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Abstract. We develop a model-free theory of general types of parametric
regression for i.i.d. observations. The theory replaces the parameters of para-
metric models with statistical functionals, to be called “regression function-
als,” defined on large nonparametric classes of joint x-y distributions, with-
out assuming a correct model. Parametric models are reduced to heuristics to
suggest plausible objective functions. An example of a regression functional
is the vector of slopes of linear equations fitted by OLS to largely arbitrary
x-y distributions, without assuming a linear model (see Part I). More gener-
ally, regression functionals can be defined by minimizing objective functions,
solving estimating equations, or with ad hoc constructions. In this frame-
work, it is possible to achieve the following: (1) define a notion of “well-
specification” for regression functionals that replaces the notion of correct
specification of models, (2) propose a well-specification diagnostic for re-
gression functionals based on reweighting distributions and data, (3) decom-
pose sampling variability of regression functionals into two sources, one due
to the conditional response distribution and another due to the regressor dis-
tribution interacting with misspecification, both of order N−1/2, (4) exhibit
plug-in/sandwich estimators of standard error as limit cases of x-y bootstrap
estimators, and (5) provide theoretical heuristics to indicate that x-y boot-
strap standard errors may generally be preferred over sandwich estimators.
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“The hallmark of good science is that it uses mod-
els and ’theory’ but never believes them.” (J. W. Tukey,
1962, citing Martin Wilk)

1. INTRODUCTION

We develop in this second article a model-free the-
ory of parametric regression, assuming for simplicity
i.i.d. x-y observations with quite arbitrary joint dis-
tributions. The starting point is the realization that re-
gression models are approximations and should not be
thought of as generative truths. A general recognition
of this fact may be implied by the commonly used term
“working model,” but this vague term does not resolve
substantive issues, created here by the fact that models
are approximations and not truths. The primary issue
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is that traditional model parameters define meaningful
quantities only under conditions of model correctness.
If the idea of models as approximations is taken seri-
ously, one has to extend the notion of parameter from
model distributions to basically arbitrary distributions.
This is achieved by what is often called “projection
onto the model,” that is, finding for the actual data dis-
tribution the best approximating distribution within the
model; one defines that distribution’s parameter set-
tings to be the target of estimation. Through such “pro-
jection” the parameters of a working model are ex-
tended to “statistical functionals,” that is, mappings of
largely arbitrary data distributions to numeric quanti-
ties. We have thus arrived at a functional point of view
of regression, a view based on what we call regression
functionals.

The move from traditional regression parameters in
correctly specified models to regression functionals ob-
tained from best approximations may raise fears of
opening the gates to irresponsible data analysis where
misspecification is of no concern. No such thing is in-
tended here. Instead, we rethink the essence of regres-
sion and develop a new notion of well-specification
of regression functionals, to replace the notion of cor-
rect specification of regression models. In the following
bullets, we outline an argument in the form of simple
postulates:

• The essence of regression is the asymmetric analysis
of association: Variables with a joint distribution P
are divided into response and regressors.

• Motivated by prediction and causation problems, in-
terest focuses on properties of the conditional distri-
bution of the response given the regressors.

• The goal or, rather, the hope is that the chosen quan-
tities/functionals of interest are properties of the ob-
served conditional response distribution, irrespec-
tive of the regressor distribution.

• Consequently, a regression functional will be called
well-specified if it is a property of the observed con-
ditional response distribution at hand, irrespective of
the regressor distribution.

The first bullet is uncontroversial: asymmetric analysis
is often natural, as in the contexts of prediction and
causation. The second bullet remains at an intended
level of vagueness as it explains the nature of the asym-
metry, namely, the focus on the regressor-conditional
response distribution. Intentionally there is no mention
of regression models. The third bullet also steers clear
of regression models by addressing instead quantities
of interest, that is, regression functionals. In this and

the last bullet, the operational requirement is that the
quantities of interest not depend on the regressor dis-
tribution. It is this constancy across regressor distribu-
tions that turns the quantities of interest into properties
of the conditional response distribution alone.

All this can be made concrete with reference to the
groundwork laid in Part I (Section 4) of this two-
part series of articles. Consider the regression func-
tional consisting of the coefficient vector obtained from
OLS linear regression. It was shown in Part I that this
vector does not depend on the regressor distribution
(is “well-specified”) if and only if the conditional re-
sponse mean is a linear function of the regressors. This
is the situation in which the coefficient vector fully
describes the conditional mean function, but no other
aspect of the conditional response distribution. Well-
specification of the OLS coefficient functional is there-
fore a weaker condition than correct specification of
the linear model by setting aside homoskedasticity and
Gaussianity which are linear model requirements not
intimately tied to the slopes.

A desirable feature of the proposed definition of
well-specification is that it generalizes to arbitrary
types of parametric regression or, more precisely, to
the statistical functionals derived from them. In par-
ticular, it applies to GLMs where the meaning of well-
specified coefficients is again correct specification of
the mean function but setting aside other model re-
quirements. Well-specification further applies to re-
gression functionals derived from optimizing general
objective functions or solving estimating equations.
Well-specification finally applies to any ad hoc quan-
tities if they define regression functionals for joint x-y
distributions.

The proposed notion of well-specification of regres-
sion functionals does not just define an ideal condi-
tion for populations but also lends itself to a tangi-
ble methodology for real data. A diagnostic for well-
specification can be based on perturbation of the re-
gressor distribution without affecting the conditional
response distribution. Such perturbations can be con-
structed by reweighting the joint x-y distribution with
weight functions that only depend on the regressors.
If a regression functional is not constant under such
reweighting, it is misspecified.

In practice, use of this diagnostic often works out
as follows. Some form of misspecification will be de-
tected for some of the quantities of interest, but the di-
agnostic will also aid in interpreting the specifics of
the misspecification. The reason is that reweighting es-
sentially localizes the regression functionals. For the
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coefficients of OLS linear regression, for example, this
means that reweighting reveals how the coefficients of
the best fitting linear equation vary as the weight func-
tion moves across regressor space. Put this way, the
diagnostic is related to nonparametric regression, but
its advantage is that it focuses on the quantities of in-
terest at all times, while switching from parametric to
nonparametric regression requires a rethinking of the
meaning of the original quantities in terms of the non-
parametric fit. To guide users of the diagnostic to in-
sightful choices of weight functions, we introduce a set
of specific reweighting methodologies, complete with
basic statistical inference.

Following these methodological proposals, we re-
turn to the inferential issues raised in Part I and treat
them in generality for all types of well-behaved regres-
sion functionals. We show that sampling variation of
regression functionals has two sources, one due to the
conditional response distribution, the other due to the
regressor distribution interacting with misspecification,
where “misspecification” is meant in the sense of “vi-
olated well-specification” of the regression functional.
A central limit theorem (CLT) shows that both sources,
as a function of the sample size N , are of the usual or-
der N−1/2. Finally, it is shown that asymptotic plug-
in/sandwich estimators of standard error are limits of
x-y bootstrap estimators, revealing the former to be an
extreme case of the latter.

The present analysis becomes necessarily more
opaque because algebra that worked out explicitly and
lucidly for linear OLS in Part I is available in the gen-
eral case only in the form of asymptotic approxima-
tion based on influence functions. Still, the analysis is
now informed by the notion of well-specification of re-
gression functionals, which gives the results a rather
satisfactory form.

The article continues as follows. In Section 2, we
discuss typical ways of defining regression functionals,
including optimization of objective functions and esti-
mating equations. In Section 3, we give the precise def-
inition of well-specification and illustrate it with vari-
ous examples. In Section 4, we introduce the reweight-
ing diagnostic for well-specification, illustrated in Sec-
tion 5 with specific reweighting methodologies applied
to the LA homeless data (Part I). Section 6 shows for
plug-in estimators of regression functionals how the
sampling variability is canonically decomposed into
contributions from the conditional response noise and
from the randomness of the regressors. In Section 7,
we state general CLTs analogous to the OLS versions

of Part I. In Section 8, we analyze model-free es-
timators of standard error derived from the M-of-N
pairs bootstrap and asymptotic variance plug-in (of-
ten of the sandwich form). It holds in great general-
ity that plug-in is the limiting case of bootstrap when
M → ∞. We also give some heuristics to suggest that
bootstrap estimators might generally be preferred over
plug-in/sandwich estimators. In Section 9, we summa-
rize the path taken in these two articles.

REMARK. For notes on the history of model ro-
bustness, see Part I, Section 1. For the distinction be-
tween model robustness and outlier/heavy-tail robust-
ness, see Part I, Section 13.

2. TARGETS OF ESTIMATION: REGRESSION
FUNCTIONALS

This section describes some of the ways of construct-
ing regression functionals, including those based on
“working models” used as heuristics to suggest plausi-
ble objective functions. We use the following notation
and assumptions throughout: At the population level,
there are two random variables, the regressor �X with
values in a measurable space X and the response Y

with values in a measurable space Y , with a joint distri-
bution P

Y, �X , a conditional response distribution P
Y | �X

and a marginal regressor distribution P �X . We express
the connection between them using “⊗” notation:

(1) P
Y, �X = P

Y | �X ⊗ P �X.

