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Comment: Contributions of Model Features
to BART Causal Inference Performance
Using ACIC 2016 Competition Data
Nicole Bohme Carnegie

Abstract. With a thorough exposition of the methods and results of the 2016
Atlantic Causal Inference Competition, Dorie et al. have set a new standard
for reproducibility and comparability of evaluations of causal inference meth-
ods. In particular, the open-source R package aciccomp2016, which per-
mits reproduction of all datasets used in the competition, will be an invaluable
resource for evaluation of future methodological developments.

Building upon results from Dorie et al., we examine whether a set of poten-
tial modifications to Bayesian Additive Regression Trees (BART)—multiple
chains in model fitting, using the propensity score as a covariate, targeted
maximum likelihood estimation (TMLE), and computing symmetric confi-
dence intervals—have a stronger impact on bias, RMSE, and confidence in-
terval coverage in combination than they do alone. We find that bias in the
estimate of SATT is minimal, regardless of the BART formulation. For pur-
poses of CI coverage, however, all proposed modifications are beneficial—
alone and in combination—but use of TMLE is least beneficial for coverage
and results in considerably wider confidence intervals.

Key words and phrases: Bayesian additive regression trees, TMLE, propen-
sity score.

1. INTRODUCTION

The 2016 Atlantic Causal Inference Conference
(ACIC) competition provided a platform for competing
causal estimation methods to be compared on a wide
range of common datasets. Dorie et al. have written a
very detailed exposition of the competition set-up and
results [3]. I congratulate the authors on setting a new
standard for reproducibility and generalizability when
comparing competing causal methods. In addition, the
open-access R package aciccomp2016, which can
generate the 7700 datasets used in the 2016 ACIC com-
petition (and new datasets besides) is a tremendous
tool for future methodological innovations to be bench-
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marked against a wide array of other methods, includ-
ing those from this competition [5, 2].

The results with competition and post-competition
methods give a fascinating look at the subtleties of
model choice. A key result explored the contribu-
tions of different features of estimation methods (e.g.,
weighting or fitting a propensity score). It is intrigu-
ing that there are few relationships between the bias of
different methods and these features, once a basic re-
quirement of flexibility in fitting the response surface
is satisfied. It is worth noting, however, that both ig-
norability and overlap assumptions were satisfied in all
datasets used for this competition; the role of model-
ing treatment assignment may well be more important
when either or both of these assumptions are not fully
met.

The prominence of flexible response surface fit-
ting suggests that further exploration of nonparamet-
ric and ensemble methods will be valuable. Dorie
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et al. propose a number of modifications to models
with Bayesian Additive Regression Trees (BART, [1]),
mostly in parallel. In my evaluation, I explore whether
a similar approach could reveal what components of
the BART fit are most predictive of changes in bias and
confidence interval coverage, and whether combining
elements of the modifications (TMLE, multiple chains,
cross-validation, including propensity score, and sym-
metric intervals) would further improve performance.

2. EVALUATING BART MODIFICATIONS

I will refer to the original BART submission—with
a single chain, quantile-based intervals, and no other
modifications—as “base BART”. For purposes of com-
parison, I included all combinations of the following
settings:

• With and without propensity score as covariate (PS)
[4]

• With and without TMLE + IPTW (TMLE) [6]
• With 1, 4, or 10 chains in estimation (CH)
• With quantile-based (q) or symmetric (sym) confi-

dence intervals (CIs)

This yielded a total of 12 model types, each with two
different CIs. Each type was fit to the 7700 combina-
tions of 77 data generating processes (DGPs) and 100
replications used in the original competition.

For each model fit, I evaluated the bias, root mean
squared error (RMSE), confidence interval coverage
(nominal 95%), and length of confidence intervals. All

measures except CI coverage are in units of the stan-
dard deviation of the response, to ensure comparability
across DGPs.

Figure 1 gives the results for bias (circles) and
RMSE (triangles), ordered by increasing average bias.
The bias is generally small, with the inter-quartile
range (IQR) of biases across the DGPs and replications
far outweighing the differences between methods. The
width of the IQR, and hence the RMSE, is larger when
TMLE is used. Bias appears to be smaller when the
propensity score is included in the covariate set.

When we consider confidence intervals, however,
coverage is closest to nominal when including the
propensity score as a covariate and using TMLE with
symmetric intervals, as can be seen in Figure 2. The
methods are ordered by increasing coverage (repre-
sented with circles), and CI length is represented with
triangles. The coverage in this best-case scenario is
only marginally greater than using propensity score
and symmetric intervals but no TMLE, however, and
the intervals are substantially wider.

