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1. Introduction

The stochastic wave equation driven by space-time white noise or by a Gaussian
noise white in time and spatially colored has been widely studied (see e.g. [13],
[9], [5], [10] and the references therein). It constitutes a recognized model for
the displacement of a vibrating string under a random perturbation.
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The study of SPDEs in general (and of the stochastic wave equation in par-
ticular) driven by a fractional noise in time is more recent and it appeared as a
consequence of the stochastic calculus with respect to the fractional Brownian
motion (fBm in the sequel) and related processes. We refer, among others, to
[1], [6], [24].

In this work, we are concerned with the analysis of the solution to the stochas-
tic linear wave equation driven by an additive Gaussian noise which behaves as
a fractional Brownian motion with Hurst parameter H ∈ (12 , 1) with respect to
the time variable and as a Wiener process in space. Our purpose is, firstly, to
explicitly compute the correlation structure of the solution in space and sec-
ondly, to use it in order to obtain the asymptotic behavior in distribution of
its spatial quadratic variation with application to the estimation of the Hurst
parameter. We have made a similar analysis of the covariance of the solution
to the wave equation with time-space white noise in the work [15]. The usual
way to compute the covariance, or the mean square of its increment (in time
or in space) of the solution is based (see e.g. [10], [6]) on the Fourier transform
of the fundamental solution (or the Green kernel) whose expression does not
depend on the dimension d ≥ 1. But we have seen in [15] that, for d = 1, a
direct calculation based on the formula for Green kernel of the wave equation
(and not on its Fourier transform) leads to new insights and brings new infor-
mation on the correlation structure of the solution. We will employ the same
idea in the fractional case and we are able to obtain a closed formula for the
spatial covariance of the solution. This formula is useful and gives several un-
known facts concerning the correlation structure of the solution, by showing an
interesting link between the solution to the wave equation and the fractional
Brownian motion. The covariance formula will then be used to obtain sharp
estimates for the distribution of the solution, its moments and its path regular-
ity. Moreover, it is a crucial tool which, combinated with the techniques of the
Stein-Malliavin calculus, allows to obtain the limit behavior in distribution of
the centered quadratic variation in space of the solution to the wave equation.
More precisely, if {u(t, x), t ≥ 0, x ∈ R} denotes the solution of the wave equa-
tion (t being the time variable and x the space variable), we will show that the
(suitably normalized) sequence

VN =
1√
N

N−1∑
j=0

[ (
u(t, j+1

N )− u(t, j
N )

)2
E
(
u(t, j+1

N )− u(t, j
N )

)2 − 1

]

converges in distribution, as N → ∞ and when H < 3
4 , to a Gaussian random

variable. We also derive the rate of convergence via the recent Stein-Malliavin
theory (see [20]). The threshold 3

4 also appears in the case of the fractional
Brownian motion: it is well-known that the centered and suitably renormalized
quadratic variation of the fractional Brownian motion satisfies a CLT forH < 3

4 ,
H being the self-similarity index of the fBm. In our case, we point out that the
value 3

4 does not constitute a threshold for the self-similarity index of the process
u (which is self-similar in time of order H + 1

2 and it is not self-similar in space)
but for the self-similarity index of the noise in time. This suggests that the
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behavior of the noise with respect to the time variable highly affects the behavior
of the spatial quadratic variation. This makes an interesting link between the
theory of regularity of Gaussian stochastic processes and the estimation theory.
It follows from the results in Sections 3 and 5 that the analysis of the sharp
behavior of the trajectories of the solution to the fractional-white wave equations
has a direct impact on many aspect of the process, including the asymptotic
behavior of the Hurst index estimators.

It is also well-known that the quadratic variation constitutes a good tool
to construct estimators for the self-similarity order of self-similar stochastic
processes. We refer to [7], [29] and the references therein. We will assume that,
for some fixed t > 1, the process u(t, x) is observed at discrete time u(t, i

N ), i =
0, .., N and, via a standard procedure, we construct an estimator based on the
spatial observation of the solution at fixed time t. We refer to Section 5.3 for
the statistical interpretation of these discrete observations in the case of the
vibrating string model. The behavior of the estimator is strongly related to the
behavior of the sequence VN , and hence we are able to prove that the estimator
is consistent and asymptotically normal.

Our paper is organized as follows. In Section 2 we present general facts con-
cerning the wave equation with fractional noise in time and white noise in space.
In Section 3 we compute the spatial covariance of the solution and we deduce
several useful facts concerning its correlation structure. Sections 4 and 5 are
devoted to the analysis of the asymptotic behavior of the spatial quadratic vari-
ations of the solution, with some applications to parameter estimation. The last
section contains the proof of the almost sure CLT for the quadratic variation.

2. Description of the context

In this paragraph we present some general fact concerning the wave equation,
the driving Gaussian noise and the definition of the mild solution of this equa-
tion. We also present some results on the existence and basic properties of this
solution. These results, although not explicitly stated in the literature, can be
derived by using the lines of the proofs in Chapter 2 in [28].

We consider below the linear stochastic wave equation driven by an additive
infinite-dimensional Gaussian noise WH :⎧⎪⎪⎨⎪⎪⎩

∂2u
∂t2 (t, x) = Δu(t, x) + ẆH(t, x), t ∈ (0, T ], T > 0, x ∈ R

d

u(0, x) = 0, x ∈ R
d

∂u
∂t (0, x) = 0, x ∈ R

d.

(2.1)

Here Δ is the Laplacian on R
d, d ≥ 1 and WH = {WH

t (A); t ∈ [0, T ], A ∈
Bb(R

d)} is a real valued centered Gaussian field, over a given complete filtered
probability space (Ω,F, (Ft)t≥0,P), whose covariance function is:

E(WH
t (A)WH

s (B)) = RH(t, s)λ(A ∩B), for every A,B ∈ Bb(R
d), (2.2)
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where λ is the d-dimensional Lebesgue measure, Bd(R
d) is the set of the λ-

bounded Borel subsets of Rd and RH is the covariance function of the fBm with
Hurst parameter H, and it is given by:

RH(t, s) :=
1

2

(
t2H + s2H − | t− s |2H

)
, s, t ≥ 0. (2.3)

Throughout this paper, we consider the regular case, that is the index H is
assumed to be in (12 , 1). Commonly the noise field WH is called “the fractional-
white noise”, it plainly indicates that its behavior is like the fBm in time and
like the Wiener process (white) in space. Thus, its spatial increments are in-
dependent while the temporal increments present a stochastic dependence and
they are positively correlated when H > 1

2 .

2.1. The canonical Hilbert space associated to the noise field

Recall that when H > 1
2 , the covariance function (2.3) of fBm is a non-negative

function and it can be represented in the following way:

RH(t, s) = αH

∫ t

0

∫ s

0

| u− v |2H−2
dudv, for every t, s ∈ [0, T ], (2.4)

with αH := H(2H−1). A complete revue about the construction of the canonical
Hilbert space HB associated to the fBm can be found in [23].

Designate by ξ the set of linear combinations of the simple functions 1{[0,t]×A},

t ∈ [0, T ], A ∈ Bd(R
d), the canonical Hilbert space HW associated to the field

WH , when H > 1
2 , is defined as the closure of the linear space generated by ξ

with respect to the inner product 〈., .〉HW
which is expressed by:

〈1{[0,t]×A},1{[0,s]×B}〉HW
: (2.5)

= E(WH
t (A)WH

s (B)) = αHλ(A ∩B)

∫ t

0

∫ s

0

| u− v |2H−2
dudv.

By a routine argument, as the mapping 1{[0,t]×A} 
→ WH
t (A) defines an

isometry between ξ and Sp(WH) the span of the noise WH , and as ξ is dense
in HW , then for every f ∈ HW , the extended mapping f 
→ WH(f) :=∫ T

0

∫
Rd f(t, x)W

H(dt, dx) is also an isometry between HW and Sp(WH).
The scalar product in HW is given by

〈f, g〉HW
= E(WH(f)WH(g)) (2.6)

= αH

∫ T

0

∫ T

0

∫
Rd

f(u, x)g(v, x)| u− v |2H−2
dxdudv.

for every f, g ∈ HW such that
∫ T

0

∫ T

0

∫
Rd |f(u, x)g(v, x)|| u− v |2H−2

dxdudv <
∞.
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2.2. The mild solution to the wave equation

We denote by S(Rd) the Schwartz space of rapidly decreasing C∞ test-functions
on R

d and by S ′(Rd) its dual, the space of tempered distributions. For f ∈
L1(Rd), we mean by Ff the Fourier transform of f :

Ff(ξ) =

∫
Rd

e−iξ·xf(x)dx, for all ξ ∈ R
d

where ‖ · ‖ denotes the Euclidean norm and “.” the Euclidean scalar product
over Rd. An useful formula in our work is the Plancherel-identity:∫

Rd

f(x)g(x)dx = (2π)
−d

∫
Rd

(Ff)(ξ)F(g)(ξ)dξ, for any f, g ∈ L1(Rd)∩L2(Rd).

