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ties of the Wishart distribution and recent results in random matrix theory,
we derive explicit expressions for the asymptotic misclassification errors of
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affects the performance of classification and in what sense. Motivated by
these results, we propose adjusted classifiers by correcting the bias brought
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are shown to have smaller misclassification rates than LDA and RLDA
respectively. Several interesting examples are discussed in detail and the
theoretical results on dimension effect are illustrated via extensive simula-
tion studies.
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1. Introduction

Discriminant analysis that aims to allocate objects into one of the predefined
classes has been an important topic in statistical learning and data analysis.
Modern data is frequently featured by complex structures such as high dimen-
sionality. In the past decades, extensive research has been done to address new
challenges of high dimensionality in discriminant analysis. In particular, due to
its simplicity, optimality (Anderson, 2003), and promising performance in real
data analysis (Hand, 2006), the linear discriminant analysis (LDA) classifier has
received more and more attention for classifying data of very large dimension
under certain sparsity assumptions (Cai and Liu, 2011; Mai, Zou and Yuan,
2012; Fan, Feng and Tong, 2012). In this paper, we will focus on the general
case where no sparsity assumption is assumed and study the effect of dimension-
ality on the performance of LDA and the regularized LDA (Friedman, 1989).
For simplicity, we shall focus on the two-class classification problem.

The issue of dimension effect, or more specifically, the effect that a diverging
dimension p would brought to classical statistical inference (Bai, Liu and Wong,
2009), has been studied in several statistical problems in the literature. Bai and
Saranadasa (1996) first studied the dimension effect of Hotelling’s T 2 test by
deriving the explicit power under local alternatives. Bai, Liu and Wong (2009)
and El Karoui (2010) considered the dimension effect of Markowitz’s portfolio.
For LDA, when the dimension p is assumed to be fixed, many works have been
done to study the asymptotic of the misclassification rate by studying the prop-
erties of Wishart distribution. For a diverging p, a seminal work by Bickel and
Levina (2004) showed that when p/n → ∞, LDA tends to random guessing.
Shao et al. (2011) proved that when p

√
log p/

√
n → 0, LDA is consistent in that

the error rate of sample LDA tends to the oracle Bayes error rate. Other related
works that handle variations of LDA (for example, quadratic discriminant anal-
ysis etc.) can also be found in Saranadasa (1993), Cheng (2004) and Li and Yao
(2016), among others. On the other hand, when p is large, regularization method
is commonly used to reduce the dispersion of the sample covariance matrix; see
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for example Chen et al. (2011) for the study of the regularized Hotelling’s T 2 test
and Ledoit and Wolf (2004) for regularized estimation in Markowitz’s portfolio.
Regularization procedure has also been widely applied in many other statistical
analysis in current high dimensional literature; see for example Cai, Liu and Luo
(2011), Bühlmann (2013) and Wang and Leng (2016). For discriminant analysis,
the regularized LDA (RLDA) was proposed and studied in Friedman (1989) and
Guo, Hastie and Tibshirani (2007). Recently, Zollanvari and Dougherty (2013,
2015) studied the misclassification error rate of RLDA with the motivation to
estimate this error rate and moreover, they did not provide explicit expressions
for the rate. Dobriban and Wager (2018) analyzed the predictive risk of ridge
regression and regularized discriminant analysis and derived some explicit for-
mulas. However, the results were based on the random effects hypothesis which
is a strong assumption.

Among these existing literatures, the problem of how the high dimensionality
would affect the classification accuracy of LDA and RLDA when the observation
dimension p is of the same order as the sample size n is still not well understood
and in this work we provide a comprehensive analysis of the misclassification er-
ror rates under mild conditions. Built on properties of the Wishart distribution,
we will first study the dimension effect of LDA (Section 2) under the assump-
tion that p/n → y ∈ (0, 1). In the general case where p/n → y ∈ (0,∞), using
recent results in random matrix theory, we provide a systematic study on the
dimension effect of the RLDA in Section 3. Overall, this paper aims at providing
theoretical studies on the dimension effect of LDA and RLDA, from which we
gain insights of how the increasing dimension affects the classification accuracy
of LDA and RLDA. Following is a summary of the contributions of our work:

• For LDA, we study the effect of the sample means and the sample covari-
ance matrix respectively. Interestingly, our results show that the dimension
effect brought by the sample means would introduce some bias to LDA,
which would be further amplified by the effect brought by the sample
covariance matrix. Motivated by these observations, a bias correction is
proposed to improve the classification accuracy.

• For RLDA, we derive the closed form of the error rates under general cases.
Dobriban andWager (2018) studied a similar question under random effect
which is a strong condition. We relax this condition and consider a general
case which includes random effect as a special case. Similar to LDA, a bias
corrected RLDA is proposed to reduce the bias brought by the dimension
effect that improves the classification performance.

• To study the dimension effect of RLDA, the key question is to study the
asymptotic limits of the moments of a class of random matrices and their
random quadratic forms involved of the population means. The former one
is studied by Ledoit and Péché (2011), Chen et al. (2011) and our previous
work Wang et al. (2015). When the population means satisfy some special
structures such as the eigenvector structures in Bai, Miao and Pan (2007)
or the random effect of Dobriban and Wager (2018), the limits of quadratic
forms are the same as the moments. By studying the limits of these mo-
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ments, Dobriban and Wager (2018) derived the dimension effect of RLDA
under the random effect assumption. For general cases, the asymptotic
of the random quadratic forms are much more challenging. Bai, Liu and
Wong (2011) derived results for an identity matrix. El Karoui and Holger
(2011) provided a tool to study the limits of the quadratic forms. Based on
the methods of El Karoui and Holger (2011), we develop explicit results
for the dimension effect of RLDA under mild conditions.

The remainder of this paper is organized as follows. We study the dimension
effect of LDA when p/n → y ∈ (0, 1) in Section 2. Dimension effect of RLDA
is provided in Section 3. To better understand the dimension effect of RLDA
and verify our theoretical results, we conduct several interesting examples in
Section 4 and simulations in Section 5. All technical details are relegated to the
Appendix.

2. Linear discriminant analysis

Let X be a p-dimensional normal random vector belonging to class k if X ∼
N(μk,Σ), k = 1, 2, where μ1 �= μ2 are the population means and Σ is the
population covariance matrix. For simplicity, in this paper we consider the case
where equal weights are used for the two types of misclassification error. If μ1, μ2

and Σ are known, the Bayes’ classification rule is

Bayes’ rule: δ0(X) = I

{(
X − μ1 + μ2

2

)T

Σ−1(μ1 − μ2) > 0

}
, (2.1)

where I(·) is the indicator function which assigns X to class 1 if and only if
δ0(X) = 1. Bayes’ rule is known to be optimal in that it has the minimum
misclassification rate among all classifiers. Specifically, the optimal Bayes error
rate is

R0 =
1

2
pr{δ0(X) = 0|X ∼ N(μ1,Σ)}+

1

2
pr{δ0(X) = 1|X ∼ N(μ2,Σ)}

=Φ
(
− Δ

2

)
, (2.2)

where Δ =
√
(μ1 − μ2)TΣ−1(μ1 − μ2) and Φ(·) is the standard normal distri-

bution function.
Let {X1,j , j = 1, · · · , n1} and {X2,j , j = 1, · · · , n2} be independent and iden-

tically distributed random samples from Np(μ1,Σ) and Np(μ2,Σ), respectively.
We can estimate μ1, μ2 and Σ by their sample analogs,

X̄k =
1

nk

nk∑
j=1

Xk,j , k = 1, 2, Sn =
1

n− 2

2∑
k=1

nk∑
j=1

(Xk,j − X̄k)(Xk,j − X̄k)
T,

where n = n1+n2. Plugging the estimation into Bayes’ rule (2.1) we obtain the
classical LDA classifier

δLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2) > 0

}
. (2.3)
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After some simple calculation we can obtain that conditional on the samples
the misclassification rate of LDA is

RLDA =
1

2

2∑
j=1

Φ

⎛
⎝ (−1)j(μj − X̄1+X̄2

2 )TS−1
n (X̄1 − X̄2)√

(X̄1 − X̄2)TS
−1
n ΣS−1

n (X̄1 − X̄2)

⎞
⎠ .

To investigate the dimension effect of the sample means and the sample co-
variance matrix separately, we will first study two simple cases to gain some
insights:

(i) Assuming that Σ is known, what is the effect brought by the sample mean?
(ii) Assuming that μ1, μ2 are known, what is the effect brought by the sample

covariance matrix?

