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Abstract: In this paper optimal designs for regression problems with
spherical predictors of arbitrary dimension are considered. Our work is mo-
tivated by applications in material sciences, where crystallographic textures
such as the misorientation distribution or the grain boundary distribution
(depending on a four dimensional spherical predictor) are represented by
series of hyperspherical harmonics, which are estimated from experimental
or simulated data.

For this type of estimation problems we explicitly determine optimal
designs with respect to the Φp-criteria introduced by Kiefer (1974) and a
class of orthogonally invariant information criteria recently introduced in
the literature. In particular, we show that the uniform distribution on the
m-dimensional sphere is optimal and construct discrete and implementable
designs with the same information matrices as the continuous optimal de-
signs. Finally, we illustrate the advantages of the new designs for series
estimation by hyperspherical harmonics, which are symmetric with respect
to the first and second crystallographic point group.
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1. Introduction

Regression problems with a predictor of spherical nature arise in various fields
such as geology, crystallography, astronomy (cosmic microwave background ra-
diation data), the calibration of electromagnetic motion-racking systems or the
representation of spherical viruses [see Chapman et al. (1995), Zheng et al.
(1995), Chang et al. (2000), Schaeben and van den Boogaart (2003), Genovese
et al. (2004), Shin et al. (2007) among many others] and their parametric and
nonparametric estimation has found considerable attention in the literature.

Several methods for estimating a spherical regression function nonparamet-
rically have been proposed in the literature. Di Marzio et al. (2009, 2014) in-
vestigated kernel type methods, while spherical splines have been considered
by Wahba (1981) and Alfed et al. (1996). A frequently used technique is that
of series estimators based on spherical harmonics [see Abrial et al. (2008) for
example], which - roughly speaking - generalise estimators of a regression func-
tion on the line based on Fourier series to data on the sphere. Alternative series
estimators have been proposed by Narcowich et al. (2006), Baldi et al. (2009)
and Monnier (2011) who suggest to use spherical wavelets (needlets) in situa-
tions where better localisation properties are required. Most authors consider
the 2-dimensional sphere S

2 in R
3 as they are interested in the development of

statistical methodology for concrete applications such as earth and planetary
sciences.

On the other hand, regression models with spherical predictors with a dimen-
sion larger than three have also found considerable attention in the literature,
mainly in physics, chemistry and material sciences. Here predictors on the unit
sphere

S
m−1 = {x ∈ R

m : ||x||2 = 1},
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with m > 3 and series expansions in terms of the so called hyperspherical har-
monics are considered. These functions form an orthonormal system with re-
spect to the uniform distribution on the sphere Sm−1 and have been, for exam-
ple, widely used to solve the Schroedinger equation by reducing the problem to
a system of coupled ordinary differential equations in a single variable [see for
example Avery and Wen (1982) or Krivec (1998) among many others]. Further
applications in this field can be found in Meremianin (2009), who proposed the
use of hyperspherical harmonics for the representation of the wave function of
the hydrogen atom in the momentum space. Similarly, Lombardi et al. (2016)
suggested to represent the potential energy surfaces (PES) of atom-molecule or
molecular dimers interactions in terms of a series of four-dimensional hyper-
spherical harmonics. Their method consists in fitting a certain number of points
of the PES, previously determined, selected on the basis of geometrical and
physical characteristics of the system. The resulting potential energy function is
suitable to serve as a PES for molecular dynamics simulations. Hosseinbor et al.
(2013) applied four-dimensional hyperspherical harmonics in medical imaging
and estimated the coefficients in the corresponding series expansion via least
squares methods to analyse brain subcortical structures. Another important
application of series expansions appears in material sciences, where crystallo-
graphic textures as quaternion distributions are represented by means of series
expansions based on (symmetrized) hyperspherical harmonics [see Bunge (1993),
Zheng et al. (1995), Mason and Schuh (2008) and Mason (2009) among many
others].

It is well known that a carefully designed experiment can improve the statis-
tical inference in regression analysis substantially, and numerous authors have
considered the problem of constructing optimal designs for various regression
models [see, for example, the monographs of Fedorov (1972), Silvey (1980) and
Pukelsheim (2006)]. On the other hand, despite of its importance, the problem
of constructing optimal or efficient designs for least squares (or alternative) esti-
mation of the coefficients in series expansions based on hyperspherical harmonics
has not found much interest in the statistical literature, in particular if the di-
mension m is large. The case m = 2 corresponding to Fourier regression models
has been discussed intensively [see Karlin and Studden (1966), page 347, Lau
and Studden (1985), Kitsos et al. (1988) and Dette and Melas (2003) among
many others]. Furthermore, optimal designs for series estimators in terms of
spherical harmonics (that is, for m = 3) have been determined by Dette et al.
(2005) and Dette and Wiens (2009), however, to the best of our knowledge
no results are available for hyperspherical harmonics if the dimension of the
predictor is larger than 3.

In the present paper we consider optimal design problems for regression mod-
els with a spherical predictor of dimension m > 3 and explicitly determine op-
timal designs for series estimators in hyperspherical harmonic expansions. In
Section 2 we introduce some basic facts about optimal design theory and hy-
perspherical harmonics, which will be required for the results presented in this
paper. Analytic solutions of the optimal design problem are given in Section
3.1, where we determine optimal designs with respect to all Kiefer’s Φp-criteria
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[see Kiefer (1974)] as well as with respect to a class of optimality criteria re-
cently introduced by Harman (2004). As it turns out the approximate optimal
designs are absolute continuous distributions on the sphere and thus cannot
be directly implemented in practice. Therefore, in Section 3.2 we provide dis-
crete designs with the same information matrices as the continuous optimal
designs. To achieve this we construct quadrature formulas for integration on the
sphere. The case m = 3 considered in Dette et al. (2005) is obtained as a special
case, but the mathematical derivations for the calculation of optimal designs for
hyperspherical harmonics (that is m > 3) are substantially more complicated.
Additionally, in Section 4 we present an application of the theory, which has not
been considered so far in the literature. In particular, we investigate the perfor-
mance of the optimal designs determined in Section 3.2 when they are used in
typical applications in material sciences. Here energy functions are represented
in terms of series of symmetrized hyperspherical harmonics which are obtained
as well as defined as linear combinations of the hyperspherical harmonics such
that the symmetry of a crystallographic point group is reflected in the energy
function. It is demonstrated that the derived designs have very good efficiencies
(for the first crystallographic point group the design is in fact D-optimal).

The results obtained in this paper provide a first step towards the solution of
optimal design problems for regression models with spherical predictors if the
dimension is m > 3 and offer a deeper understanding of the general mathemat-
ical structure of hyperspherical harmonics, which so far were only considered in
the cases m = 2 and m = 3.

2. Optimal designs and hyperspherical harmonics

2.1. Optimal design theory

We consider the linear regression model

E[Y |x] = f�(x)c ; x ∈ X , (1)

where f�(x) = (f1(x), . . . , fD(x)) is a vector of linearly independent regression
functions, c ∈ R

D is the vector of unknown parameters, x denotes a real-valued
covariate which varies in a compact design space, say X (which will be S

m−1 in
later sections), and different observations are assumed to be independent with
the same variance, say σ2 > 0. Following Kiefer (1974) we define an approximate
design as a probability measure ξ on the set X (more precisely on its Borel
field). If the design ξ has finite support with masses wi at the points xi (i =
1, . . . , k) and n observations can be made by the experimenter, this means that

the quantities win are rounded to integers, say ni, satisfying
∑k

i=1 ni = n, and
the experimenter takes ni observations at each location xi (i = 1, . . . , k). The
information matrix of the least squares estimator is defined by

M(ξ) :=

∫
X
f(x)f�(x)dξ(x), (2)
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[see Pukelsheim (2006)] and measures the quality of the design ξ as the matrix
σ2

n M−1(ξ) can be considered as an approximation of the covariance matrix
σ2(X�X)−1 of the least squares estimator in the corresponding linear model
Y = Xc + ε. Similarly, if the main interest is in the estimation of s linear
combinations K�c, where K ∈ R

D×s is a given matrix of rank s ≤ D, the
covariance matrix of the least squares estimator for these linear combinations
is given by σ2(K�(X�X)−K), where (X�X)− denotes the generalized inverse
of the matrix X�X and it is assumed that range(K) ⊂ range(X�X). The
corresponding analogue of its inverse for an approximate design ξ satisfying the
range inclusion range(K) ⊂ range(M(ξ)) is given by

CK(ξ) = (K�M−(ξ)K)−1 . (3)

It follows from Pukelsheim (2006), Section 8.3, that for each design ξ there
always exists a design ξ̄ with at most s(s+1)/2 support points such that CK(ξ) =
CK(ξ̄). An optimal design maximizes an appropriate functional of the matrix
M(ξ) and numerous criteria have been proposed in the literature to discriminate
between competing designs [see Pukelsheim (2006)]. Throughout this paper we
consider Kiefer’s Φp-criteria, which are defined for −∞ ≤ p < 1 as

Φp(ξ) := (tr
{(

CK(ξ))p
})1/p

= (tr
{(

K�M−(ξ)K)−p
})1/p

. (4)

Following Kiefer (1974), a design ξ∗ is called Φp-optimal for estimating the
linear combinationsK�c if ξ∗ maximizes the expression Φp(ξ) among all approx-
imate designs ξ for which K�c is estimable, that is, range(K) ⊂ range(M(ξ)).
This family of optimality criteria includes the well-known criteria of D-, E-
and A-optimality corresponding to the cases p = 0, p = −∞ and p = −1,
respectively [see also Pukelsheim (2006), Chapter 9].

