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Abstract

Recent development in statistical methodology for personalized treat-
ment decision has utilized high-dimensional regression to take into ac-
count a large number of patients’ covariates and described personalized
treatment decision through interactions between treatment and covariates.
While a subset of interaction terms can be obtained by existing variable
selection methods to indicate relevant covariates for making treatment
decision, there often lacks statistical interpretation of the results. This
paper proposes an asymptotically unbiased estimator based on Lasso so-
lution for the interaction coefficients. We derive the limiting distribution
of the estimator when baseline function of the regression model is un-
known and possibly misspecified. Confidence intervals and p-values are
derived to infer the effects of the patients’ covariates in making treatment
decision. We confirm the accuracy of the proposed method and its robust-
ness against misspecified function in simulation and apply the method to
STAR*D study for major depression disorder.
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1. Introduction

Precision medicine aims to design optimal treatment for each individual accord-
ing to their specific conditions in the hope of lowering medical cost and improv-
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ing efficacy of treatments. Existing methods can be broadly partitioned into
regression-based or classification-based approaches. Popular regression-based
approaches include Q-learning [21, 11, 3, 6, 7, 17] and A-learning [13, 10, 8, 16,
15]. Q-learning models the conditional mean of the outcome given covariates and
treatment while A-learning directly models the interaction between treatment
and covariates that is sufficient for treatment decisions. Other regression-based
methods have been developed in [18], [12], [19], etc. In contrast, classification-
based approaches, also known as policy search or value search, estimate the
marginal mean of the outcome for every treatment regime within a pre-specified
class and then take the maximizer as the estimated optimal regime; see, for
example, [13], [22], [23], [25], [26]. As emerging technology makes it possible
to gather an extraordinarily large number of prognostic factors for each indi-
vidual, such as genetic information and clinical measurements, regression-based
and classification-based methods have been extended to handle high-dimensional
data [12, 25, 26, 19].

This paper focuses on regression-based approaches and plans to address the
current limitation that the selected interaction effects often lack statistical inter-
pretation when the number of covariates exceeds the sample size. Consider the
following semi-parametric model. Denote X as the n × p design matrix, where
n is the number of patients and p is the number of patients’ covariates. Let X̃
be the design matrix with an additional column of 1’s and X̃i the i-th row of
X̃. Denote Yi as the outcome and Ai = {0, 1} the treatment assignment of the
i-th patient. Assume

Yi = μ(Xi) +Ai(β
T
0 X̃i) + εi, (1)

where μ(Xi) is an unspecified baseline function and β0 is the vector of unknown
coefficients for the interactions between treatment and patients’ covariates. We
are interested in inference on β0 and optimal treatment decisions based on the
estimated β0.

We propose an asymptotically unbiased estimator for β0 and derive its lim-
iting distribution when p > n. Consequently, confidence intervals and p-values
of the interaction coefficients can be calculated. Because the baseline function
is unknown and possibly misspecified, we investigate the robustness of the esti-
mator to misspecified μ(Xi).

The proposed estimator for β0 and the p-value calculated from data can be
utilized to make significance-based optimal treatment decision. We illustrate the
efficiency of the new treatment regime in a real application to STAR*D study
for major depression disorder.

2. Method and theory

2.1. An A-learning framework

We adopt the robust regression approach of [16] and transform the interaction
from Ai(β

T
0 X̃i) to (Ai−π(Xi))(β

T
0 X̃i), where π(Xi) = E(Ai|Xi) is the propen-

sity score. Because E(Ai−π|Xi) = 0, the transformed interaction is orthogonal
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to the baseline function μ(Xi) given Xi. By doing so, we can protect the es-
timation of β0 from the effect of baseline function misspecification [8, 16]. For
simplicity of presentation, we consider a completely randomized study with pre-
specified propensity score, i.e. A = {0, 1} and π(Xi) = P (Ai = 1|Xi) = π. Let
μπ(Xi) = μ(Xi) + π(βT

0 X̃i), then (1) is equivalent to

Yi = μπ(Xi) + (Ai − π)(βT
0 X̃i) + εi.

The true μπ(·) is unknown. Let μ̂π(·) be an estimator of μπ(·) that does not
necessarily converge to the true μπ(·). Assume μ̂π(·) → μ∗

π(·) uniformly for some
function μ∗

π(·). Because E(Ai − π|Xi) = 0, then μ∗
π(Xi) and (Ai − π)βT

0 X̃i are
orthogonal, which implies that

β0 = argminβ

{
E
[
Y − μ∗

π(X)−D(A, π)X̃β
]2}

, (2)

where D(A, π) = diag{A1 − π, . . . , An − π}. We apply the Lasso to regress
Y − μ̂π(X) on D(A, π)X̃ and obtain

β̂ = argminβ

{
‖Y − μ̂π(X)−D(A, π)X̃β‖22/n+ 2λn,p‖β‖1

}
. (3)

It is well-known that the limiting distribution of Lasso solution is difficult to
derive. The misspecified baseline function adds another layer of difficulty [2].

