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Abstract: Heterogeneity is an unwanted variation when analyzing aggre-
gated datasets from multiple sources. Though different methods have been
proposed for heterogeneity adjustment, no systematic theory exists to jus-
tify these methods. In this work, we propose a generic framework named
ALPHA (short for Adaptive Low-rank Principal Heterogeneity Adjustment)
to model, estimate, and adjust heterogeneity from the original data. Once
the heterogeneity is adjusted, we are able to remove the batch effects and
to enhance the inferential power by aggregating the homogeneous residuals
from multiple sources. Under a pervasive assumption that the latent het-
erogeneity factors simultaneously affect a fraction of observed variables, we
provide a rigorous theory to justify the proposed framework. Our frame-
work also allows the incorporation of informative covariates and appeals to
the ‘Bless of Dimensionality’. As an illustrative application of this generic
framework, we consider a problem of estimating high-dimensional precision
matrix for graphical model inference based on multiple datasets. We also
provide thorough numerical studies on both synthetic datasets and a brain
imaging dataset to demonstrate the efficacy of the developed theory and
methods.
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1. Introduction

Aggregating and analyzing heterogeneous data is one of the most fundamental
challenges in scientific data analysis. In particular, the intrinsic heterogeneity
across multiple data sources violates the ideal ‘independent and identically dis-
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tributed’ sampling assumption and may produce misleading results if it is ig-
nored. For example, in genomics, data heterogeneity is ubiquitous and referred
to as either ‘batch effect’ or ‘lab effect’. As characterized in [29], microarray
gene expression data obtained from different labs on different processing dates
may contain systematic variability. Furthermore, [30] pointed out that hetero-
geneity across multiple data sources may be caused by unobserved factors that
have confounding effects on the variables of interest, generating spurious sig-
nals. In finance, it is also known that asset returns are driven by varying market
regimes and economy status, which can be regarded as a temporal batch effect.
Therefore, to properly analyze data aggregated from multiple sources, we need
to carefully model and adjust the unwanted variations.

Modeling and estimating heterogeneity effect is challenging for two reasons.
(i) Typically, we can only access a limited number of samples from an individual
group, given the high cost of biological experiments, technological constraint
or fast economy regime switching. (ii) The dimensionality can be much larger
than the total aggregated number of samples. The past decade has witnessed
the development of many methods for adjusting batch effect in high throughput
genomics data. See, for example, [43], [2], [30], and [25]. Though progresses have
been made, most of the aforementioned papers focus on the practical side and
none of them has a systematic theoretical justification. In fact, most of these
methods are developed in a case-by-case fashion and are only applicable to
certain problem domains. Thus, there is still a gap that exists between practice
and theory.

To bridge this gap, we propose a generic theoretical framework to model,
estimate, and adjust heterogeneity across multiple datasets. Formally, we assume
the data come from m different sources: the ith data source contributes ni

samples, each having p measurements such as gene expressions of an individual
or stock returns of a day. To explicitly model heterogeneity, we assume that
the batch-specific latent factor f it influence the observed data Xi

jt in batch i
(j indexes variables; t indexes samples) as in the approximate factor model:

Xi
jt = λi

j

′
f it + ui

jt, 1 ≤ j ≤ p, 1 ≤ t ≤ ni, 1 ≤ i ≤ m, (1.1)

where λi
j is an unknown factor loading for variable j and ui

jt is a true un-

corrupted signal. We consider a random loading λi
j . The linear term λi

j

′
f it

models the heterogeneity effect. We assume that f it is independent of ui
jt and

ui
t = (u1t, . . . , upt)

′ shares the same common distribution with mean 0 and co-
variance Σp×p across all data sources. In the matrix-form model, (1.1) can be
written as

Xi = ΛiFi′ +Ui, (1.2)

where Xi is a p× ni data matrix in the ith batch, Λi is a p×Ki factor loading

matrix with λi
j

′
in the jth row, Fi is an ni × Ki factor matrix and Ui is a

signal matrix of dimension p × ni. We allow the number of latent factors Ki

to depend on batch i. We emphasize here that within one batch, our model is
homogeneous. Heterogeneity in this paper refers to that the batch effect terms
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{ΛiFi′}mi=1 are different across different groups i = 1, ...,m, which are unwanted
variations in our study.

To see more clearly on how model (1.2) characterizes the heterogeneity, note
that for the tth sample Xi

t, which is the tth column of Xi,

var(Xi
t) = Λivar(f it )Λ

i′ +Σ. (1.3)

Therefore, the heterogeneity is carried by the low-rank component Λivar(f it )Λ
i′

in the population covariance matrix of Xi
t. We need to clarify that since we

assume both Fi and Ui have mean zero, heterogeneity mentioned in this pa-
per is for covariance structure as shown above instead of mean structure. In
addition, our model differs from the random/mixed effect regression model
studied in the literature [45, 23, 11] in that our models are factor models
without any factors observed, while the mixed/random effect model is a re-
gression model that requires covariate matrices to estimate the batch-specific
term.

Under a pervasive assumption, the heterogeneity component can be esti-
mated by directly applying principal component analysis (PCA) or Projected-
PCA (PPCA), which is more accurate when there are sufficiently informative

covariates Wi [18]. Let Λ̂iF̂i
′
be the estimated heterogeneity component and

Ûi = Xi
t − Λ̂iF̂i

′
the heterogeneity-adjusted signal, which can be treated as

homogeneous across different datasets and thus can be combined together for
downstream statistical analysis. This whole framework of heterogeneity adjust-
ment is termed ALPHA (short for Adaptive Low-rank Principal Heterogeneity
Adjustment) and is schematically shown in Figure 1.

Fig 1. Schematic illustration of ALPHA: Depending on whether we can find some sufficiently
informative covariates W, we implement principal component analysis (PCA) or Projected-
PCA (PPCA) methods (labeled respectively M1 and M2) to remove the heterogeneity effects
ΛF′ for each batch of data. This decision was made adaptively by a heuristic method. Af-
ter removing the unwanted variations, the homogeneous data {U(i)}mi=1 are aggregrated for
further analysis.
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The proposed ALPHA framework is fully generic and applicable to almost all
kinds of multivariate analysis of the combined, heterogeneity adjusted datasets.
As an illustrative example, in this paper, we focus on the problem of Gaussian
graphical model inference based on multiple datasets. It is a powerful tool to
explore complex dependence structure among variables X = (X1, . . . , Xp)

′. The
sparsity pattern of the precision matrix Ω = Σ−1 encodes the information of
an undirected graph G = (V,E) where V consists of p vertices corresponding to
p variables in X and E describes their dependence relationship. To be specific,
Vi and Vj are linked by an edge if and only if Ωij �= 0 (the (i, j)th element
of Ω), meaning that Xi and Xj are dependent conditioning on the rest of the
variables. For heterogeneous data across m data sources, we need to first adjust
for heterogeneity using the ALPHA framework. The idea of covariate-adjusted
precision matrix estimation has been studied by [7], but they assumed observed
factors and no heterogeneity issue, i.e., m = 1.

A significant amount of literature has focused on the estimation of the preci-
sion matrix Ω for graphical models for homogeneous data. [49] and [20] devel-
oped the Graphical Lasso method using the L1 penalty and [27] and [42] used a
non-convex penalty. Furthermore, [40] and [33] studied the theoretical properties
under different assumptions. Estimating Ω can be equivalently reformulated as
a set of node-wise sparse linear regression that utilizes Lasso or Danzig selector
for each node [35, 48]. To relax the assumption of Gaussian data, [32] and [31]
extend the graphical model to the case of semiparametric Gaussian copula and
transelliptical family. Via the ALPHA framework, we can combine the adjusted

data Ûi to construct an estimator for the precision matrix Ω by the above
methods. Recent works also focus on joint estimation of multiple Gaussian or
discrete graphical models which share some common structure [22, 15, 47, 8, 21].
They are concerned with both the commonality and individual uniqueness of
the graphs. In comparison, ALPHA emphasizes more on heterogeneity-adjusted
aggregation for one single graph.

The rest of the paper is organized as follows. Section 2 lays out a basic
problem setup and necessary assumptions. We model the heterogeneity by a
semiparametric factor model. Section 3 introduces the ALPHA methodology
for heterogeneity adjustment. Two main methods PCA and PPCA will be in-
troduced for adjusting the factor effects under different regimes. A guiding rule
of thumb is also proposed to determine which method is more appropriate. The
heterogeneity-adjusted data will be combined to provide valid graph estimation
in Section 4. The CLIME method of [9] is applied for precision matrix esti-
mation. Synthetic and real data analyses are carried out to demonstrate the
proposed framework in Section 5. Section 6 contains further discussions and all
the proofs are relegated to the appendix.

2. Problem setup

To more efficiently use the external covariate information in removing hetero-
geneity effect, we first present a semiparametric factor model. Then, based on
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whether the collected external covariates have explaining power on factor load-
ings, we discuss two different regimes where PCA or PPCA should be used.
We will state the conditions under which these methods can be formally justi-
fied.

2.1. Semiparametric factor model

We assume that for subgroup i, we have d external covariates Wi
j = (W i

j1, . . . ,

W i
jd)

′ for variable j. In stock returns, these can be attributes of a firm; in brain
imaging, these can be the physical locations of voxels. We assume that these
covariates have some explanatory power on the loading parameters λi

j in (1.1)

so that it can be further modeled as λi
j = gi(Wi

j) + γi
j , where gi(·) is the

external covariate effects on λi
j and γi

j is the part that can not be explained by
the covariates. Thus, model (1.1) can be written as

Xi
jt = λi

j

′
f it + ui

jt = (gi(Wi
j) + γi

j)
′f it + ui

jt. (2.1)

Model (2.1) does not put much restriction. If Wi
j is not informative at all, i.e.,

gi(·) = 0, the model reduces to a regular factor model. In a matrix form, model
(2.1) can be written as

Xi = ΛiFi′ +Ui where Λi = Gi(Wi) + Γi, 1 ≤ i ≤ m. (2.2)

In (2.2), Gi(Wi) and Γi are p×Ki matrices. More specifically, gik(W
i
j) and γjk

are the (j, k)th element ofGi(Wi) and Γi respectively. Expression (2.2) suggests
that the observed data can be decomposed into a low-rank heterogeneity term
ΛiFi′ and a homogeneous signal termUi. Letting ui

t be the t
th column ofUi, we

assume all ui
t’s share the same distribution for any t ≤ ni and for all subgroups

i ≤ m with E[ui
t] = 0, var(ui

t) = Σ.

There has been a large literature on factor models in econometrics [3, 5,
17, 44], machine learning [10, 36] and random matrix theories [26, 38, 46]. We
refer the interested readers to those relevant papers and the references therein.
However, none of these models incorporate the external covariate information.
The semiparametric factor model (2.1) was first proposed by [14] and further
investigated by [13] and [18]. Using sufficiently informative external covariates,
we are able to more accurately estimate the factors and loadings, and hence
yield better adjustment for heterogeneity.

Here we collect some notations of eigenvalues and matrix norms used in the
paper. For matrix M, we use λmax(M), λmin(M) and λi(M) to denote the max-
imum eigenvalue, the minimum eigenvalue and the ith eigenvalue of M respec-

tively. We define the quantities ‖M‖max = maxi,j |Mij |, ‖M‖2 = λ
1/2
max(M′M)

(‖M‖ for short), ‖M‖F = (
∑

i,j M
2
ij)

1/2, ‖M‖1 = maxj
∑

i |Mij | and ‖M‖1,1 =∑
i

∑
j |Mij | to be its entry-wise maximum, spectral, Frobenius, induced �1 and

element-wise �1 norms.
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2.2. Modeling assumptions and general methodology

In this subsection, we explicitly list all the required modeling assumptions. We
start with an introduction of the data generating processes.

Assumption 2.1 (Data generating process). (i) n−1
i Fi′Fi = I.

(ii) {ui
t}t≤ni,i≤m are independently and identically sub-Gaussian distributed

with mean zero and covariance Σ within and between subgroups, and indepen-
dent of {Wi

j , f
i
t}. Let ‖Σ‖2 = C0 < ∞.

(iii) {f it}t≤ni is a stationary process, with arbitrary temporal dependency. The
tail of the factors is sub-Gaussian, i.e., there exist C1, C2 > 0 such that for any
α ∈ R

Ki

and s > 0, P(|α′f it | > s) ≤ C1 exp(−C2s
2/‖α‖2).

The above set of assumptions are commonly used in the literature, see [5]
and [18]. We omit detailed discussions here.

Based on whether the external covariates are informative, we specify two
regimes, each of which requires some additional technical conditions.

2.2.1. Regime 1: External covariates are not informative

For the case that the external covariates do not have enough explanatory power
on the factor loadings Λi, we ignore the semiparametric structure and model
(2.2) reduces to the traditional factor model, extensively studied in econometrics
[3, 44, 37]. PCA will be employed in Section 3.1 to estimate the heterogeneous
effect. It requires the following assumptions.

