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1. Introduction

Online learning has been extensively studied during the past few decades in
game theory and statistics (see Cesa-Bianchi and Lugosi, 2006, and references
therein). The problem can be described as a sequential game: a blackbox reveals
at each time t some zt ∈ Z. Then, the forecaster predicts the next value based
on the past observations and possibly other available information. In the present
work we will consider the scenario in which the sequence (zt) is not assumed
to be a realization of some stochastic process. One of the well known problem
in online learning that happened to attract a lot of interest is prediction with
expert advice. In this setting, the forecaster has access to a set {fe,t ∈ D : e ∈ E}
of experts’ predictions, where fe,t is the prediction of expert e at time t, D is
a decision space which is assumed to be a convex subset of vector space and
E is a finite set of experts (such as deterministic physical models, or stochastic
decisions). Predictions made by the forecaster and experts are assessed with
a loss function � : D × Z −→ R+. The goal is to build a sequence ẑ1, . . . , ẑT
(denoted by (ẑt)1:T in the sequel) of predictions which are nearly as good as the
best expert’s predictions in the first T time rounds, i.e., satisfying uniformly
over any sequence (zt) the following regret bound

T∑
t=1

� (ẑt, zt)−min
e∈E

{
T∑

t=1

� (fe,t, zt)

}
≤ ΔT (E),

where ΔT (E) is a remainder term. This term should be as small as possible and
in particular sublinear in T . When E is finite, and the loss is bounded in [0, 1]
and convex in its first argument, an optimal ΔT (E) =

√
(T/2) log |E| is given
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by Theorem 2.2 of Cesa-Bianchi and Lugosi (2006). The optimal forecaster is
then obtained by forming the exponentially weighted average of all experts.
For similar results, we refer the reader to Littlestone and Warmuth (1994) and
Cesa-Bianchi et al. (1997).

Online learning techniques have also been applied to the regression frame-
work. In particular, sequential ridge regression has been studied by Vovk (2001).
For any t = 1, . . . , T , we now assume that zt = (xt, yt) ∈ R

d×R. At each time t,
the forecaster gives a prediction ŷt of yt, using only newly revealed side informa-
tion xt and past observations (xs, ys)1:(t−1). Let 〈·, ·〉 denote the scalar product

in R
d. A possible goal is to build a forecaster whose performance is nearly as

good as the best linear forecaster fθ : x �→ 〈θ, x〉, i.e., such that uniformly over
all sequences (xt, yt)1:T ,

T∑
t=1

� (ŷt, yt)− inf
θ∈Rd

{
T∑

t=1

� (〈θ, xt〉, yt)
}

≤ ΔT (d), (1)

where ΔT (d) is a remainder term. This setting has been addressed by numer-
ous contributions to the literature. In particular, Azoury and Warmuth (2001)
and Vovk (2001) each provide an algorithm close to the ridge regression with
a remainder term ΔT (d) = O(d log T ). Other authors have investigated the
Gradient-Descent algorithm (Cesa-Bianchi et al., 1996; Kivinen and Warmuth,
1997) and the Exponentiated Gradient Forecasters (Cesa-Bianchi, 1999; Kivi-
nen and Warmuth, 1997). Gerchinovitz (2011) extended the linear form 〈u, xt〉
in (1) to 〈u, ϕ(xt)〉 =

∑d
j=1 ujϕj(xt), where ϕ = (ϕ1, . . . , ϕd) is a dictionary of

base forecasters. In the so-called high dimensional setting (d � T ), a sparsity
regret bound with a remainder term ΔT (d) growing logarithmically with d and
T is proved by Gerchinovitz (2011, Proposition 3.1).

The purpose of the present work is to generalize the aforecited framework to
the clustering problem, which has attracted attention from the machine learn-
ing and streaming communities. As an example, Guha et al. (2003), Barbakh
and Fyfe (2008) and Liberty et al. (2016) study the so-called data streaming
clustering problem. It amounts to clustering online data to a fixed number of
groups in a single pass, or a small number of passes, while using little mem-
ory. From a machine learning perspective, Choromanska and Monteleoni (2012)
aggregate online clustering algorithms, with a fixed number K of centers. The
present paper investigates a more general setting since we aim to perform online
clustering with a varying number Kt of centers. To the best of our knowledge,
this is the first attempt of the sort in the literature. Let us stress that our ap-
proach only requires an upper bound p to Kt, which can be either a constant
or an increasing function of the time horizon T .

Our approach strongly relies on a quasi-Bayesian methodology. The use of
quasi-Bayesian estimators is especially advocated by the PAC-Bayesian theory
which originates in the machine learning community in the late 1990s, in the
seminal works of Shawe-Taylor and Williamson (1997) and McAllester (1999a,b)
(see also Seeger, 2002, 2003). In the statistical learning community, the PAC-
Bayesian approach has been extensively developed by Catoni (2004, 2007), Au-
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dibert (2004) and Alquier (2006), and later on adapted to the high dimen-
sional setting Dalalyan and Tsybakov (2007, 2008), Alquier and Lounici (2011),
Alquier and Biau (2013), Guedj and Alquier (2013), Guedj and Robbiano (2017)
and Alquier and Guedj (2017). In a parallel effort, the online learning commu-
nity has contributed to the PAC-Bayesian theory in the online regression setting
(Kivinen and Warmuth, 1999). Audibert (2009) and Gerchinovitz (2011) have
been the first attempts to merge both lines of research. Note that our approach
is quasi-Bayesian rather than PAC-Bayesian, since we derive regret bounds (on
quasi-Bayesian predictors) instead of PAC oracle inequalities.

Our main contribution is to generalize algorithms suited for supervised learn-
ing to the unsupervised setting. Our online clustering algorithm is adaptive in
the sense that it does not require the knowledge of the time horizon T to be
used and studied. The regret bounds that we obtain have a remainder term
of magnitude

√
T log T and we prove that they are asymptotically minimax

optimal.
The quasi-posterior which we derive is a complex distribution and direct sam-

pling is not available. In Bayesian and quasi-Bayesian frameworks, the use of
Markov Chain Monte Carlo (MCMC) algorithms is a popular way to compute
estimates from posterior or quasi-posterior distributions. We refer to the com-
prehensive monograph Robert and Casella (2004) for an introduction to MCMC
methods. For its ability to cope with transdimensional moves, we focus on the
Reversible Jump MCMC algorithm from Green (1995), coupled with ideas from
the Subspace Carlin and Chib algorithm proposed by Dellaportas et al. (2002)
and Petralias and Dellaportas (2013). MCMC procedures for quasi-Bayesian
predictors were firstly considered by Catoni (2004) and Dalalyan and Tsybakov
(2012b). Alquier and Biau (2013), Guedj and Alquier (2013) and Guedj and
Robbiano (2017) are the first to have investigated the RJMCMC and Subspace
Carlin and Chib techniques and we show in the present paper that this scheme
is well suited to the clustering problem.

The paper is organised as follows. Section 2 introduces our notation and
our online clustering procedure. Section 3 contains our mathematical claims,
consisting in regret bounds for our online clustering algorithm. Remainder terms
which are sublinear in T are obtained for a model selection-flavored prior. We
also prove that these remainder terms are minimax optimal. We then discuss
in Section 4 the practical implementation of our method, which relies on an
adaptation of the RJMCMC algorithm to our setting. In particular, we prove its
convergence towards the target quasi-posterior. The performance of the resulting
algorithm, called PACBO, is evaluated on synthetic data. For the sake of clarity,
proofs are postponed to Section 5. Finally, Appendix A contains an extension
of our work to the case of a rescaled Student prior (inspired by Dalalyan and
Tsybakov, 2012a) along with additional numerical experiments.

2. A quasi-Bayesian perspective to online clustering

Let (xt)1:T be a sequence of data, where xt ∈ R
d. Our goal is to learn a time-

dependent parameter Kt and a partition of the observed points into Kt cells, for
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any t = 1, . . . , T . To this aim, the output of our algorithm at time t is a vector
ĉt = (ĉt,1, ĉt,2, . . . , ĉt,Kt) of Kt centers in R

dKt , depending on the past infor-
mation (xs)1:(t−1) and (ĉs)1:(t−1). A partition is then created by assigning any

point in R
d to its closest center. When xt is newly revealed, the instantaneous

loss is computed as

�(ĉt, xt) = min
1≤k≤Kt

|ĉt,k − xt|22, (2)

where | · |2 is the �2-norm in R
d. In what follows, we investigate regret bounds

for cumulative losses. Given a measurable space Θ (embedded with its Borel
σ-algebra), we let P(Θ) denote the set of probability distributions on Θ, and for
some reference measure ν, we let Pν(Θ) be the set of probability distributions
absolutely continuous with respect to ν. For any probability distributions ρ, π ∈
P(Θ), the Kullback-Leibler divergence K(ρ, π) is defined as

K(ρ, π) =

{∫
Θ
log

(
dρ
dπ

)
dρ when ρ ∈ Pπ(Θ),

+∞ otherwise.

Note that for any bounded measurable function h : Θ → R and any proba-
bility distribution ρ ∈ P(Θ) such that K(ρ, π) < +∞,

− log

∫
Θ

exp(−h)dπ = inf
ρ∈P(Θ)

{∫
Θ

hdρ+K(ρ, π)

}
. (3)

This result, which may be found in Csiszár (1975) and Catoni (2004, Equation
5.2.1), is critical to our scheme of proofs. Further, the infimum is achieved at
the so-called Gibbs quasi-posterior ρ̂, defined by

dρ̂ =
exp(−h)∫
exp(−h)dπ

dπ.

We now introduce the notation to our online clustering setting. Let C =
∪p
k=1R

dk for some integer p ≥ 1. We denote by q a discrete probability distribu-
tion on the set �1, p� := {1, . . . , p}. For any k ∈ �1, p�, let πk denote a probability
distribution on R

dk. For any vector of cluster centers c ∈ C, we define π(c) as

π(c) =
∑

k∈�1,p�
q(k)1{c∈Rdk}πk(c). (4)

Note that (4) may be seen as a distribution over the set of Voronoi partitions
of Rd: any c ∈ C corresponds to a Voronoi partition of Rd with at most p cells.
In the sequel, we denote by c ∈ C either a vector of centers or its associated
Voronoi partition of Rd if no confusion arises, and we denote by π ∈ P(C) a
prior over C. Let λ > 0 be some (inverse temperature) parameter. At each time
t, we observe xt and a random partition ĉt+1 ∈ C is sampled from the Gibbs
quasi-posterior

dρ̂t+1(c) ∝ exp
(
− λSt(c)

)
dπ(c). (5)
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This quasi-posterior distribution will allow us to sample partitions with respect
to the prior π defined in (4) and bent to fit past observations through the
following cumulative loss

St(c) = St−1(c) + �(c, xt) +
λ

2

(
�(c, xt)− �(ĉt, xt)

)2
,

where the latter one is a variance term. It is essential to make the online variance
inequality hold true for general loss � with quasi-posterior distribution, i.e., no
constraint such as the convexity or boundedness is imposed on � (as discussed
in Audibert, 2009, Section 4.2). St(c) consists in the cumulative loss of c in the
first t rounds and a term that controls the variance of the next prediction. Note
that since (xt)1:T is deterministic, no likelihood is attached to our approach,
hence the terms “quasi-posterior” for ρ̂t+1 and “quasi-Bayesian” for our global
method. The resulting estimate is a realization of ρ̂t+1 with a random number
Kt of cells. This scheme is described in Algorithm 1. Note that this algorithm
is an instantiation of Audibert’s online SeqRand algorithm (Audibert, 2009,
Section 4) to the special case of the loss defined in (2). However SeqRand does
not account for adaptive rates λ = λt, as discussed in the next section.

