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Abstract: Let X1, . . . , Xn be an i.i.d. sample in Rp with zero mean
and the covariance matrix Σ∗ . The classical PCA approach recovers the
projector P ∗

J onto the principal eigenspace of Σ∗ by its empirical coun-

terpart P̂J . Recent paper [24] investigated the asymptotic distribution of

the Frobenius distance between the projectors ‖P̂J − P ∗
J ‖2 , while [27]

offered a bootstrap procedure to measure uncertainty in recovering this
subspace P ∗

J even in a finite sample setup. The present paper considers
this problem from a Bayesian perspective and suggests to use the credible
sets of the pseudo-posterior distribution on the space of covariance matrices
induced by the conjugated Inverse Wishart prior as sharp confidence sets.
This yields a numerically efficient procedure. Moreover, we theoretically
justify this method and derive finite sample bounds on the corresponding
coverage probability. Contrary to [24, 27], the obtained results are valid
for non-Gaussian data: the main assumption that we impose is the con-
centration of the sample covariance Σ̂ in a vicinity of Σ∗ . Numerical
simulations illustrate good performance of the proposed procedure even on
non-Gaussian data in a rather challenging regime.
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1. Introduction

Let the observed data Xn = (X1, . . . , Xn) be a collection of independent iden-
tically distributed zero-mean random vectors in Rp and let X be a generic
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random vector with the same distribution. Denote by Σ∗ its covariance ma-
trix:

Σ∗ def
= E

(
XX�) .

Usually one estimates the true unknown covariance by the sample covariance
matrix, given by

Σ̂
def
=

1

n

n∑
j=1

XjX
�
j .

Quantifying the quality of approximation of Σ∗ by Σ̂ is one of the most
classical problems in statistics. Surprisingly, a number of deep and strong results
in this area appeared quite recently. The progress is mainly due to Bernstein
type results on the spectral norm ‖Σ̂ − Σ∗‖∞ in the random matrix theory,
see, for instance, [22, 29, 31, 33, 1]. It appears that the quality of approximation
is of order n−1/2 while the dimensionality p only enters logarithmically in the
error bound. This allows to apply the results even in the cases of very high data
dimension.

Functionals of the covariance matrix also arise in applications frequently. For
instance, eigenvalues are well-studied in different regimes, see [26, 9, 19, 34]
and many more references therein. The Frobenius norm and other lr -norms of
covariance matrix are of great interest in financial applications; see, e.g. [10].

Much less is known about the quality of estimation of a spectral projector
which is a nonlinear functional of the covariance matrix. However, such objects
arise in dimension reduction methods, manifold learning and spectral methods
in community detection, see [11] and references therein for an overview of prob-
lems where spectral projectors play crucial role. Special attention should be
focused on the Principal Component Analysis (PCA), probably the most fa-
mous dimension reduction method. Nowadays PCA-based methods are actively
used in deep networking architecture [17] and finance [12], along with other
applications. Over the past decade huge progress was achieved in theoretical
guarantees for sparse PCA in high dimensions, see [18, 5, 3, 6, 13].

Suppose we fix some set J of eigenspaces of Σ∗ and consider a direct
sum of these eigenspaces and the associated true projector P ∗

J . Its empirical

counterpart is given by P̂J computed from the sample covariance Σ̂ . The
recent paper [28] presents new bounds on so called excess risk of PCA defined

as Tr
[
Σ∗(P ∗

J − P̂J )
]
.

This paper focuses on quantification of uncertainty in recovering the spectral
projector P ∗

J from its empirical counterpart P̂J . More precisely, the random
quantity of our interest is the squared Frobenius distance between the true
projector and the sample one ‖P̂J − P ∗

J ‖22 . Even though the projector P ∗
J

is a complex non-linear mapping of Σ∗ , a recent technique from [21] allows

to approximate (P̂J − P ∗
J ) by a linear functional of (Σ̂ − Σ∗) with root-

n accuracy. Several results about the distribution of this random variable are
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available for Gaussian observations: X1, . . . , Xn
i.i.d.∼ N (0,Σ∗) . For the case

when J corresponds to a single eigenvalue in the spectrum and consists of one
eigenspace, the normal approximation of n‖P̂J −P ∗

J ‖22 was shown in [24] with
a tight bound on

sup
x∈R

∣∣∣∣∣∣P
⎧⎨⎩n‖P̂J − P ∗

J ‖22 −E
(
n‖P̂J − P ∗

J ‖22
)

Var1/2
(
n‖P̂J − P ∗

J ‖22
) ≤ x

⎫⎬⎭− Φ(x)

∣∣∣∣∣∣ ,
where Φ(x) is the standard normal distribution function. However, the distribu-

tion of n‖P̂J −P ∗
J ‖22 depends on the unknown covariance matrix via the first

two moments of n‖P̂J −P ∗
J ‖22 . Due to this fact, it is difficult to use this result

directly for constructing the confidence sets for the true projector P ∗
J . The pa-

per [23] demonstrates convergence to a Cauchy-type limit independent from the

true covariance operator in a “high-complexity” setting where Tr(Σ∗)
‖Σ∗‖∞

→ ∞ .

Besides, a bootstrap approach can be used to overcome the described problem;
see [27]. The bootstrap validity result is based on the approximation of the dis-

tribution of n‖P̂J − P ∗
J ‖22 by the distribution of a Gaussian quadratic form

‖ξ‖2 . Namely, for the Gaussian data, Theorem 4.3 of [27] provides the following
statement:

sup
x∈R

∣∣∣P(n‖P̂J − P ∗
J ‖22 ≤ x)− P(‖ξ‖2 ≤ x)

∣∣∣ ≤ ♦, (1.1)

where ξ is a zero mean Gaussian vector with a specific covariance structure and
♦ is an explicit error term. The similar approximation is obtained in the boot-
strap world, this reduces the original problem to the question about Gaussian
comparison and Gaussian anti-concentration for large balls.

This paper suggests to look at this problem from a Bayesian point of view.
The standard approach for a nonparametric analysis of the posterior distribu-
tion is based on the prominent Bernstein – von Mises (BvM) phenomenon. The
BvM result states some pivotal (Gaussian) behavior of the posterior. The pa-
per [8] developed a general framework for functional BvM theorem, while [35]
used similar ideas to demonstrate asymptotic normality of approximately linear
functionals of covariance and precision matrices. In particular, it can be used
to justify the use of Bayesian credible sets as frequentist confidence sets for the
target parameter; see [25, 32, 15, 20, 4, 7] among others. In this work, we aim
to address a similar question specifically for spectral projectors of the covari-
ance matrix. It appears that the general BvM technique can be significantly
improved and refined for the problem at hand. The use of the classical conju-
gated Wishart prior helps not only to build a numerically efficient procedure
but also to establish precise finite sample results for the posterior credible sets
under mild and general assumptions on the data distribution. The key observa-
tion here is that, similarly to the bootstrap approach of [27], the credible level
sets for the posterior are nearly elliptic, and the corresponding posterior proba-
bility can be approximated by a generalized chi-squared-type distribution. This
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allows to apply the recent “large ball probability” bounds on Gaussian compar-
ison and Gaussian anti-concentration from [16]. Moreover, in the contrary to
the latter paper [27], we do not require a Gaussian distribution of the data. Our
results claim that the posterior credible sets can be used as frequentist confi-
dence regions even under a possible model misspecification when the true data
generation measure is not Gaussian. We still work with the Gaussian likelihood,
in this sense our procedure is pseudo-Bayesian and the constructed credible
sets should be referred to as pseudo-posterior ; see [14]. In our study we allow
the dimension p to grow with the sample size n , however, we need to assume
“ p3/n is small” in order to make our results meaningful.

The main contributions of this paper are as follows.

• We offer a new procedure for building elliptic confidence sets for the true
projector based on Bayesian simulation from the Inverse Wishart prior.
The procedure is fully data-driven and numerically efficient, its complex-
ity is proportional to the squared dimension and independent of sample
size. Numerical simulations confirm good performance of the proposed
method for artificial data: both Gaussian and non-Gaussian (not even
sub-Gaussian).

• We establish novel results on the coverage properties of pseudo-posterior
credible sets for a complicated non-linear problem of recovering the eigen-
space of the sample covariance matrix. The results apply under mild condi-
tions on the data distribution. In particular, we do not require Gaussianity
of the observations.

The rest of the paper is structured as follows. Some notations are introduced
in Section 2.1. Section 2.2 discusses the model. Our pseudo-Bayesian framework
and the main result of the paper about the pseudo-posterior credible sets are
described in Section 2.3. The use of such sets as frequentist confidence sets is
discussed in Section 2.4. Some numerical results on simulated data are demon-
strated in Section 3. Section 4 contains the proofs of the main theorems. Some
auxiliary results from the literature and the rest of the proofs are collected in
Appendix A and Appendix B, respectively.

2. Problem and main results

This section explains our setup and states the main results.

2.1. Notations

We will use the following notations throughout the paper. The space of real-
valued p×p matrices is denoted by Rp×p , while Sp

+ means the set of positive-
semidefinite matrices. We write Id for the identity matrix of size d×d , rank(A)
and Tr(B) stand for the rank of a matrix A and the trace of a square matrix B .
Further, ‖A‖∞ stands for the spectral norm of a matrix A , while ‖A‖1 means
the nuclear norm. The Frobenius scalar product of two matrices A and B of
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the same size is 〈A,B〉2 def
= Tr(A�B) , while the Frobenius norm is denoted

by ‖A‖2 . When applied to a vector, ‖ · ‖ means just its Euclidean norm. The

effective rank of a square matrix B is defined by r(B)
def
= Tr(B)

‖B‖∞
. The relation

a � b means that there exists an absolute constant C , different from line to
line, such that a ≤ Cb , while a 	 b means that a � b and b � a . By a∨b and
a∧ b we mean maximum and minimum of a and b , respectively. In the sequel
we will often be considering intersections of events of probability greater than
1− 1/n . Without loss of generality, we will write that the probability measure
of such an intersection is 1− 1/n , since it can be easily achieved by adjusting
constants. Throughout the paper we assume that p < n .