(2.7)
Let G1 be the fundamental solution (called also the Green function) of the

homogeneous wave equation ∂2u
∂t2 −Δu = 0. It is known that G1(t, ·) is a distri-

bution in S ′(Rd) with rapid decrease. An easy way to define it is via its Fourier
transform (see e.g. [26],[16]):

FG1(t, ·)(ξ) =
sin(t‖ξ‖)

‖ξ‖ , for any ξ ∈ R
d, t > 0 and d ≥ 1. (2.8)

In particular, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1(t, x) = 1

21{|x|<t}, if d = 1

G1(t, x) = 1

2π
√

t2−|x|2
1{|x|<t}, if d = 2

G1(t, x) = cd
σt(x)

t , if d = 3,

(2.9)

with σt denotes the surface measure on the 3-dimensional sphere of radius t.
For more details on the kernel G1, see e.g. [13].

The solution of (2.1) in its mild formulation is a square-integrable centered
field u = {u(t, x); t ∈ [0, T ], x ∈ R

d}, that is defined by:

u(t, x) =

∫ t

0

∫
Rd

G1(t− s, x− y)WH(ds, dy). (2.10)

One can refer to [8] for further lecture. We will say that the mild solution exists
if the integral (2.10) is well-defined, i.e. if the integrand belongs to the space
HW . Along this work C, C1 and C2 are arbitrary real constants that may
change from one line to another and in such computations, they may depend
or not on parameters t, s and H. From now on, we set the notation gt,x(s, y) :=
G1(t − s, x − y), for all (s, y) ∈ [0, T ] × R

d. We state the following result that
gives the necessary and sufficient condition for the existence of the solution and
the control of its increments in space. Its proof can be obtained by following the
proofs in [1], [6] or [28].
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Proposition 1. 1. The wave solution process u = {u(t, x); t ≥ 0, x ∈ R
d}

defined by (2.10) exists if and only if d < 2H + 1.
In this situation, for every p ≥ 2 and T > 0 we have:

sup
t∈[0,T ]

sup
x∈Rd

E
(
| u(t, x) |p

)
< ∞. (2.11)

2. Let T,M > 0. Fix t ∈ (0, T ], then there exist two constants 0 < C2 < C1

such that:

C2‖x− y‖2H+1−d ≤ E
(
|u(t, x)− u(t, y)|2

)
≤ C1‖x− y‖2H+1−d

(2.12)

for every distinct x, y ∈ [−M,M ]
d
and d ∈ {1, 2}.

Proof: For the first point, we refer to the proof or Theorem 2.8 in [28] which
by followed line by line (see also Corollary 2.7 in [28]). The second point follows
by the same lines as the proof of Proposition 2 in [6], which presents a complete
demonstration when the noise is a fractional Brownian motion with respect to
the time and colored with respect to the space. For our case we take β = d, that
ensures to get the desired result.

Remark 1. • This condition d < 2H + 1 is fulfilled, when the spatial di-
mension d is 1 or 2.

• The bound (2.12) gives the control the spatial increment of the solution.
However, in the sequel, we will restrict to the situation d = 1 and we will
have better estimates for square mean and the spatial increment.

Remark 2. • In virtue of the Kolmogorov-Centsov theorem, for a fixed
t ∈ (0, T ], the solution process has a modification (still denoted by the
same notation), whose sample paths x 
→ u(t, x) are almost surely Hölder
continuous of exponent δ ∈ (0, H − d−1

2 ). Whereas for δ ≥ H − d−1
2 , we

note the lack of Hölder continuity. This extends the case of the space-time
white noise for d = 1, in which the spatial-wave-solution with space-time
white noise is Hölder continuous of order δ ∈ (0, 1

2 ), and also it coincides
with the case of heat equation with white-fractional noise.

• One can also show that the process t → u(t, x) is self-similar of order
H + 1− d

2 , see Proposition 2.15 in [28].

3. The spatial covariance and some consequences

Here we compute the covariance with respect to the space variable of the mild
solution (2.10) in dimension d = 1 and we deduce some consequences on the
trajectories of the process. As mentioned in the introduction, we will use use
the expression of the Green kernel associated to the wave equation (2.9) instead
of its Fourier transform. We are able to obtain an explicit formula that brings
new information on the correlation structure of the solution u(t, x) (2.10). This
formula is also crucial in order to derive the results in the next section (CLT
for the quadratic variation and estimation of the Hurst parameter).
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3.1. The spatial covariance

From now on, assume that d = 1. We have the following result, which is a key
results for our work.

Lemma 1. Let T > 0 and fix t ∈ (0, T ]. Then for every x, y ∈ R and every
H > 1

2 , we have:

E
(
u(t, x)u(t, y)

)
=

1

2

(
cH |y − x|2H+1 − t|y − x|2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

+
(2t− |y − x|)2H+1

8(2H + 1)
1{t≤|y−x|<2t}, (3.1)

with cH := 4H−1
4(2H+1) .

Proof: For a fixed t ∈ (0, T ], it can be shown that for every x, y ∈ R, we get:

E
(
u(t, x)u(t, y)

)
:= R(x, y)

= αH

∫ t

0

∫ t

0

dudv|u− v|2H−2

∫
R

dzG1(t− u, x− z)G1(t− v, y − z)

=
αH

4

∫ t

0

du

∫ t

0

dv|u− v|2H−2

∫
R

dz1{|x−z|<t−u}1{|y−z|<t−v}

=
αH

4

∫ t

0

du

∫ t

0

dv|u− v|2H−2

∫
R

dz1{|x−z|<u}1{|y−z|<v}

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−2

∫
R

dz1{|x−z|<u}1{|y−z|<v}

+
αH

4

∫ t

0

du

∫ t

u

dv(v − u)2H−2

∫
R

dz1{|x−z|<u}1{|y−z|<v}

:= R1(x, y) +R2(x, y). (3.2)

We assume without loss of generality that x ≤ y, and then we start computing
the first term R1 from above. Here two cases can be discussed: y − x ≥ u − v
and y − x < u− v:

R1(x, y) :=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−2

∫
R

dz1{|x−z|<u}1{|y−z|<v}

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−2

∫ (x+u)∧(y+v)

(x−u)∨(y−v)

dz

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v≤y−x}

∫ (x+u)∧(y+v)

(x−u)∨(y−v)

dz

+
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v>y−x}

∫ (x+u)∧(y+v)

(x−u)∨(y−v)

dz
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=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v≤y−x}

∫ x+u

y−v

dz1{x+u>y−v}

+
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v>y−x}

∫ y+v

y−v

dz

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v≤y−x<u+v}(u+ v − (y − x))

+
αH

4

∫ t

0

du

∫ u

0

dv2v(u− v)2H−21{u−v>y−x}

:= R1,1(x, y) +R1,2(x, y). (3.3)

Separately we treat the quantities R1,1 and R1,2. For the first one, we make
use of the change of variables ṽ = u− v in the integral dv, and we infer that:

R1,1(x, y)

:=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v≤y−x<u+v}(u+ v − (y − x))

=
αH

4

∫ t

0

du

∫ u

0

dvv2H−21{v≤y−x<2u−v}(2u− v − (y − x))

=
αH

4

∫ t

0

du

∫ u∧(y−x)∧(2u−(y−x))

0

v2H−2(2u− v − (y − x))

=
αH

4

∫ t

0

du1{u<y−x}

∫ u∧(y−x)∧(2u−(y−x))

0

v2H−2(2u− v − (y − x))

+
αH

4

∫ t

0

du1{u≥y−x}

∫ u∧(y−x)∧(2u−(y−x))

0

v2H−2(2u− v − (y − x)).