The Φp-criterion (for 0 ≥ p > −∞) is motivated by the fact that a confidence
ellipsoid for the parameter K�c in the linear model (1) is given by

Ê =
{
γ ∈ R

s | (γ − γ̂)(K�(X�X)−K)−(γ − γ̂) ≤ sσ̂2qs,n−D

}
,

where σ̂2 = 1
n−DY �(In − X(X�X)−X�)Y is the common estimator of the

variance and qs,n−D denotes the (1 − α) quantile of the F-distribution with s
and n−D degrees of freedom. Now, if λ1, . . . , λs are the eigenvalues of the matrix
(K�(X�X)−K)−, the length of the axes of the ellipsoid Ê are proportional to
1/λ1, . . . , 1/λs. Consequently,

(
tr
{
(K�(X�X)−K)−p

})1/p
=
( s∑

i=1

( 1

λi

)−p)1/p

which has to be maximized. Therefore, roughly speaking, a Φp-optimal design

minimizes a p-mean of the length of the principal axes of the ellipsoid Ê (note
that p ≤ 0), where the case p = 0 is given by {det

(
K�(X�X)−K

)
}1/2 and

corresponds to the square of the volume of the ellipsoid Ê .
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Additionally, we also consider a generalised version of the E-optimality crite-
rion introduced by Harman (2004) [see also Filová et al. (2011)]. For the infor-
mation matrix M(ξ) let λ(M(ξ)) = (λ1(M(ξ)), . . . , λD(M(ξ)))� be the vector
of the eigenvalues of M(ξ) in nondecreasing order. Then, for s ∈ 1, . . . , D, we
define ΦEs(ξ) by the sum of the s-th smallest eigenvalues of M(ξ), that is,

ΦEs(ξ) :=

s∑
i=1

λi(M(ξ)). (5)

For a fixed s ∈ {1, . . . , D} we call a design ξ∗ ΦEs -optimal if it maximizes
the term ΦEs(ξ) among all approximate designs ξ. For s = 1 the ΦEs-criterion
coincides with the E-criterion (or Φ−∞-criterion), that is

ΦEs(ξ) = λmin

(
M(ξ)

)
= min{β�M(ξ)β | ‖β‖2 = 1}

= {λmax(M
−1(ξ))}−1 =

{
max{β�M−1(ξ)β | ‖β‖2 = 1}

}−1

.

Since the expression β�M−1(ξ)β is proportional to the variance of the esti-
mate

γ̂β = β�(X�X)−1X�Y

for the linear combinations β�c in model (1), a ΦE1-optimal design minimizes
the maximal variance of the estimates of all possible linear combinations β�c.
Similarly, β1 denotes a vector, such that λmin(M(ξ)) = β�

1 M(ξ)β1, and then by
the Courant-Fisher formula, the second smallest eigenvalue can be represented
as

λ2(M(ξ)) = min{β�M(ξ)β | ‖β‖2 = 1 β ⊥ β1} .

Consequently, by a similar reasoning, the ΦE2-optimal minimizes the sum
of two worst case variances of estimators of linear combinations β�

1 c and β�
2 c,

where β1 and β2 are orthogonal.

In general, the determination of Φp-optimal designs and of ΦEs-optimal de-
signs in an explicit form is a very difficult task and the corresponding optimal
design problems have only been solved in rare circumstances [see for example
Cheng (1987), Dette and Studden (1993), Pukelsheim (2006), p.241, and Har-
man (2004)]. In the following discussion we will explicitly determine Φp-optimal
designs for regression models which arise from a series expansion of a function on
the m-dimensional sphere S

m−1 in terms of hyperspherical harmonics. It turns
out that the Φp-optimal designs are also ΦEs -optimal for an appropriate choice
of s.

We introduce the hyperspherical harmonics next.
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2.2. Hyperspherical harmonics

Assume that the design space is given by the m-dimensional sphere S
m−1 =

{x ∈ R
m : ||x||2 = 1} where m ≥ 3. The hyperspherical harmonics are functions

of m − 1 dimensionless variables, namely the hyperangles, which describe the
points x = (x1, . . . , xm)� ∈ Sm−1 on the hypersphere by the equations

x1 = cos θ1 ,

x2 = sin θ1 cos θ2 ,

x3 = sin θ1 sin θ2 cos θ3 ,

...

xm−1 = sin θ1 . . . sin θm−2 cosφ ,

xm = sin θ1 . . . sin θm−2 sinφ ,

(6)

where θi ∈ [0, π] for all i = 1, . . . ,m− 2, φ ∈ [−π, π] [see, for example, Andrews
et al. (1991) or Meremianin (2009)]. As noted by Dokmanić and Petrinović
(2010), this choice of coordinates is not unique but rather a matter of conve-
nience since it is a natural generalisation of the spherical polar coordinates in
R

3.
In the literature, hyperspherical harmonics are given explicitly in a com-

plex form (see, for example, Vilenkin (1968), Chapter IX, and Avery and Wen
(1982)). Following the notation in Avery and Wen (1982), they are defined as

Ỹλ,μm−3,±μm−2(θm−2, φ)

:= Ãλ,μm−2

m−2∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]
e±iμm−2φ ,

where θm−2 = (θ1, . . . , θm−2), μk = (μ1, . . . , μk) for k = m− 2,m− 3, and

Ãλ,μm−2

:=
1√
2π

m−2∏
i=1

[
22μi+m−i−3(μi−1 − μi)!(2μi−1 +m− i− 1)Γ2(μi +

m−i−1
2 )

π(μi−1 + μi +m− i− 2)!

]1/2

is a normalizing constant, λ := μ0 ≥ μ1 ≥ μ2 ≥ . . . ≥ μm−2 ≥ 0 are a set of
integers and the functions

C
μi+

m−i−1
2

μi−1−μi

(
x
)
,

are the Gegenbauer polynomials (of degree μi−1 − μi ∈ N0 with parameter
μi +

m−i−1
2 ), which are orthogonal with respect to the measure(

1− x2
)μi+(m−i−1)/2−1/2

I[−1,1](x)dx ,

(here IA(x) denotes the indicator function of the set A). The complex hyper-
spherical functions form an orthonormal basis of the space of square integrable
complex valued measurable functions with respect to the uniform distribution
on the sphere
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L2(Sm−1) :=

{
f : Sm−1 → C |

∫
Sm−1

|f(x)|2dx < ∞
}

.

In fact the constants Ãλ,μm−2
are chosen based on this property [see, for

example, Avery and Wen (1982) for more details].
However, as mentioned in Mason and Schuh (2008), expansions of real-valued

functions on the sphere are easier to handle in terms of real hyperspherical
harmonics which are obtained from the complex hyperspherical harmonics via
the linear transformations

Yλ,μm−3,μm−2(θm−2, φ) =
(−1)μm−2 [Ỹλ,μm−3,μm−2 + Ỹλ,μm−3,−μm−2 ]√

2

= Aλ,μm−3

m−3∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]
×Bμm−3,μm−2P

μm−2
μm−3

(cos θm−2) cos(μm−2φ) ,

Yλ,μm−3,−μm−2(θm−2, φ) =
(−i)(−1)μm−2 [Ỹλ,μm−3,μm−2 − Ỹλ,μm−3,−μm−2 ]√

2

= Aλ,μm−3

m−3∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]
×Bμm−3,μm−2P

μm−2
μm−3

(cos θm−2) sin(μm−2φ) ,

Yλ,μm−3,0(θm−2, φ) = (−1)μm−2 Ỹλ,μm−3,0

= Aλ,μm−3

m−3∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]

× Bμm−3,0√
2

P 0
μm−3

(cos θm−2) ,

(7)
where

Aλ,μm−3

=

m−3∏
i=1

[
22μi+m−i−3(μi−1 − μi)!(2μi−1 +m− i− 1)Γ2(μi +

m−i−1
2 )

π(μi−1 + μi +m− i− 2)!