2.2. Setup and problem

Let X1, . . . , Xn be i.i.d. zero mean with Var(X) = Σ∗ . Without loss of gener-
ality, we can assume that Σ∗ ∈ Sp

+ is invertible, otherwise one can easily trans-
form the data in such a way that the covariance matrix for the transformed data
will be invertible. Let σ∗

1 ≥ . . . ≥ σ∗
p be the ordered eigenvalues of Σ∗ . Suppose

that among them there are q distinct eigenvalues μ∗
1 > . . . > μ∗

q . Introduce
groups of indices Δ∗

r = {j : μ∗
r = σ∗

j } and denote by m∗
r the multiplicity

factor (dimension) |Δ∗
r | for all r ∈ {1, . . . , q} . The corresponding eigenvectors

are denoted as u∗
1, . . . , u

∗
p . We will use the projector on the r -th eigenspace of

dimension m∗
r :

P ∗
r =

∑
j∈Δ∗

r

u∗
ju

∗
j
�

and the eigendecomposition

Σ∗ =

p∑
j=1

σ∗
ju

∗
ju

∗
j
� =

q∑
r=1

μ∗
r

⎛⎝ ∑
j∈Δ∗

r

u∗
ju

∗
j
�

⎞⎠ =

q∑
r=1

μ∗
rP

∗
r .

We also introduce the spectral gaps g∗r :

g∗r =

⎧⎪⎨⎪⎩
μ∗
1 − μ∗

2, r = 1,

(μ∗
r−1 − μ∗

r) ∧ (μ∗
r − μ∗

r+1), r ∈ {2, . . . , q − 1},
μ∗
q−1 − μ∗

q , r = q.

Suppose that Σ̂ has p eigenvalues σ̂1 > . . . > σ̂p (distinct with probability
one). The corresponding eigenvectors are denoted as û1, . . . , ûp . Suppose that

‖Σ̂ − Σ∗‖∞ ≤ 1
4 min
r∈{1,...,q}

g∗r . Then, as shown in [21], we can identify clusters

of the eigenvalues of Σ̂ corresponding to each eigenvalue of Σ∗ and therefore
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determine Δ∗
r and m∗

r for all r ∈ {1, . . . , q} . Then we can define the sample
projector on the r -th eigenspace of dimension m∗

r :

P̂ r =
∑
j∈Δ∗

r

ûj û
�
j .

Under the condition that the spectral gap is sufficiently large, [27] approximated

the distribution of n‖P̂ r − P ∗
r‖22 by the distribution of a Gaussian quadratic

form ‖ξ‖2 with ξ ∼ N (0, Γ ∗
r ) and Γ ∗

r is a block-matrix of the form

Γ ∗
r

def
=

⎡⎢⎢⎢⎣
Γ ∗
r1 O . . . O
O Γ ∗

r2 . . . O
...

...
. . .

...
O O . . . Γ ∗

rq

⎤⎥⎥⎥⎦ (2.1)

with (q − 1) diagonal blocks of sizes m∗
rm

∗
s ×m∗

rm
∗
s :

Γ ∗
rs

def
=

2μ∗
rμ

∗
s

(μ∗
r − μ∗

s)
2
· Im∗

rm
∗
s
, s �= r.

Below we extend these result in two aspects. First, our approach allows to pick
a block of eigenspaces corresponding to an interval J in {1, . . . , q} from r−

to r+ . Second, we relax the assumption on Gaussianity of the data.
Let

J = {r−, r− + 1, . . . , r+}.

Define also the subset of indices

IJ def
=

{
k : k ∈ Δ∗

r , r ∈ J
}
,

and introduce the projector onto the direct sum of the eigenspaces associated
with P ∗

r for all r ∈ J :

P ∗
J

def
=

∑
r∈J

P ∗
r =

∑
k∈IJ

u∗
ku

∗
k
�.

Its empirical counterpart is given by

P̂J
def
=

∑
r∈J

P̂ r =
∑
k∈IJ

ûkû
�
k .

For instance, when J = {1, . . . , qeff} for some qeff < q , then P̂J is exactly

what is recovered by PCA. Below we focus on n‖P̂J − P ∗
J ‖22 rather than

n‖P̂ r − P ∗
r‖22 .
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The projector dimension for J is given by m∗
J =

∑
r∈J m∗

r . Its spectral gap
can be defined as

g∗J
def
=

⎧⎪⎨⎪⎩
μ∗
r+ − μ∗

r++1, if r− = 1;

μ∗
r−−1 − μ∗

r− , if r+ = q;(
μ∗
r−−1 − μ∗

r−

)
∧

(
μ∗
r+ − μ∗

r++1

)
, otherwise.

Define also for J = {r−, r− + 1, . . . , r+}

l∗J = μ∗
r− − μ∗

r+ .

To describe the distribution of the projector P̂J , introduce the following matrix
Γ ∗
J of size m∗

J (p−m∗
J )×m∗

J (p−m∗
J ) :

Γ ∗
J

def
= diag

(
Γ r
J
)
r∈J , (2.2)

Γ r
J

def
= diag (Γ r,s)s/∈J ,

Γ r,s def
=

2μ∗
rμ

∗
s

(μ∗
r − μ∗

s)
2
· Im∗

rm
∗
s
, r ∈ J , s /∈ J .

It is easy to notice that when J = {r} then this definition coincides with (2.1).
Our results apply under one rather mild and natural condition on the distribu-

tion of Xn = (X1, . . . , Xn) that the sample covariance matrix Σ̂ concentrates
around the true covariance Σ∗ :

‖Σ̂ −Σ∗‖∞ ≤ δ̂n‖Σ∗‖∞ (2.3)

with probability 1 − 1/n . In this result we do not use, say, independence of
the Xi ’s or zero mean property, everything is done conditioned on the data
Xn . The value δ̂n clearly depends on the underlying data distributions, but it
allows to work with much wider classes of probability measures rather than just
Gaussian or sub-Gaussian. For the Gaussian case one may take

δ̂n 	
√

r(Σ∗) + log(n)

n
.

Several more examples of possible distributions and the corresponding δ̂n for
them are provided in Appendix A, see Theorem A.1. So, throughout the rest of
the paper we assume that the data satisfy condition (2.3).

2.3. Pseudo-Bayesian framework and credible level sets

Let Π be a prior distribution on the set of considered covariance matrices Σ .
Even though our data are not necessary Gaussian, we can consider the Gaussian



Bayesian inference for spectral projectors 1955

log-likelihood:

	n(Σ) = −n

2
log det(Σ)− n

2
Tr(Σ−1Σ̂)− np

2
log (2π).

In case of Gaussian data, the posterior measure of a set A ⊂ Sp
+ can be ex-

pressed as

Π
(
A

∣∣Xn
)
=

∫
A exp (	n(Σ)) dΠ(Σ)∫
Sp

+
exp (	n(Σ)) dΠ(Σ)

.

However, we can study this random measure for non-Gaussian data as well. As
the Gaussian log-likelihood 	n(Σ) does not necessarily correspond to the true
distribution of our data, we call the random measure Π

(
·
∣∣Xn

)
a pseudo-

posterior, [14]. Once a prior is fixed, we can easily sample matrices Σ from
this pseudo-posterior distribution. Denote eigenvalues of Σ as σ1 > . . . > σp

(assume they are distinct with probability one) and eigenvectors as u1, . . . , up .
The corresponding projector onto the r -th eigenspace of dimension m∗

r is

P r =
∑
k∈Δ∗

r

ukuk
�.

and the projector on the direct sum of eigenspaces associated with P r for
r ∈ J is

PJ =
∑
r∈J

P r =
∑
k∈IJ

uku
�
k .

In this work we focus on the conjugate prior to the multivariate Gaussian dis-
tribution, that is, the Inverse Wishart distribution IWp(G, p + b − 1) with
G ∈ Sp

+ , 0 < b � p . Its density is given by

dΠ(Σ)

dΣ
∝ exp

(
−2p+ b

2
log det(Σ)− 1

2
Tr(GΣ−1)

)
.

Some nice properties of the Inverse Wishart prior distribution allow us to obtain
the following result which we will use for uncertainty quantification statements
in the next section instead of the Bernstein–von Mises Theorem.

Theorem 2.1. Assume that the distribution of the data Xn = (X1, . . . , Xn)

fulfills the sample covariance concentration property (2.3) with δ̂n satisfying

δ̂n ≤
g∗J

4‖Σ∗‖∞
∧ r(Σ∗)

p
.

Consider the prior Π(Σ) given by the Inverse Wishart distribution
IWp(G, p+ b− 1) . Let ξ ∼ N (0, Γ ∗

J ) with Γ ∗
J defined by (2.2).
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Then with probability 1− 1
n

sup
x∈R

∣∣∣Π (
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
− P(‖ξ‖2 ≤ x)

∣∣∣ � ♦,

where

♦ = ♦(n, p,Σ∗)
def
=

♦1 + ♦2 + ♦3

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n
. (2.4)

The terms ♦1 through ♦3 can be described as

♦1 	
{
(log(n) + p)

((
1 +

l∗J
g∗J

)√
m∗

J ‖Σ∗‖∞
g∗J

+m∗
J

)
‖Σ∗‖∞ +m∗

J ‖G‖∞

}
×

×
m∗

J ‖Σ∗‖∞
g∗J

2

√
log(n) + p

n
,

♦2 	
‖Σ∗‖∞

(
m∗

J ‖Σ∗‖2∞ ∧ Tr
(
Σ∗2

))
g∗J

3 p
(
δ̂n +

p

n

)
,

♦3 	
(m∗

J )
3/2‖Σ∗‖∞ Tr(Σ∗)

g∗J
2

√
log(n)

n
.

Remark 2.1. The bound (2.4) can be made more transparent if we fix Σ∗

and focus on the dependence on p, n, δ̂n and the desired subspace dimension
m∗

J only (freezing the eigenvalues, the spectral gaps and multiplicities of the
eigenvalues):

♦ 	

√
(m∗

J )4 (p3 + log3(n))

n
∨ m∗

J p δ̂n,

or, in the sub-Gaussian case,

♦ 	

√
(m∗

J )4 (p3 + log3(n))

n
.

Moreover, in the case of spiked covariance model we expect ‖Γ ∗
J ‖2 to behave as√

pm∗
J which improves the previous bounds to

♦ 	

√
(m∗

J )3 (p2 + log3(n)/p)

n
∨

√
m∗

J p δ̂n,

and

♦ 	

√
(m∗

J )3 (p2 + log3(n)/p)

n
,

respectively.
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2.4. Gaussian approximation and frequentist uncertainty
quantification for spectral projectors

For the Gaussian data, Theorem 4.3 of [27] provides the explicit error bound
(1.1) with the error term ♦ of the following form:

sup
x∈R

∣∣∣P(n‖P̂ r − P ∗
r‖22 ≤ x)− P(‖ξ‖2 ≤ x)

∣∣∣ � ♦,

♦ = ♦(n, p,Σ∗)
def
=

√
m∗

r Tr(Γ
∗
r )√

λ1(Γ ∗
r )λ2(Γ ∗

r )

(√
log(n)

n
+

√
log(p)

n

)

+
m∗

r

g∗r
3

Tr3(Σ∗)√
λ1(Γ ∗

r )λ2(Γ ∗
r )

√
log3(n)

n
. (2.5)

The goal of this section is to extend this result to include the case of a generalized
spectral cluster and of non-Gaussian data. Before formulating the result, let us
introduce the following auxiliary matrices

U∗
J

def
=

{
u∗
k
�

√
μ∗
r

}
r∈J
k∈Δ∗

r

∈ Rm∗
J×p,

V ∗
J

def
=

{
u∗
l
�

√
μ∗
s

}
s/∈J
l∈Δ∗

s

∈ R(p−m∗
J )×p .