Informally, this is expressed in terms of densities by
p(y, �x) = p(y|�x)p(�x). In contrast to Part I, the regres-
sor and response spaces X and Y are now entirely arbi-
trary. The typographic distinction between �X and Y is a
hold-over from the OLS context of Part I. Both spaces,
X and Y , can be of any measurement type, univariate
or multivariate, or even spaces of signals or images.

Regression functionals need to be defined on uni-
verses of joint distributions that are sufficiently rich to
grant the manipulations that follow, including the as-
sumed existence of moments, influence functions and
closedness for certain mixtures. The details are tedious,
hence deferred to Appendix A (Buja et al., 2019) with-
out claim to technical completeness. The treatment is
largely informal so as not to get bogged down in dis-
tracting detail. Also, the asymptotics will be traditional
in the sense that X and Y are fixed and N → ∞. For
more modern technical work on related matters; see
Kuchibhotla et al. (2018). Readers comfortable with
defining functionals by way of objective functions and
estimating equations may want to continue with Sec-
tion 2.3.
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2.1 Regression Functionals from Optimization: ML
and PS Functionals

In Part I, we described the interpretation of linear
OLS coefficients as regression functionals. The expres-
sion “linear OLS” is used on purpose to avoid the ex-
pression “linear models” because no model is assumed.
Fitting a linear equation using OLS is a procedure to
achieve a best fit of an equation by the OLS criterion.
This approach can be generalized to other objective
functions L(θ;y, �x):

(2) θ(P ) = argmin
θ∈�

EP
[
L(θ;Y, �X)

]
.

A common choice for L(θ;y, �x) is the negative log-
likelihood of a parametric regression model for Y | �X,
defined by a parametrized family of conditional re-
sponse distributions {Q

Y | �X;θ : θ ∈ �} with conditional
densities {q(y|�x; θ) : θ ∈ �}. The model is not as-
sumed to be correctly specified, and its only purpose
is to serve as a heuristic to suggest an objective func-
tion:

(3) L(θ;y, �x) = − logq(y|�x; θ).

In this case, the regression functional resulting from
(2) will be called a maximum-likelihood functional or
ML functional for short. It minimizes the Kullback–
Leibler (K–L) divergence of P

Y, �X = P
Y | �X ⊗ P �X and

Q
Y | �X;θ ⊗ P �X , which is why one loosely interprets a

ML functional as arising from a “projection of the ac-
tual data distribution onto the parametric model.” ML
functionals can be derived from major classes of re-
gression models, including GLMs. Technically, they
also comprise many M-estimators based on Huber ρ

functions (Huber, 1964), including least absolute de-
viation (LAD, L1) as an objective function for con-
ditional medians, and tilted L1 versions for arbitrary
conditional quantiles, all of which can be interpreted as
negative log-likelihoods of certain distributions, even if
these may not usually be viable models for actual data.
Not in the class of negative log-likelihoods are objec-
tive functions for M-estimators with redescending in-
fluence functions such as Tukey’s biweight estimator
(which also poses complications due to nonconvexity).

Natural extensions of ML functionals can be based
on so-called “proper scoring rules” (Appendix B)
which arise as cross-entropy terms of Bregman diver-
gences. A special case is the expected negative log-
likelihood arising as the cross-entropy term of K–L
divergence. The optimization criterion is the proper
scoring rule applied to the conditional response distri-
bution P

Y | �X and model distributions Q
Y | �X;θ , averaged

over regressor space with P �X . The resulting regression
functionals may be called “proper scoring function-
als” or simply PS functionals, a superset of ML func-
tionals. All PS functionals, including ML functionals,
have the important property of Fisher consistency: If
the model is correctly specified, that is, if ∃ θ0 such
that P

Y | �X = Q
Y | �X;θ0

, then the population minimizer is
θ0:

(4) if P
Y, �X = Q

Y | �X;θ0
⊗ P �X, then θ(P ) = θ0.

See Appendix B for background on proper scoring
rules, Bregman divergences and some of their robust-
ness properties to outliers and heavy tailed distribu-
tions.

Further objective functions are obtained by adding
parameter penalties to existing objective functions:

(5) L̃(θ;y, �x) = L(θ;y, �x) + λR(θ).

Special cases are ridge and lasso penalties. Note that
(5) results in one-parameter families of penalized func-
tionals θλ(P ) defined for populations as well, whereas
in practice λ = λN applies to finite N with λN → 0 as
N → ∞.

2.2 Regression Functionals from Estimating
Equations: EE Functionals

Objective functions are often minimized by solving
stationarity conditions that amount to estimating equa-
tions with the scores ψ(θ;y, �x) = −∇θL(θ;y, �x):

(6) EP
[
ψ(θ;Y, �X)

] = 0.

One may generalize and define regression functionals
as solutions in cases where ψ(θ;y, �x) is not the gradi-
ent of an objective function; in particular it need not be
the score function of a negative log-likelihood. Func-
tionals in this class will be called EE functionals. For
OLS, the estimating equations are the normal equa-
tions, as the score function for the slopes is

(7) ψOLS(β;y, �x) = �xy − �x�x′β = �x(y − �x′β).

A seminal work that inaugurated asymptotic theory
for general estimating equations is by Huber (1967).
A more modern and rigorous treatment is in Rieder
(1994).

An extension is the “Generalized Method of Mo-
ments” (GMM; Hansen, 1982). It applies when the
number of moment conditions (the dimension of ψ )
is larger than the dimension of θ . An important appli-
cation is to causal inference based on numerous instru-
mental variables.
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Another extension is based on “Generalized Esti-
mating Equations” (GEE; Liang and Zeger, 1986). It
applies to clustered data that have intracluster depen-
dence, allowing misspecification of variances and intr-
acluster dependences.

2.3 The Point of View of Regression Functionals
and Its Implications

Theories of parametric models deal with the issue
that a traditional model parameter has many possible
estimators, as in the normal model N (μ,σ 2) where the
sample mean is in various ways the optimal estimate of
μ whereas the median is a less efficient estimate of the
same μ. The comparison of estimates of the same tra-
ditional parameter has been proposed as a basis of mis-
specification tests (Hausman, 1978) and called “test for
parameter estimator inconsistency” (White, 1982). In
a framework based on regression functionals, the sit-
uation presents itself differently. Empirical means and
medians, for example, are not estimators of the same
parameter; instead, they represent different statistical
functionals. Similarly, slopes obtained by linear OLS
and linear LAD are different regression functionals.
Comparing them by forming differences creates new
regression functionals that may be useful as diagnos-
tic quantities, but in a model-robust framework there is
no concept of “parameter inconsistency” (White, 1982,
p. 15), only a concept of differences between regres-
sion functionals.

A further point is that in a model-robust theory of
observational (as opposed to causal) association, there
is no concept of “omitted variables bias.” There are
only regressions with more or fewer regressor vari-
ables, none of which being “true” but some being more
useful or insightful than others. Slopes in a larger re-
gression are distinct from the slopes in a smaller re-
gression. It is a source of conceptual confusion to write
the slope of the j th regressor as βj , irrespective of
what the other regressors are. In more careful notation,
one indexes slopes with the set of selected regressors
M as well, βj ·M , as is done of necessity in work on
post-selection inference (e.g., Berk et al., 2013). Thus
the linear slopes βj ·M and βj ·M ′ for the j th regres-
sor, when it is contained in both of two regressor sets
M 
= M ′, should be considered as distinct regression
functionals. The difference βj ·M ′ − βj ·M is not a bias
but a difference between two regression functionals. If
it is zero, it indicates that the difference in adjustment
between M and M ′ is immaterial for the j th regres-
sor. If βj ·M ′ and βj ·M are very different with opposite

signs, there exists a case of Simpson’s paradox for this
regressor.

Regression functionals generally depend on the full
joint distribution P

Y, �X of the response and the regres-
sors. Conventional regression parameters describe the
conditional response distribution only under correct
specification, P

Y | �X = Q
Y | �X;θ , while the regressor dis-

tribution P �X is sidelined as ancillary. That the ancillar-
ity argument for the regressors is not valid under mis-
specification was documented in Part I, Section 4. In
the following sections, this fact will be the basis of the
notion of well-specification of regression functionals.

Finally, we state the following to avoid misunder-
standings: In the present work, the objective is not
to recommend particular regression functionals, but to
point out the freedoms we have in choosing them and
the clarifications we need when using them.

3. MIS/WELL-SPECIFICATION OF REGRESSION
FUNCTIONALS

Section 1 motivated a notion of well-specification
for regression functionals, and this section provides the
technical notations. The heuristic idea is that a regres-
sion functional is well-specified for a joint distribution
of the regressors and the response if it does not de-
pend on the marginal regressor distribution. In concrete
terms, this means that the functional does not depend
on where the regressors happen to fall. The functional
is therefore a property of the conditional response dis-
tribution alone.

3.1 Definition of Well-Specification for Regression
Functionals

Recall the notation introduced in (1): P
Y, �X =

P
Y | �X ⊗ P �X . Here, a technical detail requires clarifi-

cation: conditional distributions are defined only al-
most surely with regard to P �X , but we will assume
that �x �→ P

Y | �X=�x is a Markov kernel defined for

all �x ∈ X .1 With these conventions, P
Y | �X and P �X

uniquely determine P
Y, �X = P

Y | �X ⊗ P �X by (1), but not
quite vice versa. Thus θ(·) can be written as

θ(P ) = θ(P
Y | �X ⊗ P �X).

