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Abstract: Sparse versions of principal component analysis (PCA) have
imposed themselves as simple, yet powerful ways of selecting relevant fea-
tures of high-dimensional data in an unsupervised manner. However, when
several sparse principal components are computed, the interpretation of
the selected variables may be difficult since each axis has its own sparsity
pattern and has to be interpreted separately. To overcome this drawback,
we propose a Bayesian procedure that allows to obtain several sparse com-
ponents with the same sparsity pattern. This allows the practitioner to
identify which original variables are most relevant to describe the data. To
this end, using Roweis’ probabilistic interpretation of PCA and an isotropic
Gaussian prior on the loading matrix, we provide the first exact computa-
tion of the marginal likelihood of a Bayesian PCA model. Moreover, in order
to avoid the drawbacks of discrete model selection, a simple relaxation of
this framework is presented. It allows to find a path of candidate models us-
ing a variational expectation-maximization algorithm. The exact marginal
likelihood can eventually be maximized over this path, relying on Occam’s
razor to select the relevant variables. Since the sparsity pattern is common
to all components, we call this approach globally sparse probabilistic PCA
(GSPPCA). Its usefulness is illustrated on synthetic data sets and on several
real unsupervised feature selection problems coming from signal processing
and genomics. In particular, using unlabeled microarray data, GSPPCA is
shown to infer biologically relevant subsets of genes. According to a metric
based on pathway enrichment, it vastly surpasses in this context the perfor-
mance of traditional sparse PCA algorithms. An R implementation of the
GSPPCA algorithm is available at http: //github. com/ pamattei/GSPPCA.
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1. Introduction

From the children test results of the seminal paper of Hotelling (1933) to the
challenging analysis of microarray data (Ringnér, 2008) and the recent successes
of deep learning (Chan et al., 2015), principal component analysis (PCA) has
become one of the most popular tools for data-preprocessing and dimension-
reduction. The original procedure consists in projecting the data onto a “prin-
cipal” subspace spanned by the leading eigenvectors of the sample covariance
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matrix. It was later shown that this subspace could also be retrieved from the
maximum-likelihood estimator of a parameter, in a particular factor analysis
model called probabilisitic PCA (PPCA) (Roweis, 1998; Tipping and Bishop,
1999). This probabilistic framework led to diverse Bayesian analysis of PCA
(Bishop, 1999a; Minka, 2000; Nakajima, Sugiyama and Babacan, 2011).

1.1. Local and global sparsity

A potential drawback of PCA is that the principal components are linear com-
binations of every single original variable, and can therefore be difficult to in-
terpret. To tackle this issue, several procedures have been designed to project
the data onto subspaces generated by sparse vectors while retaining as much
variance as possible. Many of them were based on convex or partially convex
relaxations of cardinality-constrained PCA problems — among these techniques
are the popular ¢1-based SPCA algorithm of Zou, Hastie and Tibshirani (2006)
or the semidefinite relaxation of d’Aspremont, Bach and El Ghaoui (2008). An-
other strategy is to use a sparsity-inducing prior distributions on the coefficients
of the projection matrix (Archambeau and Bach, 2009; Guan and Dy, 20009;
Khanna et al., 2015).

However, when several principal components are computed, these various
techniques do not enforce them to have the same sparsity pattern (i.e. the same
active variables), and each component has to be interpreted individually. While
individual interpretation is particularly natural in several cases — when PCA
serves visualization, for example —, it is not adapted to situations where the prac-
titioner aims at globally selecting which features are relevant. In these situations,
a simple and popular approach has been to consider that the relevant variables
correspond to the sparsity pattern of the first principal component (Zou, Hastie
and Tibshirani, 2006; Zhang, d’Aspremont and El Ghaoui, 2012). However, this
procedure is limited, and several important aspects of the data may lie in the
next principal components. For example, in the colon cancer data set studied
by d’Aspremont, Bach and El Ghaoui (2008), the most relevant genes were the
ones selected not by the first but by the second principal component. Another
motivation for global sparsity is the fact that, in many real-life situations, the
sparsity pattern of the axes computed by a sparse PCA algorithm are extremely
close. This is for example the case of the three axes of the template attacks ap-
plication considered by Archambeau and Bach (2009). In this setting, forcing
these patterns to be equal will give the practitioner a precise idea of which vari-
ables are relevant. Another interesting feature of global sparsity is the fact that,
once the common sparsity pattern has been determined, performing PCA on
the relevant variables yields orthogonal and uncorrelated principal components
— conversely to most sparse PCA procedures.

1.2. Related work

Since the seminal papers of Jolliffe (1972, 1973) and Robert and Escoufier (1976),
several methods have been designed to discard features in PCA (see e.g. Brusco,
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2014, for a recent review). However, these techniques were designed to eliminate
redundant, rather that irrelevant variables, and are based on combinatorial al-
gorithms that are not really suitable for high-dimensional problems.

A simple and scalable way of performing variable selection for PCA is to sim-
ply keep the features that have the largest marginal variance. In certain cases,
this technique is theoretically sound, and was applied for instance to the anal-
ysis of electrocardiogram (ECG) data (Johnstone and Lu, 2009). Zhang and El
Ghaoui (2011) also proved that it could be used as an efficient preprocessing
technique to reduce the dimensionality of ultra-high dimensional problems be-
fore applying a traditional sparse PCA algorithm. However, this technique has
two main drawbacks. First, it is not robust to simple transformations of the
data since simply multiplying a variable by a constant may wrongfully select
(or discard) it. An unfortunate consequence of this is the fact that this tech-
nique can not be applied to scaled data. Moreover, since it ignores non-marginal
information, this technique will behave badly in the case of correlated features.

A more refined approach to global sparsity is ¢1-based regularization, which
has imposed itself as one of the most versatile and efficient approaches to sparse
statistical learning (Hastie, Tibshirani and Wainwright, 2015). In a context of
structured sparse PCA, Jenatton, Obozinski and Bach (2009) proposed to recast
sparse PCA as a penalized matrix factorization problem and suggested that lim-
iting the number of sparsity patterns allowed within the principal vectors could
improve the feature extraction quality — particularly in face recognition prob-
lems. Using the ¢; — {5 norm, they derived an algorithm (hereafter referred
as SSPCA) that allows to compute d sparse components with exactly m < d
sparsity patterns. However, they only considered cases where m is larger than
2 and therefore did not focus on global sparsity. They were followed by Khan,
Shafait and Mian (2015) who, in a very close framework, argued that global
sparsity (which they called joint sparsity) led to better representations of hy-
perspectral images. Other similar approaches based on structured composite
norms have been conducted by Masaeli et al. (2010), Gu, Li and Han (2011)
and Xiaoshuang et al. (2013). Ulfarsson and Solo (2008, 2011) used sparsity in-
ducing penalties together with a PPCA model to enforce global sparsity. They
proposed an algorithm called sparse variable noisy PCA (hereafter refered as
svnPCA) and fixed the amount of penalization using the Bayesian information
criterion (BIC) of Schwarz (1978).

Eventually, it is worth mentioning that global sparsity has also been inves-
tigated in other contexts, such as partial least squares regression (Liu et al.,
2013) or electroencephalography (EEG) imaging (Wipf and Nagarajan, 2009;
Gramfort et al., 2013).