Then the following theorem holds.

Theorem 2.2. Assume the distribution of the data Xn = (X1, . . . , Xn) ful-

fills the sample covariance concentration property (2.3) with some δ̂n . Suppose
additionally that the projections P ∗

JX and (Ip − P ∗
J )X are independent and

the following third moments are finite:

E‖U∗
JX‖3 ≤ +∞, E‖V ∗

JX‖3 ≤ +∞.

Let ξ ∼ N (0, Γ ∗
J ) with Γ ∗

J defined by (2.2) . Then

sup
x∈R

∣∣∣P(
n‖P̂J − P ∗

J ‖22 ≤ x
)
− P(‖ξ‖2 ≤ x)

∣∣∣ � ♦,
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where

♦ = ♦(n, p,Σ∗)
def
= E‖U∗

JX‖3 E‖V ∗
JX‖3 p1/4√

n
(2.6)

+
Δ

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 ,

Δ
def
= nm∗

J

(
1 +

l∗J
g∗J

) {(
1 +

l∗J
g∗J

)
δ̂4n
g∗J

4 ∨ |J | δ̂3n
g∗J

3

}
.

Remark 2.2. The condition on independence of P ∗
JX and (Ip−P ∗

J )X is not
very restrictive, in fact, it has a natural interpretation: while we are interested
in the “signal” P ∗

JX , the orthogonal part (Ip − P ∗
J )X can be considered as

“noise”, and it is plausible to assume that the “noise” is independent from the
“signal”. It also worth mentioning that this condition was not required in our
main result above about the behavior of the pseudo-posterior.

Remark 2.3. The components of U∗
JX are them∗

J -dimensional coordinates of
X after projecting onto the eigenspace of interest and proper scaling. Similarly,
the components of V ∗

JX are the (p−m∗
J )-dimensional coordinates of X after

projecting onto the orthogonal complement and proper scaling. In general, the
factors E‖U∗

JX‖3 and E‖V ∗
JX‖3 from the error bound ♦ depend on how

heavy the tails of the distribution of X are. However, it is easy to show that in
case of a sub-Gaussian random vector X the behaviour is as follows:

E‖U∗
JX‖3 � (m∗

J )3/2 ,

E‖V ∗
JX‖3 � (p−m∗

J )
3/2

.

Coupled with Theorem A.1, (ii), this allows to bound the error term ♦ in the
sub-Gaussian case as

♦ �
√

(m∗
J )3p3.5

n
+m∗

J |J |

√
p3 + log3(n)

n
,

where, for simplicity, the characteristics of Σ∗ are hidden in the constants.

The proof of this result is presented in Appendix B. The obtained bound is
worse than (2.5) when the the full dimension p is large. This is the payment for
the Gaussian approximation which appears for non-Gaussian data. Our result
makes use of the Gaussian approximation technique from [2]. Some recent devel-
opments in Gaussian approximation for a probability of a ball indicate that the
bound (2.6) can be improved even further; see [30]. Comparison of the results
of Theorem 2.1 and Theorem 2.2 reveals that the pseudo-posterior distribution
of n‖PJ − P̂J ‖22 given the data perfectly mimics the distribution of

n‖P̂J −P ∗
J ‖22 , and, therefore, can be applied to building of elliptic confidence
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sets for the true projector. Specifically, for any significance level α ∈ (0; 1) (or
confidence level 1− α ) we can estimate the true quantile

γα
def
= inf

{
γ > 0 : P

(
n‖P̂J − P ∗

J ‖22 > γ
)
≤ α

}
by the following counterpart which can be numerically assessed using Bayesian
credible sets:

γ◦
α

def
= inf

{
γ > 0 : Π

(
n‖PJ − P̂J ‖22 > γ

∣∣Xn
)
≤ α

}
.

Then, the main results presented above imply the following corollary.

Corollary 2.3. Assume that all conditions of Theorem 2.1 and Theorem 2.2
are fulfilled. Then

sup
α∈(0; 1)

∣∣∣α− P

(
n‖P̂J − P ∗

J ‖22 > γ◦
α

)∣∣∣ � ♦+ ♦,

where ♦ = ♦(n, p,Σ∗) , ♦ = ♦(n, p,Σ∗) are defined by (2.4), (2.6), respec-
tively.

3. Numerical experiments

This section shows by mean of artificial data that the proposed pseudo-Bayesian
approach works quite well even for large data dimension and limited sample size.
We also want to track how the quality depends on the sample size n and the
dimension p . In our experiments we first fix some true covariance matrix Σ∗

of size p × p . Without loss of generality we consider only diagonal matrices
Σ∗ , so Σ∗ is defined by the distinct eigenvalues μ∗

r and the multiplicities m∗
r .

We also specify the desired subspace that we want to investigate by fixing J .
Further, for different sample sizes n we repeat the following two-step procedure.
The first step is to determine the quantiles of n‖P̂J − P ∗

J ‖22 . For that we

generate 3000 samples Xn , compute the corresponding P̂J and then just
take α− quantiles of the obtained realizations n‖P̂J −P ∗

J ‖22 for α from 0.001
to 0.999 with step 0.001 . The second step is to estimate the quantiles of the
pseudo-posterior distribution of n‖PJ − P̂J ‖22 . We generate 50 samples Xn

and for each realization we generate 3000 pseudo-posterior covariance matrices
Σ from the Inverse Wishart distribution with G = Ip, b = 1 . Then we compute

the corresponding PJ and take the α− quantiles of n‖PJ − P̂J ‖22 just as in

the first step. Namely, for each α we get 50 quantile estimates γ◦
α
(j), j ∈

{1, . . . , 50} (suppose we order them in ascending order) and take median of
them. For the true quantiles from the first step and the medians of the quantile
estimates from the second step we build a QQ-plot, which consists of points

with coordinates
(
γα, γ

◦
α
(25)

)
for various α . We expect that the constructed
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QQ-plot is close to the identity line indicating that these two distributions are
close to each other. Also we present a table with median coverage probabilities

P

(
n‖P̂J − P ∗

J ‖22 ≤ γ◦
α
(25)

)
and interquartile ranges

P

(
n‖P̂J − P ∗

J ‖22 ≤ γ◦
α
(38)

)
− P

(
n‖P̂J − P ∗

J ‖22 ≤ γ◦
α
(12)

)
of this coverage probability for the desired confidence levels 1−α from the list

{0.99, 0.95, 0.90, 0.85, 0.80, 0.75}.

In the first experiment we work with Gaussian data. The parameters of the
experiment are as follows:

• p = 100 , m∗
r = 1 for all r ∈ {1, . . . , 100} .

• μ∗
1 = 25.698, μ∗

2 = 15.7688, μ∗
3 = 10.0907, μ∗

4 = 5.9214, μ∗
5 = 3.4321 and

the rest of the eigenvalues μ∗
6, . . . , μ

∗
100 are from the Marchenko – Pastur

law with support [0.71; 1.34] .
• J = {1} , so we investigate the one-dimensional principal subspace given

by P ∗
1 .

The QQ-plots are depicted on Figure 1 while the coverage probabilities and the
interquartile ranges are presented in Table 1.

The setup of this experiment is exactly the same as the second example of [27],
so the performance of our pseudo-Bayesian method can be directly compared
with the performance of the Bootstrap approach (cf. Figure 2 and Table 2 of
[27]). The accuracy of these two procedures is approximately the same.

In the second experiment we check how our method performs on non-Gaussian
data. We generate each component of the vectors Xj independently yielding di-
agonal covariance matrix. In addition to Gaussian distribution, we consider also
the following three options: the uniform distribution on the interval [−a; a] ,
the Laplace distribution with scaling parameter a and the discrete uniform dis-
tribution with three values {−a, 0, a} . In each case the parameter a is chosen
in such a way that ensures the variance located on the diagonal of the covariance
matrix fixed earlier. So, the parameters of the experiment are as follows:

• p = 100 , m∗
1 = 3 , m∗

2 = 3 , m∗
3 = 3 and the rest of the multiplicities

m∗
4, . . . ,m

∗
91 are one.

• μ∗
1 = 25 , μ∗

2 = 20 , μ∗
3 = 15 , μ∗

4 = 10 , μ∗
5 = 7.5 , μ∗

6 = 5 and the rest of
the eigenvalues μ∗

7, . . . , μ
∗
100 are from the uniform distribution on [0; 3] .

• The first nine components were generated according to: uniform, Laplace,
discrete, Gaussian, Laplace, discrete, Laplace, Laplace, uniform distribu-
tions, respectively. The rest of the components are Gaussian.

• J = {1, 2, 3} , so we investigate nine-dimensional subspace given by
P ∗

1 + P ∗
2 + P ∗

3 .
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Fig 1. QQ-plots of the proposed pseudo-Bayesian procedure for the first experiment (Gaussian
data).

The QQ-plots are depicted on Figure 2 while the coverage probabilities and the
interquartile ranges are presented in Table 2.
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Fig 2. QQ-plots of the proposed pseudo-Bayesian procedure for the second experiment (non-
Gaussian data).

The performance of the proposed procedure is very good except the case
when the sample size is of the same order as the dimension. However, this
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Table 1

Coverage probabilities and interquartile ranges of the proposed pseudo-Bayesian procedure
for the first experiment (Gaussian data).