DEFINITION. The regression functional θ(·) is
well-specified for P

Y | �X if

θ(P
Y | �X ⊗ P �X) = θ

(
P

Y | �X ⊗ P ′
�X
)

for all acceptable regressor distributions P �X and P ′
�X .

1Thus we assume a “regular version” has been chosen, as is al-
ways possible on Polish spaces.
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The term “acceptable” accounts for exclusions of
regressor distributions such as those due to noniden-
tifiability when fitting equations, in particular, per-
fect collinearity when fitting linear equations (see Ap-
pendix A).

Importantly, the notion of well-specification is a joint
property of a specific θ(·) and a specific P

Y | �X . A
regression functional will be well-specified for some
conditional response distributions but not for others.

The notion of well-specification represents an ideal-
ization, not a reality. Well-specification is never a fact,
only degrees of misspecification are. Yet, idealizations
are useful because they give precision and focus to an
idea. Here, the idea is that a regression functional is
intended to be a property of the conditional response
distribution P

Y | �X alone, regardless of the regressor dis-
tribution P �X .

3.2 Well-Specification—Some Exercises and
Special Cases

Before stating general propositions, here are some
special cases to train intuitions.

1. The OLS slope functional can be written

β(P ) = EP [ �X �X′]−1EP [ �Xμ( �X)],
where μ(�x) = EP [Y | �X = �x] (Part I, Section 3.2).
Thus β(P ) depends on P

Y | �X only through the condi-
tional mean function. The functional is well-specified
if μ(�x) = β0

′ �x is linear, in which case β(P ) = β0. For
the reverse, see Part I, Proposition 4.1.

2. A special case is regression through the ori-
gin, which we generalize slightly as follows. Let h(�x)

and g(y) be two nonvanishing real-valued square-
integrable functions of the regressors and the response,
respectively. Define

θh,g(P ) = EP [g(Y )h( �X)]
EP [h( �X)2] .

Then θh,g(P ) is well-defined for P
Y | �X if EP [g(Y )| �X] =

β · h( �X) for some β , hence θh,g(P ) = β .
3. An ad hoc estimate of a simple linear regression

slope is

θ(P ) = EP
[(

Y ′ − Y ′′)/(
X′ − X′′) | ∣∣X′ − X′′∣∣ > δ

]
,

where (Y ′,X′), (Y ′′,X′′) ∼ P i.i.d. and δ > 0. It is
inspired by Part I, Section 10, and Gelman and Park
(2009). It is well-specified if EP [Y |X] = β0 + β1X, in
which case θ(P ) = β1.

4. Ridge regression also defines a slope func-
tional. Let � be a symmetric nonnegative definite
matrix and β ′�β its quadratic penalty. Solving the
penalized LS problem yields β(P ) = (EP [ �X �X′] +
�)−1EP [ �Xμ( �X)]. This functional is well-specified if
the conditional mean is linear, μ(�x) = β0

′ �x for some
β0, and � = cEP [ �X �X′] for some c ≥ 0, in which case
β(P ) = 1/(1+c)β0, causing uniform shrinkage across
all regression coefficients.

5. Given a univariate response Y , what does it
mean for the functional θ(P ) = EP [Y ] to be well-
specified for P

Y | �X? It looks as if it did not depend
on the regressor distribution and is therefore always
well-specified. This is a fallacy, of course. Because
EP [Y ] = EP [μ( �X)], it follows that EP [Y ] is indepen-
dent of P �X iff the conditional response mean is con-
stant: μ( �X) = EP [Y ].

6. Homoskedasticity: The average conditional vari-
ance functional σ 2(P ) = EP [VP [Y | �X]] is well-speci-
fied iff VP [Y | �X = �x] = σ 2

0 is constant, in which case
σ 2(P ) = σ 2

0 . A difficulty is that access to this func-
tional assumes knowledge of a correctly specified
mean function μ( �X) = EP [Y | �X].

7. The average conditional MSE functional wrt lin-
ear OLS is E[(Y − β(P )′ �X)2] = E[m2( �X)] using the
notation of Part I, end of Section 3.3. If it is well-
specified, that is, if m2( �X) = m2

o is constant, then linear
model-based inference is asymptotically justified (Part
I, Lemma 11.4 (a)).

8. The correlation coefficient ρ(Y,X), if inter-
preted as a regression functional in a regression of Y

on X, is well-specified only in the trivial case when
μ(X) is constant and VP [Y ] > 0, hence ρ(Y,X) = 0.

9. Fitting a linear equation by minimizing least ab-
solute deviations (LAD, the L1 objective function) de-
fines a regression functional that is well-specified if
there exists β0 such that median[P

Y | �X] = β0
′ �X.

10. In a GLM regression with a univariate response
and canonical link, the slope functional is given by

β(P ) = argmin
β

EP
[
b( �X′β) − Y �X′β

]
,

where b(θ) is a strictly convex function on the real
line and θ = �x′β is the “canonical parameter” mod-
eled by a linear function of the regressors. The station-
ary/estimating equations are2

EP [Y �X] = EP
[
∂b( �X′β) �X]

.

2To avoid confusion with matrix transposition, we write ∂b in-
stead of b′ for derivatives.
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This functional is well-specified iff EP [Y | �X] =
∂b( �X′β) for β = β(P ). Well-specification of β(P )

has generally no implication for VP [Y | �X], except in
the next example.

11. Linear logistic regression functionals are a spe-
cial case of GLM functionals where Y ∈ {0,1} and
b(θ) = log(1 + exp(θ)). Well-specification holds iff
P [Y = 1| �X] = ϕ( �X′

β) for β = β(P ) and ϕ(t) =
1/(1+e−t ). Because the conditional response distribu-
tion is Bernoulli, the conditional mean of Y determines
the conditional response distribution uniquely, hence
well-specification of the regression functional β(P ) is
the same as correct specification of the logistic regres-
sion model.

12. If θ(P ) is well-specified for PY | �X , then so is the
functional f (θ(P )) for any function f (·). An example
in linear regression is the predicted value β(P )′ �x at
the regressor location �x. Other examples are contrasts
such as β1(P ) − β2(P ) where βj (P ) denotes the j th
coordinate of β(P ).

13. A meaningless case of “misspecified function-
als” arises when they do not depend on the conditional
response distribution at all: θ(P

Y | �X ⊗ P �X) = θ(P �X).
Examples would be tabulations and summaries of in-
dividual regressor variables. They could not be well-
specified for PY | �X unless they are constants.

3.3 Well-Specification of ML, PS and EE
Functionals

The following proposition states that a regression
functional defined by minimization of an objective
function is well-specified if the value of the functional
minimizes the objective function at all locations in re-
gressor space.

PROPOSITION 3.1. If θ0 minimizes

EP [L(Y | �X; θ)| �X = �x] ∀�x ∈ X ,

then the minimizer θ(P ) of

EP [L(Y | �X; θ)]
is well-specified for P

Y | �X , and θ(P
Y | �X ⊗ P �X) = θ0 for

all acceptable regressor distributions P �X .

The following is a corollary of Proposition 3.1 and
follows from the fact that Bregman (and hence K-L)
divergences are minimized when their two arguments
are identical.

PROPOSITION 3.2. If θ(·) is a ML or PS functional
for the working model {Q

Y | �X;θ : θ ∈ �}, it is well-
specified for all model distributions P

Y | �X = Q
Y | �X;θ .

The next fact states that an EE functional is well-
specified for a conditional response distribution if it
satisfies the EE conditionally and globally across re-
gressor space for one value θ0.

PROPOSITION 3.3. If θ0 solves EP [ψ(θ0;Y, �X)|
�X = �x] = 0 for all �x ∈ X , then the EE functional
defined by EP [ψ(θ;Y, �X)] = 0 is well-specified for
P

Y | �X , and θ(P
Y | �X ⊗ P �X) = θ0 for all acceptable re-

gressor distributions P �X .

The proof is in Appendix D.

3.4 Well-Specification and Causality

The notion of well-specification for regression func-
tionals relates to aspects of causal inference based on
direct acyclic graphs (DAGs) and the Markovian struc-
tures they represent (e.g., Pearl, 2009). Given a DAG,
the theory explains which choices of regressors �X per-
mit correct descriptions of causal effects for a given
outcome variable Y . Focusing on one such choice of �X
and Y , one is left with the task of describing interest-
ing quantitative aspects of the conditional distribution
PY | �X , which is thought to be unchanging under dif-
ferent manipulations and/or sampling schemes of the
regressors �X. Therefore, if a quantity of interest is to
describe causal effects properly, it should do so irre-
spective of where the values of the causal variables �X
have fallen. This is exactly the requirement of well-
specification for regression functionals. In summary,
proper causal effects must arise as quantities of interest
that are well-specified in the sense of Section 3.1.