1.3. Contributions and organization of the paper

We present in Section 2 a Bayesian approach that allows to project the data
onto a globally sparse subspace (i.e a subspace spanned by vectors with the
same sparsity pattern) while preserving a large part of the variance. To this
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end, we use the noiseless PPCA model introduced by Roweis (1998) together
with an isotropic gaussian prior on the projection matrix and a binary vector
that segregates relevant from irrelevant variables. While past Bayesian PCA
frameworks relied on variational (Bishop, 1999b; Archambeau and Bach, 2009;
Guan and Dy, 2009) or Laplace (Bishop, 1999a; Minka, 2000; Sobczyk, Bogdan
and Josse, 2017) methods to approximate the marginal likelihood, we derive
here a closed-form expression for the evidence based on the multivariate Bessel
distribution. In order to avoid the drawbacks of discrete model selection and
to treat high-dimensional data, we also present a relaxation of our model by
replacing the binary vector with a continuous one. Inference of this relaxed
model can be performed using a variational expectation-maximization (VEM)
algorithm. Such a procedure allows to find a path of models. The exact evidence
is eventually maximized over this path, relying on Occam’s razor (MacKay, 2003,
Chap. 28), to select the relevant variables.

We illustrate the behaviour of our algorithm and compare it to other methods
in Section 3. In particular, we show that Bayesian model selection empirically
outperforms ¢1-¢5-based regularization on a series of tasks.

Sections 4 and 5 are devoted to two applications showcasing the features of
our method. The first one concerns signal denoising with wavelets, and shows
how global sparsity can surpass traditional sparse PCA algorithms within this
context. The second one treats about unsupervised gene selection. Given an
(unlabeled) microarray data matrix, we show how GSPPCA can select biologi-
cally relevant subsets of genes. Interestingly, we exhibit an important correlation
between our exact marginal likelihood expression and a criterion of biological
relevance based on pathway enrichment.

Note that this paper is an extended version of previous work (Mattei, Bou-
veyron and Latouche, 2016) published in the Proceedings of the 19*" Conference
on Artificial Intelligence and Statistics.

2. Bayesian variable selection for PCA

Let us assume that a centered i.i.d. sample x1, ..., x,, € R? is observed which one
wishes to project onto a d-dimensional subspace while retaining as much variance
as possible. All the observations are stored in the n x p matrix X = (xy, ..., x,)7.

2.1. Probabilistic PCA

The PPCA model assumes that each observation is driven by the following
generative model

x=Wy +e¢, 1)

where y ~ N(0,1;) is a low-dimensional Gaussian latent vector, W is a p x d
parameter matrix called the loading matriz and € ~ N (0, U2Ip) is a Gaussian
noise term.
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This model is a particular instance of factor analysis and was first introduced
by Lawley (1953). Following Theobald (1975), Tipping and Bishop (1999) con-
firmed that this generative model is equivalent to PCA in the sense that the
principal components of X can be retrieved using the maximum likelihood (ML)
estimator Wy, of W. Indeed, if A is the p x d matrix of ordered principal
eigenvectors of XTX and if A is the d x d diagonal matrix with corresponding
eigenvalues, we have

Wi = A(A — 0°1,)"/?R, (2)

where R is an arbitrary orthogonal matrix.

Several Bayesian treatments of this model have been conducted by using dif-
ferent priors on the loading matrix. However, the marginal likelihood of these
models appeared to be untractable. To tackle this issue, several computational
techniques were considered. The automatic relevance determination (ARD) prior
was used together with Laplace (Bishop, 1999a) or variational (Bishop, 1999b;
Archambeau and Bach, 2009) approximations. Minka (2000) introduced more
complex conjugate priors to perform Bayesian model selection on the dimension
d of the latent space using the Laplace approximation. Combined with vari-
ational inference, several sparsity inducing priors such as the Laplace (Guan
and Dy, 2009), the generalized hyperbolic (Archambeau and Bach, 2009) or
the spike-and-slab (Lézaro-Gredilla and Titsias, 2011) prior were also chosen
for W.

In this work, we aim at avoiding these approximations. Our approach is to
investigate in which cases the marginal likelihood can be analytically computed.
To this end, we will use the fact that, within the PPCA model (1), the limit
noiseless setting ¢ — 0 also allows to recover the principal components. This
convenient framework was first studied by Roweis (1998) and has proven to be
useful in several situations. The noiseless PPCA model was used for instance
to facilitate inference in the presence of missing data (Yu et al., 2010; Ilin and
Raiko, 2010). More importantly in our context, it was successfully used by Sigg
and Buhmann (2008) to enforce sparsity within an ¢;-penalized PPCA frame-
work — which means that getting rid of the noise term is likely to be compatible
with variable selection.

2.2. A general framework for globally sparse PPCA

In a classical (locally) sparse PCA context, the loading matrix W would be
expected to contain few nonzero coefficients. However, to reach global sparsity,
several entire rows of W have to be further constrained to be null. In this work,
we handle variable selection using a binary vector v € {0,1}? whose nonzero
entries correspond to relevant variables. For technical purposes, we also denote
by v the binary vector of {0,1}? whose support is exactly the complement of
Supp(v). We denote g = ||v||o the number of relevant variables. In the PPCA
framework, this leads to the following model for each observation

x =VWy +e¢, (3)
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where V' = diag(v). Notice that the rows of VW, corresponding to the zero
entries of v, are null. Therefore, the principal subspace will be generated by a
basis of vectors which shares the sparsity pattern of v. Such spaces spanned by a
family of vectors sharing the same sparsity pattern will be called globally sparse
subspaces. This definition of global sparsity is closely related to the notion of
row sparsity of Vu and Lei (2013).

We further assume that the coefficients of the matrix W are endowed with the
Gaussian priors w;; ~ N'(0,1/a?), for all i, j. Following the parametric empirical
Bayes framework (Kass and Steffey, 1989) leads to seeking the parameters v, «
and o that maximizes the marginal likelihood or evidence

n n
p(X|v,a,0) = Hp(xi|v, a,0) = H/ dp(xi|W,v, a,0)p(W)dW.
1 i=1"RPX

i=

In previous Bayesian PCA models, the marginal likelihood was never derived
because it was too difficult to compute in practice or even intractable. Here,
specifically, the evidence of the model can be expressed analytically as a uni-
variate integral using the isotropy of the prior on W. In the following, X, denotes
the subvector of x where only the variables corresponding to the nonzero indexes
of v are kept. Given a real order v, we denote repectively by J, and K, the
Bessel function of the first kind and the modified Bessel function of the second
kind (Abramowitz and Stegun, 1965, Chap. 10 and 11).

Theorem 1. The density of X is given by
lIxv 13

e 202 Ix H1—q/2/°° u/2e=o"u
(2m)p/2gr=a VT (1+ (u/a)?)4/

2

p(x|v,a,0) = Jqj2—1(ul|xv||2)du.

(4)

A proof of this theorem is given in Appendix A. While reducing the dimension
of the integration domain to one appears to be a valuable improvement, the in-
tegral of Equation (4), albeit univariate, falls within the category of Hankel-like
integrals known to be particularly delicate to compute, even numerically. This
is due to the fact that the integrand has singularities near the real axis (Ogata,
2005). To overcome this limitation, we investigate in the following subsection
the use of the noiseless PPCA model to obtain a tractable expression.

2.3. A closed-form evidence for globally sparse noiseless PPCA

To obtain a closed-form expression of the marginal likelihood, we consider the
following modification of Model (3). For the relevant variables, we use the noise-
less PPCA model, and we assume that the irrelevant variables are generated by
a Gaussian white noise. More specifically, we write

x = VWy + Ve; + Ve, (5)
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where V = diag(¥), e1 ~ N(0,071,) is the noise of the inactive variables and
g2 ~ N(0,031,) is the noise of the active variables, having in mind that we aim
at investigating the noiseless limit 0o — 0. We will see that, with this particular
formulation of the problem, the evidence has a closed form expression which
involves the multivariate Bessel distribution, introduced by Fang, Kotz and Ng
(1990, Def. 2.5).