Confidence levels ( 1− α )
n 0.99 0.95 0.90 0.85 0.80 0.75
100 0.993 0.968 0.929 0.893 0.854 0.809

0.023 0.061 0.103 0.145 0.176 0.204
300 0.988 0.952 0.906 0.851 0.805 0.762

0.026 0.085 0.143 0.184 0.199 0.216
500 0.993 0.955 0.909 0.865 0.812 0.771

0.022 0.072 0.099 0.108 0.123 0.126
1000 0.990 0.956 0.908 0.859 0.817 0.767

0.014 0.049 0.066 0.067 0.091 0.104
2000 0.992 0.952 0.898 0.847 0.793 0.747

0.009 0.030 0.058 0.064 0.067 0.065
3000 0.992 0.959 0.908 0.849 0.802 0.750

0.005 0.024 0.036 0.054 0.046 0.063

Table 2

Coverage probabilities and interquartile ranges of the proposed pseudo-Bayesian procedure
for the second experiment (non-Gaussian data)

Confidence levels ( 1− α )
n 0.99 0.95 0.90 0.85 0.80 0.75
100 0.997 0.979 0.954 0.927 0.895 0.870

0.009 0.044 0.070 0.085 0.094 0.099
300 0.993 0.964 0.935 0.903 0.868 0.836

0.008 0.047 0.077 0.108 0.144 0.176
500 0.996 0.972 0.944 0.917 0.874 0.832

0.014 0.053 0.099 0.139 0.166 0.194
1000 0.990 0.957 0.920 0.882 0.841 0.796

0.011 0.050 0.098 0.131 0.171 0.188
2000 0.991 0.951 0.904 0.850 0.803 0.755

0.019 0.048 0.088 0.113 0.124 0.146
3000 0.994 0.958 0.913 0.863 0.813 0.771

0.007 0.033 0.054 0.069 0.079 0.092

regime lies beyond the scope of our results. If we have enough data, the method
demonstrates very good results even in such challenging situations as recovering
a direct sum of several subspaces from non-Gaussian (even not sub-Gaussian)
data.

4. Main proofs

This section collects the proofs of the main results. Some additional technical
statements are postponed to the Appendix.

4.1. Proof of Theorem 2.1

The Inverse Wishart prior IWp(G, p+ b− 1) is conjugate to the multivariate
Gaussian distribution, so our pseudo-posterior Π

(
Σ

∣∣Xn
)
is
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IWp(G + nΣ̂, n + p + b − 1) . We will actively use the following well-known
property of the Wishart distribution:

Σ−1
∣∣Xn d

=

n+p+b−1∑
j=1

WjW
�
j

∣∣Xn,

where Wj

∣∣Xn i.i.d.∼ N (0, (G+ nΣ̂)−1) .

For shortness in this section we will use the notation np
def
= n+ p+ b− 1 and

we assume that b � p . As we will see, this assumption will help us to simplify
the bounds, while the case b � p does not bring any gain. Moreover, define

Σn,p
def
=

1

np
G+

n

np
Σ̂

and

En,p
def
=

1

np

np∑
j=1

ZjZ
�
j − Ip ,

where Zj

∣∣Xn i.i.d.∼ N (0, Ip) . Then Σ−1
∣∣Xn can be represented as

Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p .

We may think that in the “posterior” world all randomness comes from En,p .
Moreover, due to Theorem A.1, (i), there is a random set Υ such that on this
set

‖En,p‖∞ �
√

log(np) + p

np
≤

√
log(n) + p

n
,

and its pseudo-posterior measure

Π
(
Υ
∣∣Xn

)
≥ 1− 1

n
.

Step 1 First, we will need the following lemma.

Lemma 4.1. The following holds on the random set Υ :

‖Σ − Σ̂‖∞ � ‖Σ̂‖∞
√

log(n) + p

n
+

‖G‖∞
n

. (4.1)
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Proof. Since Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p , we have

Σ − Σ̂ = Σ1/2
n,p (En,p + Ip)

−1 Σ1/2
n,p − Σ̂

= Σ1/2
n,p

[
(En,p + Ip)

−1 − Ip

]
Σ1/2

n,p +Σn,p − Σ̂.

Note that

‖(En,p + Ip)
−1 − Ip‖∞ =

∥∥∥∥∥
∞∑
s=1

(−En,p)
s

∥∥∥∥∥
∞

≤
∞∑
s=1

‖En,p‖s∞ =
‖En,p‖∞

1− ‖En,p‖∞
� ‖En,p‖∞.

Hence,

‖Σ − Σ̂‖∞ � ‖Σn,p‖∞‖En,p‖∞ + ‖Σn,p − Σ̂‖∞.

Finally, the observations that

‖Σn,p‖∞ ≤ ‖G‖∞
n

+ ‖Σ̂‖∞,

‖Σn,p − Σ̂‖∞ ≤ ‖G‖∞
n

+
np − n

n
‖Σ̂‖∞,

finish the proof.

The condition on the significant spectral gap for Σ∗ and the bound (2.3) on

the operator norm ‖Σ̂−Σ∗‖ imply a significant spectral gap for the empirical

covariance Σ̂ . The crucial Lemma A.2 applied with the central projector P̂J
in place of P ∗

J allows to obtain the bound on how close the linear operator

L̂J (Σ − Σ̂)
def
=

∑
k∈IJ

∑
l/∈IJ

ûkû
�
k (Σ − Σ̂)ûlû

�
l + ûlû

�
l (Σ − Σ̂)ûkû

�
k

σ̂k − σ̂l

is to PJ − P̂J .

Lemma 4.2. The following holds on the random set Υ :

√
n‖PJ − P̂J − L̂J (Σ − Σ̂)‖2 � Δ̂0,

where

Δ̂0
def
=

√
m∗

J
n

(
1 +

l̂J
ĝJ

)
(log(n) + p)‖Σ̂‖2∞ + ‖G‖2∞/n

ĝ2J
,

and l̂J , ĝJ are empirical versions of l∗J , g∗J .
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Proof. It follows from (A.2) from Lemma A.2 that

‖PJ − P̂J − L̂J (Σ − Σ̂)‖∞ �
(
1 +

l̂J
ĝJ

)
‖Σ − Σ̂‖2∞

ĝ2J
.

It is easy to see that the rank of L̂J (Σ − Σ̂) is at most 2m∗
J , and thus the

rank of PJ − P̂J − L̂J (Σ − Σ̂) is at most 4m∗
J . Hence, taking into account

the relation between the Frobenius and the spectral norm of a matrix via rank
and (4.1) from Lemma 4.1, we obtain the desired statement.

The representation

Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p .

helps to obtain the next result showing that L̂J (Σ − Σ̂) can be approximated

by ŜJ = L̂J

(
−Σ̂

1/2
En,pΣ̂

1/2
)
.

Lemma 4.3. It holds

L̂J (Σ) = L̂J

(
−Σ̂

1/2
En,p Σ̂

1/2
)
+RJ = ŜJ +RJ ,

where the remainder RJ fulfills on the random set Υ

√
n‖RJ ‖2 � Δ̂1

def
=

m∗
J√
n

· (log(n) + p)‖Σ̂‖∞ + ‖G‖∞
ĝJ

.

Proof. Define Rn,p by

Rn,p
def
=

(
Ip +En,p

)−1 − Ip +En,p.

Its spectral norm can be bounded as

‖Rn,p‖∞ �
∥∥∥∥∥

∞∑
s=2

(−En,p)
s

∥∥∥∥∥
∞

≤
∞∑
s=2

‖En,p‖s∞ =
‖En,p‖2∞

1− ‖En,p‖∞
� ‖En,p‖2∞.

So

Σ = Σ1/2
n,p (En,p + Ip)

−1 Σ1/2
n,p = Σ1/2

n,p (Ip −En,p +Rn,p)Σ
1/2
n,p .

Therefore for Σ − Σ̂ we have

Σ − Σ̂ = Σ1/2
n,p (Ip −En,p +Rn,p)Σ

1/2
n,p − Σ̂

= −Σ1/2
n,p En,p Σ

1/2
n,p +Σ1/2

n,p Rn,p Σ
1/2
n,p +Σn,p − Σ̂.
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From Σ1/2
n,p En,p Σ

1/2
n,p we pass to Σ̂

1/2
En,p Σ̂

1/2
:

Σ − Σ̂ = −Σ̂
1/2

En,p Σ̂
1/2

+ (Σ̂
1/2

En,p Σ̂
1/2

−Σ1/2
n,p En,p Σ

1/2
n,p)

+Σ1/2
n,p Rn,p Σ

1/2
n,p +Σn,p − Σ̂

= −Σ̂
1/2

En,p Σ̂
1/2

+R1 +R2 +R3,

where we introduce the remainder terms

R1
def
= Σ̂

1/2
En,p Σ̂

1/2
−Σ1/2

n,p En,p Σ
1/2
n,p ,

R2
def
= Σ1/2

n,p Rn,p Σ
1/2
n,p ,

R3
def
= Σn,p − Σ̂.

They can be bounded as

‖R1‖∞ ≤ ‖En,p‖∞‖Σ̂ −Σn,p‖1/2∞

(
‖Σn,p‖1/2∞ + ‖Σ̂‖1/2∞

)
,

‖R2‖∞ ≤ ‖Rn,p‖∞‖Σn,p‖∞ � ‖En,p‖2∞‖Σn,p‖∞,

‖R3‖∞ � ‖G‖∞ + (np − n) ‖Σ̂‖∞
np

.

Hence, omitting higher order terms, on Υ we have

‖R1‖∞ � ‖Σ̂‖1/2∞

(
‖G‖∞ + p‖Σ̂‖∞

)1/2
√
log(n) + p

n
,

‖R2‖∞ � ‖Σ̂‖∞
log(n) + p

n
,

‖R3‖∞ � ‖G‖∞ + p ‖Σ̂‖∞
n

.

Now we summarize

L̂J (Σ − Σ̂) = ŜJ +RJ

with

ŜJ
def
= −

∑
k∈IJ

∑
l �∈IJ

σ̂
1/2
k σ̂

1/2
l (ûkû

�
k En,p ûlû

�
l + ûlû

�
l En,p ûkû

�
k )

σ̂k − σ̂l
,

RJ
def
=

∑
k∈IJ

∑
l �∈IJ

(ûkû
�
k (R1 +R2 +R3) ûlû

�
l + ûlû

�
l (R1 +R2 +R3) ûkû

�
k )

σ̂k − σ̂l
.
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Moreover,

∥∥RJ
∥∥
2
≤ 2

∥∥∥∥∥∥
∑
k∈IJ

ûkû
�
k

∑
l �∈IJ

(R1 +R2 +R3) ûlû
�
l

σ̂k − σ̂l

∥∥∥∥∥∥
2

≤ 2
∑
k∈IJ

‖ûkû
�
k ‖2

∥∥∥∥∥∥
∑
l �∈IJ

(R1 +R2 +R3) ûlû
�
l

σ̂k − σ̂l

∥∥∥∥∥∥
∞

≤ 2
∑
k∈IJ

‖R1 +R2 +R3‖∞

∥∥∥∥∥∥
∑
l �∈IJ

ûlû
�
l

σ̂k − σ̂l

∥∥∥∥∥∥
∞

≤
2m∗

J
ĝJ

(‖R1‖∞ + ‖R2‖∞ + ‖R3‖∞) ,

which provides the desired bound. Similarly, we have

∥∥ŜJ
∥∥
2
≤

2m∗
J ‖Σ̂‖∞
ĝJ

‖En,p‖∞ �
m∗

J ‖Σ̂‖∞
ĝJ

√
log(n) + p

n
,

where the last inequality holds on Υ .