Assumption 2.2. (i) (Pervasiveness) There are two positive constants cmin,
cmax > 0 so that

cmin < λmin(p
−1Λi′Λi) < λmax(p

−1Λi′Λi) < cmax, a.s. ∀i.

(ii) maxk≤Ki,j≤p |λi
jk| = OP (

√
log p).

The first condition is common and essential in the factor model literature
(e.g., [44]). It requires the factors to be strong enough such that the covariance
matrix Λicov(f it )Λ

i + Σ has spiked eigenvalues. We emphasize here that this
condition is actually not so stringent as it looks. Consider a single-factor model
Yit = bift + uit, i = 1, ..., p, t = 1, ..., T . The pervasive assumptions actually
imply that cminp ≤

∑p
i=1 b

2
i ≤ cmaxp. Note that since cmin can be a small

constant, our pervasive assumption just says that the factors {ft}Tt=1 have non-
negligible effect on a non-vanishing proportion of outcomes. In addition, this
condition is trivially true if {λi

j}pj=1’s can be regarded as random samples from
a population with non-degenerate covariance matrix [17]. Practically, in fMRI
data analysis for instance, the lab environment (temperature, air pressure, etc.)
or the mental status of the subject being scanned may cause the BOLD (Blood-
Oxygen-Level Dependent) level to be uniformly higher at certain time t. This
means the brain heterogeneity is globally driven by the factors {ft}Tt=1. If the
batch effect is only limited to a small number of dimensions, we think it is more
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appropriate to assume sparsity instead of pervasiveness on top eigenvectors,
which is quite different from our problem setups and thus beyond the scope of
our paper. The second condition holds if the population has a sub-Gaussian tail.

2.2.2. Regime 2: External covariates are informative

When covariates are informative, we will employ the PPCA [18] to estimate the
heterogeneous effect. It requires the following assumptions.

Assumption 2.3. (i) (Pervasiveness) There are two positive constants cmin

and cmax so that

cmin <λmin(p
−1Gi(Wi)′Gi(Wi))<λmax(p

−1Gi(Wi)′Gi(Wi))<cmax, a.s. ∀i.

(ii) maxk≤Ki,j≤p Egk(W
i
j)

2 < ∞.

This assumption is parallel to Assumption 2.2 (i). Pervasiveness is trivially
satisfied if {Wi

j}j≤p are independent and Gi is sufficiently smooth.

Assumption 2.4. (i) Eγi
jk = 0, maxk≤Ki,j≤p |γi

jk| = OP (
√
log p).

(ii) Write γi
j = (γi

j1, ..., γ
i
jK)′. We assume {γi

j}j≤p are independent of {Wi
j}j≤p.

(iii) Define νp = maxi≤m maxk≤Ki p−1
∑

j≤p var(γ
i
jk) < ∞. We assume

max
k≤Ki,j≤p

∑
j′≤p

|Eγi
j′kγ

i
jk| = O(νp).

Condition (i) is parallel to Assumption 2.2 (ii) whereas Condition (ii) is natu-
ral since Γi can not be explained by Wi. Condition (iii) imposes cross-sectional
weak dependence of γi

j , which is much weaker than assuming independent and

identically distributed {γi
j}j≤p. This condition is mild as main serial dependency

has been taken care of by gk(·)’s.

3. The ALPHA framework

We introduce the ALPHA framework for heterogeneity adjustment. Method-
ologically, for each sub-dataset we aim to estimate the heterogeneity component
and subtract it from the raw data. Theoretically, we aim to obtain the explicit
rates of convergence for both the corrected homogeneous signal and its sample
covariance matrix. Those rates will be useful when aggregating the homogeneous
residuals from multiple sources.

This section covers details for heterogeneity adjustments under the above two
regimes: they correspond to estimating Ui by either PCA or PPCA. From now
on, we drop the superscript i whenever there is no confusion as we focus on
the ith data source. We use the notation F̂ if F is estimated by PCA and F̃ if
estimated by PPCA. This convention applies to other related quantities such as
Û and Ũ, the heterogeneity-adjusted estimator. In addition, we use notations
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such as F̌ and Ǔ to denote the final estimators, which are F̂ and Û if PCA is
used, and F̃ and Ũ if PPCA is used.

Estimators for latent factors under regimes 1 and 2 satisfy n−1F̌′F̌ = I, which
corresponds to normalization in Assumption 2.1 (i). By the principle of least
squares, the residual estimator of U then admits the form

Ǔ = X
(
I− 1

n
F̌F̌′

)
. (3.1)

3.1. Estimating factors by PCA

In regime 1, we directly use PCA to adjust data heterogeneity. PCA estimates
F by F̂ where the kth column of F̂/

√
n is the eigenvector of X′X corresponding

to the kth largest eigenvalue. We have the following theoretical results.

Theorem 3.1. Under Assumptions 2.1 and 2.2, we have

Û−U = − 1

n
UFF′ +Π ,

ÛÛ′ −UU′ = − 1

n
UFF′U′ +Δ ,

where ‖Π‖max = OP (
√
logn log p(1/

√
p+1/n)+

√
logn‖Σ‖1/p) and ‖Δ‖max =

OP ((1 + n/p) log p+ n2‖Σ‖21/p2).

Note that we do not explicitly assume bounded ‖Σ‖1. In some applications it
might be natural to assume a sparse covariance so that all terms involving ‖Σ‖1
can be eliminated, while in other applications such as the graphical model, it is
more natural to impose sparsity structure on the precision matrix. In this case,
one may want to keep track of the effect of ‖Σ‖1 as it can be as large as O(

√
p)

as ‖Σ‖1 ≤ √
p‖Σ‖2 = O(

√
p).

3.2. Estimating factors by Projected-PCA

In regime 2, we would like to incorporate the external covariates using the
Projected-PCA (PPCA) method proposed by [18]. The method applies PCA
on the projected data and by projection, covariates information is leveraged to
reduce dimensionality. We now briefly introduce the method.

For simplicity, we only consider d = 1, that is, we only have a single covariate.
The general case can be found in [18]. To model the unknown function gk(Wj),
we adopt a sieve based idea which approximates gk(·) by a linear combination
of basis functions {φ1(x), φ2(x), · · · } (e.g., B-spline, Fourier series, polynomial
series, wavelets). Then

gk(Wj) =

J∑
ν=1

bν,kφν(Wj) +Rk(Wj), k ≤ K, j ≤ p. (3.2)
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Here {bν,k}Jν=1 are the sieve coefficients of gk(Wj), corresponding to the kth

factor loading; Rk is the remainder function representing the approximation
error; J denotes the number of sieve bases which may grow slowly as p diverges.
We take the same basis functions in (3.2) for all k though they can be different.

Define b′
k = (b1,k, · · · , bJ,k) ∈ R

J for each k ≤ K, and correspondingly
φ(Wj)

′ = (φ1(Wj), · · · , φJ(Wj)) ∈ R
J . Then, we can write

gk(Wj) = φ(Wj)
′bk +Rk(Wj).

Let BJ×K = (b1, · · · ,bK), Φ(W)p×J = (φ(W1), · · · , φ(Wp))
′ and Rk(Wj) be

the (j, k)th element of R(W)p×K . The matrix form (2.2) can be written as

X = Φ(W)BF′ +R(W)F′ + ΓF′ +U, (3.3)

recalling that the data index i is dropped. Thus the residual contains three
parts: the sieve approximation error R(W)F′, unexplained loading ΓF′ and
true signal U.

The idea of PPCA is simple: since the factor loadings are a function of the
covariates in (3.3) and U and Γ are independent of W, if we project (smooth)
the observed data onto the space of W, the effect of U and Γ will be signifi-
cantly reduced and the problem becomes nearly a noiseless one, given that the
approximation error R(W) is small.

Define P as the projection onto the space spanned by the basis functions
of W:

P = Φ(W)(Φ(W)′Φ(W))−1Φ(W)′. (3.4)

By (3.3), PX ≈ PΦ(W)BF′ ≈ G(W)F′. Thus, F can be estimated from the
‘noiseless projected data’ PX, using the conventional PCA. Let the columns of
F̃/

√
n be the eigenvectors corresponding to the top K eigenvalues of the n× n

matrix X′PX, which is the sample covariance of the projected data. Then, F̃ is
the PPCA estimator of F. It only differs from PCA in that we use smoothed or
projected data PX.

We need the following conditions for basis functions and accuracy of sieve
approximation.

Assumption 3.1. (i) There are dmin, dmax > 0 s.t.

dmin < λmin(p
−1Φ(W)′Φ(W)) < λmax(p

−1Φ(W)′Φ(W)) < dmax

almost surely and maxν≤J,j≤p Eφν(Wj)
2 < ∞.

(ii) There exists κ ≥ 4 s.t. as J → ∞, supx∈X |gk(x) −
∑J

ν=1 bν,kφν(x)|2 =
O(J−κ), where X is the support of Wj and maxν,k |bν,k| < ∞.

Condition (ii) is mild; for instance, when {φν} is polynomial basis or B-
splines, it is implied by the condition that smooth curve gk(·) belongs to a
Hölder class G = {g : |g(r)(s) − g(r)(t)| ≤ L|s − t|α} for some L > 0, with
κ = 2(r + α) ≥ 4 [34, 12].

Recalling the definition of νp in Assumption 2.4 (iii), we have the following
results.
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Theorem 3.2. Choose J = (pmin{n, p, ν−1
p })1/κ and assume J2φ2

max log(nJ) =
O(p) where φmax = maxν≤J supx∈X φν(x). Under Assumptions 2.1, 2.3, 2.4 and
3.1,

Ũ−U = − 1

n
UFF′ +Π ,

ŨŨ′ −UU′ = − 1

n
UFF′U′ +Δ ,

where ‖Π‖max = OP (
√
logn/p(Jφmax +

√
log p) + Jφmax‖Σ‖1

√
logn/p) and

‖Δ‖max = OP (n
√

νp/p(J
2φ2

max + log p) + nJφmax‖Σ‖1(Jφmax +
√
log p)/p +

n2J2φ2
max‖Σ‖21/p2) if there exists C s.t. νp > C/n.

3.3. A guiding rule for estimating the number of factors, the
number of basis functions and determining regimes

We now address the problem of estimating the number of factors for two different
regimes. Extensive literature has made contributions to this problem in regime 1,
i.e., the regular factor model [4, 1, 28]. [28] and [1] proposed to use ratio of
adjacent eigenvalues of X′X to infer the number of factors. They showed the
estimator K̂ = argmaxk≤Kmax λk(X

′X)/λk+1(X
′X) correctly identifies K with

probability tending to 1, as long as Kmax ≥ K and Kmax = O(ni ∧ p).
For the semiparametric factor model, [18] proposed

K̃ = arg max
k≤Kmax

λk(X
′PX)/λk+1(X

′PX).

Here Kmax is of the same order as Jd. It was shown that P(K̃ = K) → 1 under
regular assumptions which we omit here. When we have genuine and pervasive
covariates, K̃ typically outperforms K̂. More details can be found in [18].

Once we use K̂ and K̃ to estimate the number of factors under the regular
factor model and semiparametric factor model respectively, we naturally have
an adaptive rule to decide whether the covariates W are informative enough to
use PPCA over PCA. We compare two eigen-ratios:

λK̂(X′X)

λK̂+1(X
′X)

vs
λK̃(X′PX)

λK̃+1(X
′PX)

.

If the former is larger we identify the dataset as regime 1 and apply regular PCA
to get Û; otherwise it is regime 2 and PPCA is used to obtain Ũ. The intu-
ition behind this comparison is that the maximal eigen-ratios can be perceived as
signal-to-noise ratios in terms of estimating the spiky heterogeneity term. Given
that n−1XX′ ≈ GG′+ΓΓ′+Σ and n−1PXX′P ≈ GG′+PΓΓ′P+PΣP, the
first ratio measures the eigen-gap between GG′ + ΓΓ′ and Σ and the second
ratio measures the eigen-gap between GG′ + PΓΓ′P and PΣP. If G(W) is
much more important than Γ in explaining the loading structure, projection
preserves signal and reduces error to improve the eigen-gap. Conversely, if W is
weak in providing useful information, projection reduces both noise and signal.
Therefore, if projection enlarges the maximum eigen-gap, we prefer PPCA over
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PCA to estimate the spiky heterogeneity part. Our proposed guiding rule effec-
tively tells whether projection can further contrast spiky and non-spiky parts
of covariance.

The above signal-to-noise ratio comparison can be extended to choose the
number of basis functions. Notice that we can regard regular PCA as PPCA
with number of basis J = p and hence P = I. In this line of thinking, we
can index P by J and maximize λK̃(J)(X

′PJX)/λK̃(J)+1(X
′PJX) over J ∈

{1, 2, . . . , Jmax, p}, where J = p corresponds to PCA. Here we use notation

K̃(J) and PJ to exhibit their dependency on J . We implement this guiding rule
in real data analysis.