Algorithm 1 The quasi-Bayesian online clustering algorithm
1: Input parameters: p > 0, π ∈ P(C), λ > 0 and S0 ≡ 0
2: Initialization: Draw ĉ1 ∼ π = ρ̂1
3: For t ∈ �1, T �
4: Get the data xt

5: Draw ĉt+1 ∼ ρ̂t+1(c) where dρ̂t+1(c) ∝ exp
(
− λSt(c)

)
dπ(c), and

St(c) = St−1(c) + �(c, xt) +
λ

2

(
�(c, xt)− �(ĉt, xt)

)2
.

6: End for

3. Minimax regret bounds

Let Ec∼ν stands for the expectation with respect to the distribution ν of c
(abbreviated as Eν where no confusion is possible). We start with the following
pivotal result.

Proposition 1. For any sequence (xt)1:T ∈ R
dT , for any prior distribution

π ∈ P(C) and any λ > 0, the procedure described in Algorithm 1 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
ρ∈Pπ(C)

{
Ec∼ρ

[
T∑

t=1

�(c, xt)

]
+

K(ρ, π)

λ

+
λ

2
E(ρ̂1,...,ρ̂T )Ec∼ρ

T∑
t=1

[�(c, xt)− �(ĉt, xt)]
2

}
.

Proposition 1 is a straightforward consequence of Audibert (2009, Theorem
4.6) applied to the loss function defined in (2), the partitions C, and any prior
π ∈ P(C).
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3.1. Preliminary regret bounds

In the following, we instantiate the regret bound introduced in Proposition 1.
Distribution q in (4) is chosen as the following discrete distribution on the set
�1, p�

q(k) =
exp(−ηk)∑p
i=1 exp(−ηi)

, η ≥ 0. (6)

When η > 0, the larger the number of cells k, the smaller the probability mass.
Further, πk in (4) is chosen as a product of k independent uniform distributions
on �2-balls in R

d:

dπk(c, R) =

(
Γ
(
d
2 + 1

)
π

d
2

)k
1

(2R)dk

⎧⎨
⎩

k∏
j=1

1{Bd(2R)}(cj)

⎫⎬
⎭ dc, (7)

where R > 0, Γ is the Gamma function and

Bd(r) =
{
x ∈ R

d, |x|2 ≤ r
}

(8)

is an �2-ball in R
d, centered in 0 ∈ R

d with radius r > 0. Finally, for any
k ∈ �1, p� and any R > 0, let

C(k,R) =
{
c = (cj)j=1,...,k ∈ R

dk, such that |cj |2 ≤ R ∀j
}
.

Corollary 1. For any sequence (xt)1:T ∈ R
dT and any p ≥ 1, consider π defined

by (4), (6) and (7) with η ≥ 0 and R ≥ maxt=1,...,T |xt|2. If λ ≥ (d+2)/(2TR2),
the procedure described in Algorithm 1 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)≤ inf
k∈�1,p�

{
inf

c∈C(k,R)

T∑
t=1

�(c, xt)+
dk

2λ
log

(
8R2λT

d+ 2

)
+

η

λ
k

}

+

(
log p

λ
+

d

2λ
+

81λTR4

2

)
,

Note that infc∈C(k,R)

∑T
t=1 �(c, xt) is a non-increasing function of the number

k of cells while the penalty is linearly increasing with k. Small values for λ (or
equivalently, large values for R) lead to small values for k. The additional term
induced by the complexity of C =

⋃
k=1,...,p R

dk is log p. A reasonable choice of

λ would be such that d/λ log(λTR2/d+ 2) and λTR4 are of the same order in
T . The calibration λ = (d + 2)

√
log T/(2

√
TR2) yields a sublinear remainder

term in the following corollary.

Corollary 2. Under the previous notation with λ = (d + 2)
√
log T/(2

√
TR2),

R ≥ maxt=1,...,T |xt|2 and T > 2, the procedure described in Algorithm 1 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)≤ inf
k∈�1,p�

{
inf

c∈C(k,R)

T∑
t=1

�(c, xt)+
2(d+ η)R2

d+2
k
√

T log T

}

+

(
2R2 log p

d+ 2
+

dR2

d+ 2
+

81(d+ 2)R2

4

)√
T log T . (9)
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Remark 1. If we assume T and R are constants, the reason that λ is chosen
to be of order of magnitude of d here, rather than of

√
d, is to guarantee that

it satisfies the condition λ ≥ (d + 2)/(2TR2) in Corollary 1. However, if T is
sufficiently large, e.g., T ≥ (d + 2)2/d, then the choice λ =

√
d log T/(2

√
TR2)

will satisfy the condition and will make the right hand side of the above inequality
grow linearly in

√
d while keeping the order of magnitude for T and R.

Let us assume that the sequence x1, . . . , xT is generated from a distribution
with k� ∈ �1, p� clusters. We then define the expected cumulative loss (ECL)
and oracle cumulative loss (OCL) as

ECL =

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt),

OCL = inf
c∈C(k�,R)

T∑
t=1

�(c, xt).

Then Corollary 2 yields

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)− inf
c∈C(k�,R)

T∑
t=1

�(c, xt) ≤ Jk�
√
T log T , (10)

where J is a constant depending on d, R and log p. In (10) the regret of our ran-
domized procedure, defined as the difference between ECL and OCL is sublinear
in T . However, whenever k� > p, we can deduce from Corollary 2 that

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)− inf
c∈C(k�,R)

T∑
t=1

�(c, xt)

≤ inf
k∈�1,p�

{
inf

c∈C(k,R)

T∑
t=1

�(c, xt)− inf
c∈C(k�,R)

T∑
t=1

�(c, xt)

+
2(d+ η)R2

d+ 2
k
√

T log T

}
+

(
R2 (2 log p+ d)

d+ 2
+

81(d+ 2)R2

4

)√
T log T ,

where infc∈C(k�,R)

∑T
t=1 �(c, xt) is the oracle cumulative loss (i.e., OCL) with

k� clusters.
If there exists a k ∈ �1, p� such that infc∈C(k,R)

∑T
t=1 �(c, xt) is close to OCL,

then our ECL is also close to OCL up to a term of order k
√
T log T . However,

if no such k exists, then the term 2(d+η)R2

d+2 k
√
T log T starts to dominate, hence

the quality of the bound is deteriorated.
Finally, note that the dependency in k inside the braces on the right-hand

side of (9) may be improved by choosing λ = (d + 2)
√
p log T/(2

√
TR2) in

Corollary 2. This allows to achieve the optimal rate
√
k instead of k, since
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k/
√
p ≤

√
k for any k ∈ �1, p�. However, this makes the last term in Corollary 2

of order of
√
pT log T . Note that the effort to make the regret bound grow in

√
k,

rather than
√
p for k ∈ �1, p� may be achieved by using a similar strategy to the

one of Wintenberger (2017), which introduces a recursive aggregation procedure
with distinct learning rates for each expert in a finite set. Those learning rates are
computed with a second order refinement of losses (or a linearized version when
the loss is convex in its second argument) for each expert, at each time round.
The regret of his strategy with respect to best aggregation of M finite experts
is of the order of logM

√
T log log T . However, the context for this procedure is

not the same as ours, as we resort to the Gibbs quasi-posterior which is defined
on C, a continuous set. In addition, we focus on a single temperature parameter
λ for the sake of computational complexity since the second order refinement
requires the computation of the expectation of loss with respect to each expert
in a finite set while, in our case, the “expert set” (i.e., C) is continuous, leading
to the tedious computation of second order refinement.

3.2. Adaptive regret bounds

The time horizon T is usually unknown, prompting us to choose a time-depen-
dent inverse temperature parameter λ = λt. We thus propose a generalization
of Algorithm 1, described in Algorithm 2.

Algorithm 2 The adaptive quasi-Bayesian online clustering algorithm
1: Input parameters: p > 0, π ∈ P(C), (λt)0:T > 0 and S0 ≡ 0
2: Initialization: Draw ĉ1 ∼ π = ρ̂1
3: For t ∈ �1, T �
4: Get the data xt

5: Draw ĉt+1 ∼ ρ̂t+1(c) where dρ̂t+1(c) ∝ exp
(
− λtSt(c)

)
dπ(c), and

St(c) = St−1(c) + �(c, xt) +
λt−1

2

(
�(c, xt)− �(ĉt, xt)

)2
.

6: End for

This adaptive algorithm is supported by the following more involved regret
bound.

Theorem 1. For any sequence (xt)1:T ∈ R
dT , any prior distribution π on C,

if (λt)0:T is a non-increasing sequence of positive numbers, then the procedure
described in Algorithm 2 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
ρ∈Pπ(C)

{
Ec∼ρ

[
T∑

t=1

�(c, xt)

]
+

K(ρ, π)

λT

+E(ρ̂1,...,ρ̂T )Ec∼ρ

[
T∑

t=1

λt−1

2
[�(c, xt)− �(ĉt, xt)]

2

]}
.

If λ is chosen in Proposition 1 as λ = λT , the only difference between
Proposition 1 and Theorem 1 lies on the last term of the regret bound. This
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term will be larger in the adaptive setting than in the simpler non-adaptive set-
ting since (λt)0:T is non-increasing. In other words, here is the price to pay for
the adaptivity of our algorithm. However, a suitable choice of λt allows, again,
for a refined result.

Corollary 3. For any deterministic sequence (xt)1:T ∈ R
dT , if q and πk in (4)

are taken respectively as in (6) and (7) with η ≥ 0 and R ≥ maxt=1,...,T |xt|2, if
λt = (d+ 2)

√
log t/

(
2
√
tR2

)
for any t ∈ �1, T � and λ0 = 1, then for T ≥ 5 the

procedure described in Algorithm 2 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)≤ inf
k∈�1,p�

{
inf

c∈C(k,R)

T∑
t=1

�(c, xt)+
2(d+ η)R2

d+2
k
√

T log T

}

+

(
2R2 log p

d+ 2
+

dR2

d+ 2
+

81(d+ 2)R2

2

)√
T log T .

Therefore, the price to pay for not knowing the time horizon T (which is a
much more realistic assumption for online learning) is a multiplicative factor

2 in front of the term 81(d+2)R2

4

√
T log T . This does not degrade the rate of

convergence
√
T log T .

In the next corollary, we use the doubling trick (Cesa-Bianchi and Lugosi,
2006, Section 2.3, also appearing in Cesa-Bianchi et al., 2007) to show how we
can overcome the difficulty when a priori bound R on the �2-norm of sequence
(xt)1:T is unknown.

Let us first denote by R0 = 1, and for t ≥ 1

Rt = max
s=1,...,t

2�log2(|xs|2)�,

where �x� represents the least integer greater than or equal to x ∈ R. It is easy
to see that (Rt)t≥1 is non-decreasing and satisfies for any t ≥ 1

max
s=1,...,t

|xs|2 ≤ Rt ≤ 2 max
s=1,...,t

|xs|2 .