]1/2
,
(8)

Bμm−3,μm−2 =

[
2(2μm−3 + 1)(μm−3 − μm−2)!

4π(μm−3 + μm−2)!

]1/2
, (9)

and P
μm−2
μm−3 (cos θm−2) is the associated Legendre polynomial which can be ex-

pressed in terms of a Gegenbauer polynomial via

(−1)μm−2
(2μm−2)!

2μm−2(μm−2)!
(sin θm−2)

μm−2C
μm−2+

1
2

μm−3−μm−2
(cos θm−2)

= Pμm−2
μm−3

(cos θm−2) .
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It is easy to check that in the case of R3, the expressions in (7), (8) and (9)
give the well known spherical harmonics involving only the associated Legendre
polynomial [see Chapter 9 in Andrews et al. (1991) for more details].

The real hyperspherical harmonics defined in (7), (8) and (9) preserve the
orthogonality properties of complex hyperspherical harmonics proven in Avery
and Wen (1982). In other words, the real hyperspherical harmonics form an
orthonormal basis of the Hilbert space

L2(Sm−1, dΩm) :=

{
g : Sm−1 → R |

∫
|g(θm−2, φ)|2dΩm < ∞

}
,

that is,∫
Sm

Yλ,μm−3,μm−2(θm−2, φ)Yλ′,μ′
m−3

,μ′
m−2

(θm−2, φ) dΩm = δλλ′

m−2∏
i=1

δμiμ′
i
,

(10)
where

dΩm = (sin θ1)
m−2dθ1(sin θ2)

m−3dθ2 . . . (sinθm−2)dθm−2dφ ,

is the element of solid angle.
We now consider the linear regression model (1), where the vector of re-

gression functions is obtained by a truncated expansion of a function g ∈
L2(Sm−1, dΩm) of order, say, d in terms of hyperspherical harmonics, that is,

d∑
λ=0

λ∑
μ1=0

. . .

μm−3∑
μm−2=−μm−3

cλ,μm−3,μm−2Yλ,μm−3,μm−2(θm−2, φ) . (11)

Consequently, we obtain from (1) by using the coordinates θm−2 =
(θ1, . . . , θm−2), φ, that

E[Y |θm−2, φ] = f�
d (θm−2, φ)c , (12)

where

fd(θm−2, φ) :=
(
Y0,0,...,0(θm−2, φ), Y1,0,...,0(θm−2, φ), Y1,1,0,...,0(θm−2, φ),

. . . , Y1,1,...,1,−1(θm−2, φ), . . . , Yd,d,...,d(θm−2, φ)
)�

,

is the vector of hyperspherical harmonics of order d and the vector of parameters
is given by

c = (c0,0,...,0, c1,0,...,0, c1,1,0,...,0, . . . , c1,1,...,1,−1, . . . , cd,d,...,d)
�
.

Note that the dimension of the vectors fd and c is

D :=

d∑
λ=0

λ∑
μ1=0

. . .

μm−4∑
μm−3=0

μm−3∑
μm−2=−μm−3

1 =

d∑
λ=0

(m+ 2λ− 2)(λ+m− 3)!

λ!(m− 2)!
,

(13)
where the expression for the sums over the μi’s (i = 1, . . . ,m − 2) is obtained
from Avery and Wen (1982).
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3. Φp- and ΦEs- optimal designs for hyperspherical harmonics

3.1. Optimal designs with a Lebesgue density

In this section we determine Φp-optimal designs for estimating the parameters
in a series expansion of a function defined on the unit sphere S

m−1. The cor-
responding regression model is defined by (12) and, as mentioned in Section
2.1, a Φp-optimal (approximate) design maximizes the criterion (4) in the class
of all probability measures ξ on the set [0, π]m−2 × [−π, π] satisfying the range
inclusion range(K) ⊂ range(M(ξ)), where the information matrix M(ξ) is given
by

M(ξ) =

∫ π

−π

∫ π

0

. . .

∫ π

0

fd(θm−2, φ)f
�
d (θm−2, φ) dξ(θm−2, φ) .

We are interested in finding a design that is efficient for the estimation of the
Fourier coefficients corresponding to the s(k) hyperspherical harmonics

Yk,0,...,0, Yk,1,0,...,0, . . . , Yk,...,k,−k, . . . , Yk,...,k,k , (14)

where

s(k) :=
(m+ 2k − 2)(k +m− 3)!

k!(m− 2)!
, (15)

and k ∈ {0, . . . , d} denotes a given level of resolution. To relate this to the
definition of the Φp-optimality criteria, let q ∈ N0, 0 ≤ k0 < k1 < . . . < kq ≤ d
and 0k,l be the s(k)× s(l) matrix with all entries equal to 0. Define the matrix

K� := (Kj,l)
l=0,...,d
j=0,...,q , (16)

where

Kj,l :=

{
0kj ,l l �= kj ,

Is(kj) l = kj .
(17)

Ia denotes the a× a identity matrix and 0a,b is an a× b matrix with all entries

equal to 0. Note that K ∈ RD×s where D =
∑d

λ=0 s(λ) is defined in (13), and
that K�c ∈ R

s defines a vector with

s :=

q∑
j=0

s(kj) =

q∑
j=0

(m+ 2kj − 2)(kj +m− 3)!

kj !(m− 2)!
(18)

components corresponding to the parameters of the functions in (14) for k =
k0, k1, . . . , kq in model (11), that is{

ckj ,μ1,...,μm−2

∣∣∣∣ kj ≥ μ1 ≥ . . . ≥ μm−3 , −μm−3 ≤ μm−2 ≤ μm−3 ,
j = 0, . . . , q

}
(19)

(s ≤ D). In particular, the case q = d yields the full parameter vector, while
q = 0 corresponds to the parameters of the functions in (14) for k = k0. The
following theorem shows that the uniform distribution on the hypersphere is
ΦEs- and Φp-optimal for estimating the parameters K�c (for any −∞ ≤ p < 1).
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Theorem 3.1. Let p ∈ [−∞, 1), 0 ≤ k0 < k1 < . . . < kq ≤ d be given indices
and denote by K ∈ R

D×s the matrix defined by (16) and (17). Consider the
design given by the uniform distribution on the hypersphere, that is,

ξ∗ = ξ∗(dθ1, . . . , dθm−2, dφ) =
dΩm

Ω̃
(20)

=
1

Ω̃
(sin θ1)

m−2dθ1(sin θ2)
m−3dθ2 . . . (sin θm−2)dθm−2dφ ,

where Ω̃ is a normalizing constant given by

Ω̃ =

∫ π

−π

∫ π

0

. . .

∫ π

0

(sin θ1)
m−2dθ1(sin θ2)

m−3dθ2 . . . (sinθm−2)dθm−2dφ

=
Nm

(m− 2)!!
,

(21)

Nm = 2(m− 2)!!πm/2/Γ(m/2) and the double factorial n!! for n ∈ N is defined
by

n!! :=

⎧⎨
⎩
∏n

2
k=1(2k) n is even ,∏n+1
2

k=1 (2k − 1) n is odd .

(i) The information matrix of ξ∗ is given by M(ξ∗) = 1
Ω̃
ID, where D is defined

in (13).
(ii) The design ξ∗ is Φp-optimal for estimating the linear combination K�c

in the regression model (12).
(iii) Let s =

∑q
i=0 s(ki) be the number of considered hyperspherical harmonics

where s(ki) is defined by (15). Then the design ξ∗ defined by (20) is also
ΦEs-optimal.

Proof. We note that the explicit expression for the normalizing constant Ω̃ in
(21) is given in equation (30) in Wen and Avery (1985). Let ξ∗ denote the
design corresponding to the density defined by (20) and (21). Then due to the
orthonormality property of the real hyperspherical harmonics, given in equation
(10), it follows that

M(ξ∗) =
1

Ω̃
ID , (22)

where Ω̃ is defined in equation (21). This proves part (i) of the Theorem.
For a proof of (ii) let p > −∞. According to the general equivalence theorem

in Pukelsheim (2006), Section 7.20, the measure ξ∗ is Φp-optimal if and only if
the inequality

f�
d (θm−2, φ)Ω̃K

(
K�Ω̃K

)−p−1

K�Ω̃fd(θm−2, φ)

≤ tr
{(

K�Ω̃K
)−p}

,

(23)

holds for all θm−2 ∈ [0, π]m−2 and φ ∈ [−π, π].
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From the definition of the matrix K given in equations (16) and (17) we have
that K�K = Is where s =

∑q
j=0 s(kj) and s(kj) is given in (15). Therefore,

condition (23) reduces to

s ≥
q∑

j=0

kj∑
μ1=0

. . .