In practice, there is still chance of misspecification of the true number of
factors K by ALPHA. One might be curious about how this will affect the
performance of ALPHA and the subsequent statistical analysis. To clarify this
issue, we conduct sensitivity analysis on the number of factors in Section G.3
in the appendix. The take-home message is that the overestimation of K will
not hurt, while underestimation of K might mislead subsequent statistical in-
ference.

3.4. Summary of ALPHA

We now summarize the final procedure and convergence rates. We first divide
m subgroups into two classes based on whether the collected covariates have
significant influence on the loadings.

M1 = {i ≤ m | Wi is not informative} , M2 = {i ≤ m | Wi is informative} .

ALPHA consists of the following three steps.

Step 1: (Preprocessing) For data source i, determine whether it belongs to
M1 or M2 according to the guiding rule given in Section 3.3 and
correspondingly estimate K by Ǩ, which equals K̂ or K̃ (and choose
J if necessary).

Step 2: (Adjustment) Apply Projected-PCA to estimate ΛiFi′ if i ∈ M2,
otherwise use PCA to remove the heterogeneity, resulting in adjusted
data Ǔi, which is either Ûi or Ũi.

Step 3: (Aggregation) Combine adjusted data {Ǔi}mi=1 to conduct further

statistical analysis. For example, estimate sample covarianceΣ by Σ̂ =
(N−

∑
i Ǩi)

−1
∑m

i=1 Ǔ
iǓi′ whereN =

∑
i ni is the aggregated sample

size; or estimate sparse precision matrixΩ by existing graphical model
methods.

We summarize the ALPHA procedure in Algorithm 1 given in Section A.
We also summarize the convergence of Ûi and Ũi below. To ease presentation,
we consider a typical regime in practice: ni < Cp,

∑
i≤m Ki < CN for some

constant C. We focus on the situation of sufficiently smooth curves κ = ∞ so
that J diverges very slowly (say with rate O(

√
log p)) and bounded φmax and νp

(defined respectively in Theorem 3.2 and Assumption 2.4). Based on discussions
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of the previous subsections, for estimation of U in ‖ · ‖max, we have

Ǔi−Ui =−UiFiFi′/ni+

⎧⎨⎩OP

(√
logni log p/p+

√
log ni log p/ni

)
if i∈M1 ,

OP

(√
logni log p/p

)
if i∈M2 .

Therefore, PPCA dominates PCA as long as the effective covariates are pro-
vided. However, UiFiFi′/ni dominates all the remaining terms so that ‖Ǔi −
Ui‖max = OP (‖UiFiFi′/ni‖max) = OP (

√
logni log p/ni).

In addition, for estimation of UU′, we have

ǓiǓi′ −UiUi′ = −UiFiFi′Ui′/ni +

⎧⎨⎩OP

(
log p+ δ

)
if i ∈ M1 ,

OP

(
ni log p

√
νp/p+ δ

)
if i ∈ M2 ,

(3.5)
where δ = n2

i ‖Σ‖21 log p/p2, depending on ‖Σ‖1. If we consider a very sparse
covariance matrix so that ‖Σ‖1 is bounded, we can simply drop the term δ in
both regimes. Then, regime 1 achieves better rate if p = O(n2

i νp), but regime 2
outperforms otherwise.

4. Post-ALPHA inference

We have summarized the order of biases caused by adjusting heterogeneity for
each data source in Section 3.4. Now we combine the adjusted data together for
further statistical analysis. As an example, we study estimation of the Gaussian
graphical model. Assume further ui

t ∼ N(0,Σ) and consider the following class
of the precision matrices:

F(s,R) =
{
Ω : Ω � 0, ‖Ω‖1 ≤ R, max

1≤i≤p

p∑
j=1

1(Ωij �= 0) ≤ s
}
. (4.1)

To simplify the analysis, we assume R is fixed, but all the analysis can be easily
extended to include growing R.

To estimate Ω = Σ−1 via CLIME, we need a covariance estimator as the
input. We assume here the number of factors is known, i.e., the exception proba-
bility of recovering Ki has been ignored for ease of discussion. Such an estimator
is naturally given by

Σ̂ =
1

N −
∑

i≤m Ki

m∑
i=1

ǓiǓi′ . (4.2)

Since the number of data sources is huge, we focus on the case of diverging N
and p.

4.1. Covariance estimation

Let ΣN be the oracle sample covariance matrix, i.e., ΣN = N−1
∑m

i=1 U
iUi′.

We consider the difference between our proposed Σ̂ and ΣN in this subsection.
The oracle estimator obviously attains the rate ‖ΣN −Σ‖max = OP (

√
log p/N).
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Let ξik = Uif̄ ik/
√
ni where f̄ ik is the kth column of Fi. It is not hard to

verify that ξik is Gaussian distributed with mean zero and variance Σ. Note
that {ξik}1≤i≤m,1≤k≤Ki are i.i.d. with respect to k and i, using the assumption

Fi′Fi/ni = I. By the standard concentration bound (e.g. Lemma 4.2 of [19]),∥∥∥ ∑
i≤m

( 1

ni
UiFiFi′Ui′ −KiΣ

)∥∥∥
max

=
∥∥∥ ∑

i≤m

∑
k≤Ki

(
ξikξ

i
k

′ −Σ
)∥∥∥

max

= OP

(√
Ktot log p

)
,

where Ktot =
∑

i≤m Ki. Therefore, by (3.5), we have

‖Σ̂−ΣN‖max =
∥∥∥ N

N −
∑

i≤m Ki

1

N

∑
i≤m

(
ǓiǓi′ −UiUi′ +KiΣ

)
+

∑
i∈M Ki

N −
∑

i∈M Ki

( 1

N

∑
i≤m

UiUi′ −Σ
)∥∥∥

max
=: OP (am,N,p) ,

(4.3)

where am,N,p = |M1| log p
N + N2 log p

N

√
νp

p +

√
Ktot log p

N + Ktot

N

√
log p
N and N2 =∑

i∈M2
ni.

We now examine the difference of the ALPHA estimator from the oracle
estimator for two specific cases. In the first case, we apply PCA to all data
sources, i.e., all i ∈ M1 and Ki is bounded. We then have am,N,p = m log p/N .

This rate is dominated by the oracle error rate
√

log p/N if and only if m =

O(
√

N/ log p). This means traditional PCA performs optimally for adjusting
heterogeneity as long as the number of subgroups grows more slowly than the
order of

√
N/ log p.

If we apply PPCA to all data sources, i.e., i ∈ M2 and Ki is bounded, then
am,N,p =

√
νp/p log p +

√
m log p/N . This rate is of smaller order than rate√

log p/N if p/ log p > CN for some constant C > 0. The advantage of using
PPCA is that when ni is bound so that m � N , we can still achieve optimal
rate of convergence so long as we have a large enough dimensionality at least of
the order N .

4.2. Precision matrix estimation

In order to obtain an estimator for the sparse precision matrix from Σ̂, we
apply the CLIME estimator proposed by [9]. For a given Σ̂, CLIME solves the
following optimization problem:

Ω̂ = argmin
Ω

‖Ω‖1,1 subject to ‖Σ̂Ω− I‖max ≤ λ, (4.4)

where ‖Ω‖1,1 =
∑

i,j≤p |Ωij | and λ is a tuning parameter. Note that (4.4)
can be solved column-wisely by linear programming. However, CLIME does
not necessarily generate a symmetric matrix. We can simply symmetrize it by
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taking the one with minimal magnitude of σ̂ij and σ̂ji. The resulting matrix

after symmetrization, still denoted as Ω̂ with a little bit abuse of notation, also
attains good rate of convergence. In particular, we consider the sparse precision
matrix class F(s, C0) in (4.1). The following lemma guarantees recovery of any
sparse matrix Ω ∈ F(s, C0).

Theorem 4.1. Suppose Ω ∈ F(s, C0) and let τm,N,p =
√
log p/N + am,N,p.

Choosing λ � τm,N,p, we have

‖Ω̂−Ω‖max = Op(τm,N,p).

Furthermore, ‖Ω̂−Ω‖1 = Op(sτm,N,p) and ‖Ω̂−Ω‖2 = Op(sτm,N,p).

Here we stress that we choose CLIME for the precision matrix estimation
because it only relies on the max-norm guarantee ‖Σ̂−Σ‖max. The intuition is
that for any true Ω with bounded ‖Ω‖1,

‖I− Σ̂Ω‖max = ‖(Σ̂−Σ)Ω‖max ≤ ‖Σ̂−Σ‖max‖Ω‖1 = OP(‖Σ̂−Σ‖max).

One can see from above that fast convergence of ‖Σ̂−Σ‖max encourages feasi-
bility of Ω, which is a necessary step for establishing consistency of the resulting
M-estimator. Interested readers can refer to the proof of Theorem 4.1 for more
details. Other possible methods for precision matrix recovery (e.g. graphical
Lasso in [20], graphical Dantzig selector in [48] and graphical neighborhood se-
lection in [35]) can be considered for post-ALPHA inference as well, but their
convergence rate needs to be studied in a case-by-case fashion.

Theorem 4.1 shows that CLIME has strong theoretical guarantee of conver-
gence under different matrix norms. The rate of convergence has two parts,
one corresponding to the minimax optimal rate [48] while the other is due to
the error caused by estimating the unknown factors under various situations.
The discussions at the end of Section 4.1 suggest that the latter error is often
negligible.

In addition, we numerically investigate how misspecification of the number
of factors K will affect the precision matrix estimation in Section G.3 in the
appendix.

5. Numerical studies

In this section, we first validate the established theoretical results through Monte
Carlo simulations. Our purpose is to show that after heterogeneity adjustment,
the proposed aggregated covariance estimator Σ̂ approximates well the oracle
sample covariance ΣN , thereby leading to accurate estimation of the true co-
variance matrix Σ and precision matrix Ω. We also compare the performance of
PPCA and regular PCA on heterogeneity adjustment under different settings.

In addition, we analyze a real brain image data using the proposed procedure.
The dataset to be analyzed is the ADHD-200 data [6]. It consists of rs-fMRI
images of 608 subjects, of whom 465 are healthy and 143 are diagnosed with
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ADHD. We dropped subjects with missing values in our analysis. Following
[39], we divided the whole brain into 264 regions of interest (ROI, p = 264),
which are regarded as nodes in our graphical model. Each brain was scanned
for multiple times with sample sizes ranging from 76 to 261 (76 ≤ ni ≤ 261). In
each scan, we acquired the blood-oxygen-level dependent (BOLD) signal within
each ROI. Note that subjects have different ages, genders etc., which results in
heterogeneity over the covariance structure of the data. We need to remove this
unwanted heterogeneity; otherwise it will dilute or corrupt the true biological
signal, i.e., the difference in the brain functional network between healthy people
and patients due to the disease ADHD.

5.1. Preliminary analysis

To apply our ALPHA framework, we need to first argue the pervasiveness con-
dition Assumption 2.2 holds for the real dataset considered. This is done in
Section G.2, together with further discussions on pervasiveness. We also collect
the physical locations of the 264 regions as the external covariates. Ideally, we
hope these covariates to be pervasive in explaining the batch effect (Assump-
tion 2.3), while bearing no association with the graph structure of ut. This is
reasonably true because: the level of batch effect is non-uniform over differ-
ent locations of the brain when scanned in fMRI machines; furthermore it has
been widely acknowledged in biological studies that spatial adjacency does not
necessarily imply brain functional connectivity.

To construct Wi
j from the physical locations, we simply split the 264 regions

into 10 clusters (J = 10) by the hierarchy clustering (Ward’s minimum variance
method) and use the categorical indices as the covariates of the nodes. The
clustering result is shown in Figure 2 and the spatial locations of the 264 regions
are shown in Figure 6 in 10 different colors. Black (middle), green (left) and blue
(right) represent roughly the region of frontal lobe; gray (middle), pink (left)
and magenta (right) occupy the region of parietal lobe; red (left) and orange
(right) are in the area of occipital lobe; finally yellow (left) and navy (right)
provide information about temporal lobe.

Here J = 10 is only used to calibrate our synthetic model in the next sub-
section. In the real data analysis, we will choose J adaptively according to our
heuristic guiding rule of the maximal eigen-gap discussed in Section 3.3. Note
that here since the covariate W is one-dimensional (d = 1) and discrete, the
sieve basis functions are just indicator functions 1(w − 0.5 ≤ W < w + 0.5)
for w = 1, . . . , 10. We use the same external covariates for all subjects in both
healthy and diseased groups.