For convenience, we assume that Δ is a constant throughout the paper. As
pointed out by Cai and Liu (2011), the case where Δ → 0 would indicate that
no classifier is better than random guessing. Similarly, the case where Δ → ∞
would imply that the two classes are so separated that classification is trivial
such that even naive Bayes would asymptotically have zero misclassification rate
(Aoshima and Yata, 2014).

2.1. Effect of the sample mean

To investigate the effect brought by the sample mean, we first assume Σ is
known and consider the following linear classifier

δLDA1(X) = I

{(
X − X̄1 + X̄2

2

)T

Σ−1(X̄1 − X̄2) > 0

}
,

which is obtained by replacing Sn in the LDA classifier (2.3) by the true Σ. The
misclassification rate of the above classifier can be computed as:

RLDA1 =
1

2

2∑
j=1

Φ

⎛
⎜⎝ (−1)j

(
μj − X̄1+X̄2

2

)T

Σ−1(X̄1 − X̄2)√
(X̄1 − X̄2)TΣ−1(X̄1 − X̄2)

⎞
⎟⎠ .

The dimension effect brought by the sample means can then be characterized
by the asymptotic misclassification rate given in the following theorem.

Theorem 2.1. Assuming p/nj → yj ∈ (0,∞), j = 1, 2, we have,

RLDA1
p→ 1

2
Φ

(
− Δ2 + y2 − y1

2
√
Δ2 + y1 + y2

)
+

1

2
Φ

(
− Δ2 + y1 − y2

2
√
Δ2 + y1 + y2

)
. (2.4)

By comparing (2.4) with the optimal Bayes error (2.2), we can see that the
dimension effect brought by the sample means depends on y1, y2 only. From
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Theorem 2.1 we know that even if Σ is known, when y1 or y2 is very large which
indicates that the dimension far more exceeds the sample size, the misclassi-
fication rate would tend to 50%. The conclusion is consistent with the one in
the seminal paper Bickel and Levina (2004) which studied the dimension effect
from a minimax point of view under the setting p/n → ∞.

2.2. Effect of the sample covariance matrix

Similarly, we study the effect brought by the sample covariance matrix. Assum-
ing the population means μ1, μ2 are known, we consider the classifier

δLDA2(X) = I

{(
X − μ1 + μ2

2

)T

S−1
n (μ1 − μ2) > 0

}
.

The corresponding misclassification rate is

RLDA2 = Φ

⎛
⎝ −(μ1 − μ2)

TS−1
n (μ1 − μ2)

2
√
(μ1 − μ2)TS

−1
n ΣS−1

n (μ1 − μ2)

⎞
⎠ .

Theorem 2.2. Assuming p/(n1 + n2) → y ∈ (0, 1), we have,

RLDA2
p→ Φ

(
−Δ

2

√
1− y

)
. (2.5)

Comparing with the optimal Bayes error (2.2) we can see that the term√
1− y in (2.5) is exactly the price we pay by using the sample covariance

matrix in LDA. Since the results only depend on Wishart distribution, it would
be possible to built up more precise results under weaker conditions such as
n > p+2 and p/n → y ∈ (0, 1] (Jiang and Yang, 2013) and we leave it to future
work. By the properties of Wishart distribution (Cook and Forzani, 2011), we
have

ES−1
n =

n− 2

n− p− 3
Σ−1, ES−1

n ΣS−1
n =

(n− 2)2(n− 3)

(n− p− 2)(n− p− 3)(n− p− 5)
Σ−1.

Therefore, the term
√
1− y is actually introduced by the inverse Wishart dis-

tribution. We note
√
1− y also arises in the dimension effect for Hotelling’s

test (Pan and Zhou, 2011) or the Markowitz portfolio (Bai, Liu and Wong,
2009; El Karoui, 2010) which both involve the inverse of the sample covariance
matrix.

2.3. Dimension effect of LDA

Theorems 2.1 and 2.2 show the explicit results for the sample means and the
sample covariance from which we can see the explicit price we pay for the esti-
mation. Now, we present the result for LDA as follows.
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Theorem 2.3. Assuming p/nj → yj ∈ (0,∞), j = 1, 2 and y
def
= y1y2/(y1 +

y2) < 1, we have

RLDA
p→ 1

2

2∑
j=1

Φ

(
−Δ2 + (−1)j(y1 − y2)

2
√
Δ2 + y1 + y2

√
1− y

)
. (2.6)

Note that the term on the right hand side of (2.6) correspond to the mis-
classification rate within class 1 and class 2 respectively. LDA has different
classification performance on the two classes when y1 �= y2. From the proof of
Theorem 2.1 we can see that this is due to the estimation bias of intercept part
in LDA. On the other hand, from (2.5) we learn that the effect from the sample
covariance matrix would result in a multiplication factor

√
1− y. Interestingly,

we show that when both sample means and sample covariance matrix are used
as in LDA (2.3), the bias introduced by the sample means was further amplified
by the multiplication factor

√
1− y.

To investigate the bias of LDA, we consider the classifier,

I
{
XTS−1

n (X̄1 − X̄2) + α > 0
}
. (2.7)

By Proposition 2 of Mai, Zou and Yuan (2012), given the classification direc-
tion S−1

n (X̄1 − X̄2) in (2.7), the optimal intercept corresponding to minimum
misclassification rate is given as,

α0 = −1

2
(μ1 + μ2)

TS−1
n (X̄1 − X̄2).

One the other hand, note that (2.7) would reduce to the LDA classifier (2.3)
if the intercept α is set to be −1

2 (X̄1 + X̄2)
TS−1

n (X̄1 − X̄2). However, direct
calculation shows that,

−1

2
E(X̄1 + X̄2)

TS−1
n (X̄1 − X̄2) = Eα0 +

n− 2

n− p− 3

( p

2n2
− p

2n1

)
,

which indicates that the expected bias between the intercept of LDA and the
optimal intercept α0 is exactly n−2

n−p−3

(
p

2n2
− p

2n1

)
. We thus can make a bias

correction to LDA as follow,

δcLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2) +

n− 2

n− p− 3

( p

2n1
− p

2n2

)
> 0

}
.

(2.8)

Let Rc
LDA be the misclassification rate of the bias-corrected classifier (2.8). The

following proposition gives the asymptotic misclassification rate of the above
bias-corrected classifier.

Proposition 2.1. Under the conditions of Theorem 2.3,

Rc
LDA

p→ Φ

(
− Δ2

2
√
Δ2 + y1 + y2

√
1− y

)
. (2.9)
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By noticing that Φ(x) is strictly convex in x ∈ (−∞, 0), we immediately have
that the asymptotic misclassification rate of the bias corrected LDA given in
(2.9) is smaller than the asymptotic misclassification rate of LDA given in (2.6).
In addition, considering the linear classifier with optimal intercept,

I

{
XTS−1

n (X̄1 − X̄2)−
1

2
(μ1 + μ2)

TS−1
n (X̄1 − X̄2) > 0

}
.

It can be shown that the result given in (2.9) would also hold for this oracle
classifier, indicating that our bias correction procedure does eliminate the bias
introduced by the unequal sample sizes. Finally, we remark that bias issues
in binary classification have received much attention in early literatures; see
for example Chan and Hall (2009) and Huang, Tong and Zhao (2010) and the
references therein. For LDA, the bias-corrected classifier (2.8) happens to be
identical to formula (8) of Moran and Murphy (1979). Our motivation and
interpretation provide a different view on (2.8) and theoretical justifications
provided in Proposition 2.1 are also new.

In literature, to handle high dimension data, naive Bayes (Dudoit, Fridlyand
and Speed, 2002; Bickel and Levina, 2004) and sparse LDA (Cai and Liu, 2011;
Mai, Zou and Yuan, 2012; Fan, Feng and Tong, 2012) were proposed. For naive
Bayes, the correlation between the covariates is ignored and only the diagonal
elements of the sample covariance matrix are used. Sparse LDA methods as-
sumed that the discriminant direction β = Σ−1(μ1 − μ2) is sparse in that only
several elements in β are non-zero and others are either zero or close to zero.
In the following remarks we provide some comparison of the LDA rule to the
naive Bayes rule and sparse LDA approaches.

Remark 2.1. For simplicity, we consider the homogeneous case where the di-
agonal elements of Σ equal to each other and assume that n1 = n2. Consider
the following naive Bayes classification rule,

δNB(X) = I

{(
X − X̄1 + X̄2

2

)T

(X̄1 − X̄2) > 0

}
.