Peters, Bühlmann and Meinshausen (2016, Sec-
tion 1.1) discussed a related notion of “invariance”
which can be interpreted as “invariance to regressor
distributions.” They propose this notion as a heuristic
for causal discovery and inference based on multiple
data sources with the same variables, one variable be-
ing singled out as the response Y . These multiple data
sources are leveraged as follows: If for a subset of vari-
ables, �X, the association �X → Y is causal, then the
conditional distribution PY | �X will be the same across

data sources. Subsets of causal variables �X with shared
P

Y | �X across sources may therefore be discoverable if
the sources differ in their regressor distributions and/or
interventions on causal variables. For concreteness, the
authors focus on a linear structural equation model
(SEM), which allows us to reinterpret their proposals
by abandoning the SEM assumption and to consider
instead the regression functional consisting of the OLS
regression coefficients resulting from the linear SEM.
Thus the proposed method is at heart an approach to
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detecting and inferring well-specified quantities, cast
in a causal framework.

In the following section, we will introduce a di-
agnostic for well-specification that can be interpreted
as emulating multiple data sources from a single data
source. The proposal is to systematically reweight the
data to synthetically create alternative datasets. Peters
et al. (2016, Section 3.3) briefly mention the idea of
conditioning as related to the idea of multiple data
sources. Such conditioning is naturally achieved by lo-
cally reweighting the data, as will be shown next.

4. A REWEIGHTING DIAGNOSTIC FOR
WELL-SPECIFICATION: TARGETS AND

INFERENTIAL TOOLS

Well-specification of regression functionals connects
naturally to reweighting, both of populations and of
data. A concrete illustration of the basic idea can
be given by again drawing on the example of lin-
ear OLS: The OLS slope functional is well-specified
iff EP [Y | �X] = β ′

0
�X for some β0, in which case

for any nonnegative weight function w(�x) we have
β0 = argminβ EP [w( �X)(Y − β ′ �X)2]. Therefore, the
reweighting of interest is with regard to weights that
are functions of the regressors only. The general rea-
son is that such weights affect the distribution of the
regressors but not the conditional response distribution.
Reweighting provides an intuitive basis for diagnosing
well-specification of regression functionals. Because
of the practical importance of the proposed reweight-
ing diagnostic, we insert this material early, deferring
estimation and inference to Section 6.

Reweighting has an extensive history in statistics,
too rich to recount. The present purpose of reweight-
ing is methodological: to diagnose the degree to which
the null hypothesis of well-specification of a regression
functional is violated. As an aid, we propose what we
call a “tilt test.” It provides evidence of whether a real-
valued regression functional is likely to rise or fall (tilt
up or down) from one extreme of reweighting to an-
other. The conclusions from a rejection based on this
test are simple and interpretable.

In practice, the majority of regression functionals of
interest are regression slopes connected to specific re-
gressors. A more interesting problem than detection of
misspecification is another question: Does misspecifi-
cation impinge on the statistical significance of a slope
of interest? That is, would a slope have lost or gained
statistical significance if the regressor distribution had
been different? This is the primary question to be ad-
dressed by the reweighting diagnostic.

4.1 Reweighting and Well-Specification

Consider reweighted versions of the joint distribu-
tion P = P

Y, �X with weight functions w(�x) that depend
only on the regressors, not the response, written as

P w

Y, �X(dy, d �x) = w(�x)P
Y, �X(dy, d �x) or

pw(y, �x) = w(�x)p(y, �x),

where w(�x) > 0 and EP [w( �X)] = 1, which turns
P w

Y, �X into a joint probability distribution for (Y, �X)

with the same support as P
Y, �X . At times, for specific

weight functions, we will write w( �X)P
Y, �X instead of

P w

Y, �X .

LEMMA 4.1. P w

Y | �X = P
Y | �X and P w

�X = w( �X)P �X .

The proof is elementary and simplest in terms of
densities:

pw(�x) =
∫

pw(y, �x) dy

=
∫

w(�x)p(y, �x) dy = w(�x)

∫
p(y, �x) dy

= w(�x)p(�x),

pw(y|�x) = pw(y, �x)/pw(�x)

= (
w(�x)p(y, �x)

)
/(w(�x)p(�x)

= p(y, �x)/p(�x) = p(y|�x).

We obtain as an immediate consequence.

PROPOSITION 4.1. If the regression functional
θ(·) is well-specified for P

Y | �X , it is unchanged under

arbitrary �X-dependent reweighting:

θ(P w

Y, �X) = θ(P
Y, �X).

REMARK. In fixed-X linear models theory, which
assumes correct specification, it is known that re-
weighting the data with fixed weights grants unbiased
estimation of coefficients. Translated to the current
framework, this fact returns as a statement of invari-
ance of well-specified functionals under �X-dependent
reweighting.

Tests of misspecification based on reweighting were
proposed by White (1980, Section 4) for linear OLS.
The approach generalizes to arbitrary types of regres-
sion and regression functionals as follows: Given a
weight function w( �X) normalized for P , the null hy-
pothesis is H0 : θ(P w) = θ(P ). For the case that θ(·) is
the vector of OLS linear regression coefficients, White
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(1980, ibid., Theorem 4) proposes a test statistic based
on plug-in estimates and shows its asymptotic null dis-
tribution to be χ2. The result is a Hausman test (1978)
whereby (using model-oriented language) an efficient
estimate under the model is compared to an inefficient
but consistent estimate. Rejection indicates misspecifi-
cation. We will not draw on White’s results but instead
use the x-y bootstrap as a basis of inference because
(1) it directly applies to general types of regression un-
der mild technical conditions, and (2) it lends itself to
augmentation of visual displays that provide more in-
formative diagnostics than vanilla tests. White (1980)
did not develop a methodology for reweighting tests
other than recommending experimentation with multi-
ple weight functions. The present goal is to introduce
highly interpretable one-parameter families of weight
functions and to illustrate their practical use to gain in-
sights into the nature of misspecifications.

4.2 The Well-Specification Diagnostic: Population
Version

To obtain interpretable weight functions, we con-
struct them as functions of a univariate variable Z.
This variable will often be one of the real-valued re-
gressors, Z = Xj . However, the variable Z may be
any function of the regressors, Z = f ( �X), as when
Z = β ′ �X is the OLS fit of Y , or Z = Xj• is Xj ad-
justed for all other regressors (Part I, Section 9).3

Given a variable Z, consider for concreteness a uni-
variate Gaussian weight function of Z, centered at ξ on
the Z axis:

wξ(z) = w∗
ξ (z)/E

[
w∗

ξ (Z)
]
,

(8)
w∗

ξ (z) ∝ exp
(−(z − ξ)2/

(
2γ 2))

,

where γ is a user-specified bandwidth parameter (see
Section 4.3 below).

Next, consider a one-dimensional regression func-
tional θ(P ), such as a linear regression slope. A graph-
ical diagnostic is obtained by plotting θ(·) as a function
of the reweighting centers ξ :

(9) ξ �→ θξ (P ) = θ
(
wξ(Z)P

)
.

If the regression functional θ(P ) is well-specified for
P

Y | �X , then θξ (P ) is constant in ξ and equal to θ(P ).
Equivalently, if θξ (P ) is not constant in ξ , then θ(P )

is misspecified. Thus nonconstancy is a sufficient cri-
terion for misspecification. Insightful choices of traces
of the form (9) will be proposed below.

3Mathematically, the restriction to weights as a function of uni-
variate variables Z is no restriction at all because any w(�x) can be
trivially described as the identity function of Z = w(·).

4.3 The Reweighting Diagnostic: Data Version

To make the diagnostic actionable on data, one ob-
tains estimates

θ̂ξ = θ
(
ŵξ (Z) ̂P

)
,

where ŵξ (x) is a weight function that is empirically
normalized to unit mass, Ê[ŵξ (Z)] = 1, where Ê[...]
denotes the sample average. This means using weights
for the observations of the form

wi = ŵξ (zi) ∝ exp
(−(zi − ξ)2/

(
2γ 2))

,

1

N

∑
i

wi = 1, i = 1, . . . ,N.

We parametrize the bandwidth γ = ασ̂ (Z) in terms of
the empirical standard deviation σ̂ (Z) of Z and a mul-
tiplier α. In the examples, we use α = 1.

In order to plot a discretized version of the trace
ξ �→ θ̂ξ , we obtain estimates θ̂ξ for a grid of values
ξ(1) < · · · < ξ(K) on the Z axis, a simple choice be-
ing the interior deciles of the empirical Z distribution.
Hence K = 9, unless Z has numerous ties, causing
some deciles to collapse. Finally, we plot ξ(k) �→ θ̂ξ(k)

.
This is carried out in Figures 1–3 for the LA homeless
data (see Section 5).

4.4 Interpretations of the Reweighting Diagnostic

The reweighting diagnostic is likely to be accessi-
ble to practitioners of regression. One reason is that
the restriction to weights as a function of a univariate
variable Z permits a simple left-to-right comparison:
Is ξ �→ θ(wξ (Z)P ) higher or lower on the right than
on the left? In our experience, the dominant feature of
such traces is indeed monotonicity. The intuitive ap-
peal of reweighting is further helped by two mutually
compatible interpretations:

• Data frequency: Reweighting mimics scenarios of
datasets that contain more or fewer observations as
a function of Z than the observed dataset. Thus it
answers questions such as “what if there were more
observations with low (or high) values of Z?” In this
sense, reweighting mimics alternative data sources
based on the data at hand.