Definition 1. A random wvector is said to have a symmetric multivariate
Bessel distribution with parameters 8 > 0 and v > —k/2 if its density is

7k7u+1ﬁ7k71/

k _ v
vz € R y BeSSGl(Z|ﬂ,I/) = W”ZHQ

Ky (|lz]2/5)-

Note that the modified Bessel function of the second kind K, involved in the
Bessel density can be delicate to compute as soon as its order or its argument
is large. This issue can be tackled using asymptotic expansions based on Debye
polynomials (Abramowitz and Stegun, 1965, Formula 9.8.7).

Theorem 2. In the noiseless limit 0o — 0, x converges in probability to a
random variable X whose density is

p(X|v,a,01) = N (%50, 011,_,)Bessel(Xy|1/a, (d — q)/2). (6)

This theorem (proved in Appendix B) allows us to efficiently compute the
noiseless marginal log-likelihood defined as

E(X,V,OZ,Jl) = Zlogp(ilh[v Q, Jl)'

i=1

It is worth noticing that Ando (2009) also obtained a closed-form expression for
the marginal likelihood in the related, but different, context of factor analysis.
More specifically, he considered heavy-tailed factors and a inverse Wishart prior
for the (unconstrained) noise covariance matrix. Regarding hyper-parameter
tuning, if we assume that v is known, the regularization parameter o can be
optimized efficiently using univariate gradient ascent. In fact, as stated by next
proposition (proved in Appendix C), the marginal log-likelihood is even a strictly
concave function of a.

Proposition 1. The function o — L(X,v,a, 01) is strictly concave on R .

The unique optimal value & can therefore be found easily using univariate
convex programming.

The noise variance o1 can be estimated using (6) by computing the standard
error of the variables which were not selected by v. However, since model (3)
is a particular instance of PPCA, it is possible to use any regular PPCA noise
variance estimator. A discussion on which estimator to choose is provided in
Subsection 2.7.
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2.4. High-dimensional inference through a continuous relaxation

In spite of the results of the previous subsection, maximizing the evidence, even
in the noiseless case, is particularly difficult (because of the discreteness of v
which can take 2P possible values). We therefore consider a simple continuous
relaxation of the problem by replacing v by a continuous vector u € [0, 1]P. This
relaxation is close to the one considered by Latouche et al. (2016) in a sparse
linear regression framework. Denoting U = diag(u), this relaxed model can be
written as

x=UWy+e. (M)

We denote 8 = (u, «, o) the vector of parameters. In order to maximize the
evidence p(X|0), we adopt a variational approach (Bishop, 2006, Chap. 10). We
view y1,...y, and W as latent variables.

Given a (variational) distribution g over the space of latent variables, the
variational free energy is given by

Fq(X[0) = —E,4[Inp(X, Y, WI[0)] — H(q), (8)

where H denotes the differential entropy, and is an upper bound to the negative
log-evidence

—Inp(X|0) = F4(X|0) — KL(ql[p(-0)) < F,(X][0).

To minimize F,(X|0), similarly to Bishop (1999b) and Archambeau and Bach
(2009), the following mean-field approximation is made on the variational dis-
tribution

q(Y, W) = q(Y)q(W). (9)

With this factorization, a variational expectation-maximization (VEM) algo-
rithm can be derived. For the E-step, the variational posterior distribution ¢*,
which minimizes the free energy, is computed.

Proposition 2. The variational posterior distribution of the latent variables
which minimizes the free energy is given by

¢(Y) = [[N(yilm;, =), (10)
i1
and )
¢"(W) = [[ N(wilmy, Sy), (11)
k=1

where, for all i € {1,....,n} and k € {1,...,p}

1 T Uk -
ni = —EM"Ux;, m, = =S, ;xi,wi,
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1 L\ rrer2 1 2 1 2 nui Ui o7
S =T+ SMIUM + — 3 uiSy, ;= oI+ 5+ AMIM,
k=1

M = (my,..m,)" and M = (uy,..1n,,)".

It is worth noticing that two factorizations arise naturally. The four equations
of Proposition (2) (proved in Appendix D) will constitute the E-step of the VEM
algorithm used to minimized the free energy.

We can now compute the negative free energy which will be maximized during
the M-step.

Proposition 3. Up to unnecessary additive constants, the negative free energy
s given by

1< 1
— F,(X]0) = gln|2| + 52 In[Si| —nplno +dplna — o5 Tr(XTX)
k=1

1 <& 1 <
~ 53 > uTr[(n2 + M7 M)(S), + mpmf)] + = > xIUMy,
k=1 =1
P o? 1 <
+) — 5 Tr(Sk + mymy)) — B D Te(E+ppl). (12)
k=1 =1

Minimizing the free energy leads to the following M-step updates

L —1/2
ot — (dp ZTr(Sk +mkm£)> , (13)

up Tr[(Z 4 pp] ) (S + mym])],

.| Te(XXT - 2XUMM) = 1 (-~
i np tap
(14)

and, for k € {1,...,p},

2 n n

* : u

uj = argmin, oy 5 S TS+ gl ) (S mon? )] —u S gl gy (15)
=1 =1

Note that the objective function of the optimization problem (15) is simply a
quadratic polynomial with positive leading coefficient. Denoting

n T
D Ti My [y

= SRS 4 TS T (16)

&k

the solution can be written as

uy, = min{max{&,0},1}. (17)
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2.5. The GSPPCA algorithm

Once the VEM algorithm has converged, the continuous vector u still needs to
be transformed into a binary one. To do so, we rely on a technique close to the
one introduced by Latouche et al. (2016) in a sparse linear regression frame-
work. Specifically, the following simple procedure (summarized in Algorithm 1)
is considered:

e a family of p nested models is built using the order of the coefficients
of u as a way of ranking the variables. Specifically, for each k& < p, the
k-th element of this family is the binary vector v(¥) such that the & top
coefficients of u are set to 1 and the others to 0.

e the marginal likelihood £ of the noiseless model (computed using the for-
mula of Theorem 2) is then maximized over this family of models.

e the model v with the largest marginal likelihood is kept.

Once the model is estimated, the globally sparse principal components of X can
be computed by simply performing PCA on X,. This type of post-processing
is similar to the variational renormalization introduced by Moghaddam, Weiss
and Avidan (2005). In the case of local sparsity, variational renormalization can
be achieved using an alternating maximization scheme (Journée et al., 2010).
However, the global sparsity structure greatly simplifies this procedure by re-
ducing it to performing PCA on the relevant variables.

Algorithm 1: GSPPCA algorithm for unsupervised variable selection.