If we examine the ordering of methods in the plots,
it appears that including the propensity score reduces
bias and increases CI coverage; using TMLE increases
bias, both in terms of average magnitude and variabil-
ity, but increases CI coverage; and it is less clear what
the effect of using multiple chains is. We can examine
this further using regression models. First, to evaluate
contributions to bias, we fit a linear mixed model with
log absolute bias as the response, including random ef-
fects for the data generating process, and fixed effects

FIG. 1. Bias (L) and RMSE (R) for all combinations of BART model settings, computed across the combinations of 77 data generating
processes and 100 replications used in the 2016 ACIC causal inference challenge. Methods are ordered on the y-axis by increasing average
bias.
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FIG. 2. Confidence interval coverage rate (L, nominal 95%) and interval length (R) for all combinations of BART model settings, computed
across the combinations of 77 data generating processes and 100 replications used in the 2016 ACIC causal inference challenge. Methods
are ordered on the y-axis by increasing coverage rate. A line at the nominal 95% coverage rate is included for reference.

for the number of chains, inclusion of the propensity
score, and use of TMLE.

The effects of the various modifications are strongly
statistically significant (Table 1), as would be expected
for even weak associations in a dataset with 92,400
observations. The effects are small, however: the av-
erage absolute bias for base BART is only 0.006 SD
units after accounting for variation due to setting, with
an estimated 2.3% decrease using 4 chains, 2.7% de-
crease using 10 chains, 10.5% decrease when including
the propensity score, and 42.5% increase when using
TMLE. Thus, if our primary consideration is bias in ef-
fect estimation, it makes little difference which model
type we choose.

This is supported by evaluation of the components
of variability in log absolute bias using a model with
random effects for method, DGP, and their interaction.
The results suggest that the vast majority of variation
across observations is random error at the replication

TABLE 1
Contribution of method elements to log absolute bias. Results from

a linear mixed-effects model with random effects for data
generating process

Estimate Std. Error t-statistic p-value

Intercept −5.04 0.033 −150.7 <0.0001
CH4 −0.024 0.009 −2.49 0.013
CH10 −0.027 0.009 −2.89 0.004
PS −0.111 0.008 −14.3 <0.0001
TMLE 0.354 0.008 45.7 <0.0001

level: of a total variance of 1.51, we attribute only
0.038 (2.5%) to method, 0.080 (5.3%) to setting, and
essentially zero to their interaction. This agrees with
our observations from Figure 1; there was very little
variation in the average bias across methods, and a
great deal more within.

Where method choice appears to make a substan-
tive difference is in uncertainty quantification and CI
coverage (Table 2). For examining confidence inter-
val coverage, I used a generalized linear mixed model
(GLMM)—specifically, logistic regression with ran-
dom effects for DGP. For base BART, the model es-
timates an odds of coverage of 5.0 (corresponding to
83.4% coverage), after accounting for variability due
to DGP. All of the modifications considered improve
those odds by 22 to 45 percent, on average. The largest
effect is from using symmetric intervals, followed by
adding chains to estimation, using propensity score,

TABLE 2
Contribution of method elements to probability of confidence

interval coverage. Results from a generalized linear mixed model
with random effects for data generating process

Estimate Std. Error t value p-value

Intercept 2.04 0.06 26.4 <0.0001
Sym 0.37 0.02 17.9 <0.0001
CH4 0.27 0.02 12.6 <0.0001
CH10 0.33 0.02 15.5 <0.0001
PS 0.22 0.02 12.6 <0.0001
TMLE 0.20 0.02 8.82 <0.0001
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and, finally, inclusion of TMLE. The best combination
is using 4 chains, TMLE, including propensity score as
a covariate, and computing symmetric CIs: 92.7% cov-
erage, mean length 0.068 SD units. The best combina-
tion without TMLE is 10 chains, including propensity
score, and symmetric intervals: 91.9% coverage, mean
length 0.040 SD units. Thus, when optimizing CI cov-
erage, it is most important to use symmetric intervals
(45% increase in odds of coverage), and using multi-
ple chains in estimation. Both including the propensity
score and using TMLE also appear to be advantageous,
but the improvements in coverage with TMLE come at
the expense of substantially wider intervals.

3. DISCUSSION

In the end, differences in bias between methods were
miniscule, both relative to the variability in the re-
sponse and relative to the IQR of bias magnitudes
across DGPs and replications. Not using TMLE re-
sulted in considerably narrower IQRs, and slightly
smaller mean bias, but any of the methods considered
are likely to do well with respect to bias, assuming ig-
norability and overlap conditions are met.

When we consider CI coverage and length, all com-
binations have better coverage than base BART (no
propensity score in the covariate set, no TMLE, single
chain, quantile-based intervals). The use of symmet-
ric intervals appears to be key in improving CI cover-
age; it is not perfectly clear why this should be. Using
TMLE improves coverage, but also results in consider-
ably wider CIs. We can get comparable coverage with
40% narrower intervals when using multiple chains,

including the propensity score as a covariate, and us-
ing symmetric intervals. Even in the best-case scenario,
however, we do not quite achieve nominal coverage.

As new approaches are developed in the future to
deal with coverage issues, the availability of the com-
petition data for evaluation will be invaluable. The
breadth of DGPs used make comparisons across meth-
ods more equitable; a small simulation study can easily
(and unconsciously) be tailored to situations in which a
proposed method performs well. In addition, the avail-
ability of published results for a wide selection of
methods will permit broad comparisons with minimal
computational time.
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