• Conditioning: Reweighting can be seen as “soft con-
ditioning on Z” in the sense that conditioning on
“sharp inclusion” in an interval ξ − c < Z < ξ + c is
replaced by “soft inclusion” according to the weight
function wξ(z). In this sense reweighting localizes
the regression functional. However, note that when
Z = Xj , for example, the localization is of “codi-
mension 1” in regressor space.
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In what follows, we use either of these interpretations
depending on the context.

4.5 Inferential Features for Reweighting
Diagnostics

Graphical diagnostics need inferential augmentation
to answer questions of whether visually detected fea-
tures are likely to be real. Presently the two main ques-
tions are:

(1) Is the variation/nonconstancy in ξ(k) �→ θ̂ξ(k)
suf-

ficiently strong to be statistically significant, and hence
suggest misspecification of θ(·)?

(2) Where are the estimates θ̂ξ(k)
statistically signif-

icantly different from zero?

For regression slopes, question (2) may be more rel-
evant than (1) because one usually cares about their
statistical significance. Therefore, to answer question
(2), we decorate the diagnostic plot with traces of boot-
strapped estimates, as shown in the plots of Figures 1–
3. Bootstrap resampling is done from the actual, not
the reweighted, data. The weight functions have the
same centers ξ(k), but their bandwidth is based on boot-
strapped standard deviations. In the figures, we show
199 bootstrap traces in gray color, amounting to a so-
called “spaghetti plot.” Along with the bootstrap repli-
cations we also show bootstrap error bars at the grid
locations. Their widths are a lenient ±2 bootstrap stan-
dard errors, not adjusted for multiplicity. (Such diag-
nostics are search expeditions and do not provide strict
inference.)

As can be illustrated with Figures 1–3, statistical sig-
nificance can feature a variety of patterns. Significance
may exist...

(2a) ... across the whole range of reweighting cen-
ters ξ(k) and in the same direction, as in the top right
plot of Figure 1;

(2b) ... both on the left and the right but in oppo-
site directions with a transition through insignificance
in between, as is nearly the case in the center left plot
of Figure 2;

(2c) ... over part of the range, typically the left or the
right side; such tendencies are seen in the two center
plots of Figure 1;

(2d) ... nowhere, as in the bottom right plot of Fig-
ure 2.

To answer question (1) regarding the presence of
misspecification, we piggyback on the bootstrap exer-
cise meant to answer question (2). Because most detec-
tions of misspecification arise from a monotone tilt in

the trace ξ(k) �→ θ̂ξ(k)
, we construct a cheap test statis-

tic by forming the difference between the two extreme
points of the trace, θ̂ξ(K)

− θ̂ξ(1)
.4 We obtain its bootstrap

distribution almost for free, hence we can perform a
crude bootstrap test by placing the null value zero in
the bootstrap distribution. The bootstrap p-value and
the test statistic are shown near the top of each plot
frame in Figures 1–3. For example, the top left frame of
Figure 1 shows “Tilt: p=0.04 d=2.18,” mean-
ing that the difference of 2.18 is statistically significant
with a (two-sided) p-value of 0.04.5

Finally, we show on the left side of each frame a
visual version of unweighted plain statistical signifi-
cance of the quantity of interest in the form of a boot-
strap confidence interval around the unweighted esti-
mate θ̂ ± 2 unweighted bootstrap standard errors. In
addition, we show 199 bootstrap estimates (gray points
horizontally jittered to reduce overplotting). The loca-
tion on the horizontal axis has no meaning other than
being 10% to the left of the range (ξ(1), ξ(K)) of the
traces.

5. THE REWEIGHTING DIAGNOSTIC FOR
WELL-SPECIFICATION: METHODOLOGY AND

EXAMPLES

The following subsections demonstrate three differ-
ent purposes of the diagnostic. The quantities of inter-
est are linear OLS slopes, though the approach general-
izes to all types of regression that permit reweighting:

• Focal slope: Expose a slope βk(P ) of special interest
to reweighting on each regressor in turn: Z = Xj for
j = 1, . . . , p (Section 5.1). This produces highly in-
terpretable insights into interactions of regressor Xk

with all other regressors Xj , without modeling these
interactions directly.

• Nonlinearity detection: Expose each regression
slope βj (P ) to reweighting on its own regressor,
Z = Xj (Section 5.2). This produces insights into
marginal nonlinear behaviors of response surfaces.

• Focal reweighting variable: Use a single reweight-
ing variable of interest (here: Z = β ′ �X) to diagnose
well-specification of all components of a regression
functional, here: slopes βj (P ) (Section 5.3).

4This test statistic does not result in a Hausman (1978) test: both
estimates are “inefficient under correct model specification.” How-
ever, it quantifies an obvious visual feature of the traces.

5For 199 bootstrap replicates, the lowest possible two-sided p-
value is 0.01 = 2 · 1/(1 + 199).
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These diagnostics will be illustrated with the LA home-
less data of Part I, Section 2 (Berk et al. 2008). The ob-
servations consist of a sample of 505 census tracts in
the LA metropolitan area, and the variables are seven
quantitative measures of the tracts with largely self-
explanatory names: The response is the StreetTo-
tal (count) of homeless people in a census tract, and
the six regressors are: MedianIncome (of house-
holds, in $1000s), PercMinority, and the preva-
lences of four types of lots: PercCommercial,
PercVacant, PercResidential and PercIn-
dustrial.

5.1 Diagnostics for a Focal Regression Coefficient
of Interest (Figure 1)

One variable stands out as potentially accessible to
intervention by public policies: PercVacant. Vacant
lots could be turned into playgrounds, sports fields,
parks, or offered as neighborhood gardens.6 It would
therefore be of interest to check whether the regres-
sion coefficient of PercVacant possibly measures a
causal effect, for which it is a necessary condition that
it be well-specified (Section 3.4). To this end, Figure 1
shows diagnostics for the coefficient of PercVacant
under reweighting on all six regressors.

As the plots show, statistical significance of the co-
efficient of PercVacant holds by and large under
reweighting across the ranges of all six regressors.
While this is comforting, there exists a weakening of
significance in the extremes of the ranges of three re-
gressors: high MedianIncome, low PercMinor-
ity and low PercResidential. With these qual-
itative observations, it is already indicated that well-
specification of the coefficient of PercVacant is
doubtful, and indeed the tilt tests show statistical sig-
nificance with 2-sided p-values of 0.01 and 0.02 for
PercMinority and MedianIncome, respectively.
The variable PercResidential also looks rather
steep, but its tilt test has a weaker p-value around 0.1.
Finally, a very weak indication is shown for larger ef-
fects at higher levels of PercVacant.

Does this indication of misspecification invalidate a
causal effect of PercVacant? It does not. It only
points to the likely possibility that the causal effect is
not correctly described by a single linear regression co-
efficient; it is rather a more complex function of the re-
gressors. Useful insight into the nature of the causal

6Such programs have indeed been enacted in some cities. We
abstain from commenting on the controversies surrounding such
policies.

effect (if this is what it is) can be gleaned from the
diagnostic plots by using them to answer an obvious
question: Where is the effect of PercVacant likely
to be strong? An answer might indeed help in prioritiz-
ing interventions. Interpreting the plots of Figure 1 lib-
erally, one could state that the effect of PercVacant
looks strongest for census tracts with high PercMi-
nority, followed by high PercResidential and
low MedianIncome. These observations seem rather
plausible and may indeed point to census tracts worth
prioritizing for intervention with public policies.7

The insights gained so far point to the presence of in-
teractions between PercVacant and other regressors
because the slope of PercVacant varies at differ-
ent levels of those other regressors. A natural next step
would be more detailed modeling that includes interac-
tions between PercVacant and the three interacting
regressors, but the essential insights have already been
gained.

5.2 Diagnostics for Slopes Reweighted by Their
Own Regressors (Figure 2)

The top right plot in Figure 1 is a special case where
the slope of interest is reweighted by its own regressor,
PercVacant. It has a different interpretation, not re-
lated to interactions but to nonlinear effects. To get a
better picture of the possibilities that can arise in real
data, we show in Figure 2 the corresponding plots for
all six regressors and their slopes.

Glancing at the six plots, we note some unpre-
dictable effects of reweighting, both on the values
and the estimation uncertainties of the slopes. We find
examples of larger and smaller estimates as well as
stronger and weaker statistical significances relative to
their unweighted analogs:

• Bottom left plot for the regressor PercCommer-
cial: The unweighted estimate of βj (P ) (on the
left side of the plot) is weakly statistically signifi-
cant (the lower end of the ±2 standard error con-
fidence interval touches zero). The reweighted esti-
mates of βj (wξ (Xj )P ), however, are closer to zero
and nowhere statistically significant for any ξ in the
range of PercCommercial.

• Top right plot for the regressor PercVacant: The
unweighted estimate and the reweighted estimates
are all statistically significant, but the reweighted
ones are systematically larger and much more sta-
tistically significant.

7An application of this type of diagnostic to the Boston Housing
data is in Appendix F.
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FIG. 1. Diagnostics for the slope of PercVacant; LA Homeless Data (see Section 2, Part I). Vertical axis = regression coefficient of
PercVacant (in all frames); horizontal axes = regressors. If the vertical axis is interpreted causally as the effect size of PercVacant on
the response StreetTotal (of homeless in a census tract), the following can be inferred: the effect size of PercVacant is greater for
high values of PercMinority (center left frame) and low values of MedianIncome (top left frame), and possibly also for high values
of PercResidential. Near the top margin of each frame are the p-values of a “Tilt” test for the difference between the right-most and
left-most effect sizes.