Input: data matrix X € R"*P  dimension of the latent space d € N*
Output: sparsity pattern v € {0, 1}P

// VEM algorithm to infer the path of models

initialize u, o, 0, fy, ..., by, M1, ..., Mp, S1, ..., S, and X ;
repeat

E-step from Proposition 2;

M-step from equations (13),(14),(17);

until convergence of the variational free energy;

// Model selection using the exact marginal likelihood
Compute o7 ;
for k = 1..p do
Compute v(*);
L Find oy = argmax,o{a — l:(X,v(k)7 a,01)} using gradient ascent ;

q= argmaxlgkgp[:(x,v<k), Qk,01) ;
v=v@;

2.6. Links with other sparsity-inducing Bayesian procedures

Spike-and-slab models Model (3) may be rewritten x = Wy + & where
W = VW. The prior distribution for the parameter W is similar to the spike-
and-slab prior introduced by Mitchell and Beauchamp (1988) in a linear re-
gression framework. Indeed, each coefficient w;; follows a priori either a Dirac



3046 C. Bouveyron et al.

distribution with mass at zero (if v; = 0) which is usually called the spike or a
Gaussian distribution with variance 1/a? (if v; = 1) which is usually called the
slab. However, contrary to standard spike-and-slab models which would assume
a product of Bernoulli prior distributions over v, we see v here as a deterministic
parameter to be inferred from the data. It is worth noticing that spike-and-slab
priors have already been applied to locally sparse PCA by Lazaro-Gredilla and
Titsias (2011) and Mohamed, Heller and Ghahramani (2012).

Automatic relevance determination Introduced in the context of feedfor-
ward neural networks (MacKay, 1994; Neal, 1996), automatic relevance determi-
nation (ARD) is a popular empirical Bayes procedure to induce sparsity. ARD
was applied to Bayesian PCA models together with VEM algorithms in order
to obtain automatic dimensionality selection (Bishop, 1999b) of local sparsity
(Archambeau and Bach, 2009). In order to obtain global sparsity, ARD may
be built using Model (1) together with Gaussian priors w; ~ N(0,a;14) for
i € {1,...,p}. Similarly to Tipping (2001), maximizing the marginal likelihood
would discard irrelevant variables by leading several variance parameters a; to
vanish. Interestingly, this model is somehow related to the relaxed GSPPCA
model. Indeed the relaxed model (7) assumes that the i-th line of the loading
matrix UW follows a priori a N'(0,u?/a?1,) distribution. The relaxed model
will consequently inherit the good properties of ARD — listed for example by
Wipf, Rao and Nagarajan (2011). However, similarly to Latouche et al. (2016),
using the exact marginal likelihood to eventually obtain a sparse solution will
avoid many classical drawbacks of ARD. First, as pointed out by Wipf and Na-
garajan (2008), convergences of EM algorithms are extremely slow in the case of
the ARD models. However, with our approach, since we only need the ordering
of the coefficients of u, we do not have to wait for the complete convergence of
this parameter. In practice, in all the experiments that we carried out, we only
had to perform less than a few hundreds of iterations of the algorithm to obtain
convergence of the free energy in order to perform variable selection. It is worth
mentioning that the fact that the objective function converges faster than the
parameters of the model is a quite general property of EM algorithms (Xu and
Jordan, 1996). Our procedure also avoids the lack of flexibility of ARD by com-
puting posterior probabilities of models rather than simply giving an estimate
of the best sparse model. Combined with a greedy technique similar to Occam’s
window (Madigan and Raftery, 1994), this feature could allow for example to
perform Bayesian model averaging, which is not possible with ARD. Eventu-
ally, in the context of Bayesian PCA, ARD models such as the ones of Bishop
(1999a,b) or Archambeau and Bach (2009) have to rely on approximations of
the marginal likelihood while we use an exact expression.

2.7. Computational and practical considerations

Standardization Several approches to large-scale sparse PCA are based on
techniques that rely on computing and ranking the marginal variances of all
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variables (e.g. Johnstone and Lu, 2009; Zhang and El Ghaoui, 2011), and are
therefore inefficient for standardized data. While sharing the scalability of these
marginal methods (due to its linear complexity), GSPPCA is readily available
for standardized data. Whether or not standardization is appropriate for PCA
is a delicate issue that should be dealt with on a problem-specific basis. Notably,
when all variables are on the same scale, using standardization is not customary
as it may destroy some relevant information. For a detailed overview of the
problem of scaling for PCA, see Bro and Smilde (2003, Sec. 3).

Intrinsic dimension estimation Since model (3) is a particular instance of
PPCA, any intrinsic dimension estimator for PCA can be applied to estimate
beforehand the intrinsic dimension d (see e.g. Sobczyk, Bogdan and Josse, 2017,
for a recent overview of existing estimators). Although the problem of finding d
is of critical importance, we assume in this work that a reasonable choice of di-
mension has already been made by the practitioner. While it could be tempting
to use the exact noiseless marginal likelihood to select d, the close relationship
existing between the noise level and d in PPCA (Tipping and Bishop, 1999;
Nakajima, Sugiyama and Babacan, 2011) suggests that loosing the noise infor-
mation is likely to be prejudicial for intrinsic dimension estimation.

Estimation of the noise variance As mentioned in Subsection 2.3, the
standard error oy of irrelevant predictors can be estimated using any regular
PPCA estimator. Specifically, three important estimators are considered: the
ML estimator (Tipping and Bishop, 1999), its unbiased correction (Passemier, Li
and Yao, 2017), or simply the median of the variances of all features (Johnstone
and Lu, 2009). Since the ML estimator is known to be biased in the high-
dimensional regime, it is usually preferable to use its bias-corrected version. Both
of these estimators can also be computed using the singular value decomposition
(SVD) of X. Note that since the median estimator does not need to perform
this decomposition, it is therefore more suitable for large-scale inference. Note
that when dealing with scaled data, the method of Johnstone and Lu (2009)
reduces to taking o1 = 1.

Initialization strategies for the VEM algorithm Regarding the initial-
ization of the relaxed model parameter u, we chose to initialize all its coefficients
to one. This allows to avoid premature vanishing of these coefficients which is
a common drawback of ARD-like techniques (Wipf and Nagarajan, 2008). A
random alternative to this strategy would be to draw the initial coefficients of
u from a distribution with mean close to one, such as a a Beta(9,1) distri-
bution, for instance. The noise standard error can be simply initialized using
any classical PPCA noise estimator. Similarly to Latouche et al. (2016), the
slab precision parameter « controls the sparsity of the VEM solution and a
too small initial value is likely to lead to a too sparse solution such as the use-
less local optimum u = 0. Following Biernacki, Celeux and Govaert (2003), we
chose to perform short VEM runs (with less than 5 iterations) on a small grid
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(typically a € {0.1,1,10}) and to select the value of o that led to the lowest
free energy. The posterior means of the PCA loadings mj,...,m, and of the
corresponding scores ptq, ..., it,, can be initialized using the singular vectors of
X. If the size of the data forbids to perform this SVD, using random Gaussian
coefficients as starting points does not significantly alter the results. Finally,
the initial values chosen for the posterior covariance matrices are X = Iy and
Si=..=8,=a%I,

Computational cost of VEM iterations Thanks to the factorizations that
arised naturally during variational inference, the cost of each VEM iteration is
of order O(pnd®) which is linear both in sample size and dimensionality and
therefore particularly suitable for high-dimensional inference.

Large scale inference Inthe GSPPCA algorithm, SVD is used twice. Indeed,
the top d singular vectors can be used to initiate the VEM algorithm and the
p — d smallest singular values can be used to estimate the noise variance (both
as a VEM starting point for o and as an estimator for o1). This can be done
efficiently using a truncated SVD algorithm. We chose specifically the R inter-
face (Qiu and Mei, 2016) of the Spectra! C++ library. However, for very large
scale problems, even a fast truncated SVD algorithm appears computationally
prohibitive. To tackle this issue, we offer two alternatives. First, the posterior
parameters initialized using the eigenvectors can be initialized using random
standard Gaussian coefficients. Moreover, following Johnstone and Lu (2009),
the noise variance can be estimated using the median of the variable variances.
This leads to a “SVD-free” version of the GSPPCA algorithm suitable for very
large scale problems.