μm−4∑
μm−3=0

μm−3∑
μm−2=−μm−3

Ω̃
(
Ykj ,μm−3,μm−2(θm−2, φ)

)2
. (24)

Now the right-hand side can be simplified observing the sum rule for real
hyperspherical harmonics, that is

λ∑
μ1=0

. . .

μm−3∑
μm−2=−μm−3

(
Yλ,μm−3,μm−2(θm−2, φ)

)2

=
(m+ 2λ− 2)(m− 4)!!(λ+m− 3)!

Nmλ!(m− 3)!
,

(25)

where the constant Nm is given by

Nm =
2(m− 2)!!πm/2

Γ
(
m
2

) =

{
(2π)m/2 m is even ,

2(2π)(m−1)/2 m is odd ,
(26)

(see Avery and Wen (1982)). Therefore, the right-hand side of (24) becomes

q∑
j=0

Nm

(m− 2)!!

(m+ 2kj − 2)(m− 4)!!(kj +m− 3)!

Nmkj !(m− 3)!

=

q∑
j=0

(m+ 2kj − 2)(kj +m− 3)!

kj !(m− 2)!
= s ,

where the last equality follows from the definition of s in (18). Consequently,
the right-hand side and left-hand side of (24) coincide, which proves that the
design ξ∗ corresponding to the density defined by (20) and (21) is Φp-optimal
for any p ∈ (−∞, 1) and any matrix K of the form (16) and (17). The remaining
case p = −∞ follows from Lemma 8.15 in Pukelsheim (2006). As the design ξ∗

is Φp-optimal for estimating K�c for all p ∈ (−∞, 0), it is also Φ−∞-optimal
for estimating K�c. This completes the proof of part (ii).

For a proof of part (iii) let diag(γ1, . . . , γD) denote a diagonal matrix with
entries γ1, . . . , γD and let

∂ΦEs(ξ
∗) =

{
diag(γ1, . . . , γD) ∈ R

D×D
∣∣∣ γ1, . . . , γD ∈ [0, 1],

D∑
k=1

γk = s

}

denote the subgradient of ΦEs . Then it follows from Theorem 4 of Harman
(2004), that the design ξ∗ is ΦEs -optimal if and only if there exists a matrix
Γ ∈ ∂ΦEs(ξ

∗) such that the inequality

f�
d (θm−2, φ)Γfd(θm−2, φ) ≤

s∑
k=1

λk

(
M(ξ∗)

)
(27)
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holds for all θm−2 ∈ [0, π]m−2 and φ ∈ [−π, π].

We now set Γ = KK� where K is defined by the equations (16) and (17).
Therefore Γ is a diagonal matrix with entries 0 or 1, and

tr(Γ) = tr
(
KK�) = tr

(
K�K

)
= tr(Is) = s ,

that is, the matrix Γ is contained in the subgradient ∂ΦEs(ξ
∗). Using this matrix

in (27) the left-hand side of the inequality reduces to

f�
d (θm−2, φ)Γfd(θm−2, φ)

=

q∑
j=0

kj∑
μ1=0

. . .

μm−4∑
μm−3=0

μm−3∑
μm−2=−μm−3

(
Ykj ,μm−3,μm−2(θm−2, φ)

)2
,

and part (i) yields for the right hand side of the inequality

s∑
k=1

λk

(
M(ξ∗)

)
=

s

Ω̃
,

where Ω̃ is defined by (21). Consequently, the inequality (27) is equivalent to
(24), which has been proved in the proof of part (ii). This completes the proof
of Theorem 3.1.

3.2. Discrete Φp- and ΦEs- optimal designs

The result of the previous section is a generalization of the corresponding state-
ment in Dette et al. (2005) and provides a very elegant solution to the Φp-
optimal design problem from a mathematical point of view. On the other hand
the derived designs ξ∗ cannot be directly implemented as the optimal proba-
bility measure is absolute continuous. In practice, if n ∈ N observations are
available for estimating the parameters in the linear regression model (12), one
has to specify a number, say k, of different points (θ1

m−2, φ
1), . . . , (θk

m−2, φ
k) ∈

[0, π]m−2×[−π, π] defining by (6) the locations on the sphere where observations
should be taken, and relative frequencies nj/n defining the proportion of obser-

vations taken at each point (
∑k

j=1 nj = n). The maximization of the function
(4) in the class of all measures of this type yields a non-linear and non-convex
discrete optimization problem, which is usually intractable.

Therefore, for the construction of optimal or (at least) efficient designs we
proceed as follows. Due to Caratheodory’s theorem [see, for example, Silvey
(1980)] there always exists a probability measure ξ on the set [0, π]m−2× [−π, π]
with at most D(D + 1)/2 support points such that the information matrices of
ξ and ξ∗ coincide, that is,

M(ξ) = M(ξ∗) =
1

Ω̃
ID . (28)
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We now identify such a design ξ assigning the weights

{ωj}kj=1 = {(ωj
1, ω

j
2, . . . , ω

j
m−2, ω

j
φ)}kj=1

to the points {(θj
m−2, φ

j)}kj=1 such that the identity (28) is satisfied, where we
simultaneously try to keep the number k of support points “small”. The numbers
nj specifying the numbers of repetitions at the different experimental conditions
in the concrete experiment are finally obtained by rounding the numbers nωj to
integers [see, for example, Pukelsheim and Rieder (1992)]. Although the main
idea of this approach is the same as in Dette et al. (2005), it turns out that the
derivation of efficient discrete designs from the approximate solution derived
in Section 3.1 is substantially more difficult in the case m > 3. This problem
is also related to numerical integration on the sphere, which has been widely
discussed in approximation theory. There exists a large amount of literature
on this subject [see for example Hesse et al. (2015) for the case of S

2] and
for the sake of simplicity we use univariate quadrature formulas to construct a
quadrature formula for integration on the sphere [see also Atkinson and Han
(2012), Chapter 5]. Some other possibilities are briefly mentioned at the end of
this section. We begin with a standard result about Gaussian quadrature [see
(Stroud and Secrest, 1966, Chapter 2)].

Lemma 3.1. Let a(·) be a positive and integrable weight function on the interval

[−1, 1] with ã =
∫ 1
−1

a(x) dx, and let −1 ≤ x1 < x2 < . . . < xr ≤ 1 denote r ∈ N

points with corresponding positive weights ω1, . . . , ωr (
∑r

j=1 ωj = 1). Then the
points xi and weights ωi generate a quadrature formula of degree z ≥ r, that is

∫ 1

−1

a(x)x� dx = ã

r∑
j=1

ωjx
�
j , � = 0, . . . , z , (29)

if and only if the following two conditions are satisfied:

(A) The polynomial Vr(x) =
∏r

j=1(x − xj) is orthogonal with respect to the
weight function a(x) to all polynomials of degree z − r, that is,∫ 1

−1

Vr(x)a(x)x
� dx = 0 , � = 0, . . . , z − r . (30)

(B) The weights ωj are given by

ωj =
1

ã

∫ 1

−1

a(x)�j(x) dx , j = 1, . . . , r , (31)

where �j(x) =
∏r

k=1,k �=j
x−xk

xk−xj
denotes the jth Lagrange interpolation

polynomial with nodes x1, . . . , xr.

In the following, we use Lemma 3.1 for z = 2d and the weight function

a(x) =
(
1− x2

)(m−i−2)/2
.
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Note that the Gegenbauer polynomials C
(m−i−1)/2
r (x) are orthogonal with

respect to the weight function a(x) = (1 − x2)(m−i−2)/2 on the interval [−1, 1]

[see Andrews et al. (1991), p. 302]. Hence the r roots of C
(m−i−1)/2
r (x) have

multiplicity 1, are real and located in the interval (−1, 1). As condition (30)
is satisfied for a(x) = (1 − x2)(m−i−2)/2, they define together with the corre-
sponding (positive) weights in (31) a Gaussian quadrature formula. Therefore,
it follows that for any r ∈ {d + 1, . . . , 2d} there exists at least one quadra-
ture formula {xi

j , ω
i
j}rj=1 for every i = 1, . . . ,m − 2, such that (29) holds with

a(x) = (1 − x2)(m−i−2)/2. We consider quadrature formulas of this type and
define the designs

ζi :=

(
θi1 . . . θir
ωi
1 . . . ωi

r

)
, (32)

on [0, π], where

θij = arccosxi
j i = 1, . . . ,m− 2 ; j = 1, . . . , r . (33)

Similarly we define for any t ∈ N and any β ∈
(
− t+1

t π,−π
]
a design

ν = ν(β, t) on the interval [−π, π] by

ν = ν(β, t) :=

(
φ1 . . . φt

1
t . . . 1

t

)
, (34)

where the points φj are given by

φj := β +
2πj

t
, j = 1, . . . , t . (35)

Throughout this paper μ ⊗ ν denotes the product measure (design) of the
designs μ and ν. The following theorem shows that designs of the form

ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν , (36)

are Φp- as well as ΦEs -optimal designs.