Note that on the set {u < y−x}, it yields that: u∧(y−x)∧(2u−(y−x)) = 2u−
(y−x), while on the set {u ≥ y−x}, it gives that: u∧(y−x)∧(2u−(y−x)) = y−x.
Consequently this means that:

R1,1(x, y) =
αH

4

∫ t∧(y−x)

0

du1{u> y−x
2 }

∫ 2u−(y−x)

0

dvv2H−2(2u− v − (y − x))

+
αH

4
1{y−x<t}

∫ t

y−x

du

∫ y−x

0

dvv2H−2(2u− v − (y − x))

:= R1,1,A(x, y) +R1,1,B(x, y). (3.4)

Looking at the quantity R1,1,A, it can be shown that:

R1,1,A(x, y)

:=
αH

4

∫ t∧(y−x)

0

du1{u> y−x
2 }

∫ 2u−(y−x)

0

dvv2H−2(2u− v − (y − x)

=
αH

4
1{y−x<t}

∫ y−x

y−x
2

du

∫ 2u−(y−x)

0

dvv2H−2(2u− v − (y − x)
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+
αH

4
1{y−x≥t}1{y−x<2t}

∫ t

y−x
2

du

∫ 2u−(y−x)

0

dvv2H−2(2u− v − (y − x)

=
αH

8H(2H − 1)
1{y−x<t}

∫ y−x

y−x
2

du(2u− (y − x))
2H

+
αH

8H(2H − 1)
1{t≤y−x<2t}

∫ t

y−x
2

du(2u− (y − x))
2H

=
(y − x)

2H+1

16(2H + 1)
1{y−x<t} +

(2t− (y − x))
2H+1

16(2H + 1)
1{t≤y−x<2t}. (3.5)

For the second term R1,1,B , we may calculate the integral and it produces that:

R1,1,B(x, y)

:=
αH

4
1{y−x<t}

∫ t

y−x

du

∫ y−x

0

dvv2H−2(2u− v − (y − x))

=
αH

4
1{y−x<t}

∫ t

y−x

du

[
2u(y − x)2H−1

2H − 1

− 4H − 1

2H(2H − 1)
(y − x)2H

]
=

αH

4
1{y−x<t}

[
(y − x)2H−1

2H − 1
(t2 − (y − x)2)

− 4H − 1

2H(2H − 1)
(y − x)2H(t− (y − x))

]
=

[
Ht2

4
(y − x)2H−1 − (4H − 1)t

8
(y − x)2H

+
2H − 1

8
(y − x)2H+1

]
1{y−x<t}. (3.6)

Combining (3.5) and (3.6) in (3.4), we infer that:

R1,1(x, y)

=

[
Ht2

4
(y − x)2H−1 − (4H − 1)t

8
(y − x)2H

+
8H2 − 1

16(2H + 1)
(y − x)2H+1

]
1{y−x<t}

+
(2t− (y − x))

2H+1

16(2H + 1)
1{t≤y−x<2t}. (3.7)

Focusing now on R1,2, a modicum of calculus leads to:

R1,2(x, y)

:=
αH

4

∫ t

0

du

∫ u

0

dv2v(u− v)2H−21{u−v>y−x}
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=
αH

2

∫ t

0

du1{u>y−x}

∫ u∧(u−(y−x))

0

dvv(u− v)2H−2

=
αH

2
1{y−x<t}

∫ t

y−x

du

∫ u−(y−x)

0

dvv(u− v)2H−2

=
αH

2
1{y−x<t}

∫ t

y−x

du

[
(y − x)2H

2H
− u(y − x)2H−1

2H − 1
+

u2H

2H(2H − 1)

]
=

1

4

[
(2H − 1)(t− (y − x)(y − x)2H

−2H(y − x)2H−1

∫ t

y−x

duu+

∫ t

y−x

u2H

]
1{y−x<t}

=
1

4

[
(2H − 1)(y − x)2Ht− H(2H − 1)(y − x)2H+1

2H + 1

−Ht2(y − x)
2H−1

+
t2H+1

2H + 1

]
1{y−x<t}

=
t2

4

(
t2H−1

2H + 1
−H(y − x)2H−1

)
1{y−x<t} +

(2H − 1)(y − x)2H

4

×
(
t− H(y − x)

2H + 1

)
1{y−x<t}. (3.8)

Plugging the last two quoted results (3.7) and (3.8) in (3.3), we easily obtain
that for all x, y ∈ R:

R1(x, y) := R1,1(x, y) +R1,2(x, y)

=
1

4

(
cH |y − x|2H+1 − t|y − x|2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

+
(2t− (y − x))

2H+1

16(2H + 1)
1{t≤|y−x|<2t}, (3.9)

with cH := 4H−1
4(2H+1) .

Dealing now with the remaining part R2 of the statement (3.2), and using
the change of variables (ũ, ṽ) = (t− u, t− v), we can show that:

R2(x, y)

:=
αH

4

∫ t

0

du

∫ t

u

dv(v − u)2H−2

∫
R

dz1{|x−z|<u}1{|y−z|<v}

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−2

∫
R

dz1{|x−z|<t−u}1{|y−z|<t−v}

=
αH

4

∫ t

0

du

∫ u

0

du(v − u)2H−2

∫ (x+(t−u))∧(y+(t−v))

(x−(t−u))∨(y−(t−v))

dz

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v≤y−x}

∫ x+(t−u)

y−(t−v)

dz1{x+(t−u)>y−(t−v)}
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+
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−v>y−x}

∫ x+(t−u)

x−(t−u)

dz

=
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−(y−x)≤v}

1{x+(t−u)>y−(t−v)}
(
2t− (y − x)− (u+ v)

)
+
αH

4

∫ t

0

du

∫ u

0

dv(u− v)2H−21{u−(y−x)>v}2(t− u)

=
αH

4

∫ t

0

du

∫ u

0

dvv2H−21{v≤(y−x)<2t−(2u−v)}
(
2t− (2u− v)− (y − x)

)
+
αH

4

∫ t

0

du2(t− u)1{u>(y−x)}

∫ u−(y−x)

0

dv(u− v)2H−2.

Proceeding by the same calculus as R1, we find that:

R2(x, y) = R1,1(x, y) +R1,2(x, y) = R1(x, y). (3.10)

Therefore, due to the expression (3.9) and (3.10), the final expression of the
covariance function R can be written in the following way:

R(x, y) := R1(x, y) +R2(x, y)

= 2R1,1(x, y) + 2R1,2(x, y)

=
1

2

(
cH |y − x|2H+1 − t|y − x|2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

+
(2t− |y − x|)2H+1

8(2H + 1)
1{t≤|y−x|<2t}, for all x, y ∈ R,

and the desired conclusion follows.

Remark 3. For the classical case when H = 1
2 , we note that for every x, y ∈ R:

from one hand R1,2 = 0 and from another hand:

R1,1(x, y)

=

(
t2

8
− t

8
|y − x|+ |y − x|2

32

)
1{|y−x|<t} +

(2t− |y − x|)2
32

1{t≤|y−x|<2t}

=
(2t− |y − x|)2

32
1{|y−x|<t} −

(2t− |y − x|)2
32

1{|y−x|<t}

+
(2t− |y − x|)2

32
1{|y−x|<2t}

=
1

8

(
t− |y − x|

2

)2

1{|y−x|<2t},

which implies that:

R(x, y) =
1

4

(
t− |y − x|

2

)2

1{|y−x|<2t},
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and obviously we deduce that it coincides with the covariance’s expression for
the space-time white case (see [15]).

Remark 4. Looking at the proceeding expression (3.1), we deduce that the spa-
tial solution (u(t, x))x∈R is a stationary process, this remains that its behavior
is different from the spatial Heat-solution with white-fractional noise, which is
self-similar with index H − d−1

2 .

Some results due to the expression of the spatial covariance function can be
listed below in the following subsection.

3.2. Consequences of the covariance formula

3.2.1. Continuity of the covariance

From (3.1), we can infer that:

R(x, y) = f(|y − x|)

where the function f is defined for all z ∈ R in the next way:

f(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

(
cHz2H+1 − t

2z
2H + t2H+1

2H+1

)
if z ∈ (−∞, t)

(2t−z)2H+1

8(2H+1) if z ∈ [t, 2t)

0 if z ∈ [2t,+∞).

(3.11)

Clearly f is a continuous function on R, in particular at the points z = t and
z = 2t.

3.2.2. Explicit distribution of the spatial solution

Another interesting consequence is the second moment of the spatial solution,
which is for a fixed t > 0 and for every x ∈ R equal to:

R(x, x) := E
(
u(t, x)

2
)
=

t2H+1

2(2H + 1)
. (3.12)

Recall that the solution process (u(t, x))x∈R
is a centered Gaussian one, hence

for fixed t > 0, we may make out that:

u(t, x) ∼ tH+ 1
2√

2(2H + 1)
Z, with Z ∼ N (0, 1). (3.13)

In particular, the p-moment is:

E
(
|u(t, x)|p

)
=

(
tH+ 1

2√
2(2H + 1)

)p

E
(
|Z|p

)
. (3.14)
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3.2.3. Sharp estimates of the spatial increment

Looking again at the mean square of the spatial increment of the solution, we
can find sharp estimates according to the covariance function’s expression. In
fact we retrieve the result established in Proposition 1, point 2, which is based
on using the Fourier transform of the Green kernel and on mimicking the proof
evoked in [6], it shows that for d = 1:

C2| x− y |2H ≤ E
(
|u(t, x)− u(t, y)|2

)
≤ C1| x− y |2H (3.15)

for every distinct x, y ∈ [−M,M ].