We call epoch r, r = 0, 1, . . . , the sequence (tr−1 + 1, tr−1 + 2, . . . , tr) of time
steps where the last step tr is the time step t = tr when Rt > Rtr−1 take places
for the first time (we set conventionally t−1 = 0). Within each epoch r ≥ 0, i.e.,
for t ∈ [tr−1 + 1, . . . , tr], let

λr,t =
(d+ 2)

√
log t

2
√
tR2

tr−1

.

Let Alg-R be a prediction algorithm that runs Algorithm 2 in each epoch r
with parameter λr,t, then we have the following result.

Corollary 4. For any deterministic sequence (xt)1:T ∈ R
dT , if q and πk in

(4) are taken respectively as in (6) and (7) with η ≥ 0, the regret of algorithm
Alg-R satisfies
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T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)≤ inf
k∈�1,p�

{
inf

c∈C(k,R)

T∑
t=1

�(c, xt)+
56(d+ η)R2

3(d+2)
k
√

T log T

}

+
28

3

(
2R2 log p

d+ 2
+

dR2

d+ 2
+

81(d+ 2)R2

2

)√
T log T +

112

3
R2,

where R = maxt=1,...,T |xt|2.
Note that the price to pay for making our algorithm adaptive to the unknown

bound R is a multiplicative term 28
3 and an additional 112

3 R2 in the regret bound.

3.3. Minimax regret

This section is devoted to the study of the minimax optimality of our approach.
The regret bound in Corollary 3 has a rate

√
T log T , which is not a surpris-

ing result. Indeed, many online learning problems give rise to similar bounds
depending also on the properties of the loss function. However, in the online
clustering setting, it is legitimate to wonder wether the upper bound is tight,
and more generally if there exists other algorithms which provide smaller regrets.
The sequel answers both questions in a minimax sense.

Let us first denote by |c| the number of cells for a partition c ∈ C. We also
introduce the following assumption.

Assumption H(s): Let R > 0 and T ∈ N
∗. For a given s ∈ �1, p�, we assume

that the number of cells
∣∣c�T,R

∣∣ for partition c�T,R defined by the following

c�T,R = argmin
c∈∪p

k=1C(k,R)

{
T∑

t=1

�(c, xt) + |c|
√
T log T

}
.

equals to s, i.e.,
∣∣c�T,R

∣∣ = s.

Note that several partitions may achieve the minimum. In that case, we adopt
the convention that c�T,R is any such partition with the smallest number of cells.
Assumption H(s) means that (xt)1:T could be well summarized by s cells since
the infimum is reached for the partition c�T,R. We introduce the set

ωs,R =
{
(xt) such that H(s) holds

}
⊆ R

dT .

For Algorithm 2, we have from Corollary 3 that

sup
(xt)∈ωs,R

{
T∑

t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)− inf
c∈C(s,R)

T∑
t=1

�(c, xt)

}
≤ c1 × s

√
T log T ,

where c1 is a constant depending on R, d, p (recall that they are respectively the
bound on the �2-norm of sequence (xt)1:T , the dimension of the data point and
the maximum number of cells allowed for clustering).
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Then for any s ∈ N
∗, R > 0, our goal is to obtain a lower bound of the form

inf
(ρ̂t)

sup
(xt)∈ωs,R

{
T∑

t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)− inf
c∈C(s,R)

T∑
t=1

�(c, xt)

}
≥ c2×s

√
T log T ,

where c2 is some constant satisfying c2 ≤ c1.
The first infimum is taken over all distributions (ρ̂t)1:T whose support is

∪p
k=1

∏k
j=1 Bd(2R), where Bd(2R) is defined in (8). Next, we obtain

inf
(ρ̂t)

sup
(xt)∈ωs,R

{
T∑

t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)− inf
c∈C(s,R)

T∑
t=1

�(c, xt)

}

≥ inf
(ρ̂t)

EμT

{
T∑

t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, Xt)− inf
c∈C(s,R)

T∑
t=1

�(c, Xt)

}
�{(Xt)∈ωs,R)},

(11)

where Xt, t = 1, . . . , T are i.i.d with distribution μ defined on R
d and μT

stands for the joint distribution of (X1, . . . , XT ). Unfortunately, in (11), since
the infimum is taken over any distribution (ρ̂t), there is no restriction on the
number of cells of each partition ĉt. Then, the left hand side of (11) could be
arbitrarily small or even negative and the lower bound does not match the upper
bound of Corollary 3. To handle this, we need to introduce a penalized term
which accounts for the number of cells of each partition to the loss function �.
The upcoming theorem provides minimax results for an augmented value VT (s)
defined as

VT (s) = inf
(ρ̂t)

sup
(xt)∈ωs,R

{
T∑

t=1

E(ρ̂1,...,ρ̂t)

(
�(ĉt, xt) +

√
log T√
T

|ĉt|
)

− inf
c∈C(s,R)

T∑
t=1

�(c, xt)

}
. (12)

In (12), we add a term which penalizes the number of cells of each partition.
To capture the asymptotic behavior of VT (s), we derive an upper bound for the
penalized loss in (12). This is done in the following theorem which combines an
upper and lower bound for the regret, hence proving that it is minimax optimal.

Theorem 2. Let s ∈ N
∗, R > 0 such that

2 ≤ s ≤

⎢⎢⎢⎣
(

RT
1
4

6 log T
1
4

) d
d+1

⎥⎥⎥⎦ , (13)

where �x� represents the largest integer that is smaller than x. If T satisfies

T
d+2
2 ≥ 8R2d

√
log T , then

s
√

T log T

(
1− 2

T

[
1 +

s− 1

2s2

])
≤ VT (s) ≤ const.× s

√
T log T . (14)
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The lower bound on VT (s)/T is asymptotically of order
√
log T/

√
T . Note

that Bartlett et al. (1998) obtained the less satisfying rate 1/
√
T , however hold-

ing with no restriction on the number of cells retained in the partition whereas
our claim has to comply with (13). This is the price to pay for our additional√
log T factor. Note however that this price is mild as s is no longer upper

bounded whenever T or R grow to +∞, casting our procedure onto the online
setting where the time horizon is not assumed finite and the number of clusters
is evolving along time.

As a conclusion to the theoretical part of the manuscript, let us summa-
rize our results. Regret bounds for Algorithm 1 are produced for our specific
choice of prior π (Corollary 1) and with an involved choice of λ (Corollary 2).
For the adaptive version Algorithm 2, the pivotal result is Theorem 1, which is
instantiated for our prior in Corollary 3. Finally, the lower bound is stated in
Theorem 2, proving that our regret bounds are minimax whenever the number
of cells retained in the partition satisfies (13). We now move to the implemen-
tation of our approach.

4. The PACBO algorithm

Since direct sampling from the Gibbs quasi-posterior is usually not possible, we
focus on a stochastic approximation in this section, called PACBO (available in
the companion eponym R package from Li, 2016). Both implementation and con-
vergence (towards the Gibbs quasi-posterior) of this scheme are discussed. This
section also includes a short numerical experiment on synthetic data to illustrate
the potential of PACBO compared to other popular clustering methods.

4.1. Structure and links with RJMCMC

In Algorithm 1 and Algorithm 2, it is required to sample at each t from the
Gibbs quasi-posterior ρ̂t. Since ρ̂t is defined on the massive and complex-struc-
tured space C (let us recall that C is a union of heterogeneous spaces), direct
sampling from ρ̂t is not an option and is much rather an algorithmic challenge.
Our approach consists in approximating ρ̂t through MCMC under the constraint
of favouring local moves of the Markov chain. To do it, we will use resort to
Reversible Jump MCMC (Green, 1995), adapted with ideas from the Subspace
Carlin and Chib algorithm proposed by Dellaportas et al. (2002) and Petralias
and Dellaportas (2013). Since sampling from ρ̂t is similar for any t = 1, . . . , T ,
the time index t is now omitted for the sake of brevity.

Let (k(n), c(n))0≤n≤N , N ≥ 1 be the states of the Markov Chain of interest

of length N , where k(n) ∈ �1, p� and c(n) ∈ R
dk(n)

. At each RJMCMC iteration,
only local moves are possible from the current state (k(n), c(n)) to a proposal
state (k′, c′), in the sense that the proposal state should only differ from the

current state by at most one covariate. Hence, c(n) ∈ R
dk(n)

and c′ ∈ R
dk′

may
be in different spaces (k′ �= k(n)). Two auxiliary vectors v1 ∈ R

d1 and v2 ∈ R
d2

with d1, d2 ≥ 1 are needed to compensate for this dimensional difference, i.e.,
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satisfying the dimension matching condition introduced by Green (1995)

dk(n) + d1 = dk′ + d2,

such that the pairs (v1, c
(n)) and (v2, c

′) are of analogous dimension. This con-
dition is a preliminary to the detailed balance condition that ensures that the
Gibbs quasi-posterior ρ̂t is the invariant distribution of the Markov chain. The
structure of PACBO is presented in Figure 1.

Figure 1. General structure of PACBO.

Let ρk′(·, ck′ , τk′) denote the rescaled Student distribution on R
dk′

ρk′(c, ck′ , τk′) =
k′∏
j=1

{
C−1

τk′

(
1 +

|cj − ck′,j |22
6τ2k′

)− 3+d
2

}
dc, (15)

where C−1
τk′ denotes a normalizing constant. Let us now detail the proposal

mechanism. First, a local move from k(n) to k′ is proposed by choosing k′ ∈
�k(n)−1, k(n)+1� with probability q(k(n), ·). Next, choosing d1 = dk′, d2 = dk(n),
we sample v1 from ρk′ in (15). Finally, the pair (v2, c

′) is obtained by

(v2, c
′) = g

(
v1, c

(n)
)
,

where g : (x, y) ∈ R
dk′ × R

dk(n) �→ (y, x) ∈ R
dk(n) × R

dk′
is a one-to-one, first

order derivative mapping. The resulting RJMCMC acceptance probability is
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α
[(

k(n), c(n)
)
, (k′, c′)

]
= min

{
1,

ρ̂t(c
′)q(k′, k(n))ρk(n)(v2)

ρ̂t(c(n))q(k(n), k′)ρk′(v1)

∣∣∣∣∣∂g
(
v1, c

(n)
)

∂v1∂c(n)

∣∣∣∣∣
}
,

= min

{
1,

ρ̂t(c
′)q(k′, k(n))ρk(n)(c(n), ck(n) , τk(n))

ρ̂t(c(n))q(k(n), k′)ρk′(c′, ck′ , τk′)

}
,

since the determinant of the Jacobian matrix of g is 1. The resulting PACBO

algorithm is described in Algorithm 3.

Algorithm 3 PACBO

1: Initialization: (λt)1:T
2: For t ∈ �1, T �
3: Initialization:

(
k(0), c(0)

)
∈ �1, p� × Rdk(0)

. Typically k(0) is set to k(N) from iteration

t− 1 (k(0) = 1 at iteration t = 1).
4: For n ∈ �1, N − 1�
5: Sample k′ ∈

�
max(1, k(n) − 1),min(p, k(n) + 1)

�
from q(k(n), ·) = 1

3
.

6: Let c′ ← standard k′-means output trained on (xs)1:(t−1).

7: Let τ ′ = 1/
√
pt.