Stopping criterion In all of our experiments, the stopping criterion of the
VEM algorithm is when the relative change of free energy gets below a fixed
tolerance. More sophisticated criteria — such as one based on Aitken’s acceler-
ation (McLachlan and Krishnan, 2008, Sec. 4.9) — could be used, but since we
do not need a very precise estimate of u (only the ordering of the coefficients is
relevant), it is not mandatory.

Initialization strategy for the gradient ascents The evaluation of the
exact noiseless marginal likelihoods requires to solve p univariate convex opti-
mization problems. While this procedure can be easily parrallelized, choosing
poor initial starting points may necessitate to perform a high number of gra-
dient steps. For a given model v, an efficient way to initialize « is to use the
method of moments as a crude estimate of maximum marginal likelihood. The
fact that the prior variance of all relevant variables is equal to d/a? leads to
the choice a = v/dngq/||Xy||r. We noticed that this method of moments esti-
mate also lead to good results as an initialization strategy for the VEM algo-
ritm.

Thttp://yixuan.cos.name/spectra/index.html.
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Model selection speedup A simple way to reduce the number of gradient
ascents is to rely on the links between our relaxed model and ARD. Specifically,
we can discard before the model selection step all the variables corresponding
to the subset {i € {1,...,p}u; = 0} where u is the relaxed model parameter
obtained after convergence of the VEM algorithm. When u is sparse, this will
bring about a substantial speedup. Notice that, since ARD is known to converge
slowly, u is unlikely to be sparse enough and the model selection step is still
necessary.

Evaluation of Bessel functions We used the R package Bessel (Méechler,
2013), which allows to compute Bessel functions using either the subroutines of
Amos (1986) or accurate approximations based on Debye polynomials
(Abramowitz and Stegun, 1965, Formula 9.8.7), which give usually more stable
results.

3. Numerical simulations

This section aims at highlighting the specific features and abilities of the pro-
posed GSPPCA approach on simulated and real data sets.

3.1. An introductory erample

We consider here a simple introductory example to illustrate the proposed com-
bination between a relaxed VEM algorithm and the closed-form expression of
the marginal likelihood. For this experiment, n = 50 observations are simulated
according to (3) with p = 30, d = 5 and ¢ = 10. Each coefficient of W is drawn
at random according to a standard Gaussian distribution and the noise variance
is equal to 0.1. Figure 1 presents the results of GSPPCA on this toy data set.
The left panel presents in dark blue the coefficients of the estimated u obtained
after running the VEM algorithm (sorted in decreasing order) and the corre-
sponding true values of v (pale blue points) used in the simulations. The right
panel shows the values of evidence computed on the family of models inferred
by the order of the coefficients of u. On this simple example, u captures the
true ranking of the variables and the model with the largest evidence is actually
the true one.

3.2. Range of the noiseless assumption

In all the experiments that we carried out, since the noiseless PPCA model
is not a true generative p-dimensional model (the random variable X belongs
to a strict subspace of RP), we chose not to use it to generate data in our
experiments. We rather chose the more realistic and natural Model (3). Since
this model includes a nonzero noise, it is important to know the limits of the
noiseless assumption.
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Fic 1. Variable selection with GSPPCA on the introductory example (n = 50, p = 30,
g = 10). Left: values of u after convergence of the VEM algorithm (dark blue) and true
values of the binary sparsity pattern v (pale blue). The VEM algorithm correctly ranks the
variables. Right: values of the exact (log-)evidence computed over the path of models derived
by the VEM algorithm. The true model (g = 10) is recovered.

We therefore simulated two scenarios according to Model (3): a first one with
n = 40 observations and a second one with n = 200. In both scenarios, p = 200,
d = 10, ¢ = 20, and each coefficient of W is drawn according to a standard
Gaussian distribution. The sparsity pattern chosen is simply

20 times 180 times

v=(1,..1,0,..,0)". (18)

In this simple simulation scheme, the signal-to-noise ratio (SNR) may be defined
as SNR = - Ew[(VW) VW]po® = z%' We chose a linear grid of 20 SNR
ranging from 0.1 (most difficult scenario) to 3 (easiest scenario) and generated
100 datasets for each noise level. To evaluate the quality of the variable selection,
we computed the F-score between v and v on 100 runs. We recall that the F-
score is the harmonic mean of precision and recall, and is closer to 1 when
the selection is faithful. Unsurprisingly, when the SNR gets close to zero, the
quality of the variable selection diminishes. However, GSPPCA appears to be
quite robust to noise, even though the data are not generated according to the
underlying noiseless model. Indeed, even in the case where n = 40, we observe

an almost perfect recovery as long as SNR > 0.5.

3.3. Model selection

In this subsection, we compare the model selection accuracies of three global
methods — GSPPCA, ARD and SSPCA (Jenatton, Obozinski and Bach, 2009)
—and a local one — SPCA (Zou, Hastie and Tibshirani, 2006).

Simulation setup While the simple simulation setup of Subsection 3.2 con-
veniently allowed to compute the SNR in closed formed in order to assess the
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Fic 2. Median, first and third quartiles of the F-score for different signal-to-noise ratios,
based on 100 runs. A high F-score indicates good support recovery.

range of the noiseless assumption, we introduce here a more realistic scheme by
considering a finer correlation structure as well as a non-Gaussian noise. Specif-
ically, first we generate n i.i.d observations (zi,...,2,) following multivariate
normal distribution A/(0, R) where R = diag(R, ..., R4) is a 4-blocks diagonal
matrix where R, is such that 74, = 0.3 and ry; = p foré,j =1,...,p/4 and
i # j. Then, a globally sparse PCA model is obtained as followed. First, PPCA
is performed on the sample (z1, ..., 2z, ), which leads to a non-sparse ML estimate
Wr, for the loading matrix. Then, given a sparsity pattern v € {0,1}? and
denoting V = diag(v) as before, the loading matrix matrix is “globally spar-
sified” by considering VWy,. The final observations are eventually generated
according to the non-noiseless model

Vi<n, x; = VWyLY; + €. (19)

The simple sparsity pattern (18) is kept and the vectors y1, ..., y, are standard
Gaussian as in regular PPCA. Regarding the noise term e, we consider two
scenarios. A first one with Gaussian noise and a second one with Laplacian
noise, both centered with unit variance. We choose p = 200, d = 10, ¢ = 20
and consider five cases for the sample size: n = p/5, p/4, n = [p/3]|, n = p/2
and n = p. More classical n > p cases are not presented here since regular PCA
is known to perform well in this context and variable selection thus may not
be of great use (Johnstone and Lu, 2009). Each experiment was repeated 50
times.