Yet, according to the covariance (3.1) we can get this result and even more
precise bounds with explicit expressions for the constants appearing in the re-
sult. Indeed, fix t > 0 and for every x, y ∈ R, we have:

E
(
|u(t, x)− u(t, y)|2

)
= 2

(
R(x, x)−R(x, y)

)
=

t2H+1

2H + 1
−
(
cH |y − x|2H+1 − t|y − x|2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

− (2t− |y − x|)2H+1

4(2H + 1)
1{t≤|y−x|<2t}. (3.16)

For the first situation when |y − x| < t, we get:

E
(
|u(t, x)− u(t, y)|2

)
=

t

2
|y − x|2H − cH |y − x|2H+1

= |y − x|2H
(
t

2
− 4H − 1

4(2H + 1)
|y − x|

)
. (3.17)

Which obviously leads to:

E
(
|u(t, x)− u(t, y)|2

)
≥ 3t

4(2H + 1)
|y − x|2H (3.18)

and

E
(
|u(t, x)− u(t, y)|2

)
≤ |y − x|2H

(
t

2
+

4H − 1

4(2H + 1)
|y − x|

)
≤ |y − x|2H

(
t

2
+

4H − 1

4(2H + 1)
t

)
=

(8H + 1)t

4(2H + 1)
|y − x|2H .

For the second situation when t ≤ |y − x| < 2t, it implies that:

E
(
|u(t, x)− u(t, y)|2

)
=

1

2H + 1

(
t2H+1 − 1

4

(
2t− |y − x|

)2H+1
)



3652 M. Khalil and C. A. Tudor

=
t2H+1

2H + 1

(
1− 1

4

(
2− |y − x|

t

)2H+1
)
. (3.19)

Since in this case we have 1 ≤ |y−x|
t < 2, so it yields that:

3

4
≤ 1− 1

4

(
2− |y − x|

t

)2H+1

< 1. (3.20)

Consequently we deduce that:

E
(
|u(t, x)− u(t, y)|2

)
<

t2H+1

2H + 1

≤ t

2H + 1
|y − x|2H (3.21)

and

E
(
|u(t, x)− u(t, y)|2

)
≥ 3t2H+1

4(2H + 1)

≥ 3t

22H+2(2H + 1)
|y − x|2H . (3.22)

Actually, in this second case and by the same reasoning we can obtain more
regularity for the mean square spatial increment, for instance:

C2|y − x|2H+1 ≤ E
(
|u(t, x)− u(t, y)|2

)
≤ C1|y − x|2H+1

. (3.23)

3.2.4. Spatial modulus of continuity

From the above estimates on the spatial increment of the solution, we can deduce
useful information on the modulus of continuity of the process (u(t, x))x∈R given
by (2.10) with respect to its space variable.

Let us fist recall some general definitions. Let f be an increasing function in
R+ such that lim

x→0+
f(x) = 0. Let (Yt)t∈I be a stochastic process with index set

I ⊂ R and let ρ be a metric on I. We say that the function f is an almost sure
uniform modulus of continuity on (I, ρ), if there exists an almost-surely positive
random variable α0 such that for α < α0 one has

sup
s,t∈T ;ρ(s,t)<α

|Yt − Ys| ≤ f(α).

For (sub)Gaussian processes, there is a wide theory on the modulus of conti-
nuity in terms of the covariance structure of the process and the magnitude of
its increment (see, among others, [11], [12], [18], [27], [30]). In particular, if Y is
a Gaussian process such that

E
(
|Yt − Ys|

)2 ≤ G(|s− t|) (3.24)
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for all s, t ∈ I, where G : R+ → R+ is an increasing function with G(0) = 0,
then

f(ε) =

∫ ε

0

(log r)
1
2 dG(r)

is an almost sure uniform modulus of continuity for Y on I with respect to the
Euclidean metric.

From the estimates (3.19) and (3.20) in Section 3.2.3, we can immediately
get the modulus of continuity of the Gaussian process (u(t, x))x∈R. Indeed, fix
t > 0. By the bound (3.19) and (3.20), we easily deduce that

E
(
|u(t, x)− u(t, y)|

)2 ≤ C|x− y|2H

for every x, y ∈ [−M,M ] with M > t and C > 0 a non-random constant
(depending on t and H). Consequently (3.24) is satisfied for (u(t, x))x∈R and
the function

f(r) =

∫ r

0

(log x)
1
2 d(xH) ∼ (log r) 2 rH

will be an almost sure uniform modulus of continuity for (u(t, x))x∈R on any
interval [−M,M ] with M > t.

Remark 5. There is an interesting impact on the fractional noise in time of the
spatial regularity of the solution. Indeed, the almost sure modulus of continuity of
the solution coincides with the modulus of continuity of the fractional Brownian
motion. A similar phenomenon can be observed in the next section in the study
of the central limit theorem for the spatial quadratic variations of u.

3.2.5. Relation with the fractional Brownian motion

Another interesting property resulting from the formula (3.1) is that the spatial
increments of the solution are related to the increments of the fractional Brow-
nian motion. Indeed, assume t is fixed and x, y are such that |y − x| < t (this
will be the case in the next section). In this case, it follows from (3.1) that

E ((u(t, x+ 1)− u(t, x))(u(t, y + 1)− u(t, y))) =
t

2
ϕH(|y − x|)− cHϕH+ 1

2
(|y − x|)

where

ϕH(k) :=
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k ∈ R. (3.25)

That means that the increment of u(t, x) with t is fixed and x, y such that

|y−x| < t is the same in distribution as the increment of BH and BH+ 1
2 where

BH and BH+ 1
2 are two independent fractional Brownian motions with Hurst

indices H and H + 1
2 respectively (if the second fBm would exist).

For example, if t > 2 the process (u(t, x + 1) − u(t, x))x∈[0,1] has the same

distribution as
(
(BH(x+ 1)−BH(x)) +BH+ 1

2 (x+ 1)−BH+ 1
2 (x)

)
x∈[0,1]

.
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Since the behavior of our sequence (VN )N≥1(defined below in(4.1)) relies on

how big is the correlation of its spatial increments, we will estimate its L2(Ω)-
norm by using essentially the earlier expression (3.1) and some elements of
Malliavin calculus.

4. The spatial quadratic variation

Fix d = 1 and the time t ∈ (0, T ], T > 0. Take an equidistant spatial partition of
the unit rectangle [0, 1] such that for every N ≥ 1 and for every j = 0, . . . , N , we
designate by xj = j

N . The centered renormalized quadratic variation statistic
over the unit interval [0, 1], can be defined in the following way:

VN =
1√
N

N−1∑
j=0

[ (
u(t, j+1

N )− u(t, j
N )

)2
E
(
u(t, j+1

N )− u(t, j
N )

)2 − 1

]
. (4.1)

Our purpose is to find the asymptotic behavior of the renormalized partial sum
VN as N goes to infinity.

To prove this, a convenient device that we will use the recent Stein-Malliavin
theory, see [20]. To this end, we need to introduce the basic tools of the Malliavin
calculus.

4.1. Malliavin calculus

We assume that the reader has a basic knowledge of such notions from stochastic
analysis. Here, we shall only recall some elementary facts; our main reference
on this realm is [22]. Consider H a real separable infinite-dimensional Hilbert
space with its associated inner product 〈., .〉H, and (B(ϕ), ϕ ∈ H) an isonormal
Gaussian process on a probability space (Ω,F,P), which is a centered Gaussian
family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ, ψ〉H, for every ϕ, ψ ∈
H. Denote by Iq the qth multiple stochastic integral with respect to B. This Iq is
actually an isometry between the Hilbert space H�q (symmetric tensor product)
equipped with the scaled norm 1√

q!
‖ · ‖H⊗q and the Wiener chaos of order q,

which is defined as the closed linear span of the random variables Hq(B(ϕ))
where ϕ ∈ H, ‖ϕ‖H = 1 and Hq is the Hermite polynomial of degree q ≥ 1
defined by:

Hq(x) =
(−1)q

q!
exp

(
x2

2

)
dq

dxq

(
exp

(
−x2

2

))
, x ∈ R. (4.2)

The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H⊗p and
g ∈ H⊗q,

E
(
Ip(f)Iq(g)

)
=

{
q!〈f̃ , g̃〉H⊗q if p = q

0 otherwise.
(4.3)

It also holds that:
Iq(f) = Iq

(
f̃
)
,
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where f̃ denotes the canonical symmetrization of f and it is defined by:

f̃(x1, . . . , xq) =
1

q!

∑
σ∈Sq

f(xσ(1), . . . , xσ(q)),

in which the sum runs over all permutations σ of {1, . . . , q}.