8: Sample v1 ∼ ρk′ (·, ck′ , τk′ ).
9: Let (v2, c′) = g(v1, c(n)).
10: Accept the move (k(n), c(n)) = (k′, c′) with probability

α
[
(k(n), c(n)), (k′, c′))

]
=min

{
1,

ρ̂t(c′)q(k′, k(n))ρk(n) (v2, ck(n) , τk(n) )

ρ̂t(c(n))q(k(n), k′)ρk′ (v1, ck′ , τk′ )

∣∣∣∣∣ ∂g(v1, c
(n))

∂v1∂c(n)

∣∣∣∣∣
}

=min

{
1,

ρ̂t(c′)q(k′, k(n))ρk(n) (c(n), ck(n) , τk(n) )

ρ̂t(c(n))q(k(n), k′)ρk′ (c′, ck′ , τk′ )

}

11: Else (k(n+1), c(n+1)) = (k(n), c(n)).
12: End for
13: Let ĉt = c(N).
14: End for

4.2. Convergence of PACBO towards the Gibbs quasi-posterior

We prove that Algorithm 3 builds a Markov chain whose invariant distribution is
precisely the Gibbs quasi-posterior as N goes to +∞. To do so, we need to prove
that the chain is ρ̂t-irreducible, aperiodic and Harris recurrent, see Robert and
Casella (2004, Theorem 6.51) and Roberts and Rosenthal (2006, Theorem 20).

Recall that at each RJMCMC iteration in Algorithm 3, the chain is said to
propose a “between model move” if k′ �= k(n) and a “within model move” if
k′ = k(n) and c′ �= c(n). The following result gives a sufficient condition for the
chain to be Harris recurrent.

Lemma 1. Let D be the event that no “within-model move” is ever accepted
and E be the support of ρ̂t. Then the chain generated by Algorithm 3 satisfies

P

[
D|
(
k(0), c(0)

)
= (k, c)

]
= 0,

for any k ∈ �1, p� and c ∈ R
dk ∩ E.
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Lemma 1 states that the chain must eventually accept a “within-modelmove”.
It remains true for other choices of q(k(n), ·) in Algorithm 3, provided that the
stationarity of ρ̂t is preserved.

Theorem 3. Let E denote the support of ρ̂t. Then for any c(0) ∈ E, the chain(
c(n)

)
1:N

generated by Algorithm 3 is ρ̂t-irreducible, aperiodic and Harris recur-
rent.

Theorem 3 legitimates our approximation PACBO to perform online clus-
tering, since it asymptotically mimics the behavior of the computationally un-
available ρ̂t. To the best of our knowledge, this kind of guarantee is original in
the PAC-Bayesian literature.

Finally, let us stress that obtaining an explicit rate of convergence is beyond
the scope of the present work. However, in most cases the chain converges rather
quickly in practice, as illustrated by Figure 2. At time t, we advocate for setting
k(0) as k(N) from round t− 1, as a warm start.

4.3. Numerical study

This section is devoted to the illustration of the potential of our quasi-Bayesian
approach on synthetic data. Let us stress that all experiments are reproducible,
thanks to the PACBO R package (Li, 2016). We do not claim to be exhaus-
tive here but rather show the (good) behavior of our implementation on a toy
example.

4.3.1. Calibration of parameters and mixing properties

We set R to be the maximum �2-norm of the observations. Note that a too
small value will yield acceptance ratios to be close to zero and will degrade the
mixing of the chain. As advised by the theory, we advise to set λt = 0.6 ×
(d + 2)

√
log t/(2

√
t). Recall that large values will enforce the quasi-posterior

to account more for past data, whereas small values make the quasi-posterior
alike the prior. We illustrate in Figure 2 the mixing behavior of PACBO. The
convergence occurs quickly, and the default length of the RJMCMC runs is set
to 500 in the PACBO package: this was a ceiling value in all our simulations.

4.3.2. Batch clustering setting

A large variety of methods have been proposed in the literature for selecting
the number k of clusters in batch clustering (see Gordon, 1999; Milligan and
Cooper, 1985, for a survey). These methods may be of local or global nature.
For local methods, at each step, each cluster is either merged with another one,
split in two or remains. Global methods evaluate the empirical distortion of any
clustering as a function of the number k of cells over the whole dataset, and se-
lect the minimizer of this distortion. The rule of Hartigan (1975) is a well-known
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Figure 2. Typical RJMCMC output in PACBO. (a) plot of number of clusters k(n) (black
solid line) at each n-th (n = 1, . . . , N) iteration of RJMCMC and the red dashed line indicates
the true number of clusters of a Gaussian mixture model (Model 2) (b) trace plot of acceptance
ratio α(n) along the 200 iterations, showing that the RJMCMC does not get stuck to “only
reject” or “only accept” patterns.

representative of local methods. Popular global methods include the works of
Calinski and Harabasz (1974), Krzanowski and Lai (1988) and Kaufman and
Rousseeuw (1990), where functions based on the empirical distortion or on the
average of within-cluster dispersion of each point are constructed and the op-
timal number of clusters is the maximizer of these functions. In addition, the
Gap Statistic (Tibshirani et al., 2001) compares the change in within-cluster
dispersion with the one expected under an appropriate reference null distribu-
tion. More recently, CAPUSHE (CAlibrating Penalty Using Slope Heuristics)
introduced by Fischer (2011) and Baudry et al. (2012) addresses the problem
from the penalized model selection perspective, in the form of two methods:
DDSE (Data-Driven Slope Estimation) and Djump (Dimension jump). R pack-
ages implementing those methods are used with their default parameters in our
simulations.

In this section, we compare PACBO to the aforecited methods in a batch
setting with n = 200 observations simulated from the following 4 models.

Model 1 (1 group in dimension 5). Observations are sampled from a uniform
distribution on the unit hypercube in R

5.

Model 2 (4 Gaussian groups in dimension 2). Observations are sampled from
4 bivariate Gaussian distributions with identity covariance matrix, whose mean
vectors are respectively (0, 0), (−2,−1), (0, 4), (3, 1). Each observation is uni-
formly drawn from one of the four groups.
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Figure 3. Histograms of the estimated number of cells on 50 realizations. The red mark
indicates the true number of cells.

Model 3 (7 Gaussian groups in dimension 50). Observations are sampled from
7 multivariate Gaussian distributions in R

50 with identity covariance matrix,
whose mean vectors are chosen randomly according to an uniform distribution on
[−10, 10]50. Each observation is uniformly drawn from one of the seven groups.

Model 4 (3 lognormal groups in dimension 3). Observations are sampled from
3 multivariate lognormal distributions in R

3 with identity covariance matrix,
whose mean vectors are respectively (1, 1, 1), (6, 5, 7), (10, 9, 11). Each observa-
tion is uniformly drawn from one of the three groups.

Figure 3 and Figure 4 present the percentage of the estimated number of cells
k on 50 realizations of the 4 aforementioned models, for 8 methods including
PACBO. In each graph, the red dot indicates the real number of groups. The
methods used for selecting k are presented on the top of each panel, where
DDSE (Data-Driven Slope Estimation) and Djump (Dimension jump) are the
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Figure 4. Histograms of the estimated number of cells on 50 realizations. The red mark
indicates the true number of cells.

two methods introduced in CAPUSHE (Baudry et al., 2012). The maximum
number of cells is set to 20.

For Model 1 PACBO outperforms all competitors, since it selects the correct
number of cells in almost 70% of our simulations, when all other methods barely
find it (Figure 3a).

For Model 2 Calinski, Hartigan, Silhouette and Gap underestimate the num-
ber of cells by identifying 3 groups. Djump finds the true value k = 4 less than
10%. PACBO identifies 4 groups in 60% of our runs (Figure 3b).

For Model 3 PACBO is one of the two best methods, together with Gap
(Figure 4a).

For Model 4 where 3 groups of observations are generated from a heavy-tailed
distribution, we consider a variant of PACBO with the �1-norm in R

d, i.e., we
replace the loss in (2) by �(ĉt, xt) = min1≤k≤Kt |ĉt,k−xt|1. Figure 4b shows that
most methods perform poorly, to the notable exception of this PACBO(�1).
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4.3.3. Online clustering setting

In the last part, we have compared, in the batch setting, our method with 7
other methods on different datasets. However let us stress here that none of the
aforementioned methods is specifically designed for online clustering. Indeed, to
the best of our knowledge PACBO is the sole procedure that explicitly takes
advantage of the sequential nature of data. For that reason, we present below the
behavior and a comparison of running times between PACBO and the afore-
mentioned methods, on the following synthetic online clustering toy example.

Model 5 (10 mixed groups in dimension 2). Observations (xt)t=1,...,T=200

are simulated in the following way: define firstly for each t ∈ �1, T � a pair
(c1,t, c2,t) ∈ R

2, where c1,t = −5
2π + 5π

9

(
� t−1

20 � − 1
)
and c2,t = 5 sin(c1,t). Then

for t ∈ �1, 100�, xt is sampled from a uniform distribution on the unit cube in
R

2, centered at (cx,t, cy,t). For t ∈ �101, 200�, xt is generated by a bivariate
Gaussian distribution, centered at (cx,t, cy,t) with identity covariance matrix.

In this online setting, the true number k�t of groups will augment of 1 unit
every 20 time steps to eventually reach 10 (and the maximal number of clusters
is set to 20 for all methods). Figure 5a shows ECL for PACBO and OCL along
with 95% confidence intervals computed on 100 realizations with T = 200 ob-
servations, with λt = 0.6× (d+2)/2

√
t and R = 15 (so that all observations are

in the �2-ball B2(R). Jumps in the ECL occur when new clusters of data are
observed. Since PACBO outputs a partition based only on the past observa-
tions, the instantaneous loss is larger whenever a new cluster appears. However
PACBO quickly identifies the new cluster. This is also supported by Figure 5b
which represents the true and estimated numbers of clusters.

In addition we also count the number of correct estimations of the true num-
ber k�t of clusters. Table 1 contains its mean (and standard deviation, on 100
repetitions) for PACBO and its seven competitors. PACBO has the largest
mean by a significant margin and identifies the correct number of clusters of
about 120 observations out of 200.

Table 1

Mean and standard deviation of correct estimations of the true number of clusters.

Calinski Hartigan Lai Silhouette DDSE Djump Gap PACBO

34.92 (8.24) 63.72 (4.81) 52.23 (4.64) 72.44 (4.39) 22.73 (4.17) 38.38 (6.21) 56.73 (14.38) 119.95 (7.08)

Next, we compare the running times of PACBO and its competitors, in the
online setting. At each time t = 1, . . . , 200, we measure the running time of each
method. Table 2 presents the mean (and standard deviation) on 100 repetitions
of the total running times. The superiority of PACBO is a straightforward
consequence of the fact that it adapts to the sequential nature of data, whereas
all other methods conduct a batch clustering at each time step.

Table 2

Mean (and standard deviation) of total running time (in seconds).

Calinski Hartigan Lai Silhouette DDSE Djump Gap PACBO

46.86 (5.66) 39.27 (2.75) 52.07 (3.53) 118.44 (1.98) 33.85 (6.82) 33.85 (6.82) 207.55 (2.72) 28.13 (4.06)



A quasi-Bayesian perspective to online clustering 3091

Figure 5. Performance of PACBO.