The next question is how to divide the subjects into M1 and M2 based on
whether the selected covariates explain the loadings effectively. We implemented
the method given in Section 3.3 and discovered that 398 healthy (85.6%) and
126 diseased samples (88.1%) prefer PPCA over PCA, meaning that the physical
locations indeed have explanatory powers on factor loadings of most subjects.
We identified them as subjects in M2 while the others were classified as in M1.
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Fig 2. Cluster Dendrogram for physical locations with J = 10.

Table 1

Distribution of estimated number of factors for healthy and ADHD groups

Ǩi 1 2 3
Healthy 253 148 64
ADHD 78 40 25

Based on the class labels, we employed the corresponding method to estimate
the number of factors and adjust the heterogeneity. We used Kmax = 3. The
estimated number of factors for the two groups are summarized in Table 1.

5.2. Synthetic datasets

In this simulation study, for stability, we use the first 15 subjects in the healthy
group to calibrate the simulation models. We specify four asymptotic settings
for our simulation studies:

1. m = 500, ni = 10 for i = 1, ..,m, p = 100, 200, ..., 600 and G(W) �= 0;
2. m = 100, 200, ..., 1000, ni = 10 for i = 1, ...,m, p = 264 and G(W) �= 0;
3. m = 100, ni = 10, 20, ..., 100 for i = 1, ...,m, p = 264 and G(W) �= 0;
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4. m = 20, 40, ..., 200, ni = 20, 40, ..., 200 for i = 1, ...,m, p = 264 and
G(W) = 0.

Here the last setting represents regime 1, where we should expect PCA to
work well when the number of subjects is of order of square root of the total
sample size, i.e., m �

√
N . The first three settings represent regime 2 with

informative covariates; they present asymptotics with growing p, m and ni re-
spectively. The details on model calibration and data generation can be found
in Section G.1.

We first investigate the errors of estimating covariance of ut in max-norm
after applying PPCA or PCA for heterogeneity adjustment. We also compare
them with the estimation errors if we naively pool all the data together with-
out any heterogeneity adjustment. However, the estimation error of the naively
pooled sample covariance is too large to fit in the graph for the first 3 cases,
which we thus do not plot. Denote the oracle sample covariance of ut by ΣN as
before. The estimation errors, based on 100 simulations, under the four settings
are presented in Figure 3.

In Case 1, m and ni are fixed while dimension p increases. This setting
highlights the advantages of Projected-PCA over regular PCA. From the left
panel, we observe that increase of dimensionality improves the performance
of Projected-PCA. This is consistent with the rate we derived in theories. In
Case 2, ni and p are fixed while m increases. Both PPCA and PCA bene-
fit from an increasing number of subjects. However, since ni is small, again
PPCA outperforms. In Case 3, m and p are fixed while ni increases. Both meth-
ods achieve better estimation as ni increases, but more importantly, regular
PCA outperforms PPCA when ni is large enough. This is again consistent with
our theories. As illustrated by Section 4.1, when m is fixed, PCA attains the
convergence rate ‖Σ̂ − Σ‖max = OP (

√
log p/N), while PPCA only achieves

‖Σ̂−Σ‖max = OP (log p/
√
p), which is worse than PCA when p/ log p = o(N).

In Case 4, p is fixed, and both m and ni increase. Note that the covariates have
no explanation power at all, i.e., Condition 2.3 about pervasiveness does not
hold so that PPCA is not applicable. Adjusting by PCA behaves much better
and PPCA sometimes is as bad as ‘nPCA’, corresponding to no heterogeneity
adjustment. This is not unexpected as we utilize a noisy external covariates.

Now we focus on estimation error of the precision matrix. We plug Σ̂, ob-
tained from data after adjusting for heterogeneity, into CLIME to get the esti-
mator Ω̂ of Ω. In Figure 4, ‖Ω̂−Ω‖max and ‖Ω̂−Ω‖1 are depicted under the

four asymptotic settings. From the plots we see ‖Ω̂−Ω‖max and ‖Ω̂−Ω‖1 share

similar behavior with ‖Σ̂−Σ‖max shown in Figure 3: in Case 1, ni is small, so it
is advantageous to use PPCA and PPCA behaves better as dimension increases;
in Case 2, both PPCA and PCA benefit from an increasing number of subjects
and PPCA outperforms PCA; in Case 3, PCA outperforms PPCA when ni is
large enough since m is fixed; in Case 4, the covariates have no explanation
power at all so that PPCA does not make sense. In the first three cases, if we
do not adjust data heterogeneity, ‖Ω̂−Ω‖max and ‖Ω̂−Ω‖1 will be too large
to fit in the current scale.
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Fig 3. Estimation of Σ by PCA, PPCA and the oracle sample covariance matrix for 4
different settings. Case 1: m and ni are fixed while the dimension p increases; case 2: ni and
p are fixed while m increases; case 3: m and p are fixed while ni increases; case 4: p is fixed,
and both m and ni increase and conditions for PPCA are violated.

We also present the ROC curves of our proposed methods in Figure 5, which
is of interest to readers concerned with sparsity pattern recovery. The black
dashed line is the 45 degree line, representing performance of random guess. It
is obvious from those plots that heterogeneity adjustment very much improves
the sparsity recovery of the precision matrix. When the sample size of each
subject is small, genuine pervasive covariates increase the power of PPCA while
if the sample size is relatively large, PCA is sufficiently good in recovering graph
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Fig 4. Estimation of Ω. Presented are the estimation errors in max-norm and L1-norm for
4 different settings. In Case 4, nPCA refers to no PCA, i.e., we do not adjust heterogeneity.

structures. Also notice that in all cases, the naive method without heterogeneity
adjustment can still achieve a certain amount of power, but we can improve the
performance dramatically by correcting the batch effects.

5.3. Brain image network data

We report the estimated graphs for both the healthy group and the ADHD
patient group with batch effects removed using our ALPHA framework in this
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Fig 5. ROC curves for sparsity recovery of Ω for 4 different settings.

subsection. We took various sparsity levels of the networks from 1% to 5%
(corresponding to the same set of λ’s for two groups) and selected the common
edges, which are stable with respect to tuning, to be depicted.

The brain network produced by our proposed method is presented in Fig-
ure 6. It gives 90.7% identical edges for the two networks. However if we ignore
heterogeneity and naively pool the data from all subjects together, it generates
10.2% unshared edges, roughly 1% more than ALPHA produces. Therefore, by
heterogeneity adjustment, we found less difference in brain functional networks
between ADHD patients and healthy people. In addition, we investigate how
those unshared edges are distributed across the 10 clusters. We summarized the
total degree of unshared edge vertices within each cluster in Table 2. As we can
see, in the left occipital lobe (red) and the left parietal lobe (pink), there are
significant difference in functional connectivity structure between healthy peo-
ple and patients, although in general the difference is weak. These are signs that
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Fig 6. Estimated brain functional connectivity networks using physical locations as covariates
to correct heterogeneity. 10 region clusters are labeled in 10 colors. Black, blue and red edges
represent respectively common edges, unshared edges in the healthy group and in the ADHD
group.

Table 2

The degree of unshared edge vertices for each cluster

red orange blue green yellow navy pink black magenta gray
Health 3 4 3 2 7 6 10 12 11 6
ADHD 9 6 7 5 12 5 6 15 9 10

ADHD is a complex disease that affects many regions of the brain. The general
methodology we provide here could be valuable for further understanding the
mechanism of the disease.

6. Discussions

Heterogeneity is usually informed by the domain knowledge of the dataset. In
particular, it occurs with high chance when the data come from different sources
or subgroups. In the brain image dataset we used in the numerical study, het-
erogeneity across patients can stem from difference in age, gender, etc. When
it is less clear whether heterogeneity exists, we can calculate multiple summary
statistics for all the subgroups and see whether they are significantly differ-
ent. In the case of pervasive heterogeneity, we can test it by the magnitude of
dominating eigenvalues of the covariance matrix in each subgroup. A system-
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atic testing method for heterogeneity is important and we leave it for now as a
future research topic. Note that even if all the subgroups are actually homoge-
neous, ALPHA does not hurt the statistical efficiency under appropriate scaling
assumptions. Specifically, for the PCA-based ALPHA, we showed in Section 4.1
that as long as the number of subgroups m = O(

√
N/ log p), Σ̌ enjoys the oracle

max-norm rate. This means that given homogeneous data, when the number of
data splits is not large, ALPHA yields the same statistical rate as the full-sample
oracle estimator. For the PPCA-based ALPHA, Σ̌ enjoys the oracle rate when
p/ log p = Ω(

√
N/ log p).

As we have seen, ALPHA is adaptive to factor structures and is flexible to
include external information. However, this advantage of PPCA is accompanied
by more assumptions and the practical issue of selecting proper basis functions
and the number of them in sieve approximation. One contribution of the paper
lies in seamless integration of PCA and PPCA, which leverages effective exter-
nal covariates. If no valuable covariates exist and the sample size is relatively
large for each data source, we have shown conventional PCA is still an effective
tool.

Note that our framework is compatible with any statistical procedure that
only requires an accurate estimator as the input, like CLIME we illustrate in
this work. The ALPHA procedure gives theoretical guarantee for ‖Ǔ −U‖max

and ‖Σ̂−Σ‖max, which serve as foundations for establishing the statistical prop-
erties of the subsequent procedure. Besides, ALPHA has potential application
in regression analysis. If the residual terms {Ui}mi=1 are true predictors for the
response of interest {Yi}mi=1, we can first apply ALPHA to extract the residu-
als before the regression procedure. For example, the residual BOLD signal we
obtained by ALPHA in the brain functional network analysis (Section 5.3) is
potentially useful in predicting whether a person has ADHD. This is a typical
logistic regression problem based on ALPHA adjustment. We leave the detailed
study of combining ALPHA with regression models for future investigation. One
recent work [16] has adopted a method similar to ALPHA that extracts residuals
for model selection in high dimensional regression.

Finally, we point out two current limitations of ALPHA. The first limita-
tion lies in its pervasiveness assumption of the heterogeneity terms {ΛiFi′}mi=1.
More specifically, for each subgroup i, ALPHA requires the signal strength of
the heterogeneous part ΛiFi′ to overwhelm the homogeneous residual part Ui

so that PCA or PPCA can accurately estimate ΛiFi′ and remove it. Such re-
quirement can be violated in practice when the heterogeneous term has similar
signal strength as the homogeneous term. Additionally, statistical methods that
require more than the max-norm error guarantee (‖Ǔ−U‖max, ‖Σ̌−Σ‖max), say
in the general non-sparse situation, may be inappropriate for the post-ALPHA
inference for now.

Appendix A: Algorithm for ALPHA

The pseudo code for the algorithm ALPHA is shown as follows.
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Algorithm 1 Algorithm for adaptive low-rank principal heterogeneity adjust-
ment

Input: Panel Xi
p×ni

and d-dimensional {Wi
j}

p
j=1 from m data sources,

Jmax, Kmax (Jmax ≥ (Kmax + 1)/d)

Output: Ǔi, Ǩi and Σ̂

1: procedure ALPHA

2: for each subject i ≤ m do

3: K̂i ← argmaxK≤Kmax λk(X
i′Xi)/λk+1(X

i′Xi)

4: Δλi
0 ← λ

K̂i (X
i′Xi)/λ

K̂i+1
(Xi′Xi)

5: for each (Kmax + 1)/d ≤ J ≤ Jmax do
6: Pi

J ← Φ(Wi)(Φ(Wi)′Φ(Wi))−1Φ(Wi)′ for J

7: K̃i
J ← argmaxK≤Kmax λk(X

i′Pi
JX

i)/λk+1(X
i′Pi

JX
i)

8: Δλi
J ← λ

K̃i
J

(Xi′Pi
JX

i)/λ
K̃i

J
+1

(Xi′Pi
JX

i)

9: end for
10: Ji

∗ ← argmaxJ Δλi
J

11: K̃i ← K̃i
Ji
∗

12:
13: if Δλi

0 > Δλi
Ji
∗
(i ∈ M1) then

14: F̂i/
√
ni ← eigenvectors of Xi′Xi of the top K̂i eigenvalues

15: Λ̂i ← XiF̂i/ni, Ûi ← Xi − Λ̂iF̂i

16: Ǔi ← Ûi, Ǩi ← K̂i

17: else
18: F̃i/

√
ni ← eigenvectors of Xi′Pi

Ji
∗
Xi of the top K̃i eigenvalues

19: Λ̃i ← XiF̃i/ni, Ũi ← Xi − Λ̃iF̃i

20: Ǔi ← Ũi, Ǩi ← K̃i

21: end if
22: end for
23:
24: Σ̂ ← (

∑
i ni −

∑
i Ǩi)

−1
∑m

i=1 Ǔ
iǓi

′

25: return {Ǔi}mi=1, {Ǩi}mi=1 and Σ̂
26: end procedure

Appendix B: A key lemma

Recall that we defined

Ǔ = X
(
I− 1

n
F̌F̌′

)
. (B.1)

where we used notations such as F̌ and Ǔ to denote the final estimators, which
are F̂ and Û if PCA is used, and F̃ and Ũ if PPCA is used.