The conditional misclassification rate of δNB(X) is

RNB =
1

2

2∑
j=1

Φ

⎛
⎜⎝ (−1)j

(
μj − X̄1+X̄2

2

)T

(X̄1 − X̄2)√
(X̄1 − X̄2)TΣ(X̄1 − X̄2)

⎞
⎟⎠ .

By a similar analysis as our proofs for Theorem 2.3, we have

RNB = Φ

⎛
⎝− (μ1 − μ2)

T(μ1 − μ2) + op(1)

2
√

(μ1 − μ2)TΣ(μ1 − μ2) +
4
n tr(Σ

2) + op(1)

⎞
⎠ .

We can see that the performance of naive Bayes depends on the structure of Σ.
When Σ = σ2Ip for some constant σ2 > 0, comparing with (2.6), the asymptotic
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error rate of the naive Bayes rule is the same as that of LDA except the term√
1− y, indicating that naive Bayes is always better than LDA. When the off

diagonal elements of Σ are nonzero, we would need to pay some price for wrongly
ignoring the correlations. A simulation study will be conducted in Section 5,
providing further numerical comparison between naive Bayes and LDA.

Remark 2.2. For sparse LDA, we take the linear programming discriminant
(LPD) rule as an example which was proposed by Cai and Liu (2011). The LPD
rule estimates the discriminant direction by solving the following optimization
problem,

β̂ = argmin |β|1, subject to |Snβ − (X̄1 − X̄2)|∞ ≤ tn,

where tn is a tuning parameter. Under regular conditions, the misclassification
rate RLPD of LPD (Cai and Liu, 2011, Theorem 3) satisfies,

RLPD

Φ(−Δ/2)
− 1 = Op

(
Δ2s

√
log p

n

)
.

where s is the number of non-zero elements of Σ−1(μ1 − μ2). Unlike LDA, the
misclassification rate of LPD not only depends on p and n, but also hinge on
the size of s. When s is small, LPD will achieve a good performance and even
close to the Bayes rule while the dimension p is allowed to grow exponentially
in n. However, when the sparsity assumption is violated, it is expected that LPD
will perform poor if s is large. Further numerical comparison will be provided in
Section 5.

3. Regularized linear discriminant analysis

RLDA (Friedman, 1989; Guo, Hastie and Tibshirani, 2007) was proposed to
reduce the dispersion of eigenvalues of the sample covariance matrix when p is
large and overcome the singularity issue when p > n − 2. For a given tuning
parameter λ > 0, the RLDA classifier is given as,

δRLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

(Sn + λIp)
−1(X̄1 − X̄2) > 0

}
.

When Sn is invertible, RLDA would reduce to LDA if λ is set to be zero. With
one more degree of freedom to adjust the estimation of the covariance matrix,
it is well known that RLDA generally poses better performance than LDA,
providing that λ is chosen properly. The misclassification rate of RLDA is

RRLDA(λ) =
1

2

2∑
j=1

Φ

⎛
⎜⎝ (−1)j

(
μj − X̄1+X̄2

2

)T

(Sn + λIp)
−1(X̄1 − X̄2)√

(X̄1 − X̄2)T(Sn + λIp)−1Σ(Sn + λIp)−1(X̄1 − X̄2)

⎞
⎟⎠ .
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To explore the dimension effect on RLDA, we need to study the asymptotic
properties of RRLDA(λ). Denote

μ = Σ− 1
2 (μ1 − μ2), Bn(λ) = Σ

1
2 (Sn + λI)−1Σ

1
2 . (3.1)

By noticing that

X̄1
d
=

1√
n1

Σ
1
2Y1 + μ1, X̄2

d
=

1√
n2

Σ
1
2Y2 + μ2,

where Y1, Y2 ∼ N(0, Ip) and Y1, Y2, Sn are independent, we can see that the
asymptotic properties of RRLDA(λ) would rely on the asymptotic properties of

1

p
Y T

1 trBn(λ)Y1,
1

p
Y T

1 trB2
n(λ)Y1, (3.2)

and the random quadratic forms

μTBn(λ)μ, μTB2
n(λ)μ. (3.3)

Under mild conditions, it can be shown that

1

p
Y T

1 trBk
n(λ)Y1 −

1

p
trBk

n(λ) = op(1), k = 1, 2. (3.4)

Thus, finding the limits of the statistics (3.2) can be reduced to finding the
moments of trBk

n(λ)/p. Related studies on the moments of trBk
n(λ)/p can be

found in Ledoit and Péché (2011), Chen et al. (2011) and Wang et al. (2015).
Unlike the statistics (3.2) whose limits only depend on the eigenvalues of Bn(λ),
the asymptotic of the quadratic forms (3.3) generally depend on the entry-
wise properties of Bn(λ) (El Karoui and Holger, 2011). Under special case such
as μ or μ1 − μ2 itself is generated by i.i.d. entries, the quadratic forms can
be expressed by the trace of a random matrix. For example, Dobriban and
Wager (2018) studied RLDA by setting μ1 − μ2 is i.i.d. where the statistics
(3.4) can be approximated by tr(Sn+λIp)

−k/p, k = 1, 2, respectively. Here, we
study the problem under more general settings where no structure on μ1, μ2 is
assumed. Before proceed to the theoretical results, we introduce some technical
assumptions.

(C1): p/nj → yj ∈ (0,∞), j = 1, 2 and denote y = y1y2/(y1 + y2).
(C2): The eigenvalues of Σ are uniformly bounded and the empirical spectral

distribution FΣ converges to a nonrandom distribution function H as
p → ∞.

(C3): For t ≥ 0,

Δ−2μT(Ip + tΣ−1)−1μ → h1(t),

Δ−2μT(Ip + tΣ−1)−2μ → h2(t).
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We remark that (C1) and (C2) are common conditions in random matrix theory
and (C3) is a technical assumption to express the explicit limits of the quadratic
forms (3.3). For a given λ, (C3) can be relaxed to some specific t which is a
function of λ and here for brevity we make the assumption for general t. Under
the conditions (C1) and (C2), for any λ > 0, it can be shown that,

1

p
tr{(Sn + λIp)

−1} a.s.−→ m0(−λ),

1

p
tr{(Sn + λIp)

−2} a.s.−→ m′
0(−λ) =

dm0(z)

dz

∣∣∣
z=−λ

,

wherem0(−λ) is the unique solution of the Marčenko-Pastur equation (Marčenko
and Pastur, 1967; El Karoui, 2008),

m(−λ) =

∫
dH(t)

t(1− y + yλm(−λ)) + λ
,

under the condition 1− y + yλm(−λ) ≥ 0. More details can be found in Wang
et al. (2015).

Following is our main results.

3.1. Dimension effect of RLDA

Theorem 3.1. Under the conditions (C1)-(C3), for any λ > 0,

RRLDA(λ)
p→ 1

2

2∑
j=1

Φ

(
−H1(λ)Δ

2 + (−1)j(y1 − y2)R1(λ)

2
√
H2(λ)Δ2 + (y1 + y2)R2(λ)

)
, (3.5)

where

R1(λ) =
1− λm0(−λ)

1− y[1− λm0(−λ)]
,

R2(λ) =
1− λm0(−λ)

{1− y[1− λm0(−λ)]}3 − λm0(−λ)− λ2m′
0(−λ)

{1− y[1− λm0(−λ)]}4 ,

H1(λ) =
1

1− y[1− λm0(−λ)]
h1

(
λ

1− y[1− λm0(−λ)]

)
,

H2(λ) ={(1 + yR1(λ))
2 + yR2(λ)}h2

(
λ

1− y[1− λm0(−λ)]

)
.

Theorem 3.1 provides an explicit expression for the asymptotic misclassifica-
tion rate of RLDA, which characterizes the effect of the data dimension in terms
of y1, y2 and the functions on the regularization parameter λ defined above.

Remark 3.1. From the proof of Theorem 3.1, we note that when y < 1 and
λ = 0, (3.5) reduces to (2.6), implying that Theorem 2.3 could be regarded as a
special case of Theorem 3.1. We remark that the proof of Theorem 2.3 is built
on properties of normal and Wishart distributions only while Theorem 3.1 is
built on the more complicated random matrix theory.
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By noticing that if

h1(t) =

∫
x

x+ t
dH(x), h2(t) =

∫
x2

(x+ t)2
dH(x), (3.6)

we would have H1(λ) = R1(λ), H2(λ) = R2(λ) and hence the asymptotic mis-
classification rate (3.5) can be further simplified. This is summarized in the
following proposition.