Theorem 3.2. Let p ∈ [−∞, 1), 0 ≤ k0 < k1 < . . . < kq ≤ d and K be a matrix
defined by (16) and (17). For any t ≥ 2d + 1 and any r ∈ {d + 1, . . . , 2d},
the design ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν defined in (36) is Φp-optimal for estimating the
coefficients K�c.

Moreover, if s =
∑q

i=0 s(kj) is the number of considered hyperspherical har-
monics defined in (18), then for any t ≥ 2d+1 and any r ∈ {d+1, . . . , 2d}, the
design ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν defined in (36) is ΦEs-optimal.

Proof. The assertion can be established by showing the identity

M(ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν) =
1

Ω̃
ID , (37)

where the dimension D is defined in (13). Let

ψ(φ) = (ψ−d(φ), ψ−d+1(φ), . . . , ψd(φ))
�
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= (
√
2 sin(dφ), . . . ,

√
2 sin(φ), 1,

√
2 cos(φ), . . . ,

√
2 cos(dφ))�.

Then the real hyperspherical harmonics defined in (7), (8) and (9) can be
rewritten as

Yλ,μm−3,μm−2(θm−2, φ) =

m−3∏
i=1

γ̃μi−1,μi

m−3∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]
×γμm−3,μm−2P

|μm−2|
μm−3

(cos θm−2)ψμm−2(φ) ,

where the constants γ̃μi−1,μi and γμm−3,μm−2 are defined by

γ̃μi−1,μi :=

[
22μi+m−i−3(μi−1 − μi)!(2μi−1 +m− i− 1)Γ2(μi +

m−i−1
2 )

π(μi−1 + μi +m− i− 2)!

]1/2
,

and

γμm−3,μm−2 :=

[
(2μm−3 + 1)(μm−3 − |μm−2|)!

4π(μm−3 + |μm−2|)!

]1/2
.

Therefore, the identity (37) is equivalent to the system of equations∫
Yλ,μm−3,μm−2(θm−2, φ)Yλ′,μ′

m−3
,μ′

m−2
(θm−2, φ)×

× d(ζ1 ⊗ . . .⊗ ζm−2)(θm−2) dν(φ)

=

m−3∏
i=1

γ̃μi−1,μi

m−3∏
i=1

γ̃μ′
i−1,μ

′
i
γμm−3,μm−2γμ′

m−3,μ
′
m−2

(38)

×
∫ π

−π

∫ π

0

. . .

∫ π

0

m−3∏
i=1

[
C

μi+
m−i−1

2
μi−1−μi

(cos θi)(sin θi)
μi

]
P |μm−2|
μm−3

(cos θm−2) ×

× ψμm−2(φ)

m−3∏
i=1

[
C

μ′
i+

m−i−1
2

μ′
i−1−μ′

i
(cos θi)(sin θi)

μ′
i

]
P

|μ′
m−2|

μ′
m−3

(cos θm−2)ψμ′
m−2

(φ) ×

× dζ1(θ1) . . . dζm−2(θm−2) dν(φ)

=
1

Ω̃
δλλ′δμ1μ′

1
. . . δμm−2μ′

m−2
,

where

λ, λ′ = 0, . . . , d ,

μ1 = 0, . . . , λ ; . . . ; μm−3 = 0, . . . , μm−4; μm−2 = −μm−3, . . . , μm−3 ,

μ′
1 = 0, . . . , λ′ ; . . . ; μ′

m−3 = 0, . . . , μ′
m−4; μ′

m−2 = −μ′
m−3, . . . , μ

′
m−3 .

Note that

Ω̃ = 2π

m−2∏
i=1

∫ π

0

(sin θi)
m−i−1 dθi = 2π

m−2∏
i=1

∫ 1

−1

(
1− x2

)m−i−2
2 dx ,
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and that a(x) =
(
1 − x2

)m−i−2
2 is the weight function defining each of the

quadrature formulas for i = 1, . . . ,m− 2.
Consequently, by Fubini’s theorem the system above is satisfied if the follow-

ing equations hold∫ π

−π

ψμm−2(φ)ψμ′
m−2

(φ) dν(φ) = δμm−2μ′
m−2

, (39)

(μm−2, μ
′
m−2 = −d, . . . , d),

γμm−3,μm−2γμ′
m−3,μ

′
m−2

∫ π

0

P |μm−2|
μm−3

(cos θm−2)P
|μ′

m−2|
μ′
m−3

(cos θm−2) dζm−2(θm−2)

=
1

2π
∫ 1
−1

1 dx
δμm−3μ′

m−3
δμm−2μ′

m−2
, (40)

(μm−3, μ
′
m−3 = 0, . . . , d;μm−2 = 0, . . . , μm−3;μ

′
m−2 = 0, . . . , μ′

m−3), and for
each i = 1, . . . ,m− 3

γ̃μi−1,μi γ̃μ′
i−1,μ

′
i

∫ π

0

C
μi+

m−i−1
2

μi−1−μi
(cos θi)(sin θi)

μiC
μ′
i+

m−i−1
2

μ′
i−1−μ′

i
(cos θi) ×

× (sin θi)
μ′
i dζi(θi) =

1∫ 1
−1

(1− x2)
m−i−2

2 dx
δμi−1μ′

i−1
δμiμ′

i
,

(41)

with μi−1, μ
′
i−1 = 0, . . . , d;μi = 0, . . . , μi−1;μ

′
i = 0, . . . , μ′

i−1.
It is well known [see Pukelsheim (2006), p. 241] that equation (39) is satisfied

for measures of the form (34). Consequently, the system of equations in (38) is
satisfied, whenever μm−2 �= μ′

m−2, and it remains to show (40) and (41) in the
case μm−2 = μ′

m−2.
Now the integrand in equation (40) is a polynomial of degree μm−3+μ′

m−3 ≤
2d. Furthermore, since ζm−2 corresponds to a quadrature formula for a(x) = 1
that integrates polynomials of degree 2d exactly, we have from Lemma 3.1 for
z = 2d and a(x) = 1 that∫ π

0

P |μm−2|
μm−3

(cos θm−2)P
|μ′

m−2|
μ′
m−3

(cos θm−2) dζm−2(θm−2)

=

r∑
j=1

ωj
m−2P

|μm−2|
μm−3

(xj
m−2)P

|μm−2|
μ′
m−3

(xj
m−2) =

1

2

∫ 1

−1

P |μm−2|
μm−3

(x)P
|μm−2|
μ′
m−3

(x) dx .

From Andrews et al. (1991) p.457 we have that∫ 1

−1

[
P |μm−2|
μm−3

(x)
]2

dx =
2(μm−3 + |μm−2|)!

(2μm−3 + 1)(μm−3 − |μm−2|)!
=

2

4π(γμm−3,μm−2)
2
.

Therefore,∫ π

0

P |μm−2|
μm−3

(cos θm−2)P
|μ′

m−2|
μ′
m−3

(cos θm−2) dζm−2(θm−2)
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=
1

4π

δμm−3μ′
m−3

γμm−3,μm−2γμ′
m−3,μm−2

,

since associated Legendre polynomials are orthogonal on [−1, 1]. This implies
equation (40) and in what follows we can restrict ourselves to the case μm−3 =
μ′
m−3.

For establishing the system of equations (41), we begin with establishing the
equation for i = m− 3, that is,

γ̃μm−4,μm−3 γ̃μ′
m−4,μm−3

∫ π

0

C
μm−3+1
μm−4−μm−3

(cos θm−3)(sin θm−3)
μm−3

× C
μm−3+1
μ′
m−4−μm−3

(cos θm−3)(sin θm−3)
μm−3dζm−3(θm−3)

=
1∫ 1

−1
(1− x2)

1
2 dx

δμm−4μ′
m−4

.