Implementation and model selection criteria Regarding ARD, we adapt-
ed the VEM algorithm for GSPPCA by replacing the condition u € [0,1]?
by u € R%, and by waiting for the convergence of this parameter. Regarding
SSPCA, we used the Matlab code available at the main author’s webpage and
chose the tuning parameter using 5-fold cross-validation on the reconstruction
error. We constrained the algorithm in order to obtain globally sparse solu-
tions. For SPCA, we used the elasticnet R package and an ad-hoc method
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TABLE 1
F-scorex 100 for the model selection experiment of subsection 3.3 with Gaussian noise (mean
and standard deviation for 50 replications). A high F-score indicates good support recovery.

n=p/5 n=p/4 n=[p/3] n=p/2 n=p
SPCA 207 £0.7 21.2+0.7 215407 21.7+05 25.2+2.1
SSPCA 66.7£21.4 715+20 867142 956189 O82L7.2
ARD 62.0+L568 62L7.21 57.8+-6.85 583+54 57.7+501

GSPPCA 87.8+6.56 92+363 968+234 992+14 100+ 0

TABLE 2
F-scorex100 for the model selection experiment of subsection 3.3 with Laplacian noise
(mean and standard deviation for 50 replications). A high F-score indicates good support

Tecovery.
n=p/5 n=p/4 n = |p/3] n=p/2 n=p
SPCA 208 +0.6 21.3+06 21.6+08 218406  253+1.7
SSPCA 60.6 £22.4 63.9+252 82.7+18.1 942+10.2 97.4+95
ARD 470+541 47.6+L4.87 4851507 50.1+£5.17 550 L5.45

GSPPCA 66.4+8.2 726+9 79.5+ 8.6 89.4+£5.1 99.2+1.4

by selecting enough variables to explain 99% of the total variance. We also
tried to apply another globally sparse algorithm, vsnPCA-{y from Ulfarsson
and Solo (2011). However, their use of the Bayesian information criterion (BIC)
led to selecting very few variables. This is not very surprising: since BIC is an
asymptotic sparsity criterion, it is thus likely to perform poorly when p is larger
than n.

Results Tables 1 and 2 reports the mean and standard error of the F-score for
the experiments described is this subsection. The three globally sparse methods
vastly outperform SPCA, which is unable to identify the particular structure of
the data. It appears that ARD selects too many variables, but usually retains the
good ordering of the variables. This emphasizes the necessity of our approach.
When p is larger than n/2, both SSPCA and GSPPCA perform very well,
GSPPCA being slightly better in the Gaussian noise case. It is not surprising
to see SSPCA adapt efficiently to Laplacian noise because cross-validation is a
model-free technique and is more likely to outperform model-based techniques
when the data is not generated according to the model distribution. However,
when n is smaller than p/2, GSPPCA significantly outperforms SSPCA in both
noise scenarios. This reminds the fact that, in many p > n situations, Bayesian
model selection empirically outperforms ¢;-based methods (Celeux et al., 2012;
Latouche et al., 2016).

3.4. Global versus local

Here, we illustrate on real data sets how using GSPPCA instead of computing
the leading sparse principal component for model selection can lead to selecting
more relevant variables — i.e variables that retain more variance or are more
interpretable.
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Explained variance We consider the data base from the breastCancerVDX
R package (Schroeder et al., 2011), consisting in expression levels of p = 5391
genes for n = 344 breast cancer patients. More details regarding this data set —
including the preprocessing technique used — are given in Appendix F. Given a
cardinality ¢, we applied four methods to select relevant genes:

e we computed the first g-sparse principal component using SPCA (Zou,
Hastie and Tibshirani, 2006) and GSPPCA with d =1

e we computed the support of the globally g-sparse subspace of dimension
d = 10 using GSPPCA and SSPCA.

For each method, we projected the data onto a 10-dimensional globally g-sparse
subspace using the sparsity pattern found by the algorithm and computed the
percentage of explained variance using the criterion introduced by Shen and
Huang (2008) — for each method, we applied the post-processing technique of
Moghaddam, Weiss and Avidan (2005). The results are plotted on Figure 3.
GSPPCA with d = 1 outperforms its local competitor SPCA by a significant
margin, which means that the VEM algorithm finds more relevant genes than
the ¢; approach of Zou, Hastie and Tibshirani (2006) — this is consistent with
the experiments of Archambeau and Bach (2009). Both global methods explain
consistently more variance than local ones. This fact is not surprising since the
data is indeed projected onto a globally sparse subspace, but the significance
of this variance gap highlights the fact that different dimensions lead to very
different sparsity patterns. This means that projecting the data onto a single
sparse axis is likely to lead to an important information loss (this fact is con-
firmed in Section 5). The variables selected by GSPPCA retain significantly
more variance than the ones selected by SSPCA, and may consequently be of
superior interest.
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Interpretability Inspired by Hastie, Tibshirani and Wainwright (2015, Sec.
8.2.3.1), we consider the problem of learning which features are relevant on
three data sets of handwritten digits. We consider n = 500 gray-scale images
(with p = 758 pixels) of handwritten sevens from three data sets introduced by
Larochelle et al. (2007):

e mnist-basic which is simply a subsample of sevens from the original MNIST
data set,

e mnist-back-rand in which random backgrounds were inserted in the im-
ages. Each pixel value of the background was generated uniformly between
0 and 255,

e mnist-back-image in which random patches extracted from a set of 20
grey-scale natural images were used as backgrounds for the sevens.

On these three data sets, we apply SPCA (with d = 1), SSPCA and GSPPCA
(both with d = 100) in order to select ¢ = 200 relevant pixels. On mnist-
basic, even if SPCA’s result is a little bit more erratic than the two others,
all selections are interpretable and we can easily recognize a seven. On mnist-
back-rand however, while the two globally sparse selections are still consistent,
SPCA’s pixels are more scattered and it is harder to recognize the shape of a
seven. Eventually, on mnist-back-image, GSPPCA’s selection is less smooth but
a seven can still be recognized, whereas SPCA appears to randomly select pixels
almost everywhere but near the mean seven. SSPCA seems to notice that the
zone occupied by the upper bars of the sevens is of interest, but its selection
does not appear interpretable.

4. Application to signal denoising

In this section, we focus on a first possible application of GSPPCA for signal
denoising through the sparsification of a wavelet decomposition. PCA is indeed
a popular way to denoise multivariate signals (Aminghafari, Cheze and Poggi,
2006; Johnstone and Lu, 2009). To illustrate the potential interest of GSPPCA
in this context, we consider hereafter two simulation scenarios, each using a
specific form of signal and wavelet. The simulation scenarios are as follows:

e Scenario A: it consists in a square wave signal with 6 states of different
lengths. The observed signal is sampled with a time step of 5 x 10~3 with
an additional Gaussian noise with zero mean and 0.2 standard deviation.
The Haar wavelet is used here for signal reconstruction.

e Scenario B: the original signal is here a mixture of 4 Gaussian densities.
The observed signal is also sampled with a time step of 5 x 1073 with an
additional Gaussian noise with zero mean and 0.2 standard deviation. The
Daubechies D8 wavelet is used here for signal reconstruction.

Figure 4 presents the original signals and observed signals for scenarios A and B.
In both cases, n = 100 signals were sampled during the training phase and
decomposed as p = 175 wavelet coefficients. For signal denoising, GSPPCA is
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TABLE 3
Variable selection of SPCA and GSPPCA for the three datasets of Larochelle et al. (2007),
selected variables are in white.

mmnist-basic mmnist-back-rand mnist-back-image

SPCA

SSPCA

GSPPCA

applied on the n x p wavelet coefficient matrix to extract d = 10 globally sparse
principal axes. Then, a new sampled signal is projected on those extracted
principal axes and back-projected in the original wavelet domain. It is worth
mentioning that the estimated value for ¢ = [|v||, is 17 on scenario A and 15 on
scenario B.

As an illustration, we plotted on Figure 4 the denoising results for newly sam-
pled signals A and B with GSPPCA. We used the same projection-reconstruction
protocol for PCA, thresholded PCA (PCA loading smaller than 1 x 103 are
set to 0) and SPCA (A is chosen such that 99% of the PCA projected variance
is conserved). Denoising results obtained with those methods are also supplied
on Figure 4. First, on both signal A and B, PCA achieves a very satisfying de-
noising and thus confirms his validity in this context. One can also show that a
simple thresholding of the PCA loadings allows a clear denoising improvement
and turns out to be competitive with the one performed by SPCA. The SPCA
result is here somehow disappointing due to the fact that the sparsity is not
global and most wavelet levels stay active in the final reconstruction. Finally,
the global sparsity of GSPPCA retains only a few wavelet levels and achieves
here the best reconstruction in both scenarios.