Proposition 3.1. Under the conditions of Theorem 3.1 and assuming that (3.6)
holds, we have

RRLDA(λ)
p→ 1

2

2∑
j=1

Φ

(
−Δ2 + (−1)j(y1 − y2)

2
√

Δ2 + y1 + y2

R1(λ)√
R2(λ)

)
.

Note that condition (3.6) would hold when μ1−μ2 and Σ satisfy the following
structures,

μT(Ip + tΣ−1)−kμ = ‖μ‖2 1
p
tr(Ip + tΣ−1)−k, k = 1, 2,

A trivial example satisfies the above structure is Σ = Ip and an interesting
isotropic example will also be discussed in Section 4.

3.2. Bias correction for RLDA

To reduce the bias brought by the unequal sample sizes, following the same idea
of bias correction for LDA as in Section 2.3, we consider the following class of
classifiers,

I
{
XT(Sn + λIp)

−1(X̄1 − X̄2) + α > 0
}
.

Given the discriminant direction (Sn + λIp)
−1(X̄1 − X̄2), the optimal intercept

corresponding to minimum misclassification rate is given as,

αr = −1

2
(μ1 + μ2)

T(Sn + λIp)
−1(X̄1 − X̄2),

while for RLDA the intercept is −1
2 (X̄1 + X̄2)

T(Sn + λIp)
−1(X̄1 − X̄2). On the

other hand, from the proof of Theorem 3.1 we have

− 1

2
E(X̄1 + X̄2)

T(Sn + λIp)
−1(X̄1 − X̄2)

=Eαr + E
1

2n1
Y T

1 Bn(λ)Y1 − E
1

2n2
Y T

2 Bn(λ)Y2

=Eαr −
(

p

2n1
− p

2n2

)
Etr(Bn(λ))

p
.
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Therefore, we can correct the bias as follow,

(
X − X̄1 + X̄2

2

)T

(Sn + λIp)
−1(X̄1 − X̄2) +

(
p

2n1
− p

2n2

)
Etr(Bn(λ))

p
> 0.

The matrix Bn(λ) depends on the true population covariance matrix Σ and the
regularized term (Sn + λIp)

−1. It is complicated to derive the explicit results
for Etr(Bn(λ)). By noticing that tr(Bn(λ))/p converges to R1(λ) almost surely
(Wang et al., 2015), we consider estimating Etr(Bn(λ))/p by the consistent
estimator given in (Wang et al., 2015) and propose the following bias-corrected
RLDA classifier,

δcRLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

(Sn + λIp)
−1(X̄1 − X̄2)

+

(
p

2n1
− p

2n2

)
1− 1

p tr(
1
λSn + Ip)

−1

1− p
n−2 + 1

n−2 tr(
1
λSn + Ip)−1

> 0

}
. (3.7)

Let Rc
RLDA(λ) be the misclassification rate of the bias-corrected classifier(3.7).

Proposition 3.2. Under the conditions of Theorem 3.1,

Rc
RLDA(λ)

p→ Φ

(
− H1(λ)Δ

2

2
√
H2(λ)Δ2 + (y1 + y2)R2(λ)

)
. (3.8)

Again by the convexity of Φ(x) in x ∈ (−∞, 0), we conclude that the asymp-
totic misclassification rate of the bias corrected RLDA given in (3.8) is smaller
than the asymptotic misclassification rate of RLDA given in (3.5). Similarly
to the bias correction for LDA, we can claim the result of (3.8) is also the
asymptotic error rate of RLDA with optimal intercept.

3.3. Selection of λ

From the perspective of applications, the RLDA can avoid the singularity prob-
lem of Sn when p > n and provides a better performance than LDA even if
p < n. However, the performance of RLDA relies on the choice of the regular-
ization parameter λ. Empirically, we can use re-sampling procedures such as
cross validation to choose λ. However, there is little work on the theoretical
analysis of these re-sampling procedures, and cross validation can be computa-
tionally expensive when both p and n are large. In this section, we discuss the
effect of λ on the misclassification error rate and provide a direct estimation of
the optimal λ for the special cases.

By Proposition 3.2, the optimal λ with minimum error rate is

λ0 ∈ argmax
H1(λ)Δ

2√
H2(λ)Δ2 + (y1 + y2)R2(λ)

. (3.9)
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From the definitions of H1(λ) and H2(λ), these parameters depend on the true
structures of Σ and μ and it is not easy to construct estimations for them.
However, under the assumption of Proposition 3.1, the optimal λ has a simple
form

λ0 ∈ argmax
R2

1(λ)

R2(λ)
.

This motivates us to select λ0 by maximizing an estimate of R2
1(λ)/R2(λ). As

discussed before, R1(λ) and R2(λ) only depends on the eigenvalues of Σ and
could be estimated by the eigenvalues of Sn. Considering a shrinkage estimation
α(Sn + λIp)

−1 (Kubokawa and Srivastava, 2008; Wang et al., 2015) for the
precision matrix Σ−1, we have

min
α

1

p
tr(α(Sn + λIp)

−1Σ− Ip)
2 p→ 1− R2

1(λ)

R2(λ)
.

Therefore, similar to Wang et al. (2015), we estimate the tuning parameter by

λ̂0 = argmin

{
1− (R̂1(λ))

2

R̂2(λ)

}
,

where

ŷ =
p

n− 2
, a1(λ) = 1− 1

p
tr
( 1
λ
Sn + Ip

)−1

,

a2(λ) =
1

p
tr
( 1
λ
Sn + Ip

)−1

− 1

p
tr
( 1
λ
Sn + Ip

)−2

,

R̂1(λ) =
a1(λ)

1− ŷa1(λ)
, R̂2(λ) =

a1(λ)

(1− ŷa1(λ))3
− a2(λ)

(1− ŷa1(λ))4
.

Following our previous work Wang et al. (2015), it could be possible to estab-

lish some theoretical analysis of the estimation λ̂0 under the conditions given
in the formula (3.6). For general Σ, μ1, μ2, theoretically it is hard to conduct
such an effective estimation. Therefore, we skip the theoretical analysis of the
proposed tuning parameter estimation and conduct simulations in Section 5, to
compare the λ̂0 proposed above with the one obtained by cross validations.

4. Examples

In this section, we use several examples to illustrate the theoretical results ob-
tained in Section 3. For simplicity, in all numerical studies, n1 and n2 are set
to be equal and hence the bias-corrected RLDA is identical to RLDA. From
Theorem 3.1, given the ratios y1, y2, we know the misclassification error rate
depends on Rk(λ), k = 1, 2 and Hk(λ), k = 1, 2 where Rk(λ) is determined by
the population covariance Σ and Hk(λ) involves the structure between μ1 − μ2
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and Σ. Write the spectral decomposition of Σ as

Σ =

p∑
i=1

λiviv
T

i ,

where λ1 ≥ · · · ≥ λp > 0 are the eigenvalues of Σ and v1, · · · , vp are the cor-
responding eigenvectors. To be specific, Rk(λ) is determined by the eigenvalues
λ1, · · · , λp while Hk(λ) involves the eigenvalues as well as the inner products
vT

k (μ1 − μ2), k = 1, · · · , p. Using the spectral decomposition of Σ, we have

(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−1Σ−1/2(μ1 − μ2) =

p∑
i=1

1

λi + t
(vT

i (μ1 − μ2))
2,

(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−2Σ−1/2(μ1 − μ2) =

p∑
i=1

λi

(λi + t)2
(vT

i (μ1 − μ2))
2.

In what following, we consider three cases. Firstly, we consider Σ = σ2Ip where
all the eigenvalues are identical, and the results would depends on

∑p
i=1(v

T
i (μ1−

μ2))
2 = (μ1 − μ2)

T(μ1 − μ2) only. Secondly, we consider three isotropic cases
where μ1 − μ2, Σ

−1/2(μ1 − μ2) or Σ
−1(μ1 − μ2) has nonzero projections on all

the eigenvectors of Σ. Consequently, we would have vT
i (μ1 − μ2) �= 0 for all i.

Lastly, we consider the case where μ1 − μ2 is parallel to one of the eigenvectors
of Σ, and hence only one of the vT

i (μ1 − μ2), i = 1, · · · , p is nonzero.