The following lemma holds for Ǔ no matter whether PCA or PPCA is applied.

Lemma B.1. For any K by K matrix H such that ‖H‖ = OP (1), if log p =
O(n),

Ǔ−U = − 1

n
UFF′ +Π ,

where ‖Π‖max = OP (
√
logn/n·(‖F′(F̌−FH)‖max‖Λ‖max+‖U(F̌−FH)‖max)+



3932 J. Fan et al.

‖F̌− FH‖max‖Λ‖max +
√
logn · ‖HH′ − I‖max‖Λ‖max); and furthermore

ǓǓ′ −UU′ = − 1

n
UFF′U′ +Δ ,

where ‖Δ‖max = OP (‖U(F̌− FH)‖max‖Λ‖max + ‖U(F̌− FH)‖2max + ‖F′(F̌−
FH)‖max‖Λ‖2max + n‖HH′ − I‖max‖Λ‖2max).

The above lemma states that the error of estimating U by Ǔ (or estimating
UU′ by ǓǓ′) is decomposed into two parts. The first part is inevitable even
when the factor matrix F in (3.1) is known in advance. The second part is
caused by the uncertainty from estimating F. Since the true F is identifiable up
to an orthonormal transformation H, we need to carefully choose H to bound
the error Π (or Δ). We will provide explicit rates of convergence for those terms
in the following two sections.

Proof. By definition of Ǔ, Ǔ = U(I − n−1FF′) + n−1X(F̌F̌′ − FF′). We first
look at the converge of Ǔ − U. Obviously Π = n−1X(F̌F̌′ − FF′) = I + II
where

I =
1

n
ΛF′(F̌F̌′ − FF′), II =

1

n
U(F̌F̌′ − FF′) .

Since F′(F̌F̌′−FF′) = F′(F̌−FH)F̌′+nH(F̌−FH)′+n(HH′− I)F′, we have

‖I‖max = OP (‖Λ‖max(‖F′(F̌− FH)‖max‖F̌/n‖max + ‖F̌− FH‖max

+ ‖HH′ − I‖max‖F‖max)) .

Similarly U(F̌F̌′ −FF′) = U(F̌−FH)F̌′ +UFH(F̌−FH)′ +UF(HH′ − I)F′,
so

‖II‖max = OP (‖U′(F̌− FH)‖max‖F̌/n‖max + ‖UF/n‖max(‖F̌− FH‖max

+ ‖HH′ − I‖max‖F‖max)) .

According to Lemma F.4 (i), ‖UF/n‖max = OP (1) and noting both ‖F‖max

and ‖F̌‖max are OP (
√
n), we conclude the result for ‖Π‖max easily.

Now we consider ǓǓ′ in the following.

ǓǓ′ = U(I− n−1FF′)U′ + n−1U(I− n−1FF′)(F̌F̌′ − FF′)X′

+ n−2X(F̌F̌′ − FF′)2X′

=: UU′ − 1

n
UFF′U′ + III + IV .

So Δ = III + IV and it suffices to bound the two terms.

‖III‖max = OP (‖n−1U(I− FF′/n)F̌F̌′F‖max‖Λ‖max

+ ‖n−1U(I− FF′/n)F̌F̌′U′‖max)

=: OP (‖J1‖max‖Λ‖max + ‖J2‖max) .
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Decompose J1 by J1 = n−1U(F̌−FH)F̌′F−n−2UF·F′(F̌−FH)F̌′F. Therefore,

‖J1‖max = OP (‖U(F̌− FH)‖max + n−1‖UF‖max‖F′(F̌− FH)‖max) ,

since ‖F̌′F/n‖max ≤ ‖F̌′F/n‖F ≤ ‖F̌′‖F ‖F‖F /n = K. Similar to J1, we
decompose J2 only replacing F̌′F with F̌′U′. According to Lemma F.4 (i),
‖F̌′U′/n‖max =OP (‖UF/n‖max+‖U(F̌−FH)‖max)=OP (1+‖U(F̌−FH)‖max),
hence ‖J2‖max = OP (‖J1‖max(1 + ‖U(F̌ − FH)‖max)). We then conclude that
‖III‖max = OP ((‖U(F̌−FH)‖max+n−1‖UF‖max‖F′(F̌−FH)‖max)(‖Λ‖max+
‖U(F̌− FH)‖max)).

Now let us take a look at IV . ‖IV ‖max = ‖D1 +D2 +D′
2 +D3‖max where

D1 = n−2ΛF′(F̌F̌′ − FF′)2FΛ′ = Λ(nI− n−1F′F̌F̌′F)Λ′ ,

D2 = n−2U(F̌F̌′ − FF′)2FΛ′ = −n−2UFF′(F̌F̌′ − FF′)FΛ′

D3 = n−2U(F̌F̌′ − FF′)2U′ .

By assumption, ‖H‖max ≤ ‖H‖ = OP (1). Simple decompositions of D1 gives

‖D1‖max = OP ((‖F′(F̌− FH)‖max + n‖HH′ − I‖max)‖Λ‖2max) .

Since D2 = −n−2UFF′(F̌−FH)F̌′FΛ′−n−1UFH(F̌−FH)′FΛ′−UF(HH′−
I)Λ′, we have

‖D2‖max = OP (‖UF/n‖max‖D1‖max) = OP (‖D1‖max) .

It is also not hard to show ‖D3‖max = OP (‖III‖max + ‖D1‖max). Under both

Theorems C.1 and D.1 (replacing F̌ by F̂ for regime 1 and F̃ for regime 2), we
can check the following relationship holds:

n−1‖UF‖max‖U(F̌− FH)‖max = OP (‖Λ‖2max).

Therefore we have

‖Δ‖max = ‖III + IV ‖max

= OP (‖U(F̌− FH)‖max‖Λ‖max + ‖U(F̌− FH)‖2max

+ ‖F′(F̌− FH)‖max‖Λ‖2max + n‖HH′ − I‖max‖Λ‖2max) .

Appendix C: Proof of Theorem 3.1

Recall that PCA estimates F by F̂ where the kth column of F̂/
√
n is the eigenvec-

tor of (pn)−1X′X corresponding to the kth largest eigenvalue. By the definition

of F̂, we have
1

np
X′XF̂ = F̂K,
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where K is a K by K diagonal matrix with top K eigenvalues of (np)−1X′X in
descending order as diagonal elements. Define a K by K matrix H as in [17]:

H =
1

np
Λ′ΛF′F̂K−1 .

It has been shown that ‖K‖, ‖K−1‖ and ‖H‖, ‖H−1‖ are all OP (1).
The following lemma provides all the rates of convergences that are needed

for downstream analysis.

Lemma C.1. Under Assumptions 2.1 and 2.2, we have ‖Λ‖max = OP (
√
log p)

and
(i) ‖F̂ − FH‖F = OP (

√
n/p + 1/

√
n) and ‖F̂ − FH‖max = OP (

√
logn/p +√

logn/n);

(ii) ‖F′(F̂− FH)‖max = OP (1 +
√
n/p);

(iii) ‖U(F̂− FH)‖max = OP ((1 + n/p)
√
log p+ n‖Σ‖1/p);

(iv) ‖HH′ − I‖max = OP (1/n+ 1/p).

Combining the above results with Lemma B.1, we have

Û−U = − 1

n
UFF′ +Π ,

where ‖Π‖max = OP (
√
logn log p(1/

√
p+1/n)+

√
logn‖Σ‖1/p) and additionally

ÛÛ′ −UU′ = − 1

n
UFF′U′ +Δ ,

where ‖Δ‖max = OP ((1+n/p) log p+n2‖Σ‖21/p2). Thus we complete the proof
for Theorem 3.1. We are left to check Lemma C.1, which is done in the following
three subsections.

C.1. Convergence of factors F̂

Recall H = (np)−1Λ′ΛF′F̂K−1. Substituting X = ΛF′ +U, we have,

F̂− FH =
( 3∑

i=1

Ei

)
K−1 , (C.1)

E1 =
1

np
FΛ′UF̂, E2 =

1

np
U′ΛF′F̂, E3 =

1

np
U′UF̂ .

To bound ‖F̂− FH‖max, note that there is a constant C > 0, so that

‖F̂− FH‖max ≤ C‖K−1‖2
3∑

i=1

‖Ei‖max.

Hence we need to bound ‖Ei‖max for i = 1, 2, 3 since ‖K−1‖2 = OP (1). The
following lemma gives the stochastic bounds for each individual term.

Lemma C.2. (i) ‖E1‖F = OP (
√

n/p) = ‖E2‖F , ‖E3‖F = OP (1/
√
n+1/

√
p+√

n/p) .
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(ii) ‖E1‖max = OP (
√

logn/p) = ‖E2‖max, ‖E3‖max = OP (1/
√
p+

√
log n/n) .

Proof. (i) Obviously ‖E1‖F ≤ p−1‖Λ′U‖F = OP (
√

n/p) according to Lemma
F.1. ‖E2‖F attains the same rate. In addition, ‖E3‖F ≤ n−1/2p−1‖U′U‖F =
OP (1+

√
n/p) again according to Lemma F.1. So combining the three terms, we

have ‖F̂−FH‖F = OP (1+
√
n/p). We now refine the bound for ‖E3‖F . ‖E3‖F ≤

(np)−1(‖U′UF‖F ‖H‖F + ‖U′U‖F ‖F̂− FH‖F ) = OP (1/
√
n+ 1/

√
p+

√
n/p).

Then the refined rate of ‖F̂− FH‖F is OP (
√

n/p+ 1/
√
n).

(ii) Since ‖Λ′UF̂‖F = OP (n
√
p) by Lemma F.1,

‖E1‖max = OP ((np)
−1‖F‖max‖Λ′UF̂‖F ) = OP (

√
logn/p) .

‖E2‖max is bounded by p−1‖U′Λ‖max = OP (
√

logn/p) while ‖E3‖max is bound-
ed by

OP

(
(np)−1(‖U′UF‖max +

√
n‖U′U‖max‖F̂− FH‖F )

)
,

which based on results of Lemma F.2 and (i) is OP (1/
√
p+

√
log n/n).

The final rate of convergence for ‖F̂−FH‖max and ‖F̂−FH‖F are summa-
rized as follows.

Proposition C.1.

‖F̂−FH‖max = OP

(√ log n

p
+

√
logn

n

)
and ‖F̂−FH‖F = OP

(√n

p
+

1√
n

)
.

(C.2)

Proof. The results follow from Lemmas C.2.

C.2. Rates of ‖F′(F̂ − FH)‖max and ‖HH′ − I‖max

Note first that the two matrices under consideration is both K by K, so we do
not lose rates bounding them by their Frobenius norm.

Let us find out rate for ‖F′(F̂−FH)‖F . Basically we need to bound ‖F′Ei‖F
for i = 1, 2, 3. Firstly

‖F′E1‖F = p−1‖Λ′UF̂‖F ≤ p−1(‖Λ′UF‖F ‖H‖F + ‖Λ′U‖F ‖F̂− FH‖F ) .

Since ‖Λ′UF‖F = OP (
√
np) and ‖Λ′U‖F = OP (

√
np) by Lemma F.1, we have

‖F′E1‖F = OP (
√

n/p+ n/p). Secondly,

‖F′E2‖F ≤ p−1‖F′U′Λ‖F = OP (
√

n/p) .

Finally,

‖F′E3‖F = OP

( 1

np
‖UF‖2F +

1

np
‖F′U′U‖F ‖F̂− FH‖F

)
= OP (1 +

√
n/p) .

So combining three terms we have ‖F′(F̂ − FH)‖max ≤ ‖F′(F̂ − FH)‖F =
OP (1 +

√
n/p).
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Now we bound ‖HH′ − I‖F . Since H′H = n−1(FH− F̂)′FH+n−1F̂′(FH−
F̂) + I, we have

‖H′H− I‖F = OP (
1

n
‖F′(F̂− FH)‖F +

1

n
‖F̂− FH‖2F ) = OP

( 1

n
+

1

p

)
.

Therefore ‖HH′ − I‖F has the same rate since ‖HH′ − I‖F ≤ ‖H‖F ‖H′H −
I‖F ‖H−1‖F . So ‖HH′ − I‖max = OP (1/n+ 1/p).

C.3. Rate of ‖U(F̂ − FH)‖max

In order to study rate of ‖U(F̂ − FH)‖max, we essentially need to bound
‖UEi‖max for i = 1, 2, 3. We handle each term separately.

‖UE1‖max = OP (
1

np
‖UF‖max‖Λ′UF̂‖F ) = OP (

1

n
‖UF‖max‖F′E1‖F )

= OP

(√ log p

p
+

√
n log p

p

)
.

By Lemma F.5, ‖UU′Λ‖max = OP (
√
np log p+ n‖Σ‖1). Therefore,

‖UE2‖max = OP (
1

p
‖UU′Λ‖max) = OP

(n‖Σ‖1
p

+

√
n log p

p

)
.