Another noteworthy case of a different nature ap-
pears for the regressor PercMinority (Figure 2,
center left plot). While the unweighted estimate is sta-
tistically insignificant, the locally reweighted estimates
reveal a striking pattern:

• For low values of PercMinority ≈ 20%, the
slope is negative and statistically significant: In-
crementally, more minorities are associated with a
lower StreetTotal of homeless.

• For high values of PercMinority ≈ 80%, the
slope is positive and (weakly) statistically signifi-

cant: Incrementally, more minorities are associated
with a higher StreetTotal of homeless.

This finding (if real) represents a version of Simpson’s
paradox: In aggregate, there is no statistically signifi-
cant association, but, conditional on low and high val-
ues of PercMinority, there is, and in opposite di-
rections.

In Appendix E, we discuss some reasons for the un-
predictable behaviors of slopes under reweighting wrt
to their own regressors. We also mention a (weak) link
to partial additive models (Hastie and Tibshirani, 1990)
with one nonlinear term.
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FIG. 2. Misspecification diagnostics: Slopes reweighted by their own regressors—indications of nonlinearity. The center left frame suggests
that the slope of PercMinority reverses from a negative slope for low values of PercMinority to a positive slope for high values of
PercMinority.

5.3 Diagnostics for a Focal Reweighting Variable
of Interest (Figure 3)

Next, we illustrate a version of the diagnostics that
subjects all slopes of a linear regression to a single
reweighting variable of interest. The goal is to detect
misspecification in any coefficient, and the hope is to
do so by reweighting based on a variable Z that is both
powerful and interpretable. Taking a cue from tradi-
tional residual diagnostics, we choose the OLS best ap-
proximation, Z = β ′ �X. The data version is based on
reweighting as a function of the fitted values, zi = ŷi =
β̂ ′ �xi .8 The question is whether any coefficient reveals

8The estimated slope vector β̂ is frozen across bootstraps, ignor-
ing a lower-order source of sampling variability.

misspecification when comparing it on data with more
low versus more high values of the linear approxima-
tion to the number of homeless. The expectation is that
the gradient of the linear approximation should be a di-
rection of high average response variation, and hence
may have a higher promise of revealing misspecifica-
tions than other directions in regressor space.

Figure 3 shows this diagnostic applied to the LA
homeless data, labeling the reweighting variable as
Fitted. Some observations are as follows:

• The only slope with signs of misspecification is for
MedianIncome (top left plot), whose tilt test has
a p-value of 0.03. This slope achieves mild statisti-
cal significance for high values of Fitted, which
would indicate that the “effect” (if any) of differ-
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FIG. 3. Misspecification Diagnostics using one focal reweighting variable, the best linear approximation/prediction Fitted, for all slopes.
The fan shapes left to right suggest that all slope estimates except the one for PercVacant have more sampling variability for higher fitted
values.

ences in MedianIncome matter more for high val-
ues of Fitted.

• The slope of PercCommercial (bottom left plot)
shows no signs of misspecification, but it is mildly
statistically significant only for low values of Fit-
ted due to the lower estimation uncertainty in that
range.

• Five of the six plots feature a fan shape of the boot-
strap spaghetti bands (exception: PercVacant).
This indicates that these five slope estimates have
greater estimation uncertainty for higher values of
Fitted.

The last point illustrates that the diagnostic is not only
informative about the average level of estimates but
also about their estimation uncertainty.

5.4 Summary Comments on Reweighting
Diagnostics

The reweighting diagnostics proposed here are not
meant to replace other types of diagnostics, typically
based on residual analysis. They are, however, able
to answer questions about quantities of interest and
effects of regressors that residual analysis might not.
They may also be able to provide insights into the
nature of nonlinearities and interactions without ex-
plicitly modeling them. Furthermore, they are easily
augmented with inferential features such as bootstrap
spaghetti bands and (tentative) tests of misspecifica-
tion with specific interpretations. Finally, they are able
to localize regions in regressor space with high or low
estimation uncertainty.
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6. ESTIMATION OF REGRESSION FUNCTIONALS:
CANONICAL DECOMPOSITION OF ESTIMATION

OFFSETS

We return to the task of building a general frame-
work of plug-in estimation of regression functionals
based on i.i.d. data. We decompose sampling variabil-
ity into its two sources, one due to the conditional re-
sponse distribution, the other due to the randomness of
the regressors interacting (conspiring) with misspecifi-
cation. Along the way we find new characterizations of
well-specification of regression functionals.

6.1 Regression Data and Plug-in Estimation

We adopt some of the notations and assumptions
from Part I, Section 5: Data consist of N i.i.d. draws
(Yi, �Xi) ∼ P = P

Y, �X; the responses Yi are collected in

a data structure Y = {Yi}i , and the regressors �Xi in an-
other data structure X = { �Xi}i , called “data frame” in
programming languages such as R (2008). We avoid
the terms “vector” and “matrix” because in a gen-
eral theory of regression all variables—responses and
regressors—can be of any type and of any dimension.9

This is why not only X but Y is best thought of as a
(random) “data frame.” Regression of Y on X is any
attempt at estimating aspects of the conditional distri-
bution P

Y | �X . We limit ourselves to regression function-

als θ(·) that allow plug-in estimation θ̂ = θ( ̂P ) where
̂P = ̂P

Y, �X = (1/N)
∑

δ
(Yi, �Xi )

is the joint empirical

distribution. If necessary, we may write P̂N for ̂P and
θ̂N for θ̂ . In addition, we will also need the empirical
regressor distribution ̂P �X = (1/N)

∑
δ �Xi

.

6.2 The Conditional Parameter of Model-Trusting
Fixed-X Regression

We now define the important notion of a “condi-
tional parameter” for arbitrary regression functionals,
thereby providing the target of estimation for fixed-
X theories. For OLS slopes, this target of estimation
is β(X) = EP [β̂|X] (Part I, Section 5). We use the
idea that fixed-X theories condition on observed re-
gressor observations �X1, . . . , �XN , collected in the data
frame X, and define a target of estimation by assuming
that the population of Y -values at each �Xi is known:
Yi | �Xi ∼ P

Y | �Xi
. The joint distribution is then effec-

tively P
Y | �X ⊗ ̂P �X , amounting to partial plug-in of ̂P �X

9Recall that the typographic difference between Y and �X is a
holdover from Part I, where the response and all regressors were
assumed univariate quantitative.

for P �X in P
Y, �X = P

Y | �X ⊗ P �X . The conditional param-
eter for θ(·) is therefore defined as θ(X) = θ(P

Y | �X ⊗
̂P �X). We summarize notation, with emphasis on the
second line:

θ(P ) = θ(P
Y | �X ⊗ P �X),

θ(X) = θ(P
Y | �X ⊗ ̂P �X), ̂P �X = (1/N)

∑
δ �Xi

,

θ̂ = θ( ̂P ).

Note that X and ̂P �X contain the same information; the
conditional response distribution P

Y | �X is implied and
not shown in θ(X). The main points are:

• In model-trusting theories that condition on X, the
target of estimation is θ(X). They assume θ(X) is
the same for all acceptable X.

• In model-robust theories that do not condition on X,
the target of estimation is θ(P ), whereas θ(X) is a
random quantity (Corollary 6.3 below).

The above definitions can be made more concrete by
illustrating them with the specific ways of defining re-
gression functionals of Section 2:

• Functionals defined through minimization of objec-
tive functions:

θ(P ) = argminθ EP
[
L(θ;Y, �X)

]
,

θ(X) = argminθ
1
N

∑
i EP

[
L(θ;Yi, �Xi ) | �Xi

]
,

θ̂ = argminθ
1
N

∑
i L(θ;Yi, �Xi ).

• Functionals defined through estimating equations:

θ(P ) : EP
[
ψ(θY, �X)

] = 0,

θ(X) : 1
N

∑
i EP

[
ψ(θ;Yi, �Xi ) | �Xi

] = 0,

θ̂ : 1
N

∑
i ψ(θ;Yi, �Xi ) = 0.

Summary: Among the three cases in each bullet, the
most impenetrable but also most critical case is the sec-
ond one. It defines the “conditional parameter” through
partial plug-in of the empirical regressor distribution.
The conditional parameter is the target of fixed-X re-
gression for arbitrary types of regression functionals.

6.3 Estimation Offsets

The conditional parameter θ(X) enables us to distin-
guish between two sources of estimation uncertainty:
(1) the conditional response distribution and (2) the
marginal regressor distribution. To this end, we defined
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in Part I for linear OLS what we call “estimation off-
sets.” With the availability of θ(X) for regression func-
tionals, these can be defined in full generality:

Total EO = θ̂ − θ(P ),

Noise EO = θ̂ − θ(X),

Approximation EO = θ(X) − θ(P ).

The total EO is the offset of the plug-in estimate from
its population target. The noise EO is the component
of the total EO that is due to the conditional distribu-
tion Y | �X. The approximation EO is the part due to the
randomness of �X under misspecification. These inter-
pretations will be elaborated in what follows.