4.1. Σ = σ2Ip

We first study the case where Σ has a simple form Σ = σ2Ip. It can be easily
seen that (C2) and (C3) hold with H being a degenerated distribution function
at σ2 and

h1(t) =
σ2

σ2 + t
, h2(t) =

σ4

(σ2 + t)2
.

By the Stieltjes transformation of the MP law (see Bai and Silverstein, 2010,
Section 3.3), we have,

m0(−λ) =

√
(σ2 − yσ2 + λ)2 + 4yλσ2 − (σ2 − yσ2 + λ)

2yλσ2
,

m′
0(−λ) =

λ(1 + y) + σ2(1− y)2

2yλ2
√
(σ2 − yσ2 + λ)2 + 4yλσ2

− 1− y

2yλ2
.

Together with the fact that R1(λ) = σ2m0(−λ) and R2(λ) = σ4m′
0(−λ), we

would have

Rc
RLDA(λ)

p→

Φ

{
− Δ2

2
√
Δ2 + y1 + y2

√
2
√

(1 + y + λσ−2)2 − 4y√
(1 + y + λσ−2)2 − 4y + (1 + y + λσ−2)

}
.
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Fig 1. Simulations for independent cases where Σ = Ip, n1 = n2 = 100, μ2 = (0, · · · , 0) and
μ1 = (2.56, 0, · · · , 0). The Bayes misclassification error rate is 10%.

We remark that Corollary 3.3 of Dobriban and Wager (2018) presents the same
result for a special case where y = 1 and σ2 = 1. Here in our results we explicitly
describe the effect of dimension and the tuning parameter λ for general y and
σ2. Figure 1 show the simulation results for y = 0.5, y = 1 and y = 2 from which
we can see the empirical results and the theoretical conclusions are consistent.

4.2. Isotropic case

Given the eigenvectors v1, · · · , vp, we consider three different isotropic cases

μ1 − μ2 ∝ 1
√
p
(v1 + · · ·+ vp), (4.1)

Σ−1/2(μ1 − μ2) ∝
1
√
p
(v1 + · · ·+ vp), (4.2)

Σ−1(μ1 − μ2) ∝
1
√
p
(v1 + · · ·+ vp). (4.3)

In statistics, these cases have different implications. (4.1) implies that the direct
differences between the two population means, (4.2) indicates the differences
after covariance standardization, and (4.3) implies that the true classification
weights. Similar mean-covariance structures also arise in Cai, Liu and Xia (2014)
for the testing problem H0 : μ1 = μ2. In random matrix theory, Bai, Miao
and Pan (2007) considered (4.1) when studying the asymptotic property of the
eigenvectors and more details can be found in their Remark 1.

To fix the Bayes error rate, we set Δ2 = (μ1 − μ2)
TΣ−1(μ1 − μ2) to be a

constant and for each case, we list the results as follows.

• Case (4.1):

μ1 − μ2 =
Δ√∑p
i=1 λ

−1
i

(v1 + · · ·+ vp),
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h1(t) =

{∫
1

x
dH(x)

}−1 ∫
1

x+ t
dH(x),

h2(t) =

{∫
1

x
dH(x)

}−1 ∫
x

(x+ t)2
dH(x),

H1(λ) =

{∫
1

x
dH(x)

}−1

m0(−λ),

H2(λ) =

{∫
1

x
dH(x)

}−1
m0(−λ)− λm′

0(−λ)

{1− y[1− λm0(−λ)]}2 .

• Case (4.2):

μ1 − μ2 =
Δ
√
p
(
√

λ1v1 + · · ·+
√

λpvp),

h1(t) =

∫
x

x+ t
dH(x), h2(t) =

∫
x2

(x+ t)2
dH(x),

H1(λ) = R1(λ), H2(λ) = R2(λ).

• Case (4.3):

μ1 − μ2 =
Δ√∑p
i=1 λi

(λ1v1 + · · ·+ λpvp),

h1(t) =

{∫
xdH(x)

}−1 ∫
x2

x+ t
dH(x),

h2(t) =

{∫
xdH(x)

}−1 ∫
x3

(x+ t)2
dH(x),

H1(λ) =
1

1− y[1− λm0(−λ)]
−
{∫

xdH(x)

}−1
λ− λ2m0(−λ)

{1− y[1− λm0(−λ)]}2 ,

H2(λ) = (1 +R1(λ))
2

{
1− λR1(λ)∫

xdH(x)

}
+

{
y − λ+ 2yλR1(λ)∫

xdH(x)

}
R2(λ).

From the Bayesian perspective, we can use random effects that assume the
true parameters are random to describe isotropic cases. For example, Dobriban
and Wager (2018) considered random weights:

μ1 − μ2
d
= (Z1, · · · , Zp)

T,

where Z1, · · · , Zp are i.i.d random variables. Under their setting,

(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−1Σ−1/2(μ1 − μ2)

a.s.→ c1

∫
1

x+ t
dH(x),

(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−2Σ−1/2(μ1 − μ2)

a.s.→ c2

∫
x

(x+ t)2
dH(x),
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and then Hk(λ) have similar forms as our case (4.1). Similarly, we can also
consider the random effects

Σ−1/2(μ1 − μ2)
d
= (Z1, · · · , Zp)

T, or Σ−1(μ1 − μ2)
d
= (Z1, · · · , Zp)

T,

and the results would exactly correspond to the cases (4.2) and (4.3), respec-
tively.

4.3. Sparse case

In this subsection, we consider the case where

μ1 − μ2 ∝ vk.

We view this case as a sparse case since μ1 − μ2 ∝ (0, · · · , 0, 1, 0, · · · , 0) under
the basis vectors {v1, · · · , vp}. When μ1 − μ2 ∝ vk, we have Σ−1(μ1 − μ2) ∝
vk, indicating that the optimal linear classification direction is parallel to the
eigenvector vk. We consider μ1 − μ2 = Δ

√
λivi. Then

Δ−2(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−1Σ−1/2(μ1 − μ2) =

λi

λi + t
,

Δ−2(μ1 − μ2)
TΣ−1/2(Ip + tΣ−1)−2Σ−1/2(μ1 − μ2) =

λ2
i

(λi + t)2
.

When λi has a limit which we still denote as λi, we have

h1(t) =
λi

λi + t
, h2(t) =

λ2
i

(λi + t)2
,

and

H1(λ) =
1

1− y + yλm0(−λ) + λ/λi
,

H2(λ) =
1

{1− y + yλm0(−λ) + λ/λi}2{
1

1− y(1− λm0(−λ))
− y(λm0(−λ)− λ2m′

0(−λ))

(1− y(1− λm0(−λ)))2

}
.

To illustrate the results, we consider a toy example Σ = (ρ|i−j|)p×p with |ρ| < 1.
The covariance matrix Σ is related to a stationary AR(1) process and is also
used in Bickel and Levina (2004) for LDA. By the Szegö theorem, we have,

λk ≈ 1− ρ2

1 + ρ2 − 2ρ cos kπ
p+1

.

Thus, λ1 → (1+ρ)/(1−ρ), λp → (1−ρ)/(1+ρ) and λ[p/2] → (1−ρ2)/(1+ρ2).
Figure 2 show the corresponding eigenvectors and Figure 3 presents the results
for μ1 − μ2 ∝ vk, k = 1, 50, 100. We can see from Figure 3 that the dimension
effects have different performances for each vk and the tuning parameter λ brings
in different effects on the misclassification error rate. For all the simulations, the
theoretical misclassification rates are consistent with the empirical ones.
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Fig 2. The eigenvectors of Σ = (0.5|i−j|)100×100 corresponding to λ1, λ50 and λ100.

Fig 3. The empirical and theoretical misclassification rates for Σ = (0.5|i−j|)100×100 and
n1 = n2 = 100. The line stands for μ1 − μ2 = 4.435 · v1; the dashed line is the results for
μ1 − μ2 = 2.005 · v50 and the dotted line is the one for μ1 − μ2 = 1.480 · v100. For all the
cases, the Bayes error rate is 10%.

5. Simulations

In this section, we conduct several simulations to illustrate the results. We con-
sider the covariance matrix structures as follows:

Σ = (ρ|i−j|)p×p,

where ρ reflects the correlations between the covariates and |ρ| < 1. For all of
our simulations, we let μ2 = 0 and rescale μ1 to control the Bayes error rate as
10%. Here we fix the sample size n = 200 and all the results are based on 100
replications.
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5.1. Bias correction for LDA and RLDA

When n1 �= n2, we propose a bias correction procedure to the intercept part for
LDA and RLDA. Specially, we have

δcLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2) +

n− 2

n− p− 3

( p

2n1
− p

2n2

)
> 0

}
,

and

δcRLDA(X) = I

{(
X − X̄1 + X̄2

2

)T

(Sn + λIp)
−1(X̄1 − X̄2)

+

(
p

2n1
− p

2n2

)
1− 1

p tr(
1
λSn + Ip)

−1

1− p
n−2 + 1

n−2 tr(
1
λSn + Ip)−1

> 0

}
, λ > 0.

