption 1 hold.

Then the SDE for G(X) has Lipschitz coefficients.

THEOREM 6 (Replaces [3], Theorem 3.21). Let [3], Assumptions 3.1–3.5, be
satisfied. In addition, let Assumption 1 hold.

Then the d-dimensional SDE (1) has a unique global strong solution.

THEOREM 7 (Replaces [3], Theorem 3.23). Let [3], Assumptions 3.1–3.5, be
satisfied. In addition, let Assumption 1 hold.

Then [3], Algorithm 3.22, converges with strong order 1/2 to the solution X of
the d-dimensional SDE (1).

Acknowledgments. The authors thank Thomas Müller-Gronbach for pointing
out an inaccuracy in the definition of α.
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