REMARK. We repeat an observation made in Part
I, end of Section 5. The approximation EO θ(X) −
θ(P ) could be misinterpreted as a bias because it is
the difference of two targets of estimation. This inter-
pretation is wrong. In the presence of misspecification,
the approximation EO is a nonvanishing random vari-
able. It will be shown to contribute not a bias to θ̂ but
a N−1/2 term to the sampling variability of θ̂ .

6.4 Well-Specification in Terms of Approximation
EOs

The approximation EO lends itself for another char-
acterization of well-specification.

PROPOSITION 6.1. Assume P �X �→ θ(P
Y | �X ⊗ P �X)

is continuous in the weak topology. Then θ(·) is well-
specified for P

Y | �X iff θ(X) − θ(P ) = 0 for all accept-
able X.

PROOF. If θ(·) is well-specified in the sense of
Section 3, then

θ(X) = θ(PY | �X ⊗ ̂P �X) = θ(P
Y | �X ⊗ P �X) = θ(P ).

The converse follows because the empirical regressor
distributions ̂P �X (for N → ∞) form a weakly dense
subset in the set of all regressor distributions, and the
regression functional is assumed continuous in this ar-
gument. �

COROLLARY 6.1. Same assumptions as in Propo-
sition 6.1.

• Fixed-X and random-X theories estimate the same
target iff θ(·) is well-specified for P

Y | �X .
• θ(·) is well-specified for P

Y | �X iff VP [θ(X)] = 0 for
all acceptable P �X .

The first bullet confirms that the notion of well-
specification for regression functionals hits exactly the
point of agreement between theories that condition on
the regressors and those that treat them as random. The
second bullet leads the way to the fact that a misspeci-
fied regression functional will incur sampling variabil-
ity originating from the randomness of the regressors.

6.5 Deterministic Association Annihilates the
Noise EO

While well-specification addresses a vanishing ap-
proximation EO, one can also consider the dual con-
cept of a vanishing noise EO. Here is a sufficient con-
dition under which the noise EO vanishes for all re-
gression functionals.

PROPOSITION 6.2. If Y = f ( �X) is a deterministic
function of �X, then θ̂ − θ(X) = 0 for all regression
functionals.

PROOF. The conditional response distribution is
P

Y | �X=�x = δy=f (�x), hence the joint distribution formed

from P
Y | �X=�x and ̂P �X is ̂P : P

Y | �X ⊗ ̂P �X = ̂P . It fol-

lows that θ(X) = θ(P
Y | �X ⊗ ̂P �X) = θ( ̂P ) = θ̂ . �

The proposition illustrates the fact that the noise EO
is due to “noise,” that is, variability of Y conditional on
�X. Thus, although less transparent than in linear OLS,
the conditional response distribution Y | �X is the driver
of the noise EO.

6.6 Well-Specification and Influence Functions

This section introduces influence functions for re-
gression functionals which will prove useful for ap-
proximations in Section 6.7 and for asymptotic decom-
positions in Section 7. For background on influence
functions see, for example, Hampel et al. (1986) and
Rieder (1994).

The influence function is a form of derivative on the
space of probability distributions, which makes it an
intuitive tool to characterize well-specification of re-
gression functionals: If θ(P

Y | �X ⊗ P �X) is constant in
the argument P �X at a fixed P

Y | �X , then this means intu-
itively that the “partial derivative” wrt P �X vanishes.

The definition of the full influence function of θ(·) is
as follows:

(10) IF (y, �x) = d

dt

∣∣∣∣
t=0

θ
(
(1 − t)P + tδ(y,�x)

)
.

We omit θ(·) as well as P = P
Y, �X as arguments of

IF (y, �x) because both will be clear from the context,
except for one occasion in Appendix C where we write
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IF (y, �x;P ). More relevant is the following definition
of the partial influence function of θ(·) with regard to
the regressor distribution:

(11) IF (�x) = d

dt

∣∣∣∣
t=0

θ
(
P

Y | �X ⊗ (
(1 − t)P �X + tδ�x

))
.

For derivations of the following lemma and proposi-
tion, see Appendix C.

LEMMA 6.1. IF (�x) = EP [IF (Y, �X)| �X = �x].
PROPOSITION 6.3. A regression functional θ(·)

with an influence function at P
Y, �X is well-specified for

P
Y | �X iff IF (�x) = 0 ∀�x.

6.7 Approximating Estimation Offsets with
Influence Functions

For linear OLS, the definition of EOS and the lemma
in Section 5 of Part I exhibited an intuitive correspon-
dence between the total, noise and approximation EO
on the one hand and the population residual, the noise
and the nonlinearity on the other hand. No such direct
correspondence exists for general types of regression.
The closest general statement about EOs is in terms of
approximations based on influence functions. Assum-
ing asymptotic linearity of θ(·), the EOs have the fol-
lowing approximations to order oP (N−1/2), which will
lead straight to the CLTs of the next section.

Total EO :
θ̂ − θ(P ) ≈ 1

N

∑
i IF (Yi, �Xi ),

Noise EO :
θ̂ − θ(X) ≈ 1

N

∑
i

(
IF (Yi, �Xi ) − EP

[
IF (Y, �Xi )| �Xi

])
,

Approximation EO :
θ(X) − θ(P ) ≈ 1

N

∑
i EP

[
IF (Y, �Xi )| �Xi

]
.

7. MODEL-ROBUST CENTRAL LIMIT THEOREMS
DECOMPOSED

7.1 CLT Decompositions Based on Influence
Functions

If the approximations of Section 6.7 hold, the EOs
obey the following CLTs:

√
N

(
θ̂ − θ(P )

) D−→
N

(
0,VP

[
IF (Y, �X)

])
,

√
N

(
θ̂ − θ(X)

) D−→
N

(
0,EP

[
VP

[
IF (Y, �X)| �X]])

,

√
N

(
θ(X) − θ(P )

) D−→
N

(
0,VP

[
EP

[
IF (Y, �X)| �X]])

.

These are immediate consequences of the assumed
asymptotic linearities. The asymptotic variances of the
EOs follow the canonical decomposition,

VP
[
IF (Y, �X)

] = EP
[
VP

[
IF (Y, �X)| �X]]

+ VP
[
EP

[
IF (Y, �X)| �X]]

,

the three terms being the asymptotic variance-
covariance matrices of the total, the noise and the ap-
proximation EO, respectively. Implicit in this
Pythagorean formula is that IF (Y, �X)−EP [IF (Y, | �X)

and EP [IF (Y, | �X) are orthogonal to each other, which
implies that the noise EO and the approximation EO
are asymptotically orthogonal. Asymptotic orthogonal-
ities based on conditioning are well-known in semi-
parametric theory. For linear OLS, this orthogonality
holds exactly for finite N due to β(X) = E[β̂|X]:
VP [β̂ − β(X),β(X) − β(P )] = 0.

The following corollary is a restatement of Proposi-
tion 6.3, but enlightened by the fact that it relies on the
asymptotic variance of the approximation EO.

COROLLARY 7.1. The regression functional θ(·)
is well-specified for P

Y | �X iff the asymptotic variance of
the approximation EO vanishes for all acceptable P �X .

PROOF. Using careful notation, the condition says
VP �X [EP

Y | �X [IF (Y, �X)| �X]] = 0 for all acceptable P �X .

This in turn means EP
Y | �X [IF (Y, �X)| �X = �x] = 0 for all

�x, which is the condition of Proposition 6.3. �
7.2 CLT Decompositions for EE Functionals

For EE functionals, the influence function is IF (y,

�x) = �(θ)−1ψ(θ;y, �x) where θ = θ(P ) and �(θ) =
∇θEP [ψ(θ;Y, �X)] is the Jacobian of size q × q , q =
dim(ψ) = dim(θ). The CLTs specialize as follows:

√
N(θ̂ − θ)

D−→
N

(
0,�(θ)−1VP

[
ψ(θ;Y, �X)

]
�(θ)′−1)

,

√
N

(
θ̂ − θ(X)

) D−→
N

(
0,�(θ)−1EP

[
VP

[
ψ(θ;Y, �X)| �X]]

�(θ)′−1)
,

√
N

(
θ(X) − θ

) D−→
N

(
0,�(θ)−1VP

[
EP

[
ψ(θ;Y, �X)| �X]]

�(θ)′−1)
.

The first line is Huber’s (1967, Section 3) result. The
three asymptotic variances have the sandwich form and
are related according to the canonical decomposition,

VP
[
ψ(θ;Y, �X)

] = EP
[
VP

[
ψ(θ;Y, �X)| �X]]

+ VP
[
EP

[
ψ(θ;Y, �X)| �X]]

,
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the terms again relating to the total EO, the noise EO
and the approximation EO.

7.3 Implications of the CLT Decompositions

We address once again potential confusions relat-
ing to different notions of bias. Misspecification, in
traditional parametric modeling, is sometimes called
“model bias” which, due to unfortunate terminol-
ogy, may suggest a connection to estimation bias,
EP [θ̂N ] − θ(P ). Importantly, there is no connection
between the two notions of bias. Estimation bias typ-
ically vanishes at a rate faster than N−1/2 and does
not contribute to standard errors derived from asymp-
totic variances. Model bias, on the other hand, which is
misspecification, generates in conjunction with the ran-
domness of the regressors a contribution to the standard
error, and this contribution is asymptotically of order
N−1/2, the same order as the better known contribu-
tion due to the conditional noise in the response. This
is what the CLT decomposition shows. It also shows
that the two sources of sampling variability are asymp-
totically orthogonal. In summary:

Model bias/misspecification does not create estima-
tion bias; it creates sampling variability to the same
order as the conditional noise in the response.