We recall that any square-integrable random variable F , which is measurable
with respect to the σ-algebra generated by B, can be expanded into an orthog-
onal sum of multiple stochastic integrals:

F = E (F ) +
∞∑
q=1

Iq(fq), (4.4)

where the series converges in L2(Ω)-sense and the kernels fq, belonging to H�q,
are uniquely determined by F .

We denote by D the Malliavin derivative operator that acts on cylindrical ran-
dom variables of the form F = g(B(ϕ1), . . . , B(ϕn)), where n ≥ 1, g : Rn → R

is a smooth function with compact support and ϕi ∈ H. This derivative is an
element of L2(Ω,H) and it is defined as:

DF =

n∑
i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

The operator D is continuous from D
α,p (H) into D

α−1,p (H) .

We will need the general formula for calculating products of Wiener chaos
integrals of any orders p, q ≥ 1, so, for any symmetric integrands f ∈ H�p and
g ∈ H�q, it is:

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g). (4.5)

In the particular case when H = L2([0, T ]), the rth contraction f ⊗r g is the
element of H⊗(p+q−2r), which is defined by:

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=
∫
[0,T ]r

du1 . . . durf(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur), (4.6)

for every f ∈ L2([0, T ]
p
), g ∈ L2([0, T ]

q
) and r = 1, . . . , p ∧ q.

4.2. Renormalization of VN

To renormalize VN we need to understand the behavior of E
(
V 2
N

)
as N → ∞.

To this end, we need a careful analysis of the auto-correlation E
(
(u(t, xi+1) −

u(t, xi))(u(t, xj+1)− u(t, xj))
)
with xi =

i
N for i = 0, 1, .., N .
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Applying the expression (3.1), we clearly obtain for every 0 ≤ i, j ≤ N :

ΔR(i, j)

:= E
(
(u(t, xi+1)− u(t, xi))(u(t, xj+1)− u(t, xj))

)
=

1

2

[
2
(
cH

|i− j|2H+1

N2H+1
− t|i− j|2H

2N2H
+

t2H+1

2H + 1

)
1{|i−j|<Nt}

−
(
cH

|i− j + 1|2H+1

N2H+1
− t|i− j + 1|2H

2N2H
+

t2H+1

2H + 1

)
1{|i−j+1|<tN}

−
(
cH

|i− j − 1|2H+1

N2H+1
− t|i− j − 1|2H

2N2H
+

t2H+1

2H + 1

)
1{|i−j−1|<tN}

]

− 1

8(2H + 1)

[(
2t− |i− j + 1|

N

)2H+1

1{tN≤|i−j+1|<2tN}

−2
(
2t− |i− j|

N

)2H+1

1{tN≤|i−j|<2tN}

+
(
2t− |i− j − 1|

N

)2H+1

1{tN≤|i−j−1|<2tN}

]
. (4.7)

According to the value of the temporal index t, the former covariance function
(4.7) can be written in the following way:

• If t ∈ (1, T ], it yields that |i− j + 1| < tN and we get:

ΔR(i, j) = k1ϕH(
i− j

N
) + k2ϕH+ 1

2
(
i− j

N
), (4.8)

where ϕH is given by (3.25) and

k1 =
t

2
, k2 = −cH . (4.9)

Recall that ϕH(k) ∼k→∞ 2H(2H − 1)|k|2H−2
, with the symbol “∼” means

that both sides have the same limit as k goes to ∞.

As mentioned in the subsection 3.2.5, this means that, when the time is large
enough, the increment of the spatial wave solution behaves as the sum of the
increments generated by the fBm BH modulo a constant and the fBm BH+ 1

2

modulo a constant, with BH+ 1
2 independent by BH .

• If t ∈ (0, 1], several situations can be evoked according to the values of tN
and also of 2tN , that is why it seems to be quiet hard to estimate the L2(Ω)-
norm of the increments by using our approach basing on the expression of the
covariance function (4.7).

For the rest of the work we adopt that the time t ∈ (1, T ]. Due to the
Subsection 4.1, we denote by H the canonical Hilbert space associated to the
Gaussian solution process (u(t, x))x∈[0,1]. This Hilbert space is defined as the
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closure of the set ξ of indicator functions 1[0,x], x > 0, with respect to the inner
product:

〈1[0,x],1[0,y]〉H = E
(
u(t, x)u(t, y)

)
, for a fixed t ∈ (1, T ].

The Gaussian space generated by (u(t, x))x∈[0,1], t ∈ (1, T ], can be identified

with an isonormal Gaussian process of the type (X(h))h∈H. We also designate
by Iq, q ≥ 1 the multiple Wiener-integral with respect to the Gaussian process
(u(t, x))x∈[0,1], so the increment u(t, y) − u(t, x) can be expressed as I1(1[x,y]),
for every x < y.

Define now the next sequence:

FN =
VN√
vN

, with vN = E(V 2
N ), N ≥ 1. (4.10)

Using again (4.7) when t ∈ (1, T ], it implies that:

E
(
u(t, xj+1)− u(t, xj)

)2

=
k1

N2H
+

k2
N2H+1

, (4.11)

and consequently, for N ≥ 1, FN can be re-written as:

FN =
1√
vNN

[
1

k1

N2H + k2

N2H+1

]
N−1∑
j=0

[(
u(t,

j + 1

N
)− u(t,

j

N
)

)2

−E

(
u(t,

j + 1

N
)− u(t,

j

N
)

)2
]

=
1√
vNN

[
1

k1

N2H + k2

N2H+1

]
I2

⎛⎝N−1∑
j=0

1⊗2
[xj ,xj+1]

⎞⎠
=

N2H+ 1
2

√
vN (k1N + k2)

I2

⎛⎝N−1∑
j=0

1⊗2
[xj ,xj+1]

⎞⎠ . (4.12)

The next lemma shows that the deterministic sequence vN > 0 converges, as N
goes to∞, to a strictly positive constant. It will play no role in the limit behavior
of (FN )N≥1, it is just used to normalize and to guarantee that E(FN

2) = 1.

Lemma 2. Assume H ∈ (12 ,
3
4 ) and t > 1. Then, there exists a constant C0 ∈

(0,∞) such that:
vN →N→∞ C0,

with C0 := 2
∑

k∈Z
(ϕH(k))

2
.

Proof: Thanks to (4.8), we have:

vN =
2N4H+1

(k1N + k2)2

N−1∑
i,j=0
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E

((
u(t,

i+ 1

N
)− u(t,

i

N
)
)(

u(t,
j + 1

N
)− u(t,

j

N
)
))]2

=
2N4H+1

(k1N + k2)2

N−1∑
i,j=0[

k1
ϕH(i− j)

N2H
+ k2

ϕH+ 1
2
(i− j)

N2H+1

]2

= 2k21
N4H+1

(k1N + k2)2

N−1∑
i,j=0

(
ϕH(i− j)

N2H

)2

+

4k1k2
N4H+1

(k1N + k2)2

N−1∑
i,j=0

ϕH(i− j)

N2H

ϕH+ 1
2
(i− j)

N2H+1

+2k22
N4H+1

(k1N + k2)2

N−1∑
i,j=0

(
ϕH+ 1

2
(i− j)

N2H+1

)2

:= T1 + T2 + T3. (4.13)

It turns out to check that the first term T1 is the dominant one, and it converges
to a finite limit, while the other terms are negligible. So, by using the dominated
convergence theorem, we get that:

T1 := 2k21
N4H+1

(k1N + k2)2

N−1∑
i,j=0

(
ϕH(i− j)

N2H

)2

=
2k21N

2

(k1N + k2)2

∑
k∈Z

(ϕH(k))
2

(
1− |k|

N

)
1{|k|<N}

→N→∞2
∑
k∈Z

(ϕH(k))
2
= C0. (4.14)

Recall that the function ϕH(k) behaves, for k large enough, asH(2H−2)|k|2H−2,

which yields that the series
∑

k∈Z
(ϕH(k))

2
is finite only if H < 3

4 . Also, as
ϕH(0) = 1, it is obvious that C0 ∈ (0,∞).

Moving to the second term T2, we obtain:

T2 =
4k1k2

(k1N + k2)2

N−1∑
i,j=0

ϕH(i− j)ϕH+ 1
2
(i− j)

≤ 4k1k2N

(k1N + k2)2

N−1∑
k=0

∣∣∣ϕH(k)ϕH+ 1
2
(k)

∣∣∣
≤ C

N

N∑
k=1

k4H−3→N→∞0, (4.15)

which is true due to the Cesàro-Lemma and the fact that H < 3
4 .
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Similarly as for the second term, we deduce that:

T3 =
2k22

N(k1N + k2)2

N−1∑
i,j=0

(
ϕH+ 1

2
(i− j)

)2

≤ 2k22
(k1N + k2)2

N−1∑
k=0

(
ϕH+ 1

2
(k)

)2

≤ C

N2

N∑
k=1

k4H−2

≤ CN4H−3 →N→∞ 0. (4.16)

By putting together (4.14), (4.15) and (4.16), the proof is completed.