Our first simulation is to show the performance of the bias-corrected LDA and
RLDA. We fix n = 200 and let n1 rang from 10 to 190. We set λ as 0 (which
corresponds to LDA), 0.1 and 0.5 for p < n and 0.1, 0.5 and 1 when p ≥ n. The
data dimension p is set to be 100, 200 or 400. As a benchmark, we also include
the linear classifier with optimal constant

αr = −1

2
(μ1 + μ2)

T(Sn + λIp)
−1(X̄1 − X̄2),

which is denoted by O-RLDA. We set Σ = (0.5|i−j|)p×p and μ1 ∝ (1, 0, · · · , 0),
and all the simulation results are plotted in Figure 4. We can observe that
the bias corrected RLDA (C-RLDA) achieves less misclassification rate than
the original RLDA and also the performance of C-RLDA is quite close the one
of RLDA with optimal constants. Specially, the first figure of Figure 4 is the
results for LDA where p = 100, n = 200. We also conduct simulations for more
covariance and mean structures and the results follow similar patterns.

5.2. Dimension effect of LDA, naive Bayes and RLDA

In this work, our main focus is to explicitly derive the dimension effects for LDA
and RLDA. In detail, the asymptotic misclassification rate of LDA depends on
the ratios p/n1, p/n2 and the one of RLDA also involves the structure of the
covariance the means. More details can be found in Proposition 2.1 and 3.2. In
Remark 2.1, we derive the dimension effect for naive Bayes. Here, we conduct a
comprehensive comparison for LDA, naive Bayes and RLDA. For μ1, we consider
three scenarios:

Case 1: μ1 ∝ (1, 0, · · · , 0);
Case 2: 10 % elements of μ1 are from N(0, 1);
Case 3: all the elements of μ1 are from N(0, 1);
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Fig 4. Simulations for RLDA, bias corrected RLDA (C-RLDA) and RLDA with optimal
constant (O-RLDA). The Bayes misclassification error rate is 10%.

and for each case we still rescale μ1 to control the Bayes error rate to be 10%.
All the results are presented in Figure 5. For each heat map of the error rate,
the horizontal is the data dimension p ranging from 10 to 190 for LDA or 400
for naive Bayes and RLDA. The vertical is the correlation ρ ranging from -0.9
to 0.9. When the data dimension p is increased, the misclassification rates for
all the classifiers also increases which is well understood. When the correlations
|ρ| ranges from 0 to 0.9, the performance of LDA almost has no changes and
Naive Bayes gets worse and worse. For RLDA, the performance is affected by
|ρ|, but is less sensitive than naive Bayes.
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Fig 5. Heat maps of the error rates for LDA, Naive Bayes and RLDA with λ = 0.5 where
the horizontal is the data dimension p ranging from 10 to 190 or 400 and the vertical is the
correlation ρ ranging from -0.9 to 0.9. The Bayes misclassification error rate is 10%.

5.3. RLDA and sparse LDA

In this part, we compare RLDA with the LPD (Cai and Liu, 2011) which is
one of sparse LDA methods. The tuning parameters are chosen by 5-folds cross
validation. We also include the RLDA where λn is estimated by our method in
Section 3.3 and the naive Bayes. In summary, we have four methods NB, LPD,
RLDA-CV and RLDA. We control the sparsity level as

Σ−1(μ1 − μ2) ∝ (rnorm(s), 0, · · · , 0);
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Fig 6. Misclassification rates for naive Bayes, LPD and RLDA with cross validation and
estimated λ. The horizontal is the number of non-zeros of Σ−1(μ1 − μ2).

with rnorm(s) represent s random variables generated independently from
N(0, 1), and in this study s is increased from 5 to p. Figure 6 presents the
simulation results. We observe that when s is small, LPD is outstanding with
the least error rates and the performance becomes poorer and poorer when s
increases, while RLDA and NB are robust to different s. Furthermore, we find
out that the version with estimated tuning parameter is comparable to the one
with cross validation. Overall, we claim that LPD is applicable to the sparse
cases while RLDA is favorable to the dense cases.
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6. Appendix

Lemma 6.1. Assuming Wm ∼ Wishart(Ip,m) where m > p+ 7, for any non-
random unit vector e ∈ R

p, we have

E(eTW−1
m e) =

1

m− p− 1
, (6.1)

E(eTW−2
m e) =

m− 1

(m− p)(m− p− 1)(m− p− 3)
, (6.2)

and

E{(eTW−1
m e)2} =

1

(m− p− 1)(m− p− 3)
, (6.3)

E{(eTW−2
m e)2} =

m2

(m− p)6

{
1 +O

( 1

m− p

)}
. (6.4)
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Proof of Lemma 6.1. For any non-random orthogonal matrix U , we have

UTWmU ∼ Wishart(Ip,m),

and

eTW−1
m e

d
= (Ue)TW−1

m Ue, eTW−2
m e

d
= (Ue)TW−2

m Ue.

Setting Ue = (1, 0, · · · , 0)T yields

eTW−1
m e

d
= (W−1

m )11, eTW−2
m e

d
= (W−2

m )11 =

p∑
i=1

(W−1
m )21i.

Therefore, we can get the results (6.1)-(6.3) by von Rosen (1988) or the Propo-
sition 2.1 of Cook and Forzani (2011). The order of (6.4) is derived based on
Theorem 2 of Matsumoto (2012) and properties of the Weingarten function
(Collins and Śniady, 2006) which involves lengthy and tedious calculations and
is hence neglected.

Lemma 6.2. Assuming Y ∼ N(0, Ip) and Y is independent with Sn, we have

1

p
Y TBn(λ)Y

p→ R1(λ), and
1

p
Y TB2

n(λ)Y
p→ R2(λ),

where Bn(λ) and R1(λ), R2(λ) are defined as in (3.1) and Theorem 3.1 respec-
tively.

Proof of Lemma 6.2. Let ‖ · ‖ be the matrix operator norm. By direct calcula-
tions can have,

E
{1
p
Y TBn(λ)Y − 1

p
trBn(λ)

}
= 0,

E
{1
p
Y TBn(λ)Y − 1

p
trBn(λ)

}2

= E
2

p2
trB2

n(λ) ≤
2‖Σ‖2
λ2p

→ 0,

E
{1
p
Y TB2

n(λ)Y − 1

p
trB2

n(λ)
}
= 0,

E
{1
p
Y TB2

n(λ)Y − 1

p
trB2

n(λ)
}2

= E
2

p2
trB4

n(λ) ≤
2‖Σ‖4
λ4p

→ 0.

Here, we used the fact that

Bn(λ) = Σ
1
2 (Sn + λI)−1Σ

1
2

d
= (

1

n− 2
Wn + λΣ−1)−1,

where Wn ∼ Wishart(Ip, n− 2) is semidefinite and hence

‖Bn(λ)‖ ≤ 1

λmin(λΣ−1)
=

‖Σ‖
λ

.
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Consequently we have,

1

p
Y TBn(λ)Y =

1

p
trBn(λ) + op(1),

1

p
Y TB2

n(λ)Y =
1

p
trB2

n(λ) + op(1).

Together with Theorem 2 of Wang et al. (2015) we have,

1

p
trBn(λ)

p→ R1(λ),
1

p
trB2

n(λ)
p→ R2(λ). (6.5)

The proof is completed.

Lemma 6.3. Under the conditions (C1)-(C3),

μTBn(λ)μ
p→ Δ2H1(λ), μTB2

n(λ)μ
p→ Δ2H2(λ).

Proof of Lemma 6.3. By El Karoui and Holger (2011) we have,

μTBn(λ)μ− μTΣ
1
2 (γnΣ+ λIp)

−1Σ
1
2μ

p→ 0,

μTB2
n(λ)μ− (1 + εn)μ

TΣ
1
2 (γnΣ+ λIp)

−1Σ(γnΣ+ λIp)
−1Σ

1
2μ

p→ 0,

where

γn =
1

1 + 1
n−2 trBn(λ)

, εn =
γ2
n

n− 2
trB2

n(λ).