8. PLUG-IN/SANDWICH ESTIMATORS VERSUS
M-OF-N BOOTSTRAP ESTIMATORS OF

STANDARD ERROR

8.1 Plug-in Estimators Are Limits of M-of-N
Bootstrap Estimators

In Part I, Section 8.2, it was indicated that for linear
OLS there exists a connection between two ways of es-
timating asymptotic variance: the sandwich estimator
for sample size N is the limit of the M-of-N bootstrap
as M → ∞, where bootstrap is the kind that resamples
x-y cases rather than residuals. This connection holds
at a general level: all plug-in estimators of standard er-
ror are limits of bootstrap in this sense.

The crucial observation of Part I goes through as fol-
lows: The M-of-N bootstrap is i.i.d. sampling of M

observations from some distribution, hence there must
hold a CLT as the resample size grows, M → ∞. The
distribution being (re)sampled is the empirical distri-
bution P̂N = (1/N)

∑
δ(yi ,�xi ), where N is fixed but

M → ∞ (causing ever more ties as M grows.) There-
fore, the following holds for bootstrap resampling of
any well-behaved statistical functional, be it in a re-
gression context or not.

PROPOSITION 8.1. Assume the regression func-
tional θ(·) is asymptotically normal for a sufficiently
rich class of joint distributions P = P

Y, �X with accept-
able regressor distributions P �X as follows:

N1/2(
θ̂N − θ(P )

) D−→ N
(
0,AV

[
P ; θ(·)])

(N → ∞).

Let P̂N represent a fixed dataset of size N with ac-
ceptable regressors. Then a CLT holds for the M-of-N
bootstrap resamples as M → ∞, with an asymptotic
variance obtained by plug-in. Letting θ∗

M = θ(P ∗
M)

where P ∗
M is the empirical distribution of a resample

of size M from P̂N , we have

M1/2(
θ∗

M − θ̂N
) D−→ N

(
0,AV

[
P̂N ; θ(·)])

(M → ∞, P̂N fixed).

The proposition contains its own proof. The follow-
ing is the specialization to EE functionals where the
asymptotic variance has the sandwich form.

COROLLARY 8.1. The plug-in sandwich estimator
for an EE functional is the asymptotic variance esti-
mated by the M-of-N bootstrap in the limit M → ∞
for a fixed sample of size N .

8.2 Arguments in Favor of M-of-N Bootstrap over
Plug-in Estimators

A natural next question is whether the plug-in/
sandwich estimator is to be preferred over M-of-N
bootstrap estimators, or whether there is a reason to
prefer some form of M-of-N bootstrap. In the latter
case, the follow-up question would be how to choose
the resample size M . While we do not have any rec-
ommendations for choosing a specific M , there exist
various arguments in favor of some M-of-N bootstrap
over plug-in/sandwich estimation of standard error.

A first argument is that bootstrap is more flexible
in that it lends itself to various forms of confidence
interval construction that grant higher order accuracy
of coverage. See, for example, Efron and Tibshirani
(1993) and Hall (1992).

A second argument is related to the first but in a
different direction: Bootstrap can be used to diagnose
whether the sampling distribution of a particular func-
tional θ(·) is anywhere near asymptotic normality for
a given sample size N . This can be done by apply-
ing normality tests to simulated bootstrap values θ∗

b

(b = 1, . . . ,B), or by displaying these values in a nor-
mal quantile plot.
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A third argument is that there exists theory that
shows bootstrap to work for very small M compared to
N in some situations where even conventional N -of-N
bootstrap does not work. (See Bickel, Götze and van
Zwet, 1997, following Politis and Romano, 1994, on
subsampling.) It seems therefore unlikely that the limit
M → ∞ for fixed N will yield any form of superiority
to bootstrap with finite M .

A fourth argument derives from a result by Buja and
Stuetzle (2001, 2016), which states that so-called “M-
bagged functionals”10 have low complexity in a cer-
tain sense, the lower the smaller the resample size M

is. The limit M → ∞ is therefore the most complex
choice. The connection to the issue of “bootstrap ver-
sus plug-in/sandwich estimators” is that M-of-N boot-
strap standard errors are simple functions of M-bagged
functionals, hence the complexity comparison carries
over to standard errors.

It appears that multiple arguments converge on the
conclusion that the M-of-N bootstrap is to be preferred
over plug-in/sandwich standard errors. (Also recall that
both are to be preferred over the residual bootstrap.)

9. SUMMARY AND CONCLUSION

This article completes important aspects of the pro-
gram set out in Part I. It pursues the idea of model ro-
bustness to its conclusion for arbitrary types of regres-
sion based on i.i.d. observations. The notion of model
robustness coalesces into a model-free theory where all
quantities of interest are statistical functionals, called
“regression functionals,” and models take on the role
of heuristics to suggest objective functions whose min-
ima define regression functionals defined on largely ar-
bitrary joint (Y, �X) distributions. In this final section,
we recount the path that makes the definition of well-
specification for regression functionals compelling.

To start, an important task of the present article has
been to extend the two main findings of Part I from lin-
ear OLS to arbitrary types of regression. The findings
are that nonlinearity and randomness of the regressors
interact (“conspire”)

(1) to cause the target of estimation to depend on the
regressor distribution;

(2) to cause N−1/2 sampling variability to arise
that is wholly different from the sampling variability
caused by the conditional noise in the response.

10The term “bagging” was coined by Breiman (1996) for boot-
strap averaging.

It was intuitively clear that these effects would some-
how carry over from linear OLS to all types of regres-
sion, but it was not clear what would take the place of
“nonlinearity,” a notion of first-order misspecification
peculiar to fitting linear equations and estimating linear
slopes. In attempting to generalize Part I, a vexing issue
is that one is looking for a framework free of specifics
of fitted equations and additive stochastic components
of the response. Attempts at directly generalizing the
notions of “nonlinearity” and “noise” of Part I lead to
dead ends of unsatisfactory extensions that are barely
more general than linear OLS. This raises the ques-
tion to a level of generality in which there is very lit-
tle air to breathe: the objects that remain are a regres-
sion functional θ(·) and a joint distribution P

Y, �X . Given
these two objects, what do mis- and well-specification
mean? An answer, maybe the answer, is arrived at by
casting regression in the most fundamental way pos-
sible: Regression is the attempt to describe the condi-
tional response distribution P

Y | �X . This interpretation
sweeps away idiosyncratic structure of special cases.
It also suggests taking the joint distribution P

Y, �X apart
and analyzing the issue of mis- and well-specification
in terms of P

Y | �X and P �X , as well as θ(·), the quantities
of interest. The solution, finally, to

• establishing a compelling notion of mis- and well-
specification at this level of generality, and

• extending (1) and (2) above to arbitrary types of re-
gression,

is to look no further and use the “conspiracy effect” (1)
as the definition: Misspecification means dependence
of the regression functional on the regressor distribu-
tion. Conversely, well-specification means the regres-
sion functional does not depend on the regressor dis-
tribution; it is a property of the conditional response
distribution alone.

The “conspiracy effect” (2) above is now a corollary
of the definition: If the functional is not constant across
regressor distributions, it will incur random variability
on empirical regressor distributions, and this at the fa-
miliar rate N−1/2.

The link between the proposed definition and con-
ventional ideas of misspecification is as follows: Be-
cause most regressions consist of fitting some func-
tional form of the regressors to the response, misspeci-
fication of the functional form is equivalent to misspec-
ification of its parameters viewed as regression func-
tionals: depending on where the regressors fall, the
misspecified functional form needs adjustment of its
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parameters to achieve the best approximation over the
distribution of the regressors.

Well-specification of regression functionals being an
ideal, in reality we always face degrees of misspecifi-
cation. Acknowledging the universality of misspecifi-
cation, however, does not justify carelessness in prac-
tice. It is mandatory to perform diagnostics and, in fact,
we proposed a type of diagnostic in Sections 4 and 5
tailored to the present notion of mis/well-specification.
The diagnostic consists of checking the dependence of
regression functionals on the regressor distribution by
systematically perturbing the latter, not by shifting or
otherwise moving it, but by reweighting it. Reweight-
ing has the considerable advantage over other forms of
perturbation that it applies to all variable types, not just
quantitative ones.

While the reality of misspecification imposes a duty
to perform diagnostics, there is also an argument to be
made to feel less guilty about choosing simpler mod-
els over more complex ones. One reason is that the
reweighting diagnostic permits localization of models
and thereby enables a systematic exploration of local
best approximations, always in terms of model param-
eters interpreted as regression functionals. As shown
in Sections 5.1–5.3, this possibility vastly extends the
power of models beyond that of a single model fit.

Finally, there is an argument to be made in favor
of using statistical inference that is model-robust, and
to this end one can use x-y bootstrap estimators or
plug-in/sandwich estimators of standard errors. Be-
tween the two, one can give arguments in favor of boot-
strap over plug-in/sandwich estimators. Importantly,
both approaches to inference are in accord with the in-
sight that misspecification forces us to treat regressors
as random.
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