Finally, Table 4 presents the reconstruction error (sum of squared errors)
averaged on 50 test signal reconstructions, on the two simulation scenarios.
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TABLE 4
Reconstruction error (sum of squared errors) for wavelet signal denoising on the two
stmulation scenarios (results are averaged on 50 signal reconstructions). Standard
deviations are also provided.

Scenario Wayvelet PCA tPCA SPCA GSPPCA
A 9.5164+0.819  2.719+0.439  2.484+0.372  2.480£0.371 2.283+0.344
B 8.1564+0.725  1.390+0.351  1.253+0.343  1.406+0.354 1.193+0.337

The results confirms the observations made on Figure 4. GSPPCA achieves
particularly good performances on both scenarios and thus imposes itself as a
competitive tool for signal denoising. Moreover, the GSPPCA reconstruction
uses fewer wavelet levels and is therefore visually smoother.

5. Application to unsupervised gene selection

Considering again the breast cancer data set previously studied in Section 3,
we address here the issue of the biological significance of the selected genes.
To this end, we will use the pathway enrichment index (PEI) introduced by
Teschendorff et al. (2007) and used in a sparse PCA framework by (Journée
et al., 2010).

5.1. Pathway enrichment as a measure of biological significance

In this subsection, we briefly review how the PEI can be computed in order to
evaluate the quality of a given subset of genes. For more details on the PEI, see
Teschendorff et al. (2007) or Journée (2009), and on hypergeometric tests and
enrichment, see Rivals et al. (2007).

Suppose that using a microarray data matrix X € R™*P where each vari-
able corresponds to a gene, an algorithm infers a subset s C {1,...,p} of genes.
A way to assess its biological significance is to compare s to many other sub-
sets which are known to be biologically relevant. In this case, the biologically
relevant subsets are defined by biological pathways, and are therefore groups of
genes involved in series of biochemical reactions linked to a certain biological
function. Let us denote these known subsets bq,..,bx C {1,...,p}. For our
breast cancer experiment, we use the N = 1116 pathways from the Reactome
database (Fabregat et al., 2016) included in the R package reactomePA (Yu and
He, 2016). For k < N, the enrichment of s in the k-th pathway of this list is the
statistical significance of its overlap with by, evaluated using the hypergeometric
test. More specifically, for each k& < N, the null hypothesis of this test is that
the genes in s are chosen uniformly at random from the total gene population.
Under this hypothesis, the test statistic #(s N by) follows a hypergeometric dis-
tribution and a p-value can be computed to assess the statistical significance
of the overlap. Because we are conducting one test for each pathway consid-
ered, these p-value are then adjusted using the Benjamini-Hochberg procedure
to control the false discovery rate (Benjamini and Hochberg, 1995). The subset
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TABLE 5
PEI for several fized cardinalities.
Cardinality tPCA SPCA GSPPCA
290 selected by tPCA 0.09 0.09 3.22
1000 1.88 1.88 4.57
1965  selected by GSPPCA 1.7 1.61 5.19
3000 1.16 1.43 3.58
4466  selected by SPCA 3.04 3.22 4.29
5000 1.79 1.88 2.42

s is eventually declared enriched for a certain pathway if the adjusted p-value
of the corresponding hypergeometric test is lower than 0.01. The PEI is finally
defined as the percentage of enriched pathways in the Reactome family.

5.2. Results

We compare in Table 5 the PEI obtained by GSPPCA with d = 10, SPCA and
thresholded PCA for several fixed cardinalities. Similarly to Zou, Hastie and
Tibshirani (2006), the two local methods are computing a single sparse axis.
As in Journée et al. (2010) SPCA appears to give slightly better results than
thresholded PCA. GSPPCA significantly outperforms the two other methods.
This means that the genes selected by GSPPCA are consistently more associ-
ated with the Reactome pathways, and are therefore more interpretable. This
highlights the fact that projecting the data onto a globally sparse subspace of
dimension higher than one leads to significantly more interpretable and biolog-
ically plausible results. Regarding the estimation of the sparsity level, choosing
the one that explains 99% of the variance led SPCA to selecting 4466 genes,
which is difficult to interpret. For thresholded PCA, we selected the sparsity
level using a criterion proposed by Teschendorff et al. (2007). Even though it
led to the sparsest solution, its PEI was very small. Regarding GSPPCA, the
noiseless marginal log-likelihood and the PEI of the corresponding models are
plotted on Figure 5. We can see that the marginal likelihood peak corresponds to
highly interpretable genes: more than 5% of the biological pathways in the Re-
actome family have a significant overlap with the genes selected by GSPPCA.
Furthermore, models with a lower marginal likelihood have generally a lower
PEIL To a certain extend, this shows that our marginal likelihood expression
can stand as an indicator of biological significance.

6. Conclusion

Unsupervised feature selection is an hazy and exciting problem. It becomes par-
ticularly difficult and ill-posed when no specific learning task (such as clustering)
is driving it. We have proposed in this paper a new method for unsupervised
feature selection based on the idea that the data may lie close to a subspace
of moderate dimension spanned by a basis with a shared sparsity pattern. On
several real data sets, this approach outperforms a popular method which con-
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Fic 5. Marginal likelihood and PEI for the gene selection problem.

sists in finding the sparsity pattern of the single leading principal vector of the
data. These results suggest that, on many real-life high-dimensional data sets,
an important part of the information cannot be captured by one-dimensional
subspace approximations.

The scalability of our approach comes from the linear complexity of the VEM
algorithm of the relaxed model. Such continuous relaxations of discrete Bayesian
model selection problems have been empirically very successful in the past, par-
ticularly for PCA (Bishop, 1999a,b; Archambeau and Bach, 2009), which was
an important motivation for our approach. However, the theoretical founda-
tions of these relaxations remain unclear — although some work has been done
regarding linear regression (Wipf, Rao and Nagarajan, 2011). Moreover, the fact
that the noise term is separated in the exact model, and unified in the relaxed
one, might bring about different behaviours for difficult data sets. A theoretical
investigation of the links will be the subject of future work.

While building our framework, we derived the first closed-form expression of
the marginal likelihood of a Bayesian PCA model, using the noiseless model of
Roweis (1998). Regarding future work, it would be interesting to see if more
complex priors can be used and to what extend our expression can lead to
a simultaneous estimation of the sparsity level and the dimension of the latent
space. Indeed, intrinsic dimension estimation, which was beyond the scope of this
paper, has an enduring relationship with probabilistic versions of PCA (Minka,
2000; Bouveyron, Celeux and Girard, 2011; Nakajima et al., 2015) and would
be an interesting direction.
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Appendix A: Proof of Theorem 1

Proof. Let us first consider the case where all variables are active and assume
that v = (1,1,...,1). Therefore, V = I, and the considered model reduces
to probabilistic PCA. In this framework, we will derive the density of x by
computing the Fourier transform of its characteristic function.