Remark 6. The appearance of the threshold H = 3
4 is interesting. Note that H

represents the self-similarity index of the noise (in time) and not of the solution.
This is related to the observation noticed in the Section 3.2.5: the main part of
VN comes from the fBm BH . A similar phenomenon has been noticed in [25].

5. Central Limit Theorem and rate of convergence

In order to verify the CLT for the sequence (VN )N≥1, our main tool will be the
Theorem 5.2.6 in [20], which provides a description of the normal approximation
of multiple stochastic integrals, by the aid of explicit bounds of the well-known
distances d (Kolmogorov, Total Variation, Wasserstein). This result is based on
the classical Berry-Esseen inequality.

Theorem 1. Fix q ≥ 1. Let (FN )N≥1 = (Iq(fN ))N≥1 with fN ∈ H�q, be a
sequence of random variables belonging to the qth Wiener chaos such that:

E(F 2
N )−→N→∞σ2.

Then, FN converges in law to Z ∼ N (0, 1) if and only if

‖DFN‖2H−→N→∞qσ2.

Furthermore,

d (FN ;N (0, 1)) ≤ C

√
Var

(1
q
‖DFN‖2H

)
.

5.1. Main result

Our first main result is summarized in the following lemma.

Lemma 3. Fix t ∈ (1, T ] and assume that H ∈ (12 ,
3
4 ), the sequence of random

variables (FN )N≥1 given by (4.12) converges in distribution, as N → ∞, to
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the standard normal law N (0, 1). Moreover, for N ≥ 3, there exists a constant
C > 0 (depending only on t and H) such that:

d (FN ;N (0, 1)) ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
N

if H ∈ ( 12 ,
5
8 )√

log3N
N if H = 5

8

N4H−3 if H ∈ ( 58 ,
3
4 ).

(5.1)

Proof: We apply Theorem 1. Since for all N ≥ 1:

FN = I2(fN ), with fN =
N2H+ 1

2

√
vN (k1N + k2)

N−1∑
j=0

1⊗2
[xj ,xj+1]

∈ H�2,

and E(FN )
2
= 1,

it is a enough to estimate the quantity:

Var
(1
2
‖DFN‖2H

)
.

From Subsection 4.1, we get:

‖DFN‖2H −E
(
‖DFN‖2H

)
=

4N4H+1

vN (k1N + k2)
2

N−1∑
j,k=0

〈1[xj ,xj+1],1[xk,xk+1]〉HI2
(
1[xj ,xj+1] ⊗ 1[xk,xk+1]

)
,

which obviously gives:

Var
(1
2
‖DFN‖2H

)
(5.2)

=
1

4
E
(
‖DFN‖2 −E(‖DFN‖2)

)2

=
4N8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

〈1[xj ,xj+1],1[xk,xk+1]〉H〈1[xi,xi+1],1[xl,xl+1]〉H

×〈1[xj ,xj+1],1[xi,xi+1]〉H〈1[xk,xk+1],1[xl,xl+1]〉H

=
4N8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

[
k1

ϕH(j − k)

N2H
+ k2

ϕH+ 1
2
(j − k)

N2H+1

]

×
[
k1

ϕH(i− l)

N2H
+ k2

ϕH+ 1
2
(i− l)

N2H+1

][
k1

ϕH(j − i)

N2H
+ k2

ϕH+ 1
2
(j − i)

N2H+1

]

×
[
k1

ϕH(k − l)

N2H
+ k2

ϕH+ 1
2
(k − l)

N2H+1

]

:=
5∑

i=1

Pi. (5.3)



Correlation and quadratic variations for the frac. wave equation 3661

We designate by P1 the product of four elements that are the functions ϕH . As
well, P2 contains all the terms with the form of a product of only one function
ϕH and three functions ϕH+ 1

2
. P3 is composed of all the terms which are the

product of two functions ϕH and two functions ϕH+ 1
2
. P4 contains all the terms

which are written as a product of three functions ϕH and one function ϕH+ 1
2
,

and finally P5 is the product of four functions ϕH+ 1
2
.

The biggest term in (5.2) is P1, straightforward calculations show that all the
other terms are negligible. Typically referred to the proof of the Theorem 7.3.1
in [20], we set, for all N ≥ 1, the functions:

ϕH,N (k) = |ϕH(k)|1{|k|≤N−1} and ϕH+ 1
2 ,N

(k) = |ϕH+ 1
2
(k)|1{|k|≤N−1}

for every k ∈ Z. Also, for two sequences (u(n), n ∈ Z) and (v(n), n ∈ Z), we
define their convolution by

(u ∗ v)(j) =
∑
n∈Z

u(n)v(j − n).

We will need the Young’s inequality

‖u ∗ v‖	s(Z) ≤ ‖u‖	p(Z)‖v‖	q(Z) (5.4)

if s, p, q ≥ 1 with 1
s + 1 = 1

p + 1
q .

We can write:

P1 =
4k41N

8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

ϕH(j − k)ϕH(i− l)ϕH(j − i)ϕH(k − l)

N8H

≤ 4k41N
2

v2N (k1N + k2)
4

N−1∑
i,k=0

∑
j,l∈Z

ϕH,N (j − k)ϕH,N (i− l)ϕH,N (j − i)ϕH,N (k − l)

≤ C

N2

N−1∑
i,k=0

(ϕH,N ∗ ϕH,N )
2
(k − i)

=
C

N

∑
k∈Z

(ϕH,N ∗ ϕH,N )
2
(k)

=
C

N
‖ϕH,N ∗ ϕH,N‖2	2(Z).

By the aid of Young’s inequality (5.4) for s = 2 and p = q = 4
3 , we obtain:

P1 ≤ C

N
‖ϕH,N‖4

	
4
3 (Z)

=
C

N

( N−1∑
k=1−N

|ϕH(k)|
4
3

)3

.
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As the function ϕH behaves like C|k|2H−2
when |k| goes to ∞, it yields that:

N−1∑
k=1−N

|ϕH(k)|
4
3 =

⎧⎪⎪⎨⎪⎪⎩
O(1) if H ∈ (0, 5

8 )

O(logN) if H = 5
8

O(N
8H−5

3 ) if H ∈ ( 58 , 1).

(5.5)

Hence, recall that vn ∈ (0,∞) only for H ∈ ( 12 ,
3
4 ), we deduce the following

result:

P1 ≤ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

(5.6)

The same reasoning will be used for the other terms, giving:

P2 =
4k1k

3
2N

8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

ϕH(j − k)ϕH+ 1
2
(i− l)ϕH+ 1

2
(j − i)ϕH+ 1

2
(k − l)

N8H+3

≤ 4k1k
3
2

v2N (k1N + k2)
4
N

N−1∑
i,k=0

∑
j,l∈Z

ϕH,N (j − k)ϕH+ 1
2 ,N

(i− l)ϕH+ 1
2 ,N

(j − i)ϕH+ 1
2 ,N

(k − l)

≤ C

N4

∑
k∈Z

(ϕH,N ∗ ϕH+ 1
2 ,N

)(k)(ϕH+ 1
2 ,N

∗ ϕH+ 1
2 ,N

)(k)

≤ C

N4

(∑
k∈Z

(ϕH,N ∗ ϕH+ 1
2 ,N

)
2
(k)

) 1
2
(∑

k∈Z

(ϕH+ 1
2 ,N

∗ ϕH+ 1
2 ,N

)
2
(k)

) 1
2

=
C

N4
‖ϕH,N ∗ ϕH+ 1

2 ,N
‖
	2(Z)

‖ϕH+ 1
2 ,N

∗ ϕH+ 1
2 ,N

‖
	2(Z)

≤ C

N4
‖ϕH,N‖

	
4
3 (Z)

‖ϕH+ 1
2 ,N

‖3
	
4
3 (Z)

=
C

N4

( N−1∑
k=1−N

|ϕH(k)|
4
3

) 3
4
( N−1∑

k=1−N

|ϕH+ 1
2
(k)|

4
3

) 9
4

.