2.2. Unbiased estimation with misspecified baseline function

We propose a de-sparsified estimator for β0 motivated by [24] and [20]:

b̂ = β̂ + Θ̂
{
D(A, π)X̃

}T {
Y − μ̂π(X)−D(A, π)X̃β̂

}
/n, (4)

where Θ̂ is an estimator of the precision matrix of D(A, π)X̃.
We show that this estimator is asymptotically unbiased and derive its limiting

distribution as follows. Decompose b̂− β0 into three terms:

b̂− β0 = η −Δ1 −Δ2,

where η = Θ̂{D(A, π)X̃̃X̃X}T
(
Y − μ∗

π(X)−D(A, π)X̃̃X̃Xβ0

)
/n, Δ1 = (Θ̂Σ̂ΣΣ−III)(β̂−

β0), Δ2 = Θ̂{D(A, π)X̃̃X̃X}T ((μ̂π(X)− μ∗
π(X)) /n, and Σ̂ is the sample covariance

matrix of D(A, π)X̃̃X̃X.
Consequently, for an arbitrary q × (p + 1) matrix, H, we can decompose√
nH(b̂− β0) into three terms. The reason to study

√
nH(b̂− β0) is to explore

the asymptotic joint distribution of q arbitrary linear contrasts of {√n(b̂1 −
β0,1), . . . ,

√
n(b̂p − β0,p)}, which includes the limiting distribution of a single√

n(b̂j−β0,j) as a special case. We derive the limiting distribution of
√
nH(b̂−β0)

by showing that ‖√nHΔ1‖∞ = oP (1), ‖
√
nHΔ2‖∞ = oP (1), and

√
nHη →d

N(0, G).
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We first show a preliminary result on the lasso solution β̂ with misspecified
baseline function. As β̂−β0 is an important component in Δ1, this preliminary
result helps to derive the asymptotic properties of

√
nHΔ1. Consider the fol-

lowing assumptions, where C denotes a generic constant, possibly varying from
place to place:

Condition 1: The random error εi of the true model (1) are independent and
identically distributed with E(εi|X̃, A) = 0 and E(ε2i |X̃, A) ≤ C.

Condition 2: There exists a μ∗
π(·) such that for any X̃i ∈ Rp+1,

(a) supX̃i
|μ̂π(X̃i)− μ∗

π(X̃i)| = op(1) and

(b) E(μ∗
π(X̃i)− μπ(X̃i))

2 ≤ C.
Condition 3: Denote X̃j as the jth column of X̃̃X̃X. ‖X̃j‖∞ ≤ C for all 1 ≤ j ≤

p+ 1.
Condition 4: Define Σ as the covariance matrix of D(A, π)X̃̃X̃X. Σ has smallest

eigenvalue Λ2
min(Σ) ≥ C > 0.

Condition 5: The number of important interaction terms satisfies that s0 =
‖β0‖0 = o{√n/ log(p)}.
Lemma 2.1. Consider model (1). Assume Conditions 1 - 5. The lasso solution
from (3) with λn,p �

√
log(p)/n satisfies

‖β̂ − β0‖1 = op(1/
√
log p). (5)

Next, we show that
√
nHΔ1 and

√
nHΔ2 are at the order of op(1). Similar

to [20], we apply lasso for nodewise regression to construct Θ̂. Details of the
construction are presented in Section A.1. Consider additional assumptions:

Condition 6: The prespecified matrix Hq×(p+1) satisfies
(a) ‖H‖∞ ≤ C and
(b) ht = |{j 	= t : Ht,j 	= 0}| ≤ C for any t ∈ {1, . . . , q}.

Condition 7: The precision matrix Θ of D(AAA, π)X̃̃X̃X satisfies
(a) ‖Θ‖∞ ≤ C and
(b) sj = |{k 	= j : Θj,k 	= 0}| ≤ C for any j ∈ {1, . . . , p}.