From bounding ‖E3‖F , the last term has rate

‖UE3‖max =
1

np
‖UU′UF̂‖max ≤ 1√

np
‖U‖max‖U′UF̂‖F

= OP ((1 + n/p)
√

log p) .

So combining three terms, we conclude ‖U(F̂−FH)‖max = OP ((1+n/p)
√
log p+

n‖Σ‖1/p).

Appendix D: Proof of Theorem 3.2

Recall that by the definition of F̃, we have

1

np
X′PXF̃ = F̃K,

where K is a K × K diagonal matrix with the first K largest eigenvalues of
(np)−1X′PX in descending order as its diagonal elements. Define the K by K
matrix H as in [18]:

H =
1

np
B′Φ(W)′Φ(W)BF′F̃K−1 .

It has been shown that ‖K‖, ‖K−1‖ and ‖H‖, ‖H−1‖ are all OP (1). Here we
remind that though H and K are different from those in regime 1 defined in the
previous section, they play essentially the same roles (thus with same notations).
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The following lemma provides all the rates of convergences that are needed
for downstream analysis.

Lemma D.1. Choose J = (pmin{n, p, ν−1
p })1/κ and assume J2φ2

max log(nJ) =
O(p) where φmax = maxν≤J supx∈X φν(x). Under Assumptions 2.1, 2.3, 2.4 and
3.1, we have ‖Λ‖max = OP (Jφmax +

√
log p) and

(i) ‖F̃− FH‖F = OP (
√

n/p) and ‖F̃− FH‖max = OP (
√

logn/p);

(ii) ‖F′(F̃− FH)‖max = OP (
√

n/p+ n/p+ n
√

νp/p);

(iii) ‖U(F̃− FH)‖max = OP (
√

n log p/p+ nJφmax‖Σ‖1/p);
(iv) ‖HH′ − I‖max = OP (1/p+ 1/

√
pn+

√
νp/p).

Combining the above lemma with Lemma B.1, we obtain

Ũ−U = − 1

n
UFF′ +Π ,

where ‖Π‖max = OP (
√

logn/p(Jφmax +
√
log p) + Jφmax‖Σ‖1

√
logn/p) and

ŨŨ′ −UU′ = − 1

n
UFF′U′ +Δ ,

where ‖Δ‖max = OP (n
√

νp/p(J
2φ2

max+log p)+nJφmax‖Σ‖1(Jφmax+
√
log p)/

p+n2J2φ2
max‖Σ‖21/p2) if there exists C s.t. νp > C/n. We choose to keep ‖Σ‖1

terms here although it makes a long presentation of the rate.
Thus we complete the proof for Theorem 3.2. We are left to check Lemma

D.1, which is done in the following three subsections.

D.1. Convergence of factors F̃

Recall H = (np)−1B′Φ(W)′Φ(W)BF′F̃K−1. Substituting X = Φ(W)BF′ +
R(W)F′ + ΓF′ +U, we have,

F̃− FH =
( 15∑

i=1

Ai

)
K−1 (D.1)

where Ai, i ≤ 3 has nothing to do with R(W) and Γ:

A1 =
1

np
FB′Φ(W)′UF̃, A2 =

1

np
U′Φ(W)BF′F̃, A3 =

1

np
U′PUF̃ ;

Ai, 3 ≤ i ≤ 8 takes care of terms involving R(W):

A4 =
1

np
FB′Φ(W)′R(W)F′F̃, A5 =

1

np
FR(W)′Φ(W)BF′F̃,

A6 =
1

np
FR(W)′PR(W)F′F̃, A7 =

1

np
FR(W)′PUF̃,

A8 =
1

np
U′PR(W)F′F̃ ;
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the remaining are terms involving Γ:

A9 =
1

np
FB′Φ(W)′ΓF′F̃, A10 =

1

np
FΓ′Φ(W)BF′F̃,

A11 =
1

np
FΓ′PΓF′F̃, A12 =

1

np
FΓ′PUF̃,

A13 =
1

np
U′PΓF′F̃, A14 =

1

np
FR′PΓF′F̃, A15 =

1

np
FΓ′PRF′F̃.

To bound ‖F̃−FH‖max, as in Theorem C.1 we only need to bound ‖Ai‖max

for i = 1, ..., 15 since again we have ‖K−1‖2 = OP (1). The following lemma
gives the rate for each term.

Lemma D.2. (i) ‖A1‖max = OP (
√
log n/p) = ‖A2‖max,

(ii) ‖A3‖max = OP (Jφmax

√
log(nJ)/p),

(iii) ‖A4‖max = OP (J
−κ/2

√
log n) = ‖A5‖max and ‖A9‖max =

OP (
√

νp log n/p) = ‖A10‖max,
(iv) ‖A6‖max = OP (J

−κ
√
logn) and ‖A11‖max = OP (Jνp

√
logn/p),

(v) ‖A7‖max = OP (φmax

√
p−1J1−κ log(nJ) log n) = ‖A8‖max

and ‖A12‖max = OP (Jφmax

√
νp log(nJ) log n/p) = ‖A13‖max,

(vi) ‖A14‖max = OP (
√

p−1J1−κνp logn) = ‖A15‖max.

Proof. (i) Because ‖F‖max = OP (
√
logn), ‖F̃‖F = OP (

√
n). By Lemmas F.3

and F.4, ‖U′Φ(W)B‖F = OP (
√
pn) and ‖U′Φ(W)B‖max = OP (

√
p log n).

Hence

‖A1‖max ≤
√
K

np
‖F‖max‖B′Φ(W)′U‖F ‖F̃‖F = OP (

√
logn/p),

‖A2‖max ≤
√
K

np
‖U′Φ(W)B‖max‖F‖F ‖F̃‖F = OP (

√
logn/p).

(ii) We have A3 =
1
npU

′Φ(W)(Φ(W)′Φ(W))−1Φ(W)′UF̃. By Lemma F.3

and F.4, ‖U′Φ(W)‖F =OP (
√
npJ) and ‖U′Φ(W)‖max =OP (φmax

√
p log(nJ)).

By Assumption 3.1, ‖(Φ(W)′Φ(W))−1‖2 =OP (p
−1). Note the fact that

for matrix Am×n, Bn×n, Cn×r, ‖ABC‖max = maxi≤m,k≤r |a′iBck| ≤√
n‖A‖max‖B‖2‖C‖F . So

‖A3‖max ≤
√
Jd

np
‖U′Φ(W)‖max‖(Φ(W)′Φ(W))−1‖2‖Φ(W)′U‖F ‖F̃‖F

=OP (Jφmax

√
log(nJ)/p).

(iii) Note that ‖Φ(W)B‖2 ≤ ‖G(W)‖2 + ‖R(W)‖2 = OP (
√
p), and

‖R(W)‖max = OP (J
−κ/2). Hence we have ‖B′Φ(W)′R(W)‖max ≤

‖B′Φ(W)′‖1‖R(W)‖max ≤ √
p‖B′Φ(W)′‖2‖R(W)‖max = Op(pJ

−κ/2). Thus

‖A4‖max ≤ K3/2

np
‖F‖max‖B′Φ(W)′R(W)‖max‖FF̃‖F = OP (J

−κ/2
√
logn).

Similarly, ‖A5‖max attains the same rate of convergence.
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In addition, notice A9,A10 have similar representation as A4,A5. The only
difference is to replace R by Γ. It is not hard to see ‖B′Φ′Γ‖max = OP (

√
pνp).

Therefore ‖A9‖max = OP (
√

νp logn/p) = ‖A10‖max.
(iv) Note that

‖P‖2 = ‖(Φ(W)′Φ(W))−1/2Φ(W)′Φ(W)(Φ(W)′Φ(W))−1/2‖2 = 1

and ‖R(W)′PR(W)‖max ≤ p‖R(W)‖2max‖P‖2 = Op(pJ
−κ). Hence

‖A6‖max ≤ K

np
‖F‖max‖R(W)′PR(W)‖max‖FF̃‖F = OP (J

−κ
√

logn).

A11 has similar representation as A6. Since

‖Γ′PΓ‖max ≤ ‖Φ′Γ‖2F ‖(Φ′Φ)−1‖2 = OP (Jνp),

we have ‖A11‖max = OP (Jνp
√
logn/p).

(v) According to Lemma F.4, ‖U′Φ(W)‖max = OP (φmax

√
p log(nJ)). Thus

‖A7‖max ≤ K√
np

‖F‖max‖F̃‖F ‖R′Φ(Φ′Φ)−1Φ′U‖max

≤ Op(p
−1

√
J logn)‖R′Φ‖F ‖(Φ′Φ)−1‖2‖Φ′U‖max

= Op

(
φmax

√
J log(nJ) log n

pJκ

)
,

since ‖R′Φ‖F ≤ ‖R‖F ‖Φ‖2 = OP (pJ
−κ/2). The rate of convergence for A8

can be bounded in the same way. So do A12 and A13. Given that ‖Γ′Φ‖F =
OP (pJνp), we have ‖A12‖max = OP (Jφmax

√
νp log(nJ) log n/p) = ‖A13‖max.

(vi) Obviously, ‖A14‖max = OP (p
−1

√
logn‖R′PΓ‖max) and ‖R′PΓ‖max ≤

‖R′Φ‖F ‖(Φ′Φ)−1‖‖Φ′Γ‖F . We conclude ‖A14‖max = OP (
√

p−1J1−κνp logn).
Same bound holds for A15.

The final rate of convergence for ‖F̃−FH‖max and ‖F̃−FH‖F are summa-
rized as follows.

Proposition D.1. Choose J = (pmin(n, p, ν−1
p ))1/κ and assume

J2φ2
max log(nJ) = O(p) and νp = O(1),

‖F̃− FH‖max = OP

(√ log n

p

)
and ‖F̃− FH‖F = OP

(√n

p

)
. (D.2)

Proof. The max norm result follows from Lemmas D.2 and (D.1), while the
Frobenius norm result has been shown in [18].

D.2. Rates of ‖F′(F̃ − FH)‖max and ‖HH′ − I‖max

Note first that the two matrices under consideration is both K by K, so we do
not lose rates bounding them by their Frobenius norm.
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It has been proved in [18] that ‖F′(F̃−FH)‖F = OP (
√

n/p+n/p+n
√

νp/p+

nJ−κ/2). By the choice of J , the last term vanishes. So

‖F′(F̃− FH)‖max ≤ ‖F′(F̃− FH)‖F = OP (
√

n/p+ n/p+ n
√

νp/p).

[18] also showed that ‖H′H−I‖F = OP (1/p+1/
√
pn+J−κ/2+

√
νp/p). Since

‖H‖ and ‖H−1‖ are both OP (1), we easily show ‖HH′−I‖max ≤ ‖HH′−I‖F ≤
‖H‖‖H′H− I‖F ‖H−1‖ = OP (1/p+ 1/

√
pn+

√
νp/p) since Jκ ≥ p/νp.

D.3. Rate of ‖U(F̃ − FH)‖max

By (D.1), in order to bound ‖U(F̃ − FH)‖max, we essentially need to bound
‖UAi‖max for i = 1, . . . , 15. We do not bother going into the details of each
term again as in Lemma D.2. However, we point out the difference here. All Ai

are separated into two types: the ones starting with F and the ones starting
with U.

If a term Ai starts with F, say Ai = FQ, in Lemma D.2, we bound ‖Ai‖max

using
√
K‖F‖max‖Q‖F . Now we use bound ‖UAi‖max ≤

√
K‖UF‖max‖Q‖F

so that we obtain all related rates by just changing rate ‖F‖max = OP (
√
log n)

to ‖UF‖max = OP (
√
n log p).

Terms starting with U includes Ai, i = 2, 3, 8, 13. In Lemma D.2, we bound
‖Ai‖max, i = 3, 8, 13 using ‖U′Φ‖max while we bound ‖A2‖max using
‖U′ΦB‖max. Correspondingly now we need to control ‖UU′Φ‖max and
‖UU′ΦB‖max separately to update the rates. The derivation is relegated to
Lemma F.5. We have ‖UU′Φ(W)‖max = OP (φmax(

√
np log p + n‖Σ‖1)) and

‖UU′Φ(W)B‖max = OP (
√
np log p+ nJφmax‖Σ‖1).

So we replace the corresponding terms in Lemma D.2. It is not hard to see the
dominating term is ‖UA2‖max = OP (

√
n log p/p+ nJφmax‖Σ‖1/p). Therefore,

‖U(F̃− FH)‖max has the same rate.

Appendix E: Proof of Theorem 4.1

Proof. Denote the oracle empirical covariance matrix as

ΣN =
1

N

m∑
i=1

UiUi′.