From (6.5) we have

γn
p→ 1

1 + yR1(λ)
= 1− y(1− λm0(−λ))

def
= γ,

εn
p→ yR2(λ)

(1 + yR1(λ))2
=

y(1− λm0(−λ))

1− y(1− λm0(−λ))
− y(λm0(−λ)− λ2m′

0(−λ))

(1− y(1− λm0(−λ)))2
def
= ε.

Consequently it can be routinely shown that

μTBn(λ)μ− μTΣ
1
2 (γΣ+ λIp)

−1Σ
1
2μ

p→ 0,

μTB2
n(λ)μ− 1 + ε

γ2

{
μT

(
Ip +

λ

γ
Σ−1

)−2

μ
}

p→ 0,

By Condition (C3),

μTΣ
1
2 (γΣ+ λIp)

−1Σ
1
2μ = γ−1μT

(
Ip +

λ

γ
Σ−1

)−1

μ → γ−1h1

(λ
γ

)
Δ2,

and

1 + ε

γ2

{
μT

(
Ip +

λ

γ
Σ−1

)−2

μ
}
→ 1 + ε

γ2
h2

(λ
γ

)
Δ2.

The proof is completed.
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6.1. Proof of Theorem 2.1

By the properties of Gaussian distributions,

X̄1
d
=

1√
n1

Σ
1
2Y1 + μ1, X̄2

d
=

1√
n2

Σ
1
2Y2 + μ2,

where Y1, Y2 ∼ N(0, Ip) and Y1, Y2 are independent. We then have,

2
(
μ1 −

X̄1 + X̄2

2

)T

Σ−1(X̄1 − X̄2) = Δ2 − 2√
n2

μTY2 +
1

n2
Y T

2 Y2 −
1

n1
Y T

1 Y1

p→ Δ2 + y2 − y1,

and

−2
(
μ2 −

X̄1 + X̄2

2

)T

Σ−1(X̄1 − X̄2) = Δ2 +
2√
n1

μTY1 +
1

n1
Y T

1 Y1 −
1

n2
Y T

2 Y2

p→ Δ2 + y1 − y2,

where μ is defined as in (3.1). For the denominator,

(X̄1 − X̄2)
TΣ−1(X̄1 − X̄2)

=Δ2 +
1

n1
Y T

1 Y1 +
1

n2
Y T

2 Y2 + 2μT

( 1√
n1

Y1 −
1√
n2

Y2

)
− 2√

n1n2
Y T

1 Y2

p→Δ2 + y1 + y2.

By the Slutsky’s theorem and the continuous mapping theorem, the proof is
completed.

6.2. Proof of Theorem 2.2

Write

Sn
d
=

1

n− 2
Σ

1
2WnΣ

1
2 ,

where Wn ∼ Wishart(Ip, n− 2). Then

RLDA2
d
= Φ

( −μTW−1
n μ

2
√
μTW−2

n μ

)
.

By Lemma 6.1, when p/n → y ∈ (0, 1), we have

nEμTW−1
n μ =

nΔ2

n− p− 3
→ Δ2

1− y
,

n2EμTW−2
n μ =

n2(n− 3)Δ2

(n− p− 2)(n− p− 3)(n− p− 5)
→ Δ2

(1− y)3
,
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and

V ar(nμTW−1
n μ) = Δ4

{ n2

(n− p− 3)(n− p− 5)
− n2

(n− p− 3)2

}
→ 0,

V ar(n2μTW−2
n μ)

= Δ4
{ n6

(n− p)6
(1 + o(1))− n4(n− 3)2

(n− p− 2)2(n− p− 3)2(n− p− 5)2

}
→ 0.

Therefore,

nμTW−1
n μ

p→ Δ2

1− y
, n2μTW−2

n μ
p→ Δ2

(1− y)3
.

The proof is completed.

6.3. Proof of Theorem 2.3

We have

X̄1
d
=

1√
n1

Σ
1
2Y1 + μ1, X̄2

d
=

1√
n2

Σ
1
2Y2 + μ2, Sn

d
=

1

n− 2
Σ

1
2WnΣ

1
2 ,

where Y1, Y2 ∼ N(0, Ip), Wn ∼ Wishart(Ip, n− 2) and Y1, Y2,Wn are indepen-
dent. Then

−
(
μ1 −

X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2)

d
=− n− 2

2

(
μ− 1√

n1
Y1 −

1√
n2

Y2

)T

W−1
n

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)

=− n− 2

2

(
μ− 1√

n2
Y2

)T

W−1
n

(
μ− 1√

n2
Y2

)
+

n− 2

2n1
Y T

1 W−1
n Y1.

By Lemma 6.1, we have,

EY T

1 W−1
n Y1 =

1

n− p− 3
EY T

1 Y1 =
p

n− p− 3
→ y

1− y
,

and

V ar(Y T

1 W−1
n Y1) =E(Y T

1 W−1
n Y1)

2 − (EY T

1 W−1
n Y1)

2

=
E(Y T

1 Y1)
2

(n− p− 3)(n− p− 5)
− p2

(n− p− 3)2

=
p2 + 2p

(n− p− 3)(n− p− 5)
− p2

(n− p− 3)2
→ 0.

Similarly,

E(n− 2)
(
μ− 1√

n2
Y2

)T

W−1
n

(
μ− 1√

n2
Y2

)
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=
n− 2

n− p− 3
E
(
μ− 1√

n2
Y2

)T(
μ− 1√

n2
Y2

)

=
n− 2

n− p− 3

(
Δ2 +

p

n2

)
→ 1

1− y
(Δ2 + y2),

and

V ar
{
(n− 2)

(
μ− 1√

n2
Y2

)T

W−1
n

(
μ− 1√

n2
Y2

)}

=
(n− 2)2E{

(
μ− 1√

n2
Y2

)T(
μ− 1√

n2
Y2

)
}2

(n− p− 3)(n− p− 5)
−

(n− 2)2
(
Δ2 + p

n2

)2
(n− p− 3)2

=
(n− 2)2

(
Δ4 + (2p+4)Δ2

n2
+ p2+2p

n2
2

)
(n− p− 3)(n− p− 5)

−
(n− 2)2

(
Δ2 + p

n2

)2
(n− p− 3)2

→ 0.

Thus,

−
(
μ1 −

X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2)

d
=− n− 2

2

(
μ− 1√

n2
Y2

)T

W−1
n

(
μ− 1√

n2
Y2

)
+

n− 2

2n1
Y T

1 W−1
n Y1

p→− 1

2(1− y)
(Δ2 + y2) +

y1
2y

y

1− y
= −Δ2 − y1 + y2

2(1− y)
, (6.6)

and by similar arguments, we have

(
μ2 −

X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2)

d
=− n− 2

2

(
μ+

1√
n1

Y1

)T

W−1
n

(
μ+

1√
n1

Y1

)
+

n− 2

2n2
Y T

2 W−1
n Y2

p→− Δ2 + y1 − y2
2(1− y)

. (6.7)

For the denominator, we have

(X̄1 − X̄2)
TS−1

n ΣS−1
n (X̄1 − X̄2)

d
=(n− 2)2

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)T

W−2
n

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)
.

By Lemma 6.1, we have,

E(n− 2)2
(
μ+

1√
n1

Y1 −
1√
n2

Y2

)T

W−2
n

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)

=
(n− 2)2(n− 3)E

(
μ+ 1√

n1
Y1 − 1√

n2
Y2

)T(
μ+ 1√

n1
Y1 − 1√

n2
Y2

)
(n− p− 2)(n− p− 3)(n− p− 5)

=
(n− 2)2(n− 3)

(
Δ2 + p

n1
+ p

n2

)
(n− p− 2)(n− p− 3)(n− p− 5)

→ Δ2 + y1 + y2
(1− y)3

,
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and

E
{
(n− 2)2

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)T

W−2
n

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)}2

=
{ n6

(n− p)6
+ o(1)

}
E
{(

μ+
1√
n1

Y1 −
1√
n2

Y2

)T(
μ+

1√
n1

Y1 −
1√
n2

Y2

)}2

=
{ n6

(n− p)6
+ o(1)

}{(
Δ2 +

p

n1
+

p

n2

)2
+ o(1)

}
→ (Δ2 + y1 + y2)

2

(1− y)6
.

Thus,

(X̄1 − X̄2)
TS−1

n ΣS−1
n (X̄1 − X̄2)

p→ Δ2 + y1 + y2
(1− y)3

. (6.8)

Combing (6.6), (6.7) and (6.8), the proof is completed.