(42)

The integrand is a polynomial of degree 2μm−3 + μm−4 − μm−3 + μ′
m−4 −

μm−3 = μm−4 + μ′
m−4 ≤ 2d. Also since ζm−3 corresponds to a quadrature

formula for a(x) =
√
1− x2 that integrates polynomials of degree 2d exactly, it

follows from Lemma 3.1 for z = 2d and a(x) =
√
1− x2 that

∫ π

0

(sin θm−3)
2μm−3C

μm−3+1
μm−4−μm−3

(cos θm−3)C
μm−3+1
μ′
m−4−μm−3

(cos θm−3) dζm−3(θm−3)

=

r∑
j=1

ωj
m−3(1− (xj

m−3)
2)μm−3C

μm−3+1
μm−4−μm−3

(xj
m−3)C

μm−3+1
μ′
m−4−μm−3

(xj
m−3)

=
1∫ 1

−1

√
1− x2 dx

∫ 1

−1

√
1− x2(1− x2)μm−3C

μm−3+1
μm−4−μm−3

(x)C
μm−3+1
μ′
m−4−μm−3

(x) dx

=
1

π/2

∫ 1

−1

(1− x2)μm−3+
1
2C

μm−3+1
μm−4−μm−3

(x)C
μm−3+1
μ′
m−4−μm−3

(x) dx .

From Andrews et al. (1991), Corollary 6.8.4, we have that

∫ 1

−1

(1− x2)μm−3+
1
2

[
C

μm−3+1
μm−4−μm−3

(x)
]2

dx

=
π

2

(μm−4 + μm−3 + 1)!

22μm−3(μm−3!)2(μm−4 + 1)(μm−4 − μm−3)!
=

1

γ̃μm−4,μm−3 γ̃μm−4,μm−3

.

Therefore,∫ π

0

(sin θm−3)
2μm−3C

μm−3+1
μm−4−μm−3

(cos θm−3)C
μm−3+1
μ′
m−4−μm−3

(cos θm−3) dζm−3(θm−3)

=
2

π

δμm−4μ′
m−4

γ̃μm−4,μm−3 γ̃μ′
m−4,μm−3
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since Gegenbauer polynomials C
μm−3+1
μm−4−μm−3

(x) are orthogonal with respect to

(1 − x2)μm−3+1/2 on the interval [−1, 1]. This implies (42) and in what follows
we can restrict ourselves to the case μm−4 = μ′

m−4.
It remains to show that if (41) holds for i = k + 1, that is, if

γ̃μk,μk+1
γ̃μ′

k,μ
′
k+1

∫ π

0

C
μk+1+

m−k−2
2

μk−μk+1
(cos θk+1)(sin θk+1)

μk+1 ×

× C
μ′
k+1+

m−k−2
2

μ′
k−μ′

k+1
(cos θk+1)(sin θk+1)

μ′
k+1 dζk+1(θk+1)

=
1∫ 1

−1
(1− x2)

m−k−3
2 dx

δμkμ′
k
δμk+1μ′

k+1
,

(43)

then (41) holds for i = k, that is,

γ̃μk−1,μk
γ̃μ′

k−1,μ
′
k

∫ π

0

C
μk+

m−k−1
2

μk−1−μk
(cos θk)(sin θk)

μkC
μ′
k+

m−k−1
2

μ′
k−1−μ′

k
(cos θk) ×

× (sin θk)
μ′
k dζk(θk) =

1∫ 1
−1

(1− x2)
m−k−2

2 dx
δμk−1μ′

k−1
δμkμ′

k
.

(44)

Note that we use somewhat a “backward induction step” since μk ≥ μk+1.
Now since (43) holds, for proving (44) we can restrict ourselves to the case

μk = μ′
k. The integrand in (44) is a polynomial of degree 2μk+μk−1−μk+μ′

k−1−
μk = μk−1 + μ′

k−1 ≤ 2d. Furthermore, since ζk corresponds to a quadrature

formula for a(x) = (1 − x2)
m−k−2

2 that integrates polynomials of degree 2d

exactly, we have from Lemma 3.1 for z = 2d and a(x) = (1− x2)
m−k−2

2 that∫ π

0

(sin θk)
2μkC

μk+
m−k−1

2
μk−1−μk

(cos θk)C
μk+

m−k−1
2

μ′
k−1−μk

(cos θk) dζk(θk)

=

r∑
j=1

ωk
j (1− (xk

k)
2)μkC

μk+
m−k−1

2
μk−1−μk

(xk
j )C

μk+
m−k−1

2

μ′
k−1−μk

(xk
j )

=
1∫ 1

−1
(1− x2)

m−k−2
2 dx

∫ 1

−1

(1− x2)μk+
m−k−2

2 C
μk+

m−k−1
2

μk−1−μk
(x)C

μk+
m−k−1

2

μ′
k−1−μk

(x) dx

=
1∫ 1

−1
(1− x2)

m−k−2
2 dx

δμk−1μ′
k−1

γ̃μk−1,μk
γ̃μ′

k−1,μk

,

since Gegenbauer polynomials C
μk+

m−k−1
2

μk−1−μk
(x) are orthogonal with respect to

(1− x2)μk+
m−k−2

2 on interval [−1, 1] and

∫ 1

−1

(1− x2)μk+
m−k−2

2

[
C

μk+
m−k−1

2
μk−1−μk

(x)
]2

dx

=
π(μk−1 + μk +m− k − 2)!

22μk+m−k−3(μk−1 − μk)!(2μk−1 +m− k − 1)Γ2
(
μk + m−k−1

2

)
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=
1

γ̃μk−1,μk
γ̃μk−1,μk

.

[see again Andrews et al. (1991) Corollary 6.8.4]. This implies (44) and by
induction the system of equations (41) is established which completes the proof
of the theorem.

Example 3.1. To illustrate our approach we consider the dimension m = 4
and a series expansion of order d = 4. By Theorem 3.2 with r = d + 1 = 5 we
have to consider the weight functions

a1(x) = (1− x2)1/2 , a2(x) = 1 .

The corresponding Gegenbauer polynomials are given by

C1
5 (x) = 32x5 − 32x3 + 6x , C

1/2
5 (x) =

1

8
(63x5 − 70x3 + 15x) ,

and using β = −π and t = 9 we obtain the discrete optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗

given by

ζ∗1 =

(
π
6

π
3

π
2

2π
3

5π
6

1
12

1
4

1
3

1
4

1
12

)
,

ζ∗2 =

(
arccos(x2) arccos(x1)

π
2 arccos(−x1) arccos(−x2)

322−13
√
70

1800
322+13

√
70

1800
64
225

322+13
√
70

1800
322−13

√
70

1800

)
,

ν∗ =

(
−7

9π −5
9π −3

9π −1
9π

1
9π

3
9π

5
9π

7
9π π

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

)
,

(45)

where x1 = 1
3

√
1
7 (35− 2

√
70) and x2 = 1

3

√
1
7 (35 + 2

√
70). By Theorem 3.2 this

design is both Φp- and ΦEs -optimal.
We now compare the optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗ with two uniform designs

ζ̂1 ⊗ ζ̂2 ⊗ ν̂ and ζ̃1 ⊗ ζ̃2 ⊗ ν̃, where the marginal distributions of these designs
are given by

ζ̂1 =

(
0 π

4
π
2

3π
4 π

1
5

1
5

1
5

1
5

1
5

)
, ζ̂2 =

(
0 π

4
π
2

3π
4 π

1
5

1
5

1
5

1
5

1
5

)
, ν̂ = ν∗ , (46)

and

ζ̃1 =

(
π
6

π
3

π
2

2π
3

5π
6

1
5

1
5

1
5

1
5

1
5

)
,

ζ̃2 =

(
arccos(x2) arccos(x1)

π
2 arccos(−x1) arccos(−x2)

1
5

1
5

1
5

1
5

1
5

)
,

ν̃ = ν∗ ,

(47)

respectively. Note that the design ζ̂1 ⊗ ζ̂2 ⊗ ν̂ defined by (46) corresponds to
a uniform distribution on a grid in [0, π] × [0, π] × [−π, π], whereas the design
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ζ̃1 ⊗ ζ̃2 ⊗ ν̃ in (47) is an equidistant version of the optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗.
In particular, it uses the same support points as the optimal design.