As in [9], the upper bound on ‖Ω̂−Ω‖ is obtained by proving

‖(Σ̂−ΣN )Ω‖max = Op(τm,N,p) and ‖(ΣN −Σ)Ω‖max = Op(τm,N,p). (E.1)

Once the two bounds are established, we proceed by observing

‖Ip − Σ̂Ω‖max = ‖(Σ̂−Σ)Ω‖max = Op(τm,N,p),
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and then it readily follows that if λ � τm,N,p,

‖Ω̂−Ω‖max ≤ ‖Ω(Ip − Σ̂Ω̂)‖max + ‖(Ip − Σ̂Ω)′Ω̂‖max

≤ ‖Ω‖1‖Ip − Σ̂Ω̂‖max + ‖Ip − Σ̂Ω‖max‖Ω̂‖1 ≤ λ‖Ω‖1 + τ‖Ω‖1
= Op(τm,N,p),

where the first term of the last inequality uses the constraint of (4.4) while the

optimality condition of (4.4) is applied to bound ‖Ω̂‖1 by ‖Ω‖1. So it remains to
find τm,N,p in (E.1). Since Ω ∈ F(s, C0), ‖Ω‖1 ≤ C0, so we just need to bound

‖Σ̂−ΣN‖max and ‖ΣN −Σ‖max. Obviously,

‖ΣN −Σ‖max = Op

(√ log p

N

)
.

We have shown in (4.3) that Σ̂ given by (4.2) attains the rate ‖Σ̂−ΣN‖max =
OP (am,N,p). Thus τm,N,p =

√
log p/N + am,N,p. Similar proof as in [9] can also

reach error bounds under ‖ · ‖1 and ‖ · ‖2, which we omit. The proof is now
complete.

Appendix F: Technical lemmas

Lemma F.1. (i) ‖Λ′U‖2F = OP (np),
(ii) ‖U′U‖2F = OP (np

2 + pn2),
(iii) ‖U′UF‖2F = OP (np

2 + pn2).

Proof. We simply apply Markov inequality to get the rates.

E‖Λ′U‖2F = E[tr(Λ′UU′Λ)] = n · tr(Λ′ΣΛ) ≤ n‖Σ‖ · tr(Λ′Λ) = O(np) .

E‖U′U‖2F = E

[ n∑
t=1

n∑
t′=1

(

p∑
j=1

ujtujt′)
2
]

=

p∑
j1,j2=1

( n∑
t=1

E[u2
j1tu

2
j2t] +

∑
1≤t �=t1≤n

σ2
j1j2

)
= OP (np

2 + pn2) ,

since
∑

j1,j2
σ2
j1j2

= tr(Σ2) ≤ ‖Σ‖tr(Σ) = O(p).

E‖U′UF‖2F = E

[ n∑
t=1

K∑
k=1

(

n∑
t′=1

p∑
j=1

ujtujt′ft′k)
2
]

=

K∑
k=1

p∑
j1,j2=1

( n∑
t=1

E[u2
j1tu

2
j2t]f

2
tk +

∑
1≤t �=t1≤n

σ2
j1j2f

2
t1k

)
= OP (np

2 + pn2) .
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Lemma F.2. (i) ‖Λ′U‖max = OP (
√
p log n).

(ii) ‖U′U‖max = OP (p),
(iii) ‖U′UF‖max = OP (

√
np log n+ p

√
logn).

Proof. (i) ‖Λ′U‖max = maxt,k |u′
tλk| where λk is the kth column of Λ. Since

u′
tλk is mean zero sub-Gaussian with variance proxy λ′

kΣλk ≤ ‖Σ‖‖λk‖2 =
O(p), we have ‖Λ′U‖max = OP (

√
p log n).

(ii) ‖U′U‖max = maxt,t′ |u′
tut′ | ≤ maxt �=t′ |u′

tut′ | + maxt |u′
tut|. We need to

bound each term separately. The second term is bounded by the upper tail
bound of Hanson-Wright inequality for sub-Gaussian vector [24, 41] i.e.

P(‖ut‖2 > tr(Σ) + 2
√
tr(Σ)s+ 2‖Σ‖s) ≤ e−s .

Choose s = logn and apply union bound, we have maxt |u′
tut| = OP (tr(Σ) +

2
√
tr(Σ)s) = OP (p+

√
p log n) = OP (p). Then we deal with the first term. By

Chernoff bound,

P(max
t �=t′

|u′
tut′ | > s) ≤ 2n2e−sθ

E[exp(θu′
tut′)] ,

where E[exp(θu′
tut′)] = E[exp(θ2u′

tΣut/2)] ≤ E[exp(Cθ2‖ut‖2)]. [24] showed
that

E[exp(η‖ut‖2)] ≤ exp
(
tr(Σ)η +

tr(Σ2)η2

1− 2‖Σ‖η
)

For η < 1/(4‖Σ‖) ≤ tr(Σ)/(4tr(Σ2)), the right hand side is less than
exp(3tr(Σ)η/2) ≤ exp(Cpη). Choose η = Cθ2, we have

P(max
t �=t′

|u′
tut′ | > s) ≤ 2n2 exp(−sθ + Cθ2p) .

We minimize the right hand side and choose θ = s/(2Cp), it is easy to check
η < 1/(4‖Σ‖) and see that maxt �=t′ |u′

tut′ | = OP (
√
p log n). So we conclude that

‖U′U‖max = OP (p).
(iii) Let f̄k be the kth column of F. ‖U′UF‖max = maxt,k |u′

tUf̄k| ≤
maxt,k |u′

tU(−t)f̄k(−t)|+maxt,k |u′
tutftk| where U(−t), f̄k(−t) are U and f̄k can-

celing the tth column and element respectively. From (ii) we know the second
term is of order OP (pmaxtk |ftk|) = OP (p

√
logn). Define ξ = U(−t)f̄k(−t) ∼

subGaussian(0,Σ‖f̄k(−t)‖2), which is independent with ut. Thus

P(max
t,k

|u′
tξ| > s) ≤ 2nKe−sθ

E[exp(θu′
tξ)] ,

where E[exp(θu′
tξ)] ≤ E[exp(θ2u′

tΣut‖f̄k(−t)‖2/2)] ≤ E[exp(Cθ2n‖ut‖2)]. Sim-
ilar to (ii), we choose η = Cθ2n here. It is not hard to see maxt,k |u′

tξ| =
OP (

√
np log n). Thus ‖U′UF‖max = OP (

√
np log n+ p

√
logn).

Lemma F.3. (i) ‖F′U′‖2F = OP (np).
(ii) ‖U′Φ(W)‖2F = OP (npJ), ‖U′Φ(W)B‖2F = OP (np).
(iii) ‖Φ(W)′UF‖2F = OP (npJ), ‖B′Φ(W)′UF‖2F = OP (np).
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Proof. This results can be found in the paper of Fan, Liao and Wang (2014).
But the conditions they used are a little bit different from our conditions. In
particular, we allow no time (sample) dependence and only require bounded
‖Σ‖2 instead of ‖Σ‖1. By Markov inequality, it is sufficient to show the expected
value of each term attains the corresponding rate of convergence.

E‖F′U′‖2F = E[tr(F′
E[U′U]F)] = E[tr(F′tr(Σ)F)] = n · tr(Σ) = O(np).

E‖U′Φ(W)‖2F = E[tr(Φ′
E[UU′|W]Φ)] = n · E[tr(Φ′ΣΦ)] ≤ nJd · E[‖Φ′ΣΦ‖2]

≤ nJdC0E[‖Φ′Φ‖2] = O(npJ).

E‖Φ(W)′UF‖2F = E[tr(Φ′
E[UFF′U′|W]Φ)] = E[tr(FF′)tr(Φ′ΣΦ)] = O(npJ).

E‖U′Φ(W)B‖2F and ‖B′Φ(W)′UF‖2F are both O(np) following the same proof
as above. Thus the proof is complete.

Lemma F.4. (i) ‖F′U′‖max = OP (
√
n log p)

(ii) ‖U′Φ(W)‖max = OP (φmax

√
p log(nJ)), ‖U′Φ(W)B‖max = OP (

√
p log n).

(iii) ‖Φ(W)′UF‖max = OP (φmax

√
np log J), ‖B′Φ(W)′UF‖max = OP (

√
np).

Proof. (i) It is not hard to see ‖F′U′‖max = maxk≤K,j≤p |
∑n

t=1 ftkujt| =
Op(

√
n log p). The detailed proof by Chernoff bound is given in the following.

By union bound and Chernoff bound, we have

P

(
max

k≤K,i≤p

∣∣∣ n∑
t=1

ftkujt

∣∣∣ > t
)
≤ 2pKe−tθ · E

[
eθ

∑n
t=1 ftkujt

]
.

The expectation is calculated by fist conditioning on F,

E
[
eθ

∑n
t=1 ftkujt

]
= E

[
E

[
eθ

∑n
t=1 ftkujt |F

]]
≤ E

[
eθ

2 ∑n
t=1 f2

tkσjj/2
]
≤ e

1
2nC0θ

2

,

where the second equality uses the sub-Gaussianity of ujt and the last inequality
is from n−1F′F = I and ‖Σ‖2 ≤ C0. Therefore, choosing θ = t

nC0
, we have

P

(
max

k≤K,j≤p

∣∣∣ n∑
t=1

ftkujt

∣∣∣ > t
)
≤ 2pKe−tθe

C0
2 nθ2

= 2pKe−
t2

2C0n .

Thus ‖F′U′‖max = Op(
√
n log p).

(ii) ‖U′Φ(W)‖max = maxν,l,t |
∑p

j=1 ujtφν(Wjl)| = maxν,l,t |φ̄′
νlut|, where

φ̄νl = (φν(W1l), . . . , φν(Wpl))
′. Consider the tail probability condition on W:

P

(
max

ν≤J,l≤d,k≤n
|φ̄′

νluk| > t
∣∣∣W)

≤ 2Jdn · e−tθ
E[eθφ̄

′
νluk |W]

≤ 2Jdn · exp
{
− tθ +

1

2
θ2φ̄′

νlΣφ̄νl

}
.

The right hand side can be further bounded by

2Jdn · exp
(
− tθ +

1

2
θ2C0‖φ̄νl‖2

)
≤ 2Jdn · exp

(
− tθ +

1

2
pC0θ

2φ2
max

)
.
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Choose θ to minimize the upper bound and take expectation with respect to
W, we obtain

P

(
max

ν≤J,l≤d,k≤n
|φ̄′

νluk| > t
)
≤ 2Jdn · exp

{
− t2

2pC0φ2
max

}
.

Finally choose t � φmax

√
p log(nJ), the tail probability is arbitrarily small

with a proper constant. So ‖U′Φ(W)‖max = OP (φmax

√
p log(nJ)). The second

part of the results follows similarly. Note ‖U′Φ(W)B‖max ≤ ‖U′G(W)‖max +
‖U′R(W)‖max and the first term dominates. So the same derivation gives

P

(
‖U′G(W)‖max > t

)
≤ 2Kn · exp

{
− t2

2C0‖ḡk‖2
}
,

where ḡk = (gk(W1), . . . , gk(Wp)). ‖ḡk‖2 = Op(p) since it is assumed eigenval-
ues of p−1G(W)′G(W) is bounded almost surely. Hence, ‖U′Φ(W)B‖max =
OP (

√
p log n).

(iii) ‖Φ(W)′UF‖max = maxν≤J,l≤d,k≤K |
∑p

j=1

∑n
i=1 φν(Wjl)ujifik|. Using

Chernoff bound again, we get

P

(
max

ν≤J,l≤d,k≤K

∣∣∣ p∑
j=1

n∑
i=1

φν(Wjl)ujifik

∣∣∣ > t
)
≤ 2JdK · e−tθ · E

[
eθ

∑n
t=1 ftkφ̄

′
νlut

]
.

Since
∑n

t=1 ftkφ̄
′
νlut|F ∼ sub-Gaussian(0,

∑n
t=1 f

2
tkφ̄

′
νlΣφ̄νl) = sub-Gaussian(0,

nφ̄′
νlΣφ̄νl), the right hand side is easy to bound by first conditioning on F.

E

[
eθ

∑n
t=1 ftkφ̄

′
νlut

]
≤ E

[
exp

(1
2
nθ2φ̄′

νlΣφ̄νl

)]
≤ E

[
exp

(1
2
npC0φ

2
maxθ

2
)]

.

Therefore, choosing θ = t
npC0φ2

max
, we have

P

(
‖Φ(W)′UF‖max > t

)
≤ 2JdK · exp

{
− tθ +

1

2
npC0φ

2
maxθ

2
}

= 2JdK exp
{
− t2

2npC0φ2
max

}
.

So we conclude ‖Φ(W)′UF‖max = Op(φmax

√
np log J). By similar derivation as

in (ii), we also have ‖B′Φ(W)′UF‖max and ‖G(W)′UF‖max are both of order
OP (

√
np).