The results of Lemmas 4.2 and 4.3 yield on the random set Υ

√
n‖P̂J − PJ − ŜJ ‖2 � Δ̂0 + Δ̂1.

In addition,∣∣∣n‖PJ − P̂J ‖22 − n‖ŜJ ‖22
∣∣∣

= n‖PJ − P̂J − ŜJ ‖22 + 2
〈√

n(PJ − P̂J − ŜJ ),
√
nŜJ

〉
2

≤ n‖PJ − P̂J − ŜJ ‖22 + 2
√
n‖PJ − P̂J − ŜJ ‖2 ·

√
n‖ŜJ ‖2.

Thus, taking into account the bound for ‖ŜJ ‖2 and neglecting higher order
terms, on Υ we obtain∣∣∣n‖PJ − P̂J ‖22 − n‖ŜJ ‖22

∣∣∣ � Δ̂2, (4.2)

where

Δ̂2
def
=

{
(log(n) + p)

((
1 +

l̂J
ĝJ

) √
m∗

J ‖Σ̂‖∞
ĝJ

+m∗
J

)
‖Σ̂‖∞ +m∗

J ‖G‖∞

}
×

×
m∗

J ‖Σ̂‖∞
ĝ2J

√
log(n) + p

n
.
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Step 2 The norm n‖ŜJ ‖22 can be decomposed as follows:

n‖ŜJ ‖22 = 2n

p∑
k′=1

p∑
l′=1

∑
k∈IJ

∑
l �∈IJ

σ̂kσ̂l

(σ̂k − σ̂l)2
(
û�
k′ ûkû

�
k En,pûlû

�
l ûl′

)2
=

= 2n
∑
k∈IJ

∑
l �∈IJ

σ̂kσ̂l

(σ̂k − σ̂l)2
(
û�
k En,pûl

)2
.

Introduce a vector ξ̂J ∈ Rm∗
J (p−m∗

J ) with components

ξ̂k,l =
√
2n

σ̂
1/2
k σ̂

1/2
l

σ̂k − σ̂l
û�
k En,pûl,

for k ∈ IJ , l �∈ IJ , ordered in some particular way that will become clear later.

Note that n‖ŜJ ‖22 = ‖ξ̂J ‖2 . Clearly, for each k ≤ p and j ≤ np

ηk,j
def
= û�

k Zj

∣∣Xn i.i.d.∼ N (0, 1).

Then the components can be rewritten as

ξ̂k,l =

√
2 σ̂

1/2
k σ̂

1/2
l

σ̂k − σ̂l

√
n

np

np∑
j=1

ηk,jηl,j ,

for k ∈ IJ , l �∈ IJ . To understand the covariance structure of ξ̂J , consider one
more pair (k′, l′) and investigate the covariance:

Γ̂(k,l),(k′,l′)
def
= Cov(ξ̂k,l, ξ̂k′,l′

∣∣Xn)

=
2n

n2
p

np∑
j,j′=1

σ̂
1/2
k σ̂

1/2
l σ̂

1/2
k′ σ̂

1/2
l′

(σ̂k − σ̂l)(σ̂k′ − σ̂l′)
E
(
ηk,j ηl,j ηk′,j′ ηl′,j′

∣∣Xn
)

=
2n

np
δk,k′ δl,l′

σ̂k σ̂l

(σ̂k − σ̂l)2

with δk,k′ = 1(k = k′) . Therefore, the covariance matrix of ξ̂J is diagonal:

Γ̂J
def
=

2n

np
· diag

(
2 σ̂k σ̂l

(σ̂k − σ̂l)2

)
k∈IJ , l/∈IJ

.

This matrix Γ̂J can be compared with the matrix Γ ∗
J defined in (2.2).

Lemma 4.4. On the event where ‖Σ̂ −Σ∗‖∞ ≤ g∗J /4 it holds∥∥Γ̂J − Γ ∗
J
∥∥
1
� Δ̂3 (4.3)
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with

Δ̂3
def
=

p
(
m∗

J ‖Σ∗‖2∞ ∧ Tr
(
Σ∗2

))
g∗J

3

(
‖Σ̂ −Σ∗‖∞ +

p

n
‖Σ∗‖∞

)
.

Proof. As both matrices Γ̂J and Γ ∗
J are diagonal, it holds

∥∥Γ̂J − Γ ∗
J
∥∥
1
≤ 2

∑
k∈IJ

∑
l/∈IJ

∣∣∣∣ nnp

σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣.
Let us fix arbitrary k ∈ IJ , l /∈ IJ and upperbound the corresponding term
of the sum. We will extensively use |σ̂k − σ∗

k| ≤ ‖Σ̂ −Σ∗‖∞ and |σ̂l − σ∗
l | ≤

‖Σ̂ −Σ∗‖∞ which holds due to the Weyl’s inequality.

So, we have

∣∣∣∣ nnp

σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ ≤ ∣∣∣∣ nnp

σ̂k σ̂l

(σ̂k − σ̂l)2
− n

np

σ∗
kσ

∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣
+

∣∣∣∣( n

np
− 1

)
σ∗
kσ

∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣.
Since n/np ≤ 1 , the first term is controlled by

∣∣∣∣ σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ ≤ ∣∣∣∣ σ̂k σ̂l (σ
∗
k − σ∗

l )
2 − σ∗

k σ
∗
l (σ̂k − σ̂l)

2

(σ∗
k − σ∗

l )
2 (σ̂k − σ̂l)2

∣∣∣∣
=

∣∣∣∣ (σ∗
k + εk) (σ

∗
l + εl) (σ

∗
k − σ∗

l )
2 − σ∗

k σ
∗
l (σ

∗
k − σ∗

l + εk − εl)
2

(σ∗
k − σ∗

l )
2 (σ̂k − σ̂l)2

∣∣∣∣,
where we introduced εk = σ̂k − σ∗

k and εl = σ̂l − σ∗
l . Then, crossing out the

term σ∗
k σ

∗
l (σ

∗
k − σ∗

l )
2 in the numerator, we obtain

∣∣∣∣ σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ ≤
≤

∣∣∣∣ (σ∗
kεl + σ∗

l εk + εkεl) (σ
∗
k − σ∗

l )
2 − σ∗

k σ
∗
l (2(σ

∗
k − σ∗

l )(εk − εl) + (εk − εl)
2)

(σ∗
k − σ∗

l )
2 (σ̂k − σ̂l)2

∣∣∣∣.
On the event where ‖Σ̂ − Σ∗‖∞ ≤ g∗J /4 we have |εk|, |εl| ≤ |σ∗

k − σ∗
l |/4 ,

therefore we can omit the terms εkεl and (εk − εl)
2 paying a constant factor
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for that: ∣∣∣∣ σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣
�

∣∣∣∣ (σ∗
kεl + σ∗

l εk) (σ
∗
k − σ∗

l )
2 − 2σ∗

k σ
∗
l (σ

∗
k − σ∗

l )(εk − εl)

(σ∗
k − σ∗

l )
2 (σ̂k − σ̂l)2

∣∣∣∣
=

∣∣∣∣ (σ∗
kεl + σ∗

l εk) (σ
∗
k − σ∗

l )− 2σ∗
k σ

∗
l (εk − εl)

(σ∗
k − σ∗

l ) (σ̂k − σ̂l)2

∣∣∣∣
=

∣∣∣∣εk(σ∗
k
2 + σ∗

kσ
∗
l )− εl(σ

∗
l
2 + σ∗

kσ
∗
l )

(σ∗
k − σ∗

l ) (σ̂k − σ̂l)2

∣∣∣∣ .
Since σ∗

kσ
∗
l ≤ (σ∗

k
2 + σ∗

l
2)/2 , we get∣∣∣∣ σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ � σ∗
k
2 + σ∗

l
2

(σ∗
k − σ∗

l ) (σ̂k − σ̂l)2
‖Σ̂ −Σ∗‖∞.

As to the denominator, again considering the event where ‖Σ̂−Σ∗‖∞ ≤ g∗J /4 ,
we have |εk|, |εl| ≤ |σ∗

k − σ∗
l |/4 that results in

|σ̂k − σ̂l| = |σ∗
k − σ∗

l + εk − εl| ≥ |σ∗
k − σ∗

l |/2.

Hence, ∣∣∣∣ σ̂k σ̂l

(σ̂k − σ̂l)2
− σ∗

kσ
∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ � σ∗
k
2 + σ∗

l
2

(σ∗
k − σ∗

l )
3
‖Σ̂ −Σ∗‖∞ .

As to the term

∣∣∣∣( n
np

− 1
)

σ∗
kσ

∗
l

(σ∗
k−σ∗

l )
2

∣∣∣∣ , it is simply bounded as

∣∣∣∣( n

np
− 1

)
σ∗
kσ

∗
l

(σ∗
k − σ∗

l )
2

∣∣∣∣ � p

n
· σ∗

k
2 + σ∗

l
2

(σ∗
k − σ∗

l )
2
≤ p

n
· σ∗

k
2 + σ∗

l
2

(σ∗
k − σ∗

l )
3
‖Σ∗‖∞ .

The last inequality uses the fact that |σ∗
k − σ∗

l | ≤ ‖Σ∗‖∞ which is rather
useless, however it allows to write the final bound in a convenient form and
doesn’t worsen the result.

Putting this all together, we get

∥∥Γ̂J − Γ ∗
J
∥∥
1
�

∑
k∈IJ

∑
l/∈IJ

σ∗
k
2 + σ∗

l
2

(σ∗
k − σ∗

l )
3

(
‖Σ̂ −Σ∗‖∞ +

p

n
‖Σ∗‖∞

)
,

which provides the desired result once we notice that
∑

k∈IJ

∑
l/∈IJ

(σ∗
k
2 +σ∗

l
2) can

be bounded by both 2 p Tr(Σ∗2) and 2 pm∗
J ‖Σ∗‖∞ .
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Unfortunately, the entries ξ̂k,l of ξ̂J are not Gaussian because of the product
ηk,j ηl,j . This does not allow to apply the Gaussian comparison Lemma A.4.

To get rid of this issue, we condition on P̂JZ . Namely, in the “posterior”
world random vectors P̂JZj and (Ip− P̂J )Zj are Gaussian and uncorrelated,

therefore, independent, so we can condition on ZJ
def
= (P̂JZ1, . . . , P̂JZnp)

to get that ŜJ is conditionally on Xn, ZJ Gaussian random vector with the
covariance matrix

Γ̃J
def
= Cov

(
ξ̂J

∣∣Xn, ZJ
)
.