For the sake of completeness, Appendix A contains an instance of the per-
formance of all methods to estimate the true number of clusters.

5. Proofs

This section contains the proofs to all original results claimed in Section 3 and
Section 4.

5.1. Proof of Corollary 1

Let us first introduce some notation. For any k ∈ �1, p� and R > 0, let

C(k,R) =
{
c = (cj)j=1,...,k ∈ R

dk : |cj |2 ≤ R, ∀j
}
,

Ξ(k,R) =
{
ξ = (ξj)j=1,...,k ∈ R

k : 0 < ξj ≤ R, ∀j
}
.
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We denote by ρk(c, c, ξ) the density consisting in the product of k independent
uniform distributions on �2-balls in R

d, namely,

dρk(c, c, ξ) =
k∏

j=1

{
Γ(d2 + 1)

π
d
2

(
1

ξj

)d

1{Bd(cj ,ξj)}(cj)

}
dc,

where c ∈ C(k,R), ξ ∈ Ξ(k,R) and Bd(cj , ξj) is an �2-ball in R
d, centered in

cj with radius ξj . In the following, we will shorten ρk(c, c, ξ) to ρk when no
confusion can arise. The proof relies on choosing a specific ρ in Proposition 1.
For any k ∈ �1, p�, c ∈ C(k,R) and ξ ∈ Ξ(k,R), let ρ = ρk1{c∈Rdk}. Then ρ is a
well-defined distribution on C and belongs to Pπ(C). Proposition 1 yields

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
k∈�1,p�

inf
ρ∈Pπ(C)

ρ=ρk1{c∈Rdk}

{
Ec∼ρ

T∑
t=1

[�(c, xt)] +
K(ρ, π)

λ

+
λ

2
E(ρ̂1,...,ρ̂T )Ec∼ρ

T∑
t=1

[�(c, xt)− �(ĉt, xt)]
2

}
. (16)

For any ρ = ρk1{c∈Rdk}, the first term on the right-hand side of (16) satisfies

T∑
t=1

Ec∼ρ [�(c, xt)] =

T∑
t=1

Ec∼ρk
[�(c, xt)]

≤
T∑

t=1

min
j=1,...,k

{
Ec∼ρk

[
|cj − cj |22

]
+ |cj − xt|22

}

=
T∑

t=1

min
j=1,...,k

{
d

d+ 2
ξ2j + |cj − xt|22

}

≤ dT

d+ 2
max

j=1,...,k
ξ2j +

T∑
t=1

�(c, xt). (17)

Let us now compute the second term on the right-hand side of (16).

K(ρ, π) =

∫
C

log
ρ(c)

π(c)
ρ(c)dc

=

∫
Rdk

(
log

ρk(c)

πk(c)
+ log

πk(c)

π(c)

)
ρk(c)dc

= K(ρk, πk) + log
1

q(k)

=: A+B,

where

A =

∫
Rdk

log

k∏
j=1

(
1
ξj

)d
(

1
2R

)d ρk(c)dc = d

k∑
j=1

log

(
2R

ξj

)
.
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Since the function x �→ (1− e−ηx)/x is non-increasing for x > 0 and η > 0, we
have

B = log

(
e−η(1− e−ηp)

1− e−η
eηk

)

≤ log
(
peη(k−1)

)
= η(k − 1) + log p. (18)

When η = 0, q is a uniform distribution on �1, p�, and the above inequality holds
as well. Then, K(ρ, π)/λ in (16) may be upper bounded as follows:

K(ρ, π)

λ
≤ d

λ

k∑
j=1

log

(
2R

ξj

)
+

η(k − 1)

λ
+

log p

λ
. (19)

Finally,

|�(c, xt)− �(ĉt, xt)| =
∣∣∣∣ min
j=1,...,k

|cj − xt|22 − min
j=1,...,Kt

|ĉt,j − xt|22
∣∣∣∣

≤
(
2R+ max

t=1,...,T
|xt|2

)2

=: C1.

Then, the third term of the right-hand side in (16) is controlled as

λ

2
E(ρ̂1,...,ρ̂T )Ec∼ρk

T∑
t=1

[�(c, xt)− �(ĉt, xt)]
2 ≤ λT

2
C2

1 . (20)

Combining inequalities (17), (19) and (20) gives, for any ξ ∈ Ξ(k,R),

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt) +
dT

d+ 2
max

j=1,...,k
ξ2j

+
d

λ

k∑
j=1

log

(
2R

ξj

)
+

η

λ
(k − 1)

}
+

λT

2
C2

1 +
log p

λ
.

Under the assumption that λ > (d + 2)/(2TR2), the global minimizer of the
function

(ξ1, . . . , ξk) �→
Td

d+ 2
max

j=1,...,k
ξ2j +

d

λ

k∑
j=1

log

(
2R

ξj

)
(21)

does not necessarily belong to Ξ(k,R). A possible choice of (ξj)1:k ∈ Ξ(k,R) is
given by

ξ�1 = ξ�2 = · · · = ξ�k =

√
d+ 2

2λT
.
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Then (21) amounts to

d

2λ
+

dk

2λ
log

(
8R2λT

d+ 2

)
.

Hence,

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt) +
dk

2λ
log

(
8R2λT

(d+ 2)k

)
+

η

λ
k

}

+

(
log p

λ
+

d

2λ
+

λT

2
C2

1

)
.

5.2. Proof of Theorem 1

The proof builds upon the online variance inequality described in Audibert
(2009), i.e., for any λ > 0, any ρ̂ ∈ Pπ(C) and any x ∈ R

d,

Ec′∼ρ̂[�(c
′, x)] ≤ − 1

λ
Ec′∼ρ̂ logEc∼ρ̂

[
e
−λ

[
�(c,x)+λ

2 (�(c,x)−�(c′,x))
2
]]

. (22)

By (22), we have

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

=

T∑
t=1

E(ρ̂1,...,ρ̂t−1)Eρ̂t [�(ĉt, xt) | ĉ1, . . . , ĉt−1]

≤
T∑

t=1

E(ρ̂1,...,ρ̂t−1)

[
− 1

λt−1
Eĉt∼ρ̂t

logEc∼ρ̂t

(
e−λt−1[�(c,xt)+

λt−1
2 (�(c,xt)−�(ĉt,xt))

2]
)]

≤ E(ρ̂1,...,ρ̂T )

[
T∑

t=1

− 1

λt−1
log

∫
e−λt−1St(c)dπ(c)∫
e−λt−1St−1(c)dπ(c)

]

= E(ρ̂1,...,ρ̂T )

[
T∑

t=1

− 1

λt−1
log

Vt

Wt−1

]

= E(ρ̂1,...,ρ̂T )

[
T∑

t=1

[
1

λt−1
logWt−1 −

1

λt−1
log Vt

]]
. (23)

Applying Jensen’s inequality, for any 1 ≤ t ≤ T ,

1

λt−1
log Vt =

1

λt−1
logEc∼π

[(
e−λtSt(c)

)λt−1
λt

]
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≥ 1

λt−1
log

(
Ec∼π

[
e−λtSt(c)

])λt−1
λt

=
1

λt
logWt.

Therefore, since W0 = 1,

T∑
t=1

[
1

λt−1
logWt−1 −

1

λt−1
log Vt

]
≤ − 1

λT
logWT , (24)

and by (23), (24) and the duality formula (3), we have

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

≤ E(ρ̂1,...,ρ̂T )

[
− 1

λT
logEc∼π

[
e−λTST (c)

]]

≤ − 1

λT
logEc∼π

[
e−λTE(ρ̂1,...,ρ̂T )ST (c)

]
(by Audibert, 2009, Lemma 3.2)

= inf
ρ∈Pπ(C)

{
Ec∼ρ

[
T∑

t=1

�(c, xt)

]

+ Ec∼ρE(ρ̂1,...,ρ̂T )

[
T∑

t=1

λt−1

2
(�(c, xt)− �(ĉt, xt))

2

]
+

K(ρ, π)

λT

}
,

which achieves the proof.

5.3. Proof of Corollary 3

The proof is similar to the proof of Corollary 1, the only difference lies in the
fact that (20) is replaced with

E(ρ̂1,...,ρ̂T )Ec∼ρk

T∑
t=1

λt−1

2
[�(c, xt)− �(ĉt, xt)]

2

≤ (d+ 2)C2
1

4R2

(
1 +

T∑
t=2

√
log(t− 1)√
t− 1

)

≤ (d+ 2)C2
1

4R2

(
1 +

√
log 2√
2

+

√
log 3√
3

+

T−1∑
t=4

∫ t

t−1

√
log x√
x

dx

)

≤ (d+ 2)C2
1

2R2

√
T log T ,

where the second inequality above is due to the fact that
√
log t√
t

≤
∫ t

t−1

√
log x√
x

dx

when t ≥ 4 and the last inequality is deduced from the change of variable
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y =
√
log x, i.e.,

∫ T−1

3

√
log x√
x

dx =

∫ √
log(T−1)

√
log 3

2y2e
y2

2 dy

≤
√
log(T − 1)

∫ √
log(T−1)

√
log 3

2ye
y2

2 dy

= 2
√
log(T − 1)

(√
T − 1−

√
3
)
.

5.4. Proof of Corollary 4

Let us denote by M the index of the last epoch and let tM = T . We assume
M ≥ 1 (otherwise, the corollary follows directly from Corollary 3 applied with
an upper bound R0 of �2-norm of sequence (xt)1:T ). If RtM ≤ RtM−1

, then we
have RT = RtM = RtM−1

, hence one always has RtM ≥ RtM−1
. In addition,

since M ≥ 1, we also have RtM ≤ 2maxt=1,...,T |xt|2 = 2R.
Let us introduce for each epoch r, r = 0, 1, . . . ,M the following notation

E(r) =

tr−1∑
t=tr−1+1

E(ρ̂1,...,ρ̂t)� (ĉt, xt) ,

and for k ∈ �1, p�, c ∈ C(k,R)

L(r)(k, c) =

tr−1∑
t=tr−1+1

�(c, xt).

Within each epoch r = 0, 1, . . . ,M , since

max
t=tr−1+1,tr−1+2,...,tr−1

|xs|2 ≤ Rtr−1 , (25)

then applying Corollary 3 to each epoch r can give us that, for each k ∈ �1, p�,

E(r) − inf
c∈C(k,Rtr−1)

L(r)(k, c) ≤ (C(d, η)k + C(p, d))R2
tr−1

√
(tr − 1) log(tr − 1),

(26)

where C(d, η) = 2(d+η)
d+2 and C(p, d) = 2 log p+d

d+2 + 81(d+2)
2 .

In addition, since all observations xt, t = tr−1 + 1, . . . , tr − 1 in the epoch r
are bounded in a convex ball Bd

(
Rtr−1

)
, centered in 0 ∈ R

d with radius Rtr−1

as indicated by (25), we have for each c′ ∈ C(k,R) \ C
(
k,Rtr−1

)
, k = 1, 2, . . . , p

that
inf

c∈C(k,Rtr−1)
L(r)(k, c) ≤ L(r)(k, c′). (27)

By (26) and (27), we can have that for any k ∈ �1, p� and c ∈ C(k,R), the
following inequality holds,

E(r) − L(r)(k, c) ≤ (C(d, η)k + C(p, d))R2
tr−1

√
(tr − 1) log(tr − 1).
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Therefore, for any c ∈ C(k,R), one has

T∑
t=1

E(ρ̂1,...,ρ̂t)� (ĉt, xt)−
T∑

t=1

�(c, xt)

=

M∑
r=0

(
E(r) − L(r)(k, c)

)
+

M∑
r=0

(
E(ρ̂1,...,ρ̂tr )

� (ĉtr , xtr )− �(c, xtr )
)

≤
M∑
r=0

[C(d, η)k + C(p, d)]R2
tr−1

√
(tr − 1) log(tr − 1) + 4

M∑
r=0

R2
tr

≤
M∑
r=0

[C(d, η)k + C(p, d)]R2
tr−1

√
T log T + 4

M∑
r=0

R2
tr .