In order to compute the characteristic function of x, we first decompose the
latent vector y in the canonical base

y =vyi€e1 + ... + yq€q,

where (ej);>q is the canonical base of R?. We can now write the vector Wy as
a sum of of d i.i.d variables

Wy =y1Weq + ... + y4Wegq.
Its characteristic function will consequently be

PwWy = (@ylwel )d'

Now, for all u € R?, we have

Py, We, (1) = Elexp(iyie;” W u)] (20)
=F |exp (iy1 Zwmukﬂ , (21)
k=1

but, since wg; ~ N (0,a~2) for all s,t, we will have
o p
W ZU)]cl’Uk ~ N(O, 1),
2 k=1

thus, since y and W are independent, the law of (o/||ul|2)y1 D r_; wr1ug will be
the one of a product of two standard Gaussian random variables, whose density
is 1/mKo(].]) (Wishart and Bartlett, 1932). Therefore, we find that

L = ful 2t
(pylwel(u) = ; K0<|t|)eza Wtdt
2 [tee
= Ko(t) cos(a™|ul|ot)dt,
™ Jo
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is simply the cosine Fourier transform of a univariate Bessel function. Using a
formula in Abramowitz and Stegun (1965, p. 486), we eventually find that

oy (W) !
y1 W - T
: NERTER

which leads to 1

Py )= 5 ey

Finally, since the noise term and Wy are independent, the characteristic func-
tion of x will be

e—O'QHLIH%

Px(u) = @Wy(u)%(u) = (1+ ||u|‘§/a2)d/2'

The density of x is then given by the Fourier transform of its characteristic
function

1 ixTu
X) = —— u)e du
b = oy [ exwe v,
but, since px(u) is a radial function (i.e a function that only depends on the
norm of its argument), its Fourier transform can be expressed as a univariate
integral (Schaback and Wu, 1996) and we can write

p(x) =

HXHlip/2 +oo up/2e—02u2
X B (14 u2/a?)d/2 Tpj2—1(ul|x][2)du, (22)

which is the desired form for the case with no inactive variable.

In the general case, v is not necessarily equal to (1,1,...,1) but we can no-
tice that, since x, and xg are independent, we can write p(x) = p(x7)p(xvy).
Applying (22) to x, allows us to compute p(xy) and to eventually obtain the
expression of the density given by the theorem. O

Appendix B: Proof of Theorem 2

We begin by proving the following lemma, which links the distribution of the
product between a Gaussian matrix and a Gaussian vector with the Bessel
distribution. This result may be of independent interest. While this paper was
under review, we proved a more general result about the distribution of the
product of a Gaussian matrix with a Gaussian vector (Mattei, 2017).

Lemma 1. Let A be a q x d random matriz such that a;; ~ N(0,s?) with
s >0 for all i,j and let b ~ N0,1;). Then Ab follows a Bessel distribution
with parameters s and (d — q)/2.

Proof. Using the decomposition arguments from the proof of Theorem 1, the
characteristic function of Ab is, for all u € R*,

_ 1
@Ab(u) - <1+82||u|‘%)d/2’
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which is exactly the characteristic function of the symmetric multivariate Bessel
distribution Fang, Kotz and Ng (1990, Def. 2.5). O

We can now prove Theorem 2.

Proof. Let us first consider the case where all variables are active and assume
that v = (1,1,...,1). Using Lévy’s continuity theorem, 5 weakly converges to
zero when oy vanishes. Since zero is a constant, this convergence also happens
to be in probability (Van der Vaart, 2000, p. 10). The variable x therefore con-
verges in probability to Wy, which follows a Bessel(1/«, (d — ¢q)/2) distribution
according to our lemma.

In the general case when v is not necessarily equal to (1,1, ..., 1) we can prove
(6) by invoking the independence between x, and xg, similarly to the proof of
Theorem 1. O

Appendix C: Proof of Proposition 1

Proof. Since a sum of concave functions is concave, it is sufficient to prove that
the function g : a — p(X|v, a, 01) is strictly concave. Up to unnecessary additive
constants, we have for all o > 0,

- a=d -
gla) = dloga +log ((allvl|2) > Kuza ([[%v120) ) -
Using standard results about Bessel functions derivatives (Abramowitz and Ste-
gun, 1965, p. 376), it can be shown that

g ) = &~ % 2w,

where the h is the ratio
Koa_, (|lll20)
Ko (Rll20)

o) =

As proven independently by Lorch (1967) and Hartman and Watson (1974),
since g—d > 0, h is a increasing function on R* . Therefore g’ is stricly decreasing
and g is strictly concave. O

Appendix D: Proof of Proposition 2

Proof. Variational distribution of the latent vectors. Using a standard result in
variational mean-field approximations (Bishop, 2006, Chap. 10), we can write

Ing*(y) = Eqow)[In p(X, Y, W10)]
which leads to the factorization ¢*(y) = [[,<,, ¢*(y:)- Then, for each i < n, we
can write, up to unnecessary additive constants,
—1

. 1
Ing*(yi) = Eqow)[Inp(xi, yi, W[0)] = E w) ﬁ”xi - UWy,|j3]| - §||Yi”§a



Globally sparse probabilistic PCA 3063
thus
Ing*(y:) = — wWiUrw L VTE, o) [W]TUx; — Syl 2
HQ(yz)—2 5¥i Egow) | [yi + —5¥i Eqew) [W]TUx; — Sllyillz,

which leads to the desired form.
Variational distribution of the loading matriz. Similarly, up to unnecessary
additive constants,

" -1 & a? &
g (W) = 55> Byl — OWyil5] = = > lIwill3,
i=1

=1
which leads to
g’ (W) = 3

i=1

Oé
- EZHwiH%,
1=1

1 p
2...T T T
jo Eqyolyoyi 1wy + — > miuiw) gy, lyil
=1

“’!
u M@

and
Pl -1 1
* 2T T T
g (W) =>_ | 55 D> 3wy Bayolyivy Iwy + —5 > i juyw) Bygy,) [y
i=1 j=1 j=1
062 P
— 3 Z [[wil[3,
1=1

leading to the factorization ¢*(W) = [[;.,¢"(w;) and to the desired expres-
sion. - O

Appendix E: Proof of Proposition 3

Proof. By definition, we have
—F4(X]60) = Eq[Inp(X, Y, WI[0)] + H(q),

therefore

1
~F,(X|0) = —nplno — 2—Tr(XTX ZE [y, WTU*Wy,]

=1

1 O o 2
+ = ZX?UMM + Z (dlna - %Eq[wgwk])
i=1 k=1

1< n 1&
S Y BTy + Sl + 5 Y sk,
=1
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and computing the expectations leads to
1
~F,(X|0) = —nplno +dplna — 2—2Tr(XTX)
o

_ 1 Z Z upTr[(Z + pypf ) (Sk + mymi)]

202
=1 k=1
1 & T L o?
+ i sz UMy, + Z —TTI“(S;c + mym;y )
i=1 k=1
1 — n 1 o
) > TH(B A+ il ) + S IZ|+ 5 > ISk, (23)
=1 k=1
which allows us to conclude. O

Appendix F: Details about the breast cancer data set

The microarray data set used in this paper is included in the breastCancerVDX
R package (Schroeder et al., 2011) and contains the gene expression data pub-
lished by Wang et al. (2005) and Minn et al. (2007). It contains expression levels
of 22283 probes for 344 patients. In order to be able to provide an interpretation
of feature selection, we reduced the data from probe-level to gene-level using the
following procedure:

e first, the probes with no gene identifier were discarded,

e then, the data was aggregated to gene-level using the collapseRows pro-
gram of Miller et al. (2011) with default settings (specifically, this means
choosing the probe with the largest mean value for each gene),

e among the genes obtained, only the genes listed in the Reactome database
(Fabregat et al., 2016) were kept in order to eventually perform pathway
enrichment,

e finally, the data was centered but not standardized.

The resulting data matrix contains 5391 variables (genes) and 344 observations
(patients).
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