It holds similarly to the above

Γ̃(k,l),(k′,l′)
def
= Cov(ξ̂k,l, ξ̂k′,l′

∣∣Xn, ZJ )

=
2n

n2
p

np∑
j,j′=1

σ̂
1/2
k σ̂

1/2
l σ̂

1/2
k′ σ̂

1/2
l′

(σ̂k − σ̂l)(σ̂k′ − σ̂l′)
E
(
ηk,j ηl,j ηk′,j′ ηl′,j′

∣∣Xn, ZJ
)

=
2n

np
δ̃k,k′δl,l′

σ̂
1/2
k σ̂

1/2
k′ σ̂l

(σ̂k − σ̂l)(σ̂k′ − σ̂l)

with

δ̃k,k′
def
=

1

np

np∑
j=1

ηk,jηk′,j .

Lemma 4.5. It holds on a random set of pseudo-posterior measure 1− 1
n

max
k,k′∈IJ

∣∣δ̃k,k′ − δk,k′
∣∣ � √

log(np +m∗
J )

np
,

and on this set

∥∥Γ̃J − Γ̂J
∥∥
1
� Δ̂4

def
=

(m∗
J )3/2‖Σ̂‖∞ Tr(Σ̂)

ĝ2J

√
log(np +m∗

J )

np
. (4.4)

Proof. The first result of the lemma follows easily from usual concentration
inequalities for sub-exponential random variables and union bound for at most
|IJ |2 = (m∗

J )2 pairs of k, k′ .

To obtain the second inequality we represent Γ̃J and Γ̂J as

Γ̃J = diag
(
Γ̃

(l)
J

)
l/∈IJ

,

Γ̂J = diag
(
Γ̂

(l)
J

)
l/∈IJ

.
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Due to this block structure we have

‖Γ̃J − Γ̂J ‖1 =
∑
l/∈IJ

‖Γ̃ (l)
J − Γ̂

(l)
J ‖1.

Let us fix l /∈ IJ and focus on the corresponding block with size m∗
J ×m∗

J .
It’s easy to observe that for each k, k′ ∈ IJ

Γ̃(k,l),(k′,l) − Γ̂(k,l),(k′,l) =
2n

np

σ̂
1/2
k σ̂

1/2
k′ σ̂l

(σ̂k − σ̂l)(σ̂k′ − σ̂l)
· (δ̃k,k′ − δk,k′)

and, therefore,

max
k,k′∈IJ

∣∣∣Γ̃(k,l),(k′,l) − Γ̂(k,l),(k′,l)

∣∣∣ ≤ 2‖Σ̂‖∞σ̂l

ĝ2J
max

k,k′∈IJ

∣∣δ̃k,k′ − δk,k′
∣∣.

Finally, since

‖Γ̃ (l)
J − Γ̂

(l)
J ‖1 ≤

√
m∗

J ‖Γ̃ (l)
J − Γ̂

(l)
J ‖2

≤ (m∗
J )3/2 max

k,k′∈IJ

∣∣∣Γ̃(k,l),(k′,l′) − Γ̂(k,l),(k′,l′)

∣∣∣ ,
the obtained inequalities provide the result of the lemma.

Putting together (4.3) and (4.4) yields the bound∥∥Γ̃J − Γ ∗
J
∥∥
1
� Δ̂3 + Δ̂4.

The Gaussian comparison Lemma A.4 can be used to compare the conditional
distribution of ‖ξ̂J ‖ given Xn, P̂JZ and the unconditional distribution of
‖ξJ ‖ : on a random set of pseudo-posterior measure 1− 1

n

sup
x∈R

∣∣∣∣Π (
‖ξ̂J ‖2 ≤ x

∣∣∣∣Xn, ZJ

)
− P

(
‖ξJ ‖2 ≤ x

)∣∣∣∣
� Δ̂3 + Δ̂4

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 .

Of course, integrating w.r.t. P̂JZ ensures similar result when conditioning on
the data Xn only:

sup
x∈R

∣∣∣∣Π (
‖ξ̂J ‖2 ≤ x

∣∣∣∣Xn

)
− P

(
‖ξJ ‖2 ≤ x

)∣∣∣∣
� Δ̂3 + Δ̂4

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n
(4.5)

with probability one.
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Step 3 So far our bounds Δ̂2, Δ̂3, Δ̂4 were obtained in the “posterior” world,
and they are random in the Xn−world since they depend on Σ̂ . We want to
bound them by deterministic counterparts Δ1, Δ2, Δ3 with probability 1 −
1/n . To do so, we basically need to upperbound ‖Σ̂‖∞, Tr(Σ̂), l̂J and to
lowerbound ĝJ . This can be done as follows:

‖Σ̂‖∞ ≤ ‖Σ∗‖∞ + ‖Σ̂ −Σ∗‖∞ ≤ ‖Σ∗‖∞(1 + δ̂n),

Tr(Σ̂) ≤ Tr(Σ∗) + p‖Σ̂ −Σ∗‖∞ ≤ Tr(Σ∗)

(
1 +

p δ̂n ‖Σ∗‖∞
Tr(Σ∗)

)
.

with probability 1− 1/n . Due to the definition of the spectral gap, there is an
index j such that ĝJ = σ̂j − σ̂j+1 . Then due to the Weyl’s inequality we have

ĝJ = σ̂j − σ̂j+1 ≥ σ∗
j − σ∗

j+1 − |σ̂j − σ∗
j | − |σ̂j+1 − σ∗

j+1|

≥ g∗J − 2‖Σ̂ −Σ∗‖∞ ≥ g∗J − 2δ̂n‖Σ∗‖∞

with probability 1 − 1/n . Similarly we can upperbound l̂J . Further we can

plug the obtained inequalities directly in Δ̂2, Δ̂3, Δ̂4 in order to get Δ1, Δ2, Δ3

without any assumptions on δ̂n . Another option is to use our assumption

δ̂n ≤
g∗J

4‖Σ∗‖∞
∧ r(Σ∗)

p
,

that ensures ‖Σ̂‖∞ � ‖Σ∗‖∞, Tr(Σ̂) � Tr(Σ∗), ĝJ � g∗J , l̂J � l∗J . This
allows to obtain more transparent bounds on Δ1, Δ2, Δ3 . Also note that this
assumption guarantees that the event from Lemma 4.4 is of probability at least
1− 1/n . We conclude that

Δ̂2 �Δ2
def
=

{
(log(n) + p)

((
1 +

l∗J
g∗J

)√
m∗

J ‖Σ∗‖∞
g∗J

+ 1

)
‖Σ∗‖∞ + ‖G‖∞

}
×

×
m∗

J ‖Σ∗‖∞
g∗J

2

√
log(n) + p

n
,

Δ̂3 � Δ3
def
=

‖Σ∗‖∞
(
m∗

J ‖Σ∗‖2∞ ∧ Tr
(
Σ∗2

))
g∗J

3 p
(
δ̂n +

p

n

)
,

Δ̂4 � Δ4
def
=

(m∗
J )3/2‖Σ∗‖∞ Tr(Σ∗)

g∗J
2

√
log(n)

n

with probability 1− 1/n in the Xn−world.
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Now we combine the obtained bounds. For Δ2 defined above and arbitrary
x ∈ R it holds

Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)

≤ Π
(
n‖ŜJ ‖22 ≤ x+Δ2

∣∣Xn
)

+Π
(
n‖PJ − P̂J ‖22 − n‖ŜJ ‖22 ≤ −Δ2

∣∣Xn
)
.

Since n‖ŜJ ‖22
∣∣Xn d

= ‖ξ̂J ‖2
∣∣Xn , Δ̂2 � Δ2 with probability 1− 1

n , and taking
(4.2) into account, we deduce

Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
≤ Π

(
‖ξJ ‖2 ≤ x+Δ2

∣∣Xn
)
+Π

(
Υ c

∣∣Xn
)

with probability 1 − 1
n . Subtracting P

(
‖ξJ ‖2 ≤ x

)
and taking supremum of

both sides, we get

sup
x∈R

{
Π

(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x

)}
≤ sup

x∈R

{
Π

(
‖ξ̂J ‖2 ≤ x+Δ2

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x+Δ2

)}
+ sup

x∈R

{
P
(
‖ξJ ‖2 ≤ x+Δ2

)
− P

(
‖ξJ ‖2 ≤ x

)}
+Π

(
Υ c

∣∣Xn
)
.

The first term in the right-hand side is bounded by Δ3+Δ4

‖Γ∗
J ‖1/2

2 (‖Γ∗
J ‖2

2−‖Γ∗
J ‖2

∞)
1/4 +

1
n with probability 1 − 1

n due to (4.5). The second term does not exceed
Δ2

‖Γ∗
J ‖1/2

2 (‖Γ∗
J ‖2

2−‖Γ∗
J ‖2

∞)
1/4 according to the Gaussian anti-concentration Lemma

A.3. The last term is at most 1
n by definition of Υ . Therefore,

sup
x∈R

{
Π

(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x

)}
� Δ2 +Δ3 +Δ4

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n

with probability 1− 1
n . Similarly, one derives

sup
x∈R

{
P
(
‖ξJ ‖2 ≤ x

)
−Π

(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)}

� Δ2 +Δ3 +Δ4

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n

with probability 1− 1
n . The previous two inequalities yield the desired result.
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4.2. Proof of Corollary 2.3

Let ξJ ∼ N (0, Γ ∗
J ) . Due to Theorem 2.2 we have

sup
x∈R

∣∣∣P(
n‖P̂J − P ∗

J ‖22 > x
)
− P(‖ξJ ‖2 > x)

∣∣∣ � ♦.

Fix arbitrary significance level α ∈ (0; 1) (or confidence level 1 − α ). Recall

that by γα we denote α -quantile of n‖P̂J − P ∗
J ‖22 . Let us fix an event Θ

such that

sup
x∈R

∣∣∣Π (
n‖PJ − P̂J ‖22 > x

∣∣Xn
)
− P(‖ξJ ‖2 > x)

∣∣∣ � ♦.

According to Theorem 2.1 its probability is at least 1 − 1/n . Hence, by the
triangle inequality it holds on Θ

sup
x∈R

∣∣∣Π (
n‖PJ − P̂J ‖22 > x

∣∣Xn
)
− P

(
n‖P̂J − P ∗

J ‖22 > x
)∣∣∣ ≤ ♦′ 	 ♦+ ♦.

Therefore, taking x = γα−♦′ and x = γα+♦′ , we get on Θ∣∣∣Π (
n‖PJ − P̂J ‖22 > γα−♦′

∣∣Xn
)
− (α− ♦′)

∣∣∣ ≤ ♦′,∣∣∣Π (
n‖PJ − P̂J ‖22 > γα+♦′

∣∣Xn
)
− (α+ ♦′)

∣∣∣ ≤ ♦′.