Since Rts ≥ 2s−rRtr for 0 ≤ r ≤ s ≤ M − 1, then for s ≤ M − 1,

s∑
r=0

R2
tr ≤

s∑
r=0

4r−sR2
ts ≤ 4

3
R2

ts .

Hence,

M∑
r=0

R2
tr−1

≤ R2
t−1

+
4

3
R2

tM−1
≤ 7

3
R2

tM

4
M∑
r=0

R2
tr ≤ 4

(
4

3
R2

tM−1
+R2

tM+

)
≤ 28

3
R2

tM

Therefore,

T∑
t=1

E(ρ̂1,...,ρ̂t)� (ĉt, xt)−
T∑

t=1

�(c, xt)

≤ 7

3
[C(d, η)k + C(p, d)]R2

tM

√
T log T +

28

3
R2

tM

≤ 28

3
[C(d, η)k + C(p, d)]R2

√
T log T +

112

3
R2,

where R = maxt=1,2,...,T |xt|2 and the second inequality is due to the fact that

RtM ≤ 2R. Taking the infimum of
∑T

t=1 �(c, xt) over the set C(k,R), k ∈ �1, p�
leads to

T∑
t=1

E(ρ̂1,...,ρ̂t)� (ĉt, xt) ≤ inf
c∈C(k,R)

T∑
t=1

�(c, xt) +
28

3
[C(d, η)k

+C(p, d)]R2
√

T log T +
112

3
R2.

Finally, taking the infimum of the right hand side of the above inequality with
respect to k terminates the proof.
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5.5. Proof of Theorem 2

The proof for the upper bound is straightforward: by replacing the loss function
�(c, x) by the penalized loss �α(c, x) = �(c, x) + α|c| with α =

√
log T/

√
T in

the proof of Theorem 1, we obtain

T∑
t=1

Eρ̂1,...,ρ̂t�α(ĉt, xt) ≤ inf
ρ∈Pπ(C)

{
Ec∼ρ

[
T∑

t=1

�α(c, xt)

]
+

K(ρ, π)

λT

+E(ρ̂1,...,ρ̂T )Ec∼ρ

[
T∑

t=1

λt−1

2
[�α(c, xt)− �α(ĉt, xt)]

2

]}
,

and choosing λ =
√
log T/

√
T and p = T

1
4 yields the desired upper bound.

We now proceed to the proof of the lower bound. The trick is to replace the
supremum over the (xt) in VT (s) by an expectation.

We first introduce the event Ωs,R =
{
(X1, . . . , XT )∈R

dT : such that
∣∣c�T,R

∣∣ =
s
}
, where c�T,R is defined as in Assumption H(s). Then, we have

VT (s) ≥ inf
(ρ̂t)

EμT

{
T∑

t=1

E(ρ̂1,...,ρ̂t)

(
�(ĉt, Xt) +

√
log T√
T

|ĉt|
)

− inf
c∈C(s,R)

T∑
t=1

�(c, Xt)

}
1 (Ωs,R) ,

where μT ∈ P(RdT ) is the joint distribution of i.i.d. sample (X1, . . . , XT ). Now,
we have to choose μ in order to maximize the right-hand side of the above
inequality. This is the purpose of the following lemmas.

Lemma 2. Let s ∈ N
∗, s ≤ p. Let μ ∈ P(Rd) a distribution concentrated on

2s fixed points Sμ = {zi, zi + w, i = 1, . . . , s} such that w = (2Δ, 0, . . . , 0) ∈ R
d

with Δ > 0 and that z1, . . . , zs ∈ Bd(R). Suppose that for any i �= j, d(zi, zj) ≥
2AΔ for some A > 0. Define μ as the uniform distribution over Sμ. Then, if
A >

√
2 + 1, we have

arg inf
c∈C(s,R)

Eμ�(c, X) = {zi + w/2, i = 1, . . . , s} =: c�μ,s.

The proof of Lemma 2 is similar to Bartlett et al. (1998, Section III.A, step 3).
The next lemma controls the probability of the event |c�T,R| �= s with a proper

choice of Δ2 and A in the definition of μ.

Lemma 3. Let s ∈ N
∗, 2 ≤ s ≤ p, and μ is defined in Lemma 2. Then, if we

choose A =
√
2s+ 1 and

2(s− 1)s
√
log T

(A− 1)2
√
T

< Δ2 <

√
log T√
T

,
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then for any ε > 0 and T > 8s2 log 2s2

ε , we have

P
(∣∣c�T,R

∣∣ �= s
)
≤ ε.

Proof. For any k ∈ �1, p�, let c�T,k firstly denote the optimal partition in C(k,R)
that minimizes the penalized empirical loss on (X1, . . . , XT ), i.e.,

c�T,k = arg inf
c∈C(k,R)

{
1

T

T∑
t=1

�(c, Xt) + |c|
√
log T√
T

}
.

In addition, denote by c�μ,k the partition minimizing the expected penalized loss,
i.e.,

c�μ,k = arg inf
c∈C(k,R)

{
Eμ�(c, X) + |c|

√
log T√
T

}
.

One can notice that in fact |c| = k in the two above definitions for any c ∈
C(k,R) ∈ R

dk. Next

P
(∣∣c�T,R

∣∣ > s
)
=

2s∑
k=s+1

P
(∣∣c�T,R

∣∣ = k
)

≤
2s∑

k=s+1

P

(
1

T

T∑
t=1

�
(
c�T,k−1, Xt

)
− 1

T

T∑
t=1

�
(
c�T,k, Xt

)
>

√
log T

T

)

≤
2s∑

k=s+1

P

(
1

T

T∑
t=1

�
(
c�T,k−1, Xt

)
>

√
log T

T

)

≤ sP

(
1

T

T∑
t=1

�
(
c�μ,s, Xt

)
>

√
log T

T

)

= sP

(
Δ2 >

√
log T

T

)
= 0, (28)

where the first inequality is induced by the definition of c�T,R and the third
inequality is due to the fact that we have almost surely

T∑
t=1

�
(
c�μ,s, Xt

)
≥

T∑
t=1

�
(
c�T,s, Xt

)
≥

T∑
t=1

�
(
c�T,k−1, Xt

)
, for k > s.

In order to control the probability P(|c�T,R| < s), let us first consider the Voronoi

partition of Rd induced by the set of points {zi, zi+w, i = 1, . . . , s} and for each
i define Vi as the union of the Voronoi cells belonging to zi and zi + w. Let Ni

denotes the number of Xt, t = 1, . . . , T falling in Vi. Hence (N1, . . . , Ns) follows
a multinomial distribution with parameter (T, q1, q2, . . . , qs), where q1 = q2 =
· · · = qs = 1/s. Then

P
(∣∣c�T,R

∣∣ < s
)
=

s−1∑
k=1

P
(∣∣c�T,R

∣∣ = k
)
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≤
s−1∑
k=1

P

(
1

T

T∑
t=1

�
(
c�T,k, Xt

)
− 1

T

T∑
t=1

�
(
c�T,s, Xt

)
≤ (s− k)

√
log T√

T

)

≤
s−1∑
k=1

P

(
1

T

T∑
t=1

�
(
c�T,k, Xt

)
− 1

T

T∑
t=1

�
(
c�μ,s, Xt

)
≤ (s− k)

√
log T√

T

)

≤ (s− 1)P

(
1

T
min

i=1,...,s
Ni · (A− 1)2Δ2 −Δ2 ≤ (s− k)

√
log T√

T

)

≤ (s− 1)sP

(
N1 ≤

TΔ2 + (s− 1)
√
T log T

(A− 1)2Δ2

)
.

The third inequality is due to the fact that
∑T

t=1 �
(
c�T,k, Xt

)
≥mini=1,...,s Ni(A−

1)2Δ2 for k < s, and the last inequality holds since the marginal distributions
of the Nis (i = 1, . . . , s) are the same binomial distribution with parameter
(T, 1/s). Finally, we can bound the last term by Hoeffding’s inequality, i.e., for
any t > 0

P (N1 − E (N1) ≤ −t) ≤ 2 exp

(
−2t2

T

)
.

Hoeffding’s inequality implies that if s > 2, A =
√
2s + 1, T > 8s2 log 2s2

ε and

Δ2 > 2s(s−1)
√
log T

(A−1)2
√
T

, then

P

(
N1 ≤ TΔ2 + (s− 1)

√
T log T

(A− 1)2Δ2

)
<

ε

s2
.

Next, we proceed to the proof of Theorem 2. First of all, since (X1, . . . , XT )
are i.i.d, following the distribution μ and by the definition of Ωs,R, we can write

inf
(ρ̂t)

EμT

{
T∑

t=1

E(ρ̂1,...,ρ̂t)

(
�(ĉt, Xt) +

√
log T

T
|ĉt|

)}
1 (Ωs,R)

= inf
(ρ̂t)

E(ρ̂1,...,ρ̂T )

T∑
t=1

EμT

[(
�(ĉt, Xt) +

√
log T

T
|ĉt|

)
1(Ωs,R)

]

≥ inf
ĉ

EμT

{
T∑

t=1

�(ĉ, Xt) +
√
T log T |ĉ|

}
1 (Ωs,R)

≥EμT

{
T∑

t=1

�(c�T,R, Xt) + s
√

T log T

}
1 (Ωs,R)

≥EμT

{
T∑

t=1

�(c�T,R, Xt)

}(
1− 1

(
ΩC

s,R

))
+ s

√
T log TP (Ωs,R)

≥EμT

{
T∑

t=1

�(c�T,R, Xt)

}
− TΔ2

P
(
ΩC

s,R

)
+ s

√
T log T

(
P (Ωs,R)− P

(
ΩC

s,R

))
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≥T inf
c∈C(s,R)

Eμ�(c, X)− TΔ2
P
(
ΩC

s,R

)
+ s

√
T log T

(
P (Ωs,R)− P

(
ΩC

s,R

))
,

where ĉ in the first inequality is given by

ĉ = arg inf
c∈C

EμT

[(
�(c, Xt) + |c|

√
log T/

√
T
)
�(Ωs,R)

]
.