Due to the bounds in (5.5), and the asymptotic behavior of ϕH+ 1
2
which shows

that 1
N4

(∑N−1
k=1−N |ϕH+ 1

2
(k)|

4
3

) 9
4 ≤ CN6H− 19

4 , we get for N ≥ 3:

P2 ≤ C

⎧⎪⎪⎨⎪⎪⎩
N6H− 19

4 if H ∈ ( 12 ,
5
8 )

(logN)
3
4N6H− 19

4 if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).
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⇒≤ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

(5.7)

Similarly,

P3 =
4k21k

2
2N

8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

ϕH(j − k)ϕH(i− l)ϕH+ 1
2
(j − i)ϕH+ 1

2
(k − l)

N8H+2

≤ C

N3

( N−1∑
k=1−N

|ϕH(k)|
4
3

) 3
2
( N−1∑

k=1−N

|ϕH+ 1
2
(k)|

4
3

) 3
2

,

and since 1
N3

(∑N−1
k=1−N |ϕH+ 1

2
(k)|

4
3

) 3
2 ≤ CN4H− 7

2 , we can write that forN ≥ 3:

P3 ≤ C

⎧⎪⎪⎨⎪⎪⎩
N4H− 7

2 if H ∈ ( 12 ,
5
8 )

(logN)
3
2N4H− 7

2 if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

⇒≤ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

(5.8)

Also,

P4 =
4k31k2N

8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

ϕH(j − k)ϕH(i− l)ϕH(j − i)ϕH+ 1
2
(k − l)

N8H+1

≤ C

N2

( N−1∑
k=1−N

|ϕH(k)|
4
3

) 9
4
( N−1∑

k=1−N

|ϕH+ 1
2
(k)|

4
3

) 3
4

.

Note that 1
N2

(∑N−1
k=1−N |ϕH+ 1

2
(k)|

4
3

) 3
4 ≤ N2H− 9

4 , so it implies that for N ≥ 3:

P4 ≤ C

⎧⎪⎪⎨⎪⎪⎩
N2H− 9

4 if H ∈ ( 12 ,
5
8 )

(logN)
9
4N2H− 9

4 if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

⇒≤ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

(5.9)
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And finally,

P5 =
4k42N

8H+2

v2N (k1N + k2)
4

N−1∑
i,j,k,l=0

ϕH+ 1
2
(j − k)ϕH+ 1

2
(i− l)ϕH+ 1

2
(j − i)ϕH+ 1

2
(k − l)

N8H+4

≤ C

N5

( N−1∑
k=1−N

|ϕH+ 1
2
(k)|

4
3

)3

≤ CN8H−6.

By the reason of N8H−6 ≤ 1
N for all H ∈ ( 12 ,

5
8 ], it yields that for all N ≥ 3:

P5 ≤ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ),

(5.10)

Combining all the results (5.6)-(5.10) with (5.2), we infer that:

d (FN ;N (0, 1)) ≤ C

√
Var

(1
2
‖DFN‖2H

)
≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
N

if H ∈ ( 12 ,
5
8 )√

log3N
N if H = 5

8

N4H−3 if H ∈ ( 58 ,
3
4 ).

which checked the desired bounds.

Remark 7. • The previous result has a discrete version which is mentioned
in the Theorem 7.3.1 of [20], with the stationary Gaussian sequence(

vt(k)√
E(vt(k)

2)

)
k∈Z

, this sequence indicates the normalized noise generated by the

spatial wave solution such that vt(k) := u(t, k + 1)− u(t, k), k ∈ Z.

• A concrete interpretation is there exist a remarkable impact of the fractional
Brownian motion on the spatial increments of the wave-solution, the result that
we obtained shows that when, H ∈ (12 ,

3
4 ), the quadratic variation of BH and the

spatial quadratic variation of the wave solution have the same rate of convergence
to the normal distribution, although the fractional part of the noise is temporal
and all our work is done in the spatial case. This reinforces the idea that the study
of Gaussian processes does not necessarily rely on the analysis of filtrations,
Markovian aspects etc.

Remark 8. Notice that the threshold 5
8 is the same as in case of the fBm (see

[20]). The same result as (5.1), modulo a change of the constant, holds for the
different distances between the laws of random variables (e.g. Kolmogorov, Total
Variations, Wasserstein . . . ).
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5.2. Optimal rate of convergence

In the case of the total variation distance (denoted dTV in the sequel), we can
obtain better estimates for the distance between FN and the standard normal
law than those in (5.1). This can be done via the main result in [21] (see also [19])
where is proved that the optimal rate of convergence to the standard normal
law of a sequence (FN )N≥1 in the qth Wiener chaos, under the distance dTV , is
given by the quantity

M(N) := max

(
E
(
F 3
N

)
,

√
Var

(1
q
‖DFN‖2H

))
in the sense that

dTV (FN ;N (0, 1)) ∝ M(N) (5.11)

where un ∝ vn means that 0 < lim
n→∞

un

vn
< ∞. Based on this result, we obtain

the following sharp estimate for the rate of convergence of (4.10).

Lemma 4. Fix t ∈ (1, T ] and assume that H ∈ ( 12 ,
3
4 ). The sequence of random

variables (FN )N≥1 (4.10) satisfies

dTV (FN ;N (0, 1)) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
N

if H ∈ ( 12 ,
2
3 )

(logN)2√
N

if H = 2
3

N6H− 9
2 if H ∈ ( 23 ,

3
4 ).

(5.12)

Proof: Recall that

FN = I2(fN ), with fN =
N2H+ 1

2

√
vN (k1N + k2)

N−1∑
j=0

1⊗2
[xj ,xj+1]

∈ H�2, and E(F 2
N ) = 1.

We need to estimate the third moment of the sequence FN . By using the product
formula (4.5) and the isometry property (4.3), we have

E
(
F 3
N

)
= 8〈fN ⊗1 fN , fN 〉H

Using the definition of the contraction (4.6),

fN⊗1fN =

(
N2H+ 1

2

√
vN (k1N + k2)

)2 N−1∑
i,j=0

1[xi,xi+1]⊗1[xj ,xj+1]〈1[xi,xi+1],1[xj ,xj+1]〉H

and so

〈fN ⊗1 fN , fN 〉H

=

(
N2H+ 1

2

√
vN (k1N + k2)

)3
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N−1∑
i,j,k=0

〈1[xi,xi+1],1[xj ,xj+1]〉H〈1[xi,xi+1] ⊗ 1[xj ,xj+1],1
⊗2
[xk,xk+1]

〉H⊗2

=

(
N2H+ 1

2

√
vN (k1N + k2)

)3

N−1∑
i,j,k=0

〈1[xi,xi+1],1[xj ,xj+1]〉H〈1[xi,xi+1],1[xk,xk+1]〉H〈1[xk,xk+1],1[xj ,xj+1]〉H.

As in the proof of Lemma 3, the dominant part of 〈1[xi,xi+1],1[xj ,xj+1]〉H is

ϕH(|i− j|)
N2H

with ϕH given by (3.25). So

〈fN ⊗1 fN , fN 〉H

∼
(

N2H+ 1
2

√
vN (k1N + k2)

)3

N−6H
N−1∑

i,j,k=0

ϕH(i− j)ϕH(j − k)ϕH(k − i)

∼ 1

v
3
2

NN
3
2

N−1∑
i,j,k=0

ϕH(i− j)ϕH(j − k)ϕH(k − i).

This above quantity in the right-hand side already appeared in the case of the
quadratic variations of the fBm. From [3] especially relation (6.57) (or Proposi-
tion 4.2 in [21]), we deduce the following

E
(
F 3
N

)
∝ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
N

if H ∈ ( 12 ,
2
3 )

(logN)2√
N

if H = 2
3

N6H− 9
2 if H ∈ ( 23 ,

3
4 ).

(5.13)

On the other hand, from the proof of Lemma 3 and Proposition 4.2 in [21] we
can easily show that

Var
(1
q
‖DFN‖2H

)
∝ C

⎧⎪⎪⎨⎪⎪⎩
1
N if H ∈ ( 12 ,

5
8 )

(logN)3

N if H = 5
8

N8H−6 if H ∈ ( 58 ,
3
4 ).

(5.14)

From (5.11), (5.13) and (5.14), we obtain the conclusion.

5.3. Estimation of the Hurst parameter H

The variations of a stochastic process play a crucial role in its probabilistic and
statistical analysis. Amomg others, its asymptotic behavior is a fundamental
tool in estimation theory.
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We will show in this subsection that the asymptotic behavior of the sequence
(VN )N≥1 defined in (4.1), is related to the asymptotic properties of a class of
estimators for the Hurst parameter H. The construction has been used in [7] for
the case of the fBm and in [28] and the references therein, for other selfsimilar
processes.