Thus,

Π
(
n‖PJ − P̂J ‖22 > γα−♦′

∣∣Xn
)
≤ (α− ♦′) + ♦′ = α,

Π
(
n‖PJ − P̂J ‖22 > γα+♦′

∣∣Xn
)
≥ (α+ ♦′)− ♦′ = α.

By definition of γ◦
α the previous two inequalities yield

γα+♦′ ≤ γ◦
α ≤ γα−♦′ on Θ.

Hence,

P (γ◦
α < γα+♦′) ≤ P (Θc) ≤ 1

n
,

P (γ◦
α > γα−♦′) ≤ P (Θc) ≤ 1

n
.
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Now we can write the following chain of inequalities:

P

(
n‖P̂J − P ∗

J ‖22 > γ◦
α

)
≤ P

({
n‖P̂J − P ∗

J ‖22 > γα+♦′

}
∪ {γ◦

α < γα+♦′}
)

≤ P

(
n‖P̂J − P ∗

J ‖22 > γα+♦′

)
+ P (γ◦

α < γα+♦′) ≤ α+ ♦′ +
1

n

and

P

(
n‖P̂J − P ∗

J ‖22 > γ◦
α

)
= 1− P

(
n‖P̂J − P ∗

J ‖22 ≤ γ◦
α

)
≥ 1− P

({
n‖P̂J − P ∗

J ‖22 ≤ γα−♦′

}
∪ {γ◦

α > γα−♦′}
)

≥ 1− P

(
n‖P̂J − P ∗

J ‖22 ≤ γα−♦′

)
− P (γ◦

α > γα−♦′)

= P

(
n‖P̂J − P ∗

J ‖22 > γα−♦′

)
− P (γ◦

α > γα−♦′) ≥ α− ♦′ − 1

n
.

Finally, these inequalities imply the following bound∣∣∣α− P

(
n‖P̂J − P ∗

J ‖22 > γ◦
α

)∣∣∣ ≤ ♦′ +
1

n
,

which concludes the proof.
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Appendix A: Auxiliary results

Here we formulate some well-known results that were used throughout the paper.
The following theorem gathers several crucial results on concentration of

sample covariance.

Theorem A.1. Let X1, . . . , Xn be i.i.d. zero-mean random vectors in Rp .

Denote the true covariance matrix as Σ∗ def
= E

(
XiX

�
i

)
and the sample covari-

ance as Σ̂
def
= 1

n

n∑
i=1

XiX
�
i . Suppose the data are obtained from:
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(i) Gaussian distribution N (0,Σ∗) . In this case, define δ̂n as

δ̂n 	
√

r(Σ∗) + log(n)

n
;

(ii) Sub-Gaussian distribution. In this case, define δ̂n as

δ̂n 	
√

p+ log(n)

n
;

(iii) a distribution supported in some centered Euclidean ball of radius R . In

this case, define δ̂n as

δ̂n 	 R√
‖Σ∗‖

√
log(n)

n
;

(iv) log-concave probability measure. In this case, define δ̂n as

δ̂n 	

√
log6(n)

np
.

Then in all the cases above the following concentration result for Σ̂ holds
with the corresponding δ̂n :

‖Σ̂ −Σ∗‖∞ ≤ δ̂n‖Σ∗‖∞

with probability at least 1− 1
n .

Proof. (i) See [22], Corollary 2. (ii) This is a well-known simple result presented
in a range of papers and lecture notes. See, e.g. [29], Theorem 4.6. (iii) See [33],

Corollary 5.52. Usually the radius R is taken such that R√
‖Σ∗‖

	
√

Tr(Σ∗)√
‖Σ∗‖

=√
r(Σ∗) . (iv) See [1], Theorem 4.1.

The following lemma is a crucial tool when working with spectral projectors.

Lemma A.2. The following bound holds for all J = {r−, r−+1, . . . , r+} with
1 ≤ r− ≤ r+ ≤ q :

‖P̃J − P ∗
J ‖∞ ≤ 4

(
1 +

2

π

l∗J
g∗J

)
‖Σ̃ −Σ∗‖∞

g∗J
.

Moreover, the following representation holds:

P̃J − P ∗
J = LJ (Σ̃ −Σ∗) +RJ (Σ̃ −Σ∗), (A.1)
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where

LJ (Σ̃ −Σ∗)
def
=

∑
r∈J

∑
s/∈J

P ∗
r(Σ̃ −Σ∗)P ∗

s + P ∗
s(Σ̃ −Σ∗)P ∗

r

μ∗
r − μ∗

s

and

‖RJ (Σ̃ −Σ∗)‖∞ ≤ 15

(
1 +

2

π

l∗J
g∗J

) (
‖Σ̃ −Σ∗‖∞

g∗J

)2

. (A.2)

Proof. Apply Lemma 2 from [21].

This lemma shows that P̃J −P ∗
J can be approximated by the linear operator

LJ (Σ̃ −Σ∗) .
The next lemma from [16] provides upper bound for Δ−band of the squared

norm of a Gaussian element.

Lemma A.3 (Gaussian anti-concentration). Let ξ be a Gaussian element in
Hilbert space H with zero mean and covariance operator Σξ . Then for arbitrary
Δ > 0 one has

P(x < ‖ξ‖2 < x+Δ) ≤ Δ

‖Σξ‖1/22 (‖Σξ‖22 − ‖Σξ‖2∞)
1/4

.

Proof. See [16], Theorem 2.7.

One more lemma from [16] describes how close are the distributions of the
norms of two Gaussian elements in terms of their covariance operators. Note
that the bound is dimension free.

Lemma A.4 (Gaussian comparison). Let ξ and η be Gaussian elements in
Hilbert space H with zero mean and covariance operators Σξ and Ση , respec-
tively. The following inequality holds

sup
x∈R

∣∣P(‖ξ‖2 ≥ x)− P(‖η‖2 ≥ x)
∣∣ � ‖Σξ −Ση‖1 ×

×
(

1

‖Σξ‖1/22 (‖Σξ‖22 − ‖Σξ‖2∞)
1/4

+
1

‖Ση‖1/22 (‖Ση‖22 − ‖Ση‖2∞)
1/4

)
.

Proof. See [16], Theorem 2.1.

Appendix B: Auxiliary proofs

B.1. Proof of Theorem 2.2

The proof consists of three steps.
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Step 1 Apply the representation (A.1) from Lemma A.2 to P̂J − P ∗
J :

P̂J − P ∗
J = LJ (Σ̂ −Σ∗) +RJ (Σ̂ −Σ∗).

Then, for n‖P̂J − P ∗
J ‖22 one has

n‖P̂J − P ∗
J ‖22 = n‖LJ (Σ̂ −Σ∗)‖22 + n‖RJ (Σ̂ −Σ∗)‖22

+2n〈LJ (Σ̂ −Σ∗), RJ (Σ̂ −Σ∗)〉2.

Let us estimate how good n‖LJ (Σ̂ − Σ∗)‖22 approximates n‖P̂J − P ∗
J ‖22 :

clearly, we have

∣∣∣n‖P̂J − P ∗
J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22

∣∣∣
≤ n‖RJ (Σ̂ −Σ∗)‖22 + 2n‖LJ (Σ̂ −Σ∗)‖2‖RJ (Σ̂ −Σ∗)‖2.

Let us elaborate on the right-hand side. First, since

RJ (Σ̂ −Σ∗) = P̂J − P ∗
J −

∑
r∈J

∑
s/∈J

P ∗
r(Σ̂ −Σ∗)P ∗

s + P ∗
s(Σ̂ −Σ∗)P ∗

r

μ∗
r − μ∗

s

and P̂J , P ∗
J ,

∑
r∈J

∑
s/∈J P ∗

r(Σ̂−Σ∗)P ∗
s have rank at most m∗

J , then the

rank of RJ (Σ̂ −Σ∗) is at most 4m∗
J . Hence, due to the relation between the

Frobenius and the operator norms via rank, we have

‖RJ (Σ̂ −Σ∗)‖2 ≤
√
4m∗

J ‖RJ (Σ̂ −Σ∗)‖∞.

The bound (A.2) from Lemma A.2 gives

‖RJ (Σ̂ −Σ∗)‖2 ≤
√
4m∗

J · 15
(
1 +

2

π

l∗J
g∗J

)
‖Σ̂ −Σ∗‖2∞

g∗J
2 .
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Now let us bound ‖LJ (Σ̂ −Σ∗)‖∞ :

‖LJ (Σ̂ −Σ∗)‖∞ =

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗
r(Σ̂ −Σ∗)P ∗

s + P ∗
s(Σ̂ −Σ∗)P ∗

r

μ∗
r − μ∗

s

∥∥∥∥∥
∞

≤ 2

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗
r(Σ̂ −Σ∗)P ∗

s

μ∗
r − μ∗

s

∥∥∥∥∥
∞

= 2

∥∥∥∥∥∑
r∈J

P ∗
r

∑
s/∈J

(Σ̂ −Σ∗)P ∗
s

μ∗
r − μ∗

s

∥∥∥∥∥
∞

≤ 2
∑
r∈J

‖P ∗
r‖

∥∥∥∥∥∑
s/∈J

P ∗
s

μ∗
r − μ∗

s

∥∥∥∥∥
∞

‖Σ̂ −Σ∗‖∞

≤ 2|J |‖Σ̂ −Σ∗‖∞
min

r∈J , s/∈J
|μ∗

r − μ∗
s |

≤ 2|J | ‖Σ̂ −Σ∗‖∞
g∗J

.

Then, for ‖LJ (Σ̂ −Σ∗)‖2 we have

‖LJ (Σ̂ −Σ∗)‖2 =
√
2m∗

J ‖LJ (Σ̂ −Σ∗)‖∞ ≤
√
2m∗

J 2|J | ‖Σ̂ −Σ∗‖∞
g∗J

.

Putting this all together, we obtain

∣∣∣n‖P̂J − P ∗
J ‖22 − n‖Lr(Σ̂ −Σ∗)‖22

∣∣∣
� nm∗

J

(
1 +

l∗J
g∗J

)2 ‖Σ̂ −Σ∗‖4∞
g∗J

4 + nm∗
J |J |

(
1 +

l∗J
g∗J

)
‖Σ̂ −Σ∗‖3∞

g∗J
3 .