Note that ĉ does not depend on t since μ is a symmetric uniform distribution
(definition in Lemma 2). The second inequality is due to Jensen’s inequality and
the fourth inequality relies on the fact that with the definition of c�T,R and μ,
we have almost surely that

T∑
t=1

�
(
c�T,R, Xt

)
≤

T∑
t=1

�
(
c�μ,s, Xt

)
+ s

√
T log T = TΔ2 + s

√
T log T ,

where Δ > 0 is related with the choice of μ in Lemma 2 and its value is con-
strained according to Lemma 3. Then we obtain for any ε > 0

inf
(ρ̂t)

EμT

{
T∑

t=1

E(ρ̂1,...,ρ̂t)�(ĉt, Xt) +

√
log T√
T

|ĉt|
}

1 (Ωs,R)

≥ T inf
c∈C(s,R)

Eμ�(c, X)− TεΔ2 + s
√

T log T (1− 2ε). (29)

Moreover, by Jensen’s inequality

EμT

[
inf

c∈C(s,R)

T∑
t=1

� (c, Xt)� (Ωs,R)

]
≤ T inf

c∈C(s,R)
Eμ�(c, X). (30)

Combining (29) and (30), we obtain

VT (s) ≥ s
√

T log T

(
1− 2ε

[
1 +

√
TΔ2

2s
√
log T

])
. (31)

Furthermore, by taking ε = 1/T and choosing the minimum value of Δ2 allowed
in Lemma 3, (31) yields

VT (s) ≥ s
√

T log T

(
1− 2

T

[
1 +

s− 1

2s2

])
.

Finally, we need to ensure that s pairs of points {zi, zi + w} can be packed
in Bd(R) such that the distance between any two of the zis is at least 2A. A
sufficient condition (Kolmogorov and Tikhomirov, 1961) is

s ≤
(
R− 2Δ

2AΔ

)d

.

If Δ ≤ R/6 (which is satisfied if T is large enough), the above inequality holds
if

s ≤
(

R

3AΔ

)d

As A =
√
2s+ 1 and Δ2 <

√
log T/

√
T , we get the desired result.
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5.6. Proof of Lemma 1

Let Dn denote the event that no “within-model move” is ever accepted in the
first n moves. Then D1 = Dwithin

1 ∪Dbetween
1 , where Dwithin

1 stands for the event
that a “within-model move” is proposed but rejected in one step and Dbetween

1

that a “between-model move” is proposed in one step. Then we have

P

[
D1|(k(0), c(0)) = (k, c)

]
=P [k′ �= k|(k, c)] + P [k′ = k, but rejected|(k, c)]

=
2

3
+

1

3

[
1−

∫
Rdk

α [(k, c), (k, c′)] ρk (c
′, ck, τk) dc

′
]
,

where

α [(k, c), (k, c′)] = min

{
1,

ρ̂t(c
′)ρk(c, ck, τk)

ρ̂t(c)ρk(c′, ck, τk)

}
= min {1, ht (c

′|(k, c))} .

Under the assumption of k′ = k, we have that c′, c ∈ R
dk, therefore the restric-

tion of ρ̂t to R
dk is well defined. Moreover, by the definition of πk in (7), the

support of the restriction of ρ̂t to R
dk is Rdk ∩ E = (Bd(2R))

k
. Hence the func-

tion (c′, c) �→ ht (c
′|(k, c)) is strictly positive and continuous on the compact

set (Bd(2R))
k × (Bd(2R))

k
. As a consequence, the minimum of ht (c

′|(k, c)) on
(Bd(2R))

k × (Bd(2R))
k
is achieved and we denote it by mk, i.e.,

mk = inf
c′,c∈(Bd(2R))k

ht (c
′|(k, c)) > 0.

In addition, due to the continuity and positivity of ρk on R
dk, it is clear that

for any k ∈ �1, p�

zk =

∫
(Bd(2R))k

ρk (c
′, ck, τk) dc

′ > 0.

Therefore, for any k,∫
Rdk

α [(k, c), (k, c′)] ρk (c
′, ck, τk) dc

′ ≥ inf
k∈�1,p�

(mkzk)

=: m� > 0.

Hence, uniformly on k ∈ �1, p� and c ∈ R
dk ∩ E, we have,

P [D1|(k, c)] ≤
[
2

3
+

1

3
(1−m�)

]
< 1.

To conclude,

P [D|(k, c)] = lim
n−→∞

P [Dn|(k, c)] ≤ lim
n−→∞

[
2

3
+

1

3
(1−m�)

]n
= 0.
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5.7. Proof of Theorem 3

For any c ∈ E, there exists some k ∈ �1, p� such that c ∈ (Bd(2R))
k ⊂ E. For

any k′ ∈ �k − 1, k + 1� and for any A ∈ B
(
R

dk′
)

such that ρ̂t(A) > 0, the

transition kernel H of the chain is given by

H
(
c, c′ ∈A

)
=

∫
1{v1∈A}α [(k, c) , (k′, v1)] q(k, k

′)ρk′(v1, ck′ , τk′)dv1+r(c)δc (A) ,

(32)
where ρk′(·, ck′ , τk′) is the rescaled Student distribution in (15) and

r (c) =
∑

k′∈�k−1,k+1�
q(k, k′)

∫
(1− α [(k, c) , (k′, v1)]) ρk′(v1, ck′ , τk′)dv1

is the probability of rejection when starting at state c, and δc(·) is a Dirac
measure in c. One can easily note that H(c, c′ ∈ A) in (32) is strictly positive,
indicating that the chain, when starting from c, has a positive chance to move.
Therefore, for any A ∈ B(C) such that ρ̂t(A) > 0, we can prove with the
Chapman-Kolmogorov equation that there exists some m ∈ N

∗ such that

Hm (c, A) > 0,

where Hm(c, A) =
∫
Hm−1(y,A)H(c, dy) is the m-step transition kernel. In

other words, the chain is ρ̂t-irreducible. Finally, a sufficient condition for the
chain to be aperiodic is that Algorithm 3 allows transitions such as{(

k(n+1), c(n+1)
)
=
(
k(n), c(n)

)}
, i.e.,

P

(
α
[
(k(n), c(n)), (k′, c′)

]
< 1

)
= P

(
ρ̂t(c

′)q(k′, k(n))ρk(n)(c(n), ck(n) , τk(n))

ρ̂t(c(n))q(k(n), k′)ρk′(c′, ck′ , τk′)
< 1

)
> 0. (33)

Since for any c′ ∈A⊂B
(
R

dk′
)
∩Ec such that P (c′ ∈A)=

∫
A
ρk′(c′, ck′ , τk′)dc′ >

0, we have ρ̂t(c
′) = 0, (33) holds. Therefore,

P

(
ρ̂t(c

′)q(k′, k(n))ρk(n)(c(n), ck(n) , τk(n))

ρ̂t(c(n))q(k(n), k′)ρk′(c′, ck′ , τk′)
< 1

)
≥ P (c′ ∈ A) > 0.

The chain is therefore aperiodic. Finally, the Harris recurrence of the chain is a
consequence of Lemma 1 (based on Roberts and Rosenthal, 2006, Theorem 20).
As a conclusion, the chain converges to the target distribution ρ̂t.
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Appendix A: Extension to a different prior

For the sake of completeness, this appendix presents additional regret bounds
for a different heavy-tailed prior. Doing so, we stress that the quasi-Bayesian
approach is flexible in the sense that it allows for regret bounds for a large
variety of priors.

A d-multivariate Student distribution (as presented in Kotz and Nadarajah,
2004) is defined as the ratio between a Gaussian vector and the square root of
an independent χ2 with v degrees of freedom and has the density

Γ(d+v
2 )

Γ(v2 )v
d
2 π

d
2 |Σ| 12

[
1 +

(x− μ)TΣ−1(x− μ)

v

]− v+d
2

,

where μ,Σ, v are parameters. Here, we consider a different distribution: a rescaled
Student distribution with v = 3 and Σ = 2τ2Id, where τ > 0 is a scale parameter
and Id is the d-dimensional identity matrix. This distribution has the density

Γ(d+3
2 )

Γ( 32 )3
d
2 π

d
2 (2τ2)

d
2

[
1 +

|x− μ|22
6τ2

]− 3+d
2

Δ
= Ad,τ

[
1 +

|x− μ|22
6τ2

]− 3+d
2

, (34)

where Ad,τ stands for the renormalizing constant. In this setting, the parameters
for our rescaled Student distribution are the mean vector μ and the scale pa-
rameter τ > 0. This rescaled Student distribution is a generalization of the prior
introduced by Dalalyan and Tsybakov (2012a) where a product of univariate
Student is considered and serves to enforce sparsity (since it is heavy-tailed).

Let us consider πk as a product of k independent truncated rescaled Student
distributions in R

d, namely, for any c ∈ R
dk ⊂ C,

dπk(c, τ0, 2R) =

k∏
j=1

{
C−1

2R,τ0

(
1 +

|cj |22
6τ20

)− 3+d
2

1{|cj |2≤2R}

}
dc, (35)

where τ0 > 0 and R > 0 are respectively the scale and truncation parameters,
and C2R,τ0 is the normalizing constant accounting for the truncation. When
R = +∞, πk(c, τ0, 2R) amounts to a distribution without truncation. In the
following, we shorten πk(c, τ0, 2R) to πk whenever no confusion is possible.

Denote by ν the rescaled Student distribution in R
d, with mean vector 0 ∈ R

d

and scale parameter 1. Fix k ∈ �1, p�, R > 0 and c ∈ C(k,R), and recall that
Ξ(k,R) denotes the hypercube in R

k defined by

Ξ(k,R) :=
{
ξ = (ξj)j=1,...,k ∈ R

k : 0 < ξj ≤ R, ∀j
}
.

For any k ∈ �1, p�, c ∈ R
dk ⊂ C, c ∈ C(k,R), ξ ∈ Ξ(k,R), 0 < τ2 ≤

√
3R2/(6

√
d)

and R > 0, we define the probability distribution ρk on R
dk by

ρk(c, c, τ, ξ) =

k∏
j=1

{
C−1

ξj ,τ

(
1 +

|cj − cj |22
6τ2

)− 3+d
2

1{|cj−cj |2≤ξj}

}
, (36)
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where Cξj ,τ are normalizing constants defined as Cξj ,τ =P
(
|ν|2 ≤ ξj/

√
2τ
)
/Ad,τ ,

where Ad,τ is the constant defined in (34). Moreover, when (ξj)j=1,...,k = +∞,
we let ρk(c, c, τ, ξ) denote the rescaled Student distribution without truncation.
In the sequel, we will shorten ρk(c, c, τ, ξ) to ρk whenever no confusion is possi-
ble.

Lemma 4. Assume that q and πk in (4) are defined respectively as in (6) and
(35), and that ρk is defined as (36) for each k ∈ �1, p�. For the probability distri-
bution ρ(c, c, τ, ξ) = 1{c∈Rdk}ρk(c, c, τ, ξ) defined on C, if R ≥ maxt=1,...,T |xt|2,
then

K(ρ, π) ≤
k∑

j=1

[
3 + d

2
log

(
1 +

ξ2j
6τ2

)
− d

2
log ξ2j

]
− k log cd

+ (3 + d)k log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)
+ kd log τ0 + log p+ η(k − 1).