The idea for estimating the parameter H of the fractional noise driven our
wave equation, is based on the discrete spatial observations of the solution. As
standard method is to construct an estimator based on the spatial quadratic
variations of the process (u(t, x))x∈[0,1]. For fixed t ∈ (1, T ], we observe u(t, i

N ),
i = 0, . . . , N , and we define the next sequence:

SN :=
1

N

N−1∑
i=0

(
u(t,

j + 1

N
)− u(t,

j

N
)

)2

. (5.15)

This implies that:

AN := E
(
SN

)
=

k1
N2H

+
k2

N2H+1
=

k1
N2H

(
1 +

k2
k1N

)
(5.16)

with k1, k2 from (4.9) and thus

logAN = logE
(
SN

)
= log k1 − 2H logN + log

(
1 +

k2
k1N

)
∼ log k1 − 2H logN, as N → ∞. (5.17)

Estimating AN by SN , we can construct the following estimator:

ĤN =
− logSN + log k1

2 logN
. (5.18)

An important relation that we can easily establish between VN and SN , for all
N ≥ 1, is at this form:

SN = AN

(
1 +

VN√
N

)
. (5.19)

So using the fact that log(1+x) ∼ x, for x close to 0, it gives that (because VN√
N

converges almost surely to 0 as N → ∞, see [28], Section 5.5):

logSN ∼ logAN +
VN√
N

, as N → ∞ (5.20)

Looking now at the expression (5.18) combined with results (5.20) and (5.17),
we obtain:

H − ĤN ∼ VN

2
√
N logN

, as N → ∞. (5.21)

An immediate observation is that the behavior of the sequence (VN )N≥1 gives

directly the behavior of H − ĤN , and thus we get the following result.
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Theorem 2. Suppose that H ∈ ( 12 ,
3
4 ), the estimator ĤN of the Hurst parameter

H defined by (5.18) is strongly consistent, i.e.

ĤN →N→∞ H almost surely.

Moreover, ĤN is an asymptotically normal estimator such that:

2
√
N logN√
vN

(H − ĤN )
L−→ N (0, 1). (5.22)

Proof: Viewing the relation (5.21) and recalling that due to the Borel-
Cantelli lemma, the sequence (VN )N≥ converges almost surely to 0, as N goes

to ∞, we obtain the strong consistency of the estimator ĤN .
The second part of the theorem is deduced from Lemma 3 in which we al-

ready verified the asymptotic normality of the sequence (VN )N≥1.

5.4. Statistical interpretation

Consider a tightly stretched string without slope and let x a point on the
string at t = 0, i.e. in the equilibrium position. When the string vibrates, we
can assume that the horizontal displacement of the point x is negligible, since
there is no slope. So u(t, x) represents the position at time t of the point x on
the vibrating string, under a random force WH (the fractional-white Gaussian
noise).

Consequently, observing u(t, xi), i = 0, .., N means that at a certain mo-
ment t > 1, we are able to observe the position of the string at xi, which
seems reasonable from the practical point of view. It is also worth to note that
only from the discrete observation at one arbitrary time, it is possible to get
the estimation of the Hurst parameter H and implicitly the estimation of the
self-similarity index of the process (u(t, x), t ≥ 0) which is H + 1

2 . Moreover,
as showed before, the estimator is strongly consistent and asymptotically nor-
mal.

As a final comment, let us notice that the parameter H characterizes the
main properties of the process u is time and in space, see e.g. Lemma 2.12 and
Remark 2.

In the next section we present an improvement of the CLT which is the
ASCLT.

6. Almost Sure Central Limit Theorem

The ASCLT was stated firstly by Lévy [17], then it was extensively treated by
many other authors, for instance in [14]. It constitutes an improvement of the
CLT. In the case of multiple stochastic integrals of fixed order q ≥ 2 we have
the following result from [2] (recall that the contraction is defined in (4.6)):
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Theorem 3. Fix q ≥ 2, and let (FN )N≥1 be a sequence of random variables
defined by FN := (Iq(fN ))N≥1 with fN ∈ H�q, such that for all N ≥ 1, E(F 2

N ) =
q!‖fN‖2H⊗q = 1 and ‖fN⊗rfN‖H⊗2(q−r) goes to 0, as N goes to ∞, for every

r = 1, . . . , q − 1. Then, FN
L−→ Z ∼ N (0, 1), as N → ∞. Moreover, if the

following two conditions are fulfilled:

(A1)
∑
N≥2

1

N log2N

N∑
l=1

1

l
‖fl⊗rfl‖H⊗2(q−r) < ∞, for every 1 ≤ r ≤ q − 1,

(A2)
∑
N≥2

1

N log3N

N∑
m,l=1

| E(FmFl) |
ml

< ∞,

then (FN )N≥1 satisfies an ASCLT. In other words, almost surely, for all bounded
and continuous function ϕ : R → R,

1

logN

N∑
l=1

ϕ(Fl)

l
−→E(ϕ(Z)), as N → ∞.

The main result of this section is summarized in the following proposition.

Proposition 2. Fix t ∈ (1, T ] and assume that H ∈ (12 ,
3
4 ). Then the sequence

(FN )N≥1 given by (4.12), satisfies the ASCLT, as N → ∞.

Proof: Using Theorem 3, we only need to check the hypothesis (A1) and
(A2), so from one hand we have:

fl⊗1fl =
l4H+1

vN (k1l + k2)
2

l−1∑
j,k=0

1⊗2
[xj ,xj+1]

⊗11
⊗2
[xk,xk+1]

=
l4H+1

vN (k1l + k2)
2

l−1∑
j,k=0

〈1[xj ,xj+1],1[xk,xk+1]〉H1[xj ,xj+1]⊗1[xk,xk+1],

which leads to:

‖fl⊗1fl‖2H⊗2

=
l8H+2

v2N (k1l + k2)
4

l−1∑
j,k,m,p=0

〈1[xj ,xj+1],1[xk,xk+1]〉H〈1[xm,xm+1],1[xp,xp+1]〉H

×〈1[xj ,xj+1],1[xm,xm+1]〉H〈1[xk,xk+1],1[xp,xp+1]〉H

=
l8H+2

v2N (k1l + k2)
4

l−1∑
j,k,m,p=0

[
k1

ϕH(j − k)

N2H
+ k2

ϕH+ 1
2
(j − k)

N2H+1

]

×
[
k1

ϕH(m− p)

N2H
+ k2

ϕH+ 1
2
(m− p)

N2H+1

][
k1

ϕH(j −m)

N2H
+ k2

ϕH+ 1
2
(j −m)

N2H+1

]
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×
[
k1

ϕH(k − p)

N2H
+ k2

ϕH+ 1
2
(k − p)

N2H+1

]

≤ l8H+2

v2N (k1l + k2)
4

l−1∑
j,k,m,p=0

[
k1

ϕH(j − k)

l2H
+ k2

ϕH+ 1
2
(j − k)

l2H+1

]

×
[
k1

ϕH(m− p)

l2H
+ k2

ϕH+ 1
2
(m− p)

l2H+1

][
k1

ϕH(j −m)

l2H
+ k2

ϕH+ 1
2
(j −m)

l2H+1

]

×
[
k1

ϕH(k − p)

l2H
+ k2

ϕH+ 1
2
(k − p)

l2H+1

]
.

By the same reasoning as in the proof of Lemma 3, we deduce that:

‖fl⊗1fl‖H⊗2 ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
l

if H ∈ ( 12 ,
5
8 )

(log l)
3
2√

l
if H = 5

8

l4H−3 if H ∈ ( 58 ,
3
4 ),

(6.1)

which implies that for every H ∈ (12 ,
3
4 ):

∞∑
l=0

‖fl⊗1fl‖H⊗2

l
< ∞,

and obviously the first condition (A1) is satisfied.
From another hand, we note that:

E(FmFl) = 2〈fm, fl〉H⊗2

=
2l2H+ 1

2m2H+ 1
2

vN (k1l + k2)(k1m+ k2)

m−1∑
j=0

l−1∑
p=0

〈1[xj ,xj+1],1[xp,xp+1]〉
2

H

=
2l2H+ 1

2m2H+ 1
2

vN (k1l + k2)(k1m+ k2)

m−1∑
j=0

l−1∑
p=0

[
k1

ϕH(j − p)

N2H
+ k2

ϕH+ 1
2
(j − p)

N2H+1

]2

.

Using the same argument as the proof of the Lemma 2, it yields that:

E(FmFl) ≤ C
l2H+ 1

2m2H+ 1
2

lm

m−1∑
j=0

l−1∑
p=0

(
ϕH(j − p)

)2

N4H

≤ C√
ml

m−1∑
j=0

l−1∑
p=0

(
ϕH(j − p)

)2
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= C

√
l

m

∑
k∈Z

(
ϕH(k)

)2

≤ C

√
l

m
,

this holds since the above series
∑
k∈Z

(
ϕH(k)

)2

< ∞, for all H < 3
4 .

Viewing Remark 3.3 in [2], this last result leads easily to the condition (A2),
and the proof is achieved.
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