To compare the uniform designs with the optimal design ζ∗1⊗ζ∗2⊗ν∗ obtained
by Theorem 3.2 we consider the efficiency

eff(ζ1 ⊗ ζ2 ⊗ ν) =
Φ(ζ1 ⊗ ζ2 ⊗ ν)

Φ(ζ∗1 ⊗ ζ∗2 ⊗ ν∗)
,

where Φ is either the D-, E- or ΦEs -optimality criterion.
We focus on the estimation of K�c where we fix q = 1, k0 = 0 and k1 = 4

and K is a block matrix of the form (16) with appropriate blocks given by (17).
For the case of ΦEs-optimality we have s = s(k0) + s(k1) = 26. The D-, E- and

ΦEs -efficiencies of the designs ζ̂1 ⊗ ζ̂2 ⊗ ν̂ and ζ̃1 ⊗ ζ̃2 ⊗ ν̃ are presented in Table
1.

For the modified optimal design ζ̃1⊗ ζ̃2⊗ ν̃ (with the same support points as
the optimal design) we observe a good D-efficiency, however the ΦEs - and the
E-efficiencies are substantially smaller (54.58% and 49.56%, respectively). The

uniform design ζ̂1 ⊗ ζ̂2 ⊗ ν̂ performs worse with respect to the all considered
criteria which shows that this uniform design is inefficient in applications.

D-efficiency E-efficiency ΦEs -efficiency

ζ̂1 ⊗ ζ̂2 ⊗ ν̂ 40.64 3.18 11.27

ζ̃1 ⊗ ζ̃2 ⊗ ν̃ 91.05 49.56 54.58
Table 1

Efficiencies (in %) for the the uniform designs ζ̂1 ⊗ ζ̂2 ⊗ ν̂ and ζ̃1 ⊗ ζ̃2 ⊗ ν̃ defined in (46)
and (47).

Remark 3.1. Note that the quadrature formulas defined by Theorem 3.2 are
not Gaussian, i.e., in general they do not have the optimal degree of exactness.

To the best of the authors’ knowledge a complete characterisation of Gaussian
quadrature rules on the d -dimensional sphere is still an open problem.

In this context it is also of interest to construct quadrature rules with all
weights being equal. In the approximation theory literature these designs are
called spherical L-designs. An L-design {x1, . . . ,xK} ⊂ S

m−1 with K nodes is
defined by the property

1

K

K∑
j=1

p(xj) =
1

Ω̃

∫
Sm−1

p(x)dx (48)

for all hyperspherical harmonics p on S
m−1 of degree L. If the sample size n

corresponds to the number K of nodes in (48), an exact design with optimal
information matrix can be directly implemented. In general the nodes xj have
to be defined numerically and another open problem is for which sample sizes an
L-design with K = n exists. We refer to Sloan and Womersley (2009), Bannai
and Bannai (2009) or Gräf and Potts (2011) for a detailed discussion and more
references on this subject.



382 H. Dette et al.

4. Symmetrized hyperspherical harmonics

In the previous example we have already shown that the use of the optimal
designs yields a substantially more accurate statistical inference in series es-
timation with hyperspherical harmonics. In this section we consider a typical
application of these functions (more precisely of linear combinations of hyper-
spherical harmonics) in material sciences and demonstrate some advantages of
the new designs in this context. Due to space limitations we are not able to pro-
vide the complete background on the representations of crystallographic texture
however, we explain the main ideas and refer to Bunge (1993), Mason and Schuh
(2008) and Patala et al. (2012) for further explanation. Some helpful background
with more details can also be found in Chapters 2 and 3 of the monograph of
Marinucci and Peccati (2011).

Example 4.1. We begin with a brief discussion of the case m = 2 which -
although not relevant for applications in material sciences - is very helpful for
understanding the main idea behind the construction of symmetrized hyper-
spherical harmonics. In this case the Fourier basis{ 1√

2
, cos(x), sin(x), cos(2x), sin(2x), . . .

}
,

is a complete orthonormal system in the Hilbert space L2([0, 2π)) with the

usual inner product 〈f, g〉 =
1

π

∫ 2π
0

f(x)g(x)dx . The aim is now to construct

an orthonormal basis for the subspace of functions in L2([0, 2π)), which are
invariant with respect to the rotation group {R0, Rπ/2, Rπ, R3π/2} defined by

Ra :

{
[0, 2π) → [0, 2π)

x �→ x+ a mod (2π)

(
a ∈ {0, π/2, π, 3/2π}

)
, (49)

that is f(·) = f(R−1
a (·)) - or equivalently f(·) = f(Ra(·)) - for all angles a ∈

{0, π/2, π, 3/2π}. For this purpose consider the trigonometric polynomial

f(x) =
a0√
2
+

∞∑
k=1

ak cos(kx) + bk sin(kx) =

∞∑
k=0

c�k · Yk(x) , (50)

where the vectors ck and Yk(x) are defined by

ck := (ak, bk)
� and Yk(x) :=

{
(1/

√
2, 0)� k = 0 ,

(cos(kx), sin(kx))� otherwise ,

respectively, and assume that the function f is invariant with respect to the
rotation group {R0, Rπ/2, Rπ, R3π/2}, that is,

∞∑
k=0

c�k · Yk(x)=f(x)=f(Ra(x))=

∞∑
k=0

c�k · Yk(Ra(x))=

∞∑
k=0

c�k ·Dk(a) · Yk(x) ,
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where the matrices Dk, defined as

Dk(a) :=

(
cos(ka) − sin(ka)
sin(ka) cos(ka)

)
,

are obtained using the addition formulas for the trigonometric functions. This
means that f is invariant under Ra if and only if ck is an eigenvector for
the eigenvalue 1 of Dk(a)

�. Because {R0, Rπ/2, Rπ, R3π/2} is generated by
Rπ/2, it suffices to consider the case a = π/2. It is now easy to see that

only the matrices D4�(π/2)
� = I2 have the eigenvalue 1, which is of multi-

plicity 2 with corresponding eigenvectors c4� = (β, 0)�, c̃4� = (0, γ)� (β, γ ∈
R \ {0}). Consequently, a complete orthonormal basis of the subset of all func-
tions in L2([0, 2π)), which are invariant with respect to the rotation group
{R0, Rπ/2, Rπ, R3π/2}, is obtained by choosing β = γ = 1, which yields the

linear combinations {c�4�Y4�(x), c̃
�
4�Y4�(x)}�=0,1,... given by

{
1√
2
, cos(4x), sin(4x), cos(8x), sin(8x), . . .

}
.

In applications in material sciences the dimension is m = 4 and the groups
under consideration are much more complicated and induce crystal symmetries.
For example, Mason and Schuh (2008) define representations of crystallographic
textures as quaternion distributions (this corresponds to the case m = 4 in our
notation) by series expansions in terms of hyperspherical harmonics to reflect
sample and crystal symmetries such that the resulting expansions are more
efficient. For this purpose they define the symmetrized hyperspherical harmonics
as specific linear combinations of real hyperspherical harmonics which remain
invariant under rotations corresponding to the simultaneous application of a
crystal symmetry and sample symmetry operation. The exact definition of the
symmetrized hyperspherical harmonics is complicated and requires sophisticated
arguments from representation theory [see Sections 2 - 4 in Mason and Schuh
(2008)], but - in principle - it follows essentially the same arguments as described
in Example 4.1.

More precisely, the groups induced by the crystal symmetry, sample symme-
try operation and the level of resolution λ, define N(λ) symmetrized hyperspher-
ical harmonics of the form

∴
Zη
λ(θ1, θ2, φ) =

λ∑
μ1=0

μ1∑
μ2=−μ1

αη
λ,μ1,μ2

Yλ,μ1,μ2(θ1, θ2, φ), η = 1, . . . , N(λ) , (51)

where the coefficients αη
λ,μ1,μ2

are well defined and can be determined by the
symmetry properties (for a precise definition of N(λ) see Mason and Schuh
(2008) Section 4.5). A list of at least the first 30 symmetrized hyperspherical
harmonics polynomials for the different 11 point groups can be found in the on-
line supplement of Mason and Schuh (2008). If the coefficients are standardized
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appropriately, the symmetrized hyperspherical harmonics are orthonormal, that
is,

∫ π

−π

∫ π

0

∫ π

0

∴
Zη
λ(θ1, θ2, φ)

∴
Zη′

λ′ (θ1, θ2, φ) sin
2 θ1 sin θ2dθ1dθ2dφ = δλλ′δηη′ ,

and any function f(θ1, θ2, φ) that satisfies the symmetry requirements can be
uniquely expressed as a linear combination of symmetrized hyperspherical har-
monics [see Mason and Schuh (2008), Section 4.5 for details].