Proof. By the definition of the Kullback-Leibler divergence, we have

K(ρ, π) = K(ρk, πk) + log
1

q(k)
=: A+B, (37)

where

A =

∫
Rdk

log

⎡
⎣ k∏
j=1

C2R,τ0

Cξj ,τ

(
τ20
τ2

6τ2 + |cj − cj |22
6τ20 + |cj |22

)− 3+d
2

⎤
⎦ ρk(c)dc

=

k∑
j=1

log
C2R,τ0

Cξj ,τ
+

3 + d

2

∫
Rdk

k∑
j=1

log

(
τ2

τ20

6τ20 + |cj |22
6τ2 + |cj − cj |22

)
ρk(c)dc

=

k∑
j=1

log
P

(
|ν|2 ≤ 2R√

2τ0

)
P

(
|ν)|2 ≤ ξj√

2τ

) + kd log
τ0
τ

+
3 + d

2

∫
Rdk

k∑
j=1

log

(
τ2

τ20

6τ20 + |cj |22
6τ2 + |cj − cj |22

)
ρk(c)dc

=: A1 +A2 +A3. (38)

By the definition of the rescaled Student distribution ν,

P

(
|ν|2 ≤ ξj√

2τ

)
=

∫
|ν|2≤

ξj√
2τ

Γ( 3+d
2 )

Γ( 32 )(3π)
d
2

(
1 +

|ν|22
3

)− 3+d
2

dν

≥
(
1 +

ξ2j
6τ2

)− 3+d
2

Γ( 3+d
2 )

Γ( 32 )(3π)
d
2

∫
|ν|2≤

ξj√
2τ

dν

= cdτ
−d

(
1 +

ξ2j
6τ2

)− 3+d
2

ξdj ,
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where Γ(·) is the Gamma function and cd =
Γ( 3+d

2 )

Γ( 3
2 )Γ(

d
2+1)6

d
2
. Hence, the term A1

in (38) verifies

A1 = k logP

(
|ν|2 ≤ 2R√

2τ0

)
−

k∑
j=1

logP

(
|ν)|2 ≤ ξj√

2τ

)

≤ −
k∑

j=1

logP

(
|ν|2 ≤ ξj√

2τ

)

≤
k∑

j=1

[
3 + d

2
log

(
1 +

ξ2j
6τ2

)
− d

2
log ξ2j

]
+ kd log τ − k log cd. (39)

In addition, we have

6τ20 + |cj |22
6τ2 + |cj − cj |22

≤ 1 +
2|cj |2
2
√
6τ

2
√
6τ |cj − cj |2

6τ2 + |cj − cj |22
+

|cj |22
6τ2 + |cj − cj |22

+
τ20
τ2

= 1 +
|cj |2√
6τ

+
|cj |22
6τ2

+
τ20
τ2

≤
(
1 +

|cj |2√
6τ

+
τ0
τ

)2

,

where we used the Cauchy–Schwarz inequality. Due to the above inequality, the
term A3 in (38) satisfies

A3 ≤ (3 + d)

∫ k∑
j=1

log

(
1 +

τ

τ0
+

|cj |2√
6τ0

)
ρk(c)dc

≤ (3 + d)k

∫
log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)
ρk(c)dc

= (3 + d)k log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)
. (40)

Combining (37), (38), (39), (40) with (18) completes the proof.

Corollary 5. For any sequence (xt)1:T ∈ R
dT , for any λ > 0, if q and πk in

(4) are taken respectively as in (6) and (35) with parameter η ≥ 0, τ0 > 0 and
R ≥ maxt=1,...,T |xt|2, Algorithm 1 satisfies, for any 0 < τ2 ≤ (

√
3R2)/(6

√
d),

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt) +
kd

λ
log

τ0
cdτ

+
η

λ
k

+
(3+ d)k

λ
log

(
1+

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)
+

1

λ

√
kd(12τ2Tλ+3k)

}
+

λT

2
C2

1 +
log p

λ
,

where C1 = (2R+maxt=1,...,T |xt|2)2 and cd =
(

Γ( 3+d
2 )

Γ( 3
2 )Γ(

d
2+1)

)1/d
.
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Proof. By Proposition 1,

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt) ≤ inf
k∈�1,p�

inf
ρ∈Pπ(C)

ρ=ρk1{c∈Rdk}

{
Ec∼ρ

T∑
t=1

[�(c, xt)] +
K(ρ, π)

λ

+
λ

2
E(ρ̂1,...,ρ̂T )Ec∼ρ

T∑
t=1

[�(c, xt)− �(ĉt, xt)]
2

}
(41)

As in (17), the first term on the right-hand side of (41) may be upper bounded.

T∑
t=1

Ec∼ρ[�(c, xt)] ≤
T∑

t=1

�(m,xt) + T max
j=1,...,k

ξ2j . (42)

For the second term in the right-hand side of (41), by Lemma 4,

K(ρ, π)

λ
≤ (3 + d)k

λ
log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)

+
1

λ

k∑
j=1

[
3 + d

2
log

(
1 +

ξ2j
6τ2

)
− d

2
log ξ2j

]

+
kd

λ
log τ0 −

k

λ
log cd +

η

λ
(k − 1) +

log p

λ
. (43)

Likewise to (20), the third term on the right-hand side of (41) is upper bounded
by

λ

2
E(ρ̂1,...,ρ̂T )Ec∼ρk

T∑
t=1

[�(c, xt)− �(ĉt, xt)]
2 ≤ λT

2
C2

1 . (44)

Combining inequalities (42), (43) and (44) yields for ξ ∈ Ξ(k,R) and 0 < τ2 ≤√
3R2/(6

√
d) that

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt) + ξ2j +
(3 + d)k

λ
log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)

+ T max
j=1,...,k

ξ2j +
3 + d

2λ

k∑
j=1

log

(
1 +

ξ2j
6τ2

)
− d

2λ

k∑
j=1

log ξ2j

+
kd

λ
log τ0 −

k

λ
log cd + (k − 1)

}

+
λT

2
C2

1 +
log p

λ
.

Let ξ̂j = ξ2j /6τ
2 for any j = 1, . . . , k, then 0 < ξ̂j ≤ R2/6τ2 since ξ =

(ξj)j=1,...,k ∈ Ξ(k,R). This yields
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T max
j=1,...,k

ξ2j +
3 + d

2λ

k∑
j=1

log

(
1 +

ξ2j
6τ2

)
− d

2λ

k∑
j=1

log ξ2j

= 6τ2T max
j=1,...,k

ξ̂j +
3

2λ

k∑
j=1

log
(
1 + ξ̂j

)
+

d

2λ

k∑
j=1

log

(
1 +

1

ξ̂j

)
− kd

2λ
log(6τ2)

≤ 6τ2T max
j=1,...,k

ξ̂j +
3

2λ

k∑
j

ξ̂j +
d

2λ

k∑
j=1

1

ξ̂j
− kd

2λ
log(6τ2)

≤
(
6τ2T +

3k

2λ

)
max

j=1,...,k
ξ̂j +

d

2λ

k∑
j=1

1

ξ̂j
− kd

2λ
log(6τ2). (45)

The minimum of the right-hand side of (45) is reached for

ξ̂1 = · · · = ξ̂k =

√
kd

12τ2Tλ+ 3k
≤ R2

6τ2
, if 0 < τ2 ≤

√
3R2

6
√
d
.

Therefore for a fixed k, c ∈ C(k,R) and 0 < τ2 ≤
√
3R2

6
√
d
,

inf
ξ∈Ξ(k,R)

⎧⎨
⎩T max

j=1,...,k
ξ2j +

3 + d

2λ

k∑
j=1

log

(
1 +

ξ2j
6τ2

)
− d

2λ

k∑
j=1

log ξ2j

⎫⎬
⎭

≤ 1

λ

√
kd(12τ2Tλ+ 3k)− kd

2λ
log 6τ2.

Hence

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt) +
(3 + d)k

λ
log

(
1 +

τ

τ0
+

∑k
j=1 |cj |2√
6kτ0

)

+
1

λ

√
kd(12τ2Tλ+ 3k) +

kd

λ
log

τ0√
6τc

1/d
d

+
η

λ
(k − 1)

}
+

λT

2
C2

1 +
log p

λ
.

which concludes the proof.

Tuning parameters λ, τ and η can be chosen to obtain a sublinear regret
bound for the cumulative loss of Algorithm 1.

Corollary 6. For any sequence (xt)1:T ∈ R
dT , under the assumptions of

Corollary 5, if T ≥ max
{
2, τ20

√
d/
(√

3R2c
2/d
d

)}
, λ=(d+2)

√
log T/

(
2
√
TR2

)
,

τ2 = τ20 /
(
6Tc

2/d
d

)
and η ≥ 0, Algorithm 1 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)
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≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt)+
(6+2d)R2

d+2
k

√
T√

log T
log

(
1+

1

cdT
1
2

+

∑k
j=1 |cj |2√
6kτ0

)

+
k(d+ η)R2

d+ 2

√
T log T +

2
√
TR√

(d+ 2) log T

√
3k2d+ kdτ20 (cd)

−1/d

}

+

(
2R2 log p

d+ 2
+

81(d+ 2)R2

4

)√
T log T ,

where cd =
(

Γ( 3+d
2 )

Γ( 3
2 )Γ(

d
2+1)

)1/d
.

If we compare the regret bound in this result with the one in Corollary 2, we
see that both last terms outside braces have the same order of

√
T log T . Inside

the braces, due to the different prior (35) which is considered here, an additional
term

k

√
T√

log T
log

(
1 +

1

cdT
1
2

+

∑k
j=1 |cj |2√
6kτ0

)

appears. If the scale parameter τ0 in the prior (35) is small, say τ0 < 1/T , the
logarithmic term will be of the order of log T , hence this additional term is of
order

√
T log T . Moreover, the smaller the value of τ0, the larger the coefficient

before k, indicating that a smaller number of clusters k is preferred, which is
consistent with the sparsity-inducing prior assumption since the sparsity level
is given by τ0.

In the adaptive setting (Algorithm 2), applying Theorem 1 to the specific q
and πk in (6) and (35) leads to the following result.

Corollary 7. For any deterministic sequence (xt)1:T ∈ R
dT , under the assump-

tions of Corollary 5, set T ≥ max
{
2, τ20

√
d/
(√

3R2c
2/d
d

)}
, λ = (d+ 2)

√
log t/(

2
√
tR2

)
and η ≥ 0 and λ0 = 1. Then Algorithm 2 satisfies

T∑
t=1

E(ρ̂1,ρ̂2,...,ρ̂t)�(ĉt, xt)

≤ inf
k∈�1,p�

inf
c∈C(k,R)

{
T∑

t=1

�(c, xt)+
(6+2d)R2

d+2
k

√
T√

log T
log

(
1+

1

cdT
1
2

+

∑k
j=1 |cj |2√
6kτ0

)

+
k(d+ η)R2

d+ 2

√
T log T +

2
√
TR√

(d+ 2) log T

√
3k2d+ kdτ20 (cd)

−1/d

}

+

(
2R2 log p

d+ 2
+

81(d+ 2)R2

2

)√
T log T ,

where cd =
(

Γ( 3+d
2 )

Γ( 3
2 )Γ(

d
2+1)

)1/d
.

Proof. The proof is similar to the proof of Corollary 5, the only difference lies
in the fact that (44) is replaced by
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E(ρ̂1,...,ρ̂T )Ec∼ρk

T∑
t=1

λt−1

2
[�(c, xt)− �(ĉt, xt)]

2 ≤ C2
1

√
T log T .

For the sake of completeness, we present in Figure 6 the performance of
PACBO and its seven competitors for estimating the true number k�t of clusters
along time. We acknowledge that no theoretical guarantee is derived for the
estimation of k�t yet the practical behavior is remarkable.

Figure 6. True (black) and estimated (red) number of clusters as functions of t.
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