6.4. Proof of Proposition 2.1

With some simple calculation it can be shown that the misclassification rate of
δcLDA(X) is

Rc
LDA =

1

2

2∑
j=1

Φ

⎛
⎝ (−1)j

[
(μj − X̄1+X̄2

2 )TS−1
n (X̄1 − X̄2) + α

]
√
(X̄1 − X̄2)TS

−1
n ΣS−1

n (X̄1 − X̄2)

⎞
⎠ .

where α = n−2
n−p−3

(
p

2n1
− p

2n2

)
. Note that from (6.6) and the fact that α → y1−y2

2(1−y) ,

we have

−
[(

μ1 −
X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2) + α

]
p→ −Δ2 − y1 + y2

2(1− y)
− y1 − y2

2(1− y)

= − Δ2

2(1− y)
.

Similarly, by (6.7) we have[(
μ2 −

X̄1 + X̄2

2

)T

S−1
n (X̄1 − X̄2) + α

]
p→ − Δ2

2(1− y)
.

Combining with (6.8) we have

Rc
LDA

p→ Φ

(
− Δ2

2(1− y)

(1− y)3/2√
Δ2 + y1 + y2

)

= Φ

(
− Δ2

2
√
Δ2 + y1 + y2

√
1− y

)
.
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6.5. Proof of Theorem 3.1

Write

T1n = (2μ1 − X̄1 − X̄2)
T(Sn + λIp)

−1(X̄1 − X̄2),

T2n = −(2μ2 − X̄1 − X̄2)
T(Sn + λIp)

−1(X̄1 − X̄2),

T3n = (X̄1 − X̄2)
T(Sn + λIp)

−1Σ(Sn + λIp)
−1(X̄1 − X̄2).

Since

X̄1
d
=

1√
n1

Σ
1
2Y1 + μ1, X̄2

d
=

1√
n2

Σ
1
2Y2 + μ2,

where Y1, Y2 ∼ N(0, Ip) and Y1, Y2, Sn are independent, we have

T1n
d
=μTBn(λ)μ− 2√

n2
μTBn(λ)Y2 +

1

n2
Y T

2 Bn(λ)Y2 −
1

n1
Y T

1 Bn(λ)Y1,

T2n
d
=μTBn(λ)μ+

2√
n1

μTBn(λ)Y1 +
1

n1
Y T

1 Bn(λ)Y1 −
1

n2
Y T

2 Bn(λ)Y2,

T3n
d
=
(
μ+

1√
n1

Y1 −
1√
n2

Y2

)T

B2
n(λ)

(
μ+

1√
n1

Y1 −
1√
n2

Y2

)
d
=μTB2

n(λ)μ+ 2

√
1

n1
+

1

n2
μTB2

n(λ)Y1 +
( 1

n1
+

1

n2

)
Y T

1 B2
n(λ)Y1.

For the leading terms, by Lemmas 6.2 and 6.3,

1

nj
Y T

j Bn(λ)Yj
p→ yjR1(λ), j = 1, 2

( 1

n1
+

1

n2

)
Y T

1 B2
n(λ)Y1

p→ (y1 + y2)R2(λ)

μTBn(λ)μ
p→ H1(λ)Δ

2, μTB2
n(λ)μ

p→ H2(λ)Δ
2.

For the cross sectional terms,

E
{ 1
√
nj

μTBn(λ)Yj

}2

=
1

nj
EμTB2

n(λ)μ ≤ Δ2‖Σ‖2
njλ2

→ 0,

and similarly,

E
{ 1√

n
μTB2

n(λ)Y1

}2

=
1

n
EμTB4

n(λ)μ ≤ Δ2‖Σ‖4
njλ4

→ 0.

Thus,

1√
n1

μTBn(λ)Y1,
1√
n2

μTBn(λ)Y2,

√
1

n1
+

1

n2
μTB2

n(λ)Y1
p→ 0.

Above all,

T1n
p→ H1(λ)Δ

2 + (y2 − y1)R1(λ), T2n
p→ H1(λ) + (y1 − y2)R1(λ),

T3n
p→ H2(λ)Δ

2 + (y1 + y2)R2(λ).

By the continuous mapping theorem, the proof is completed.
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6.6. Proof of Proposition 3.1

When

h1(t) =

∫
x

x+ t
dH(x), h2(t) =

∫
x

(x+ t)2
dH(x),

by the definitions of H1(λ) and H2(λ), we have

H1(λ) =(1 + yR1(λ))h1(λ(1 + yR1(λ))) =

∫
1

λ
x + 1

1+yR1(λ)

dH(x),

and

H2(λ) ={(1 + yR1(λ))
2 + yR2(λ)}

∫
x2

(x+ λ(1 + yR1(λ))2)
dH(x)

=

∫ 1 + yR2(λ)
(1+yR1(λ))2

(λx + 1
1+yR1(λ)

)2
dH(x).

Compared with Lemma 2 of Wang et al. (2015), H1(λ) = R1(λ) and H2(λ) =
R2(λ). The convergence of misclassification rate is a direct conclusion of Theo-
rem 3.1. The proof is completed.
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Collins, B. and Śniady, P. (2006). Integration with respect to the Haar
measure on unitary, orthogonal and symplectic group. Communications in
Mathematical Physics 264 773–795. MR2217291

Cook, R. D. and Forzani, L. (2011). On the mean and variance of the gen-
eralized inverse of a singular Wishart matrix. Electronic Journal of Statistics
5 146–158. MR2786485

Dobriban, E. and Wager, S. (2018). High-dimensional asymptotics of pre-
diction: Ridge regression and classification. Annals of Statistics 46 247–279.
MR3766952

Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrim-
ination methods for the classification of tumors using gene expression data.
Journal of the American Statistical Association 97 77–87. MR1963389

El Karoui, N. (2008). Spectrum estimation for large dimensional covariance
matrices using random matrix theory. Annals of Statistics 36 2757–2790.
MR2485012

El Karoui, N. (2010). High-dimensionality effects in the Markowitz problem
and other quadratic programs with linear constraints: Risk underestimation.
Annals of Statistics 38 3487–3566. MR2766860

El Karoui, N. and Holger, K. (2011). Geometric sensitivity of random ma-
trix results: consequences for shrinkage estimators of covariance and related
statistical methods. arXiv:1105.1404.

Fan, J., Feng, Y. and Tong, X. (2012). A road to classification in high
dimensional space: the regularized optimal affine discriminant. Journal of the
Royal Statistical Society, Series B 74 745–771. MR2965958

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the
American Statistical Association 84 165–175. MR0999675

Guo, Y., Hastie, T. and Tibshirani, R. (2007). Regularized linear discrim-
inant analysis and its application in microarrays. Biostatistics 8 86–100.

http://www.ams.org/mathscinet-getitem?mr=2896857
http://www.ams.org/mathscinet-getitem?mr=2847973
http://www.ams.org/mathscinet-getitem?mr=3164870
http://www.ams.org/mathscinet-getitem?mr=2507156
http://www.ams.org/mathscinet-getitem?mr=2896840
http://www.ams.org/mathscinet-getitem?mr=2039928
http://www.ams.org/mathscinet-getitem?mr=2217291
http://www.ams.org/mathscinet-getitem?mr=2786485
http://www.ams.org/mathscinet-getitem?mr=3766952
http://www.ams.org/mathscinet-getitem?mr=1963389
http://www.ams.org/mathscinet-getitem?mr=2485012
http://www.ams.org/mathscinet-getitem?mr=2766860
http://www.ams.org/mathscinet-getitem?mr=2965958
http://www.ams.org/mathscinet-getitem?mr=0999675


Dimension effect of LDA and RLDA 2741

Hand, D. (2006). Classifier technology and the illusion of progress. Statistical
Science 21 1–14. MR2275965

Huang, S., Tong, T. and Zhao, H. (2010). Bias-Corrected Diagonal Discrim-
inant Rules for High-Dimensional Classification. Biometrics 66 1096–1106.
MR2758497

Jiang, T. and Yang, F. (2013). Central limit theorems for classical likelihood
ratio tests for high-dimensional normal distributions. Annals of Statistics 41
2029–2074. MR3127857

Kubokawa, T. and Srivastava, M. S. (2008). Estimation of the precision ma-
trix of a singular Wishart distribution and its application in high-dimensional
data. Journal of Multivariate Analysis 99 1906–1928. MR2466543
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