Moreover, any square integrable function g that satisfies the same require-
ment of crystal and sample symmetry can be uniquely represented as a linear
combination of these symmetrized hyperspherical harmonics in the form

g(θ1, θ2, φ) =
∑

λ=0,2,...,∞

N(λ)∑
η=1

cλ,η
∴
Zη
λ(θ1, θ2, φ) . (52)

Patala et al. (2012) obtained estimates of the missorientation distribution
function by fitting experimentally measured missorientation data to a linear
combination of symmetrized hyperspherical harmonics, while Patala and Schuh
(2013) used truncated series to obtain estimates of the grain boundary distri-
bution from simulated data. As these experiments are very expensive and the
simulations are very time consuming, it is of particular importance to obtain
good designs for the estimation by series of hyperspherical harmonics. Therefore,
we now consider the linear regression model (1) where the vector of regression
functions is obtained by the truncated expansion of the function g of order d,
that is,

∑
λ=0,2,...,d

N(λ)∑
η=1

cλ,η
∴
Zη
λ(θ1, θ2, φ) , (53)

and investigate the performance of the designs determined in Section 3 in models
of the form (53). Due to space restrictions we concentrate on the case d = 4 and
on the symmetrized hyperspherical harmonics for samples with orthorhombic
symmetry and crystal symmetry corresponding to the crystallographic point
groups 1 and 2. Similar results for expansions of higher order and different
crystallographic point groups can be obtained following along the same lines.

For the crystallographic point group 1 there are 11 symmetrized hyperspher-
ical harmonics up to order d = 4 which can be obtained from the online supple-
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ment of Mason and Schuh (2008) and are given by

∴
Z1
0 = Y0,0,0 ,

∴
Z1
4 =
√

2
5 Y4,0,0 +

√
7
20 Y4,4,0 +

√
1
4 Y4,4,4 ,

∴
Z2
4 =
√

2
5 Y4,1,0 −

√
1
10 Y4,3,0 −

√
1
2 Y4,4,−4 ,

∴
Z3
4 =
√

2
5 Y4,1,1 +

√
3
80 Y4,3,1 −

√
1
16 Y4,3,3 +

√
7
16 Y4,4,−1 +

√
1
16 Y4,4,−3 ,

∴
Z4
4 =
√

2
5 Y4,1,−1 +

√
3
80 Y4,3,−1 +

√
1
16 Y4,3,−3 −

√
7
16 Y4,4,1 +

√
1
16 Y4,4,3 ,

∴
Z5
4 =
√

4
7 Y4,2,0 +

√
5
28 Y4,4,0 −

√
1
4 Y4,4,4 ,

∴
Z6
4 =
√

2
7 Y4,2,1 −

√
5
16 Y4,3,−1 +

√
3
16 Y4,3,−3 +

√
3

112 Y4,4,1 +
√

3
16Y4,4,3 ,

∴
Z7
4 =
√

2
7 Y4,2,−1 +

√
5
16 Y4,3,1 +

√
3
16 Y4,3,3 +

√
3

112 Y4,4,−1 −
√

3
16Y4,4,−3 ,

∴
Z8
4 =
√

4
7 Y4,2,2 −

√
3
7 Y4,4,2 ,

∴
Z9
4 =
√

2
7 Y4,2,−2 −

√
1
2 Y4,3,2 −

√
3
14 Y4,4,−2 ,

∴
Z10
4 = Y4,3,−2 .

(54)

Note that the 26 functions

(Y0,0,0, Y4,0,0, . . . , Y4,3,3, Y4,4,−4, . . . , Y4,4,4)
� (55)

define 11 symmetrized hyperspherical harmonics. Consequently, considering the
symmetries of the crystallographic group 1, the vector of regression functions in
model (1) is of the form

f�
1 = (

∴
Z1
0 ,

∴
Z1
4 , . . . ,

∴
Z10
4 )�. (56)

To illustrate the symmetries induced by the crystallographic group in the
symmetrized hyperspherical harmonics we use a visualization described by Ma-
son and Schuh (2008). For a fixed hyperangle (θ1, θ2, φ), the functional value of
∴
Zj
4(θ1, θ2, φ) is presented by using a projection of the hyperangle to an appropri-

ate two-dimensional disk. More precisely, we project the hyperangle (θ1, θ2, φ)
onto a two-dimensional disk by

P (θ1, θ2, φ) =

(
x1(θ1, θ2, φ)
x2(θ1, θ2, φ)

)
=

(
R(θ1, θ2) cos(φ)
R(θ1, θ2) sin(φ)

)
, (57)

where the function R(θ1, θ2) is given by

R(θ1, θ2) = (3/2)1/3(θ1 − sin(θ1) cos(θ1))
1/3
√

2(1− | cos(θ2)|).
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Fig 1. Visualization of the symmetrized hyperspherical harmonic
∴
Z2
4 of the crystallograhic

point group 1 using the projection of the hyperangles onto the two-dimensional disk given
by (57). For each panel, θ1 is fixed to a value in { 1

48
π, 3

48
π, . . . , 23

48
π}, while (θ2, φ) vary in

[0, π
2
]× [−π, π].

For instance the angle (θ1, θ2, φ) = ( 2348π,
π
4 , π) is projected onto the point

(x1, x2) = (−0.5323, 0). In Figure 1 we display the value (represented by an

appropriate color) of the symmetrized harmonic
∴
Z2
4 of the crystallographic group

1 as a function of the coordinates (x1(θ1, θ2, φ), x2(θ1, θ2, φ)). In each of the
twelve panels of Figure 1, θ1 is fixed to one of the values in

{
1
48π,

3
48π, . . . ,

23
48π
}
,

while the angles θ2 and φ vary between [0, π/2] and [−π, π], respectively. For

instance, the value of
∴
Zj
4(θ1, θ2, φ) at the hyperangle (θ1, θ2, φ) = ( 2348π,

π
4 , π) is
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presented in the bottom right panel in a light green color (see the black circle
in the bottom right panel of Figure 1).

We now investigate the efficiency of the optimal design for the estimation of
the coefficients in the regression model (1) with the hyperspherical harmonics
up to order d = 4, that is, the vector of regression functions is given by

f� = (Y0,0,0, Y1,0,0, . . . , Y1,1,1, . . . , Y4,4,−4, . . . , Y4,4,4)
�. (58)

The optimal design for this model has been determined in Example 3.1 and a
tedious calculation shows that the design ζ∗1 ⊗ζ∗2 ⊗ν∗ defined in (45) satisfies the
general equivalence theorem in Section 7.20 of Pukelsheim (2006). Consequently,
this design is also Φp-optimal in the regression model (1), where the vector
of regression functions is given by the symmetrized hyperspherical harmonics
defined in (56), which correspond to the crystallographic point group 1. Note
that the design from Example 3.1 is D-optimal for model (1), if the vector of
regression functions f is given by (58), that is all 26 functions are included in
f . The crystallographic group 1 now defines 11 linear combinations of these 26
functions, which give a new linear model with 11 parameters, where the vector
of regression functions is given by (56). In this case there is no easy explanation
why the design for the “larger” model is also optimal for the “smaller” one.

In fact the situation changes for the crystallographic point group 2. Here
there are only 7 symmetrized hyperspherical harmonics up to order d = 4 con-
sisting of a subset of the functions given in (54) [see the online supplement of
Mason and Schuh (2008)]. These symmetrized hyperspherical harmonics define
a linear regression model of the form (1) with 7 parameters, where the vector
of regression functions f2 is given by

f�
2 =

( ∴
Z1
0 ,

∴
Z1
4 ,

∴
Z2
4 ,

∴
Z5
4 ,

∴
Z8
4 ,

∴
Z9
4 ,

∴
Z10
4

)�
. (59)

In the case of the crystallographic point group 2 the design ζ∗1⊗ζ∗2⊗ν∗ defined by
(45) is not Φp-optimal. However, using particle swarm optimization [see Clerc
(2006) for details] we determined the D-efficiency of the design ζ∗1 ⊗ ζ∗2 ⊗ ν∗

numerically which is given by 81%. We also investigate the performance of the
designs ζ̂1⊗ ζ̂2⊗ ν̂ and ζ̃1⊗ ζ̃2⊗ ν̃ defined in equation (46) and (47) of Example
3.1. The D-efficiencies of these two designs are given by 59.38% and 74.59%,
respectively. Recall that the latter design uses the same support points as the
optimal design. Our calculations show that the design ζ∗1⊗ζ∗2⊗ν∗ in (45) provides
reasonable efficiencies for estimating the coefficients in the regression model (1)
with symmetrized hyperspherical harmonics with respect to the crystallographic
point group 2, the design ζ̃1⊗ ζ̃2⊗ ν̃ is slightly less efficient whereas the uniform
design ζ̂1 ⊗ ζ̂2 ⊗ ν̂ should not be used in this case.
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