The concentration condition for the sample covariance (2.3) provides

∣∣∣n‖P̂J − P ∗
J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22

∣∣∣ � Δ ,

Δ = nm∗
J

(
1 +

l∗J
g∗J

) ((
1 +

l∗J
g∗J

)
δ̂4n
g∗J

4 ∨ |J | δ̂3n
g∗J

3

)
(B.1)

with probability 1− 1
n .
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Step 2 Following [27], we can choose {u∗
j}

p
j=1 as an orthonormal basis in

Rp and represent n‖LJ (Σ̂ −Σ∗)‖22 as

n‖LJ (Σ̂ −Σ∗)‖22 = n

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗
r(Σ̂ −Σ∗)P ∗

s + P ∗
s(Σ̂ −Σ∗)P ∗

r

μ∗
r − μ∗

s

∥∥∥∥∥
2

2

= n

p∑
l,k=1

(
u∗
k
� ∑

r∈J

∑
s/∈J

P ∗
r(Σ̂ −Σ∗)P ∗

s + P ∗
s(Σ̂ −Σ∗)P ∗

r

μ∗
r − μ∗

s

u∗
l

)2

= n

p∑
l,k=1

⎛⎝u∗
k
� ∑

r1∈J

∑
s1 /∈J

P ∗
r1(Σ̂ −Σ∗)P ∗

s1 + P ∗
s1(Σ̂ −Σ∗)P ∗

r1

μ∗
r1 − μ∗

s1

u∗
l

⎞⎠
×

⎛⎝u∗
k
� ∑

r2∈J

∑
s2 /∈J

P ∗
r2(Σ̂ −Σ∗)P ∗

s2 + P ∗
s2(Σ̂ −Σ∗)P ∗

r2

μ∗
r2 − μ∗

s2

u∗
l

⎞⎠
= n

p∑
l,k=1

∑
r1∈J
s1 /∈J

∑
r2∈J
s2 /∈J

(
u∗
k
� P ∗

r1(Σ̂ −Σ∗)P ∗
s1 + P ∗

s1(Σ̂ −Σ∗)P ∗
r1

μ∗
r1 − μ∗

s1

u∗
l

)

×
(
u∗
k
� P ∗

r2(Σ̂ −Σ∗)P ∗
s2 + P ∗

s2(Σ̂ −Σ∗)P ∗
r2

μ∗
r2 − μ∗

s2

u∗
l

)
.

As we can see, the only terms that survive in this sum are the terms with
r1 = r2 = r ∈ J , s1 = s2 = s /∈ J , k ∈ Δ∗

r , l ∈ Δ∗
s , and due to the symmetry

the factor 2 appears. So, we derive

n‖LJ (Σ̂ −Σ∗)‖22 = 2n
∑

k∈Δ∗
r ,

r∈J

∑
l∈Δ∗

s ,
s/∈J

(
u∗
k
� P ∗

r(Σ̂ −Σ∗)P ∗
s

μ∗
r − μ∗

s

u∗
l

)2

= 2n
∑

k∈Δ∗
r ,

r∈J

∑
l∈Δ∗

s ,
s/∈J

(
u∗
k
�(Σ̂ −Σ∗) u∗

l

μ∗
r − μ∗

s

)2

.

Now let us define for all k ∈ IJ and l /∈ IJ

SJ (u∗
k, u

∗
l ) =

√
2n

u∗
k
�(Σ̂ −Σ∗) u∗

l

μ∗
r − μ∗

s

.

This set of quantities can be considered as matrix

{SJ (u∗
k, u

∗
l )}k∈IJ

l/∈IJ

∈ Rm∗
J×(p−m∗

J ),
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or, we can arrange a vector SJ ∈ Rm∗
J (p−m∗

J ) with components SJ (u∗
k, u

∗
l )

ordered in some particular way. Let us notice that

n‖LJ (Σ̂ −Σ∗)‖22 = ‖SJ ‖2.

Step 3 Now our goal is to show that SJ is approximately N (0, Γ ∗
J ) using

a version of Berry-Esseen theorem given by [2]. Represent SJ as

SJ =
1√
n

n∑
j=1

S(j),

where S(j) is a random vector with components

S(j)(u∗
k, u

∗
l ) =

√
2

μ∗
r − μ∗

s

(u∗
k
�Xj) · (u∗

l
�Xj)

for all k ∈ IJ and l /∈ IJ .
It is straightforward to verify that the covariance matrix of S(j) (and hence

of SJ ) is Γ ∗
J from (2.2) under the condition that P ∗

JXj and (Ip − P ∗
J )Xj

are independent. Consider an entry of the covariance matrix of S(j) indexed
by (k, l) and (k′, l′) , where k ∈ Δ∗

r , k
′ ∈ Δ∗

r′ , r, r′ ∈ J and l ∈ Δ∗
s , l

′ ∈
Δ∗

s′ , s, s
′ /∈ J :

Cov
(
S(j)

)
(k,l)
(k′,l′)

= E
(
S(j)(u∗

k, u
∗
l ) · S(j)(u∗

k′ , u∗
l′)

)

=
2 E

[
(u∗

k
�Xj) · (u∗

l
�Xj) · (u∗

k′
�Xj) · (u∗

l′
�Xj)

]
(μ∗

r − μ∗
s)(μ

∗
r′ − μ∗

s′)
.

Now, the independence of P ∗
JXj and (Ip −P ∗

J )Xj implies the independence
of (u∗

k, u
∗
k′)�P

∗
JXj and (u∗

l , u
∗
l′)

�(Ip − P ∗
J )Xj , which can be rewritten as

independence of (u∗
k
�Xj , u

∗
k′

�Xj)
� and (u∗

l
�Xj , u

∗
l′
�Xj)

� . This means that
the expectation in the expression for the covariance entry can be splitted as

Cov
(
S(j)

)
(k,l)
(k′,l′)

=
2 E

[
(u∗

k
�Xj)(u

∗
k′

�Xj)
]
·E

[
(u∗

l
�Xj)(u

∗
l′
�Xj)

]
(μ∗

r − μ∗
s)(μ

∗
r′ − μ∗

s′)
.

The observation that u∗
k
�Σ∗u∗

k′ = μ∗
r ·1{k = k′} and u∗

l
�Σ∗u∗

l′ = μ∗
s ·1{l = l′}

establishes the fact that Cov(S(j)) = Γ ∗
J .

To apply Theorem 1.1 from [2], we need to bound E‖Γ ∗
J

−1/2S(j)‖3 . First,
let us notice that [

Γ ∗
J

−1/2S(j)
]
(u∗

k, u
∗
l ) =

u∗
k
�Xj√
μ∗
r

· u
∗
l
�Xj√
μ∗
s

.
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Further, recalling the auxiliary matrices

U∗
J

def
=

{
u∗
k
�

√
μ∗
r

}
k∈IJ

∈ Rm∗
J×p,

V ∗
J

def
=

{
u∗
l
�

√
μ∗
s

}
l/∈IJ

∈ R(p−m∗
J )×p ,

we have

‖Γ ∗
J

−1/2S(j)‖2 =
∑
k∈IJ

∑
l/∈IJ

(u∗
k
�Xj)

2

μ∗
r

· (u
∗
l
�Xj)

2

μ∗
s

=

⎧⎨⎩ ∑
k∈IJ

(u∗
k
�Xj)

2

μ∗
r

⎫⎬⎭ ·

⎧⎨⎩∑
l/∈IJ

(u∗
l
�Xj)

2

μ∗
s

⎫⎬⎭ = ‖U∗
JXj‖2 ‖V ∗

JXj‖2.

Then,

E‖Γ ∗
J

−1/2S(j)‖3 = E
(
‖U∗

JXj‖3 ‖V ∗
JXj‖3

)
= E‖U∗

JXj‖3 ·E‖V ∗
JXj‖3,

where we again used the fact that the independence of P ∗
JXj and (Ip−P ∗

J )Xj

implies the independence of U∗
JP ∗

JXj = U∗
JXj and V ∗

J (Ip − P ∗
J )Xj =

V ∗
JXj .

Therefore, Theorem 1.1 from [2] yields

sup
x∈R

∣∣P (
‖SJ ‖2 ≤ x

)
− P(‖ξ‖2 ≤ x)

∣∣ � E‖U∗
JX‖3 ·E‖V ∗

JX‖3 · p
1/4

√
n
,

or, recalling that ‖SJ ‖2 = n‖LJ (Σ̂ −Σ∗)‖22 ,

sup
x∈R

∣∣∣P(
n‖LJ (Σ̂ −Σ∗)‖22 ≤ x

)
− P(‖ξ‖2 ≤ x)

∣∣∣
� E‖U∗

JX‖3 ·E‖V ∗
JX‖3 · p

1/4

√
n

.

Step 4 Next, for Δ defined by (B.1) from Step 1 we may write for any x ∈ R

P

(
n‖P̂J − P ∗

J ‖22 ≥ x
)
≤ P

(
n‖LJ (Σ̂ −Σ∗)‖22 ≥ x−Δ

)
+ P

(
n‖P̂J − P ∗

J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22 ≥ Δ
)
.
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Hence,

sup
x∈R

{
P

(
n‖P̂J − P ∗

J ‖22 ≥ x
)
− P

(
‖ξ‖2 ≥ x

)}
≤ sup

x∈R

{
P

(
‖LJ (Σ̂ −Σ∗)‖2 ≥ x−Δ

)
− P

(
‖ξ‖2 ≥ x−Δ

)}
+ sup

x∈R

{
P
(
‖ξ‖2 ≥ x−Δ

)
− P

(
‖ξ‖2 ≥ x

)}
+ P

(
n‖P̂J − P ∗

J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22 ≥ Δ
)
.

The first term in the right-hand side was bounded in Step 3 by

E‖U∗
JX‖3 ·E‖V ∗

JX‖3 · p
1/4

√
n
.

The second term is bounded by Δ

‖Γ∗
J ‖1/2

2 (‖Γ∗
J ‖2

2−‖Γ∗
J ‖2

∞)
1/4 according to the Anti-

concentration Lemma A.3. The last term is less than 1/n in view of (B.1) from
Step 1. Therefore,

sup
x∈R

{
P

(
n‖P̂J − P ∗

J ‖22 ≥ x
)
− P

(
‖ξ‖2 ≥ x

)}
� E‖U∗

JX‖3 ·E‖V ∗
JX‖3 · p

1/4

√
n

+
Δ

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n
.

Similarly, one can verify that

sup
x∈R

{
P
(
‖ξ‖2 ≥ x

)
− P

(
n‖P̂J − P ∗

J ‖22 ≥ x
)}

� E‖U∗
JX‖3 ·E‖V ∗

JX‖3 · p
1/4

√
n

+
Δ

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n
.

Putting together the previous two bounds, we derive the final result:

sup
x∈R

∣∣∣P(
n‖P̂J − P ∗

J ‖22 ≥ x
)
− P

(
‖ξ‖2 ≥ x

)∣∣∣
� E‖U∗

JX‖3 ·E‖V ∗
JX‖3 · p

1/4

√
n

+
Δ

‖Γ ∗
J ‖1/22

(
‖Γ ∗

J ‖22 − ‖Γ ∗
J ‖2∞

)1/4 +
1

n
.
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