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Comment on “A Review of Self-Exciting
Spatio-Temporal Point Process and Their
Applications” by Alex Reinhart
Jiancang Zhuang1

I believe that Dr. Reinhart has written an excellent
review on the methodologies, techniques and applica-
tions related to spatio-temporal self-exciting processes
that have developed during recent years. Here, I would
like to mention the following points to complement this
article:

1. On the diagnostics related to the clustering
model. All the methods that are explained in this ar-
ticle give the goodness-of-fit of the entire model, glob-
ally to the data or in a local window of the observation
space–time range. To check whether the formulation
for each individual component is appropriate for fit-
ting the data or not, the stochastic reconstruction tech-
niques (Zhuang, Ogata and Vere-Jones, 2004), based
on which the diagnostics of each model components
can be easily constructed, can be utilized. Zhuang,
Ogata and Vere-Jones (2004) and Zhuang (2006) also
used this method to test some hypotheses that are re-
lated to earthquake clusters but not formulated in the
model. The method is helpful for finding the clues of
formulating better models.

2. On estimating background rate. Not only separa-
ble clustering structure discussed in this review paper,
but also complex and nesting background components
can be reconstructed. Recently, Zhuang and Mateu
(2018) developed a semiparametric estimation method
to obtain simultaneously the clustering structure and
the background in the occurrence rate of crimes, where
the latter includes two periodic components, a daily
and a weekly. The estimation procedure can be out-
lined as following.
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Consider a model with a conditional intensity func-
tion

λ(t, x) = μt(t)μd(t)μw(t)μb(x)

+
∫∫

(−∞,t)×S
g(t − s, x − u)dN(s,u),

where μt(t), μd(t) and μw(t) represent the trend term,
the daily periodicity and the weekly periodicity in the
temporal components of the background rate, respec-
tively, μb(x) represents the spatial homogeneity of the
background rate, and g(t −s, x−u) represents the sub-
process triggered by an event previously occurring at
location u and time s.

Given a realization of the point process {(ti , xi) : i =
1,2, . . . , n} in a time-space range [T1, T2]×S, where ti
and xi denote the occurrence time and location, respec-
tively, the long-term trend term μt(t) in the background
component can be reconstructed in the following way.
Let

w(t)(t, x) = μt(t)μb(x)/λ(t, x).

Then, assuming that μt is smooth enough,
∑
i

w(t)(ti , xi)1
(
ti ∈ [t − �t, t + �t ])

≈
∫ T2

T1

∫∫
S
w(t)(s, x)λ(s, x)

· 1
(
s ∈ [t − �t, t + �t ]) ds dx

=
∫ t+�t

t−�t

μt(s)ds

∫∫
S
μb(x)dx

∝
∫ t+�t

t−�t

μt(s)ds

≈ 2μt(t)�t ,

where �t is a small positive number. That is,

μ̂t(t) ∝ ∑
i

w
(t)
i 1

(
ti ∈ [t − �t, t + �t ]),
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where

w
(t)
i = μt(ti)μb(xi)/λ(ti, xi).

Similarly, the other components in the background
rate can be reconstructed as

μ̂d(t)

∝ ∑
i

w
(d)
i I

(
ti ∈ ⋃

k∈Z
[t + k − �t, t + k + �t ]

)
,

t ∈ [0,1],
μ̂w(t)

∝ ∑
i

w
(w)
i I

(
ti ∈ ⋃

k∈Z
[t + 7k − �t, t + 7k + �t ]

)
,

t ∈ [0,7]
and

μ̂b(x) ∝ ∑
i

ϕi1
(
xi ∈ [x − �x,x + �x]),

where

w
(d)
i = μd(ti)μb(xi)/λ(ti, xi),

w
(w)
i = μw(ti)μb(xi)/λ(ti, xi),

ϕi = μt(ti)μd(ti)μw(ti)μb(xi)/λ(ti, xi),

and �x is a small positive number. In the above, ϕi

has the same meaning as the background probability
Pr{ui = 0} defined in (10), and w

(t)
i , w

(d)
i , w

(w)
i are

rescaled weights for each event for the purpose of esti-
mating each component. The estimation of the cluster-
ing term g is already solved by the conventional recon-
struction method.

3. On earthquake modeling. More physics can be
built into the model. An interesting development is by
Guo, Zhuang and Zhou (2015) and Guo et al. (2017),
where, instead of regarding large earthquakes as having
point sources, the finite-source ETAS model treats their
sources as ruptures that extend in space. Each earth-
quake rupture consists of many small patches, and each
patch triggers its own aftershocks isotropically and in-
dependently as a usual mainshock. The superposition
of triggering effects from all the patches produce an
anisotropic pattern of the aftershock locations, mainly
distributing along the rupturing fault. A similar EM-
type iterative algorithm is designed to invert the unob-
served fault geometry and other components simulta-
neously.
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