Lemma F.5. (i) ‖UU′Λ‖max = OP (
√
np log p+ n‖Σ‖1),

(ii) ‖UU′Φ(W)‖max = OP (φmax(
√
np log p+n‖Σ‖1)) and ‖UU′Φ(W)B‖max =

OP (
√
np log p+ nJφmax‖Σ‖1).

Proof. (i) ‖UU′Λ‖max ≤ maxj,k |
∑n

t=1 ujtu
′
tλk − n

∑p
j′=1 σjj′λj′k| +

nmaxj,k
∑p

j′=1 |σjj′ ||λj′k|. The second term is O(n‖Σ‖1). So it suffices to fo-
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cus on the first term. Let Σ = AA′ and ut = Avt so that Var(vt) = I.
Write A′ = (a1, . . . ,ap), so we have ujt = a′jvt. Also denote dk = A′λk. Thus

ujtu
′
tλk = a′jvtv

′
tdk and

∑p
j′=1 σjj′λj′k = a′jdk.

P

(
max
j,k

∣∣∣ n∑
t=1

(a′jvtv
′
tdk − a′jdk)

∣∣∣ > s
)

≤ pKP

(∣∣∣ n∑
t=1

(ã′jvtv
′
td̃k − ã′jd̃k)

∣∣∣ > s

maxj,k ‖aj‖‖dk‖
)
, (F.1)

where ãj and d̃k are two unit vectors of dimension p. We will bound the right

hand side with arbitrary unit vectors ãj and d̃k.

P

(∣∣∣ n∑
t=1

ã′jvtv
′
td̃k − nã′jd̃k

∣∣∣ > s
)

≤ P

(∣∣∣ n∑
t=1

((ãj + d̃k)
′vt)

2 − n‖ãj + d̃k‖2
∣∣∣ > 2s

)
+ P

(∣∣∣ n∑
t=1

((ãj − d̃k)
′vt)

2 − n‖ãj − d̃k‖2
∣∣∣ > 2s

)
.

Note that (ãj + d̃k)
′vt ∼ subGaussian(0, ‖ãj + d̃k‖2) and ‖ãj + d̃k‖2 ≤ 4. By

Bernstein inequality, we have for constant C > 0,

P

(∣∣∣ n∑
t=1

(ã′jvtv
′
td̃k − ã′jd̃k)

∣∣∣ > s
)
≤ 2 exp

(
− Cmin(s2/n, s)

)
.

Choose s = C
√
n log pmaxjk ‖aj‖‖dk‖ in (F.1), we can easily show that the

exception probability is small as long as C is large enough. Therefore, noting
maxjk ‖aj‖‖dk‖ ≤ Cmaxk ‖λk‖, maxj,k |

∑n
t=1 ujtu

′
tλk − n

∑p
j′=1 σjj′λj′k| =

OP (
√
n log pmaxk ‖λk‖) = OP (

√
np log p). Finally ‖UU′Λ‖max =

OP (
√
np log p+ n‖Σ‖1).

(ii) The rates of ‖UU′Φ(W)‖max and ‖UU′Φ(W)B‖max can be similarly
derived as (i). Denote Φvl = (φv(W1l), . . . , φv(Wpl))

′, so

‖UU′Φ(W)‖max ≤ max
j,v,l

∣∣∣ n∑
t=1

ujtu
′
tΦvl − n

p∑
j′=1

σjj′φv(Wj′l)
∣∣∣

+ nmax
j,v,l

p∑
j′=1

|σjj′ ||φv(Wj′l)|

= OP (
√

n log pmax
v,l

‖Φvl‖+ nφmax‖Σ‖1)

= OP (φmax(
√

np log p+ n‖Σ‖1)) .
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Denote the kth column of Φ(W)B by (ΦB)k, we have

‖UU′Φ(W)B‖max ≤ max
j,k

∣∣∣ n∑
t=1

ujtu
′
t(ΦB)k − n

p∑
j′=1

σjj′(ΦB)j′k)
∣∣∣

+ nmax
j,k

p∑
j′=1

|σjj′ ||(ΦB)j′k|

= OP (
√

n log pmax
k

‖(ΦB)k‖+ nJφmax‖Σ‖1)

= OP (
√

np log p+ nJφmax‖Σ‖1) ,

where we use maxk ‖(ΦB)k‖ ≤ ‖ΦB‖F = OP (
√
p).

Appendix G: More details on synthetic data analysis

G.1. Model calibration and data generation

We calibrate (estimate) the 264 by 264 covariance matrix Σ̂ of ut by our pro-
posed method to the data in the healthy group. Plugging it as input in CLIME
solver delivers a sparse precision matrix Ω, which will be taken as truth in the
simulation. Note that after regularization in CLIME, Ω−1 is not the same as Σ̂,
and we set the true covariance Σ = Ω−1. To obtain the covariance matrix used
in setting 1, we also calibrate, using the same method, a sub-model that involves
only the first 100 regions. We then copy this 100 × 100 matrix multiple times
to form a p × p block diagonal matrix and use it for simulations in setting 1.
We describe how we calibrate these ‘true models’ and generate data from the
models as follows.

1. (External covariates) For each j ≤ p, generate the external covariate
W i.i.d. from the multinomial distribution with P(Wj = s) = ws, s ≤ 10
where {ws}10s=1 are calibrated with the hierarchy clustering results of the
real data.

2. (Calibration) For the first 15 healthy subjects, obtain estimators for F,

B and Γ by PPCA, resulting in F̃, B̃ = n−1(Φ(W)′Φ(W))−1Φ(W)′XF̃

and Γ̃ = n−1(I −P)XF̃ according to [18]. Use the rows of the estimated
factors to fit a stationary VAR model ft = Aft−1+εt, where εt ∼ N(0,Σε),

and obtain the estimators Ã and Σ̃ε.
3. (Simulation) For each subject i ≤ m, pick one of the 15 calibrated

models and their associated parameters from above at random and do
the following.

(a) Generate γi
jk (entries of Γi) i.i.d. from N(0, σ̃2

γ) where σ̃
2
γ is the sam-

ple variance of all entries of Γ̃. For the first three settings, compute
the ‘true’ loading matrix Λi = Φ(W)B̃+Γi. For the last setting, set
Λi = Γi since G(W) = 0.
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(b) Generate factors f it from the VAR model f it = Ãf it−1 + εt with εt ∼
N(0, Σ̃ε), where the parameters Ã and Σ̃ε are taken from the fitted
values in step 2.

(c) Finally, generate the observed data Xi = ΛiFi′ + Ui, where each
column of Ui is randomly sampled from N(0,Ω−1), where Ω has
been calibrated by the CLIME solver as described at beginning of
the section.

G.2. More on pervasiveness

In this subsection, we discuss the pervasive assumption, which requires the spikes
to grow with order p, and present numerical performance of ALPHA for different
levels of cmin and cmax (defined in Assumption 2.3). The readers will have a
rough idea about how the spikiness (or the constant in front of the rate) affects
the performance. We particularly consider the cases when cmax is small or cmin

is large. As a threshold matter, we verify that the real data is consistent with
the pervasive assumption.

Denote the maximum and minimum eigenvalues of the matrix Λ′Λ/p by λmax

and λmin respectively, and denote the maximum eigenvalue of the matrix U′U/p
by λu

max. We first investigate the magnitude of λmin, λmax and λu
max derived from

the real data. Following exactly the same data generation procedure as in the
original simulation study, we randomly generate 1, 000 subjects. We find that
λmax has mean 15.352 and standard deviation 4.918, λmin has mean 10.069
and standard deviation 5.416 and λu

max has mean 1.317 and standard deviation
0.119. We also investigate the signal-to-noise ratio λmin/λ

u
max, which has mean

7.711 and standard deviation 4.230. Therefore, our real data demonstrates a
spiked covariance structure while the spikes are not extremely spiky.

Then we manipulate the data generation process correspondent to two differ-
ent cases. One is to multiply the original loading matrix Λ by 3, called Modified
(a), while the other is to divide Λ by 3, called Modified (b). Note that in the
case of Modified (b), λmin will be 1/9 of the original λmin and thus smaller than
λu
max, so we do not see a clear eigen-gap in this case. Table 3 compares the per-

formance of recovering the precision matrix Ω under the original and modified
setting when ni = 100.

Table 3

Gaussian Graphical Model Analysis

‖Ω̂−Ω‖max ‖Ω̂−Ω‖1 ‖Ω̂−Ω‖2
Original 0.564 3.445 1.188

Modified (a) 0.524 3.052 1.066
Modified (b) 0.749 4.914 1.719

We can see from the table above that the performance of ALPHA in the
case of Modified (a) is slightly better than that in the original case. Note that
increasing cmin makes the heterogeneity part more spiky. Larger cmin allows PCA
or PPCA to distinguish the spiky heterogeneity term more easily. In contrast,
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decreasing cmax makes the original spiky heterogeneity term hard to detect. We
also tend to miss several heterogeneity factors while extracting them. Therefore,
in Modified (b), the estimation error becomes significantly larger compared with
the original case.

G.3. Sensitivity analysis on the number of factors

In this section, we study how the estimated number of factors affects the recovery
of the Gaussian graphical model through simulations. The specification of the
number of factors is critical to the validity of our ALPHAmethod, which inspires
us to assess the performance of K̂ and K̃ on our simulated datasets in the first
place. Recall that

K̂ = argmaxk≤Kmax
λk(X

′X)/λk+1(X
′X) ,

K̃ = argmaxk≤Kmax
λk(X

′PX)/λk+1(X
′PX),

where P is the projection operator defined in (3.5) in the main text. The final
estimator of the number of factors, denote by Ǩ, comes from the heuristic
strategy we developed for choosing between PCA or PPCA. We choose PCA
if λK̂(X′X)/λK̂+1(X

′X) ≥ λK̃(X′PX)/λK̃+1(X
′PX) and choose PPCA vice

versa. The intuition is that we favor the method that yields larger eigen-ratio
between the spiked and non-spiked part of the covariance.

Analogous to the simulation study in our paper, we generate m = 1, 000
people’s BOLD data based on calibrated “true” data. We investigate the accu-
racy of the proposed K̂, K̃ and Ǩ for two cases: (i) ni = 20, p = 264 and (ii)
ni = 100, p = 264, presented in Table 4. As we can see from the table, when ni

is small, K̃ outperforms K̂, and when ni is large, K̂ is better. Note also that our
heuristic estimator Ǩ has great performance in both cases of large and small ni.

Table 4

Accuracy of K̂, K̃ and Ǩ

ni = 20 ni = 100
TotErr OverEst UnderEst TotErr OverEst UnderEst

K̂ 38.7% 0% 38.7% 0.7% 0% 0.7%

K̃ 29.7% 6.8% 22.9% 4.7% 2.7% 2.0%
Ǩ 29.7% 6.8% 22.9% 3.5% 2.3% 1.2%

Given the performance of our proposed estimators of the factor number, we
now artificially enlarge this estimation error and see how it affects the Gaussian
graphical model analysis. Let η be a random perturbation with P (η = 0) = 1/2,
P (η = 1) = 1/3 and P (η = 2) = 1/6. Define K+ := K + η and K− :=
max(K−η, 0), where K is the true number of factors. As the notations indicate,
K+ overestimates the factor number while K− underestimates it. Since P (η �=
0) = 1/2, their estimation accuracy is only 50%, worse than that of K̂ and K̃
as presented. We use K+ and K− as the estimators of the number of factors
respectively to recover the precision matrix of U and compare their performance
with that of Ǩ. The results are presented in Table 5.
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Table 5

Gaussian Graphical Model Analysis

ni = 20 ni = 100

‖Ω̂−Ω‖max ‖Ω̂−Ω‖1 ‖Ω̂−Ω‖2 ‖Ω̂−Ω‖max ‖Ω̂−Ω‖1 ‖Ω̂−Ω‖2
Oracle 0.687 4.131 1.311 0.335 2.018 0.695
Ko 0.873 2.824 1.351 0.536 2.006 2.017
Ǩ 1.156 8.581 2.950 0.564 3.445 1.188
K+ 0.771 3.27 1.49 0.586 2.154 1.074
K− 1.618 11.384 4.062 1.84 15.133 4.941

“Oracle” above means that we directly use the generated noise U to calculate
its sample covariance and plug it in CLIME to recover the precision matrix.
Ko means we know the true number of pervasive factors, and use PCA or
Projected-PCA (choosing the method that yields larger eigen-ratio) to adjust
factors. As we can see from the table above, K+ is nearly as good as Ko, which
means that overestimating the number of factors does not hurt the recovery
accuracy. In contrast, underestimating the number factors will seriously increase
the estimation error of Ω, as shown by K−, because the unadjusted pervasive
factors heavily corrupt the covariance of U. Nevertheless, both K+ and K− uses
partial information of the true number of factors. In comparison, our procedure
Ǩ, without any prior knowledge about the number of factors, have a great
performance in recovering Ω.
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