Lemma 2.2. Consider model (1). Assume Conditions 1 - 7. Obtain β̂ by (3)

with λn,p �
√
log(p)/n and Θ̂ by nodewise regression with λj �

√
log(p)/n for

any j ∈ {1, . . . , p}. Then

‖
√
nHΔ1‖∞ = oP (1) (6)

‖
√
nHΔ2‖∞ = oP (1). (7)

The remaining component of
√
nH(b̂ − β0) is

√
nHη. We show that

√
nHη

converges to a multivariate normal distribution. Since η does not involve β̂ββ−βββ0,
less conditions are needed in the following lemma.

Lemma 2.3. Consider model (1). Assume Conditions 1 - 3 and 6 - 7. Obtain

Θ̂ by nodewise regression with λj �
√
log(p)/n for any j ∈ {1, . . . , p}. Then

√
nHη →d N(0,G), (8)
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where G = HΘVΘTHT is a q× q nonnegative matrix, V = E
[
(Ai−π)2σ2

ε (Ai,

X̃i)X̃iX̃
T
i

]
+ π(1 − π)E

[
(μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]
, σ2

ε (Ai, X̃i) = V ar(εi|Ai,

X̃i), and ‖G‖∞ < ∞.

We summarize the above results in the following theorem.

Theorem 2.4. Consider model (1). Assume Conditions 1 - 7. Obtain β̂ by (3)

with λn,p �
√

log(p)/n and Θ̂ by nodewise regression with λj �
√
log(p)/n for

any j ∈ {1, . . . , p}. Then,
√
nH(b̂− β0) →d N(0,G),

where G is defined in (8).

2.3. Some examples for μ̂π

In real applications, we need to choose an estimator μ̂π for the baseline function.
The only requirement for μ̂π is Condition 2, which is very general. Here we
discuss two examples for μ̂π.

Example 1: μ̂π(X̃i) = constant. In this case, Condition 2 (a) holds trivially.
Condition 2 (b) is implied by

Condition 8: E(Y 2
i ) ≤ C.

The following corollary presents the limiting distribution of
√
nH(b̂−β0) in this

case. Proof of this corollary is straightforward and, thus, omitted.

Corollary 2.5. Consider model (1). Implement μ̂π(X̃i) = constant. Assume

Conditions 1, 3 - 7, and 8. Obtain β̂ by (3) with λn,p �
√
log(p)/n and Θ̂ by

nodewise regression with λj �
√

log(p)/n for any j ∈ {1, . . . , p}. Then,
√
nH(b̂− β0) →d N(0,G),

where G is defined in (8).

Example 2: μ̂π(X̃i) = γ̂T X̃i, where γ̂ is obtained by

(γ̂, β̂) = argminγ,β

{
‖Y − X̃γ −D(A, π)X̃β‖22/n+ 2λn,p(‖γ‖1 + ‖β‖1)

}
. (9)

Note that the solution β̂ from (9) is equivalent to the solution from (3) (detail
of the proof is included in the proof of Corollary 2.6). In this case, we replace
Condition 2 with

Condition 9: Define γ∗ = argminγ

{
E(μπ(X̃i)− γT X̃i)

2
}
; γ∗ satisfies

(a) sγ = ‖γ∗‖0 = o(
√
n/ log(p)) and

(b) E(γ∗T X̃i − μπ(X̃i))
2 ≤ C

Corollary 2.6. Consider model (1). Implement μ̂π(X̃i) = γ̂T X̃i and obtain γ̂

and β̂ from (9) with λn,p �
√

log(p)/n. Assume Conditions 1, 3 - 7, and 9.
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Obtain Θ̂ by nodewise regression with λj �
√
log(p)/n for any j ∈ {1, . . . , p}.

Then, √
nH(b̂− β0) →d N(0,G),

where G is defined in (8).

2.4. Interval estimation and p-value

The theoretical result on the asymptotic normality of the de-sparsified estimator
b̂ can be utilized to construct confidence intervals for the coefficients of interest
and to perform hypothesis testing. The variance-covariance matrix G can be
approximated by HΘ̂V̂Θ̂THT where

V̂ =
1

n

n∑
i=1

(Ai − π)2
{
Yi − μ̂π(X̃i)− (Ai − π)β̂ββ

T
X̃i

}2

X̃iX̃
T
i .

Therefore, a pointwise (1− α) confidence interval of βββ0,j can be constructed as

{
b̂j − c(α, n), b̂j + c(α, n)

}
, (10)

where c(α, n) = Φ−1(1 − α/2)
√

(HΘ̂V̂Θ̂THT )j,j/n, and Φ(·) is the c.d.f of

N(0, 1).
One can also calculate the asymptotic p-value for testing

H0 : βββ0,j = 0 vs. HA : βββ0,j 	= 0

for a given j ∈ {1, . . . , p}. A non-zero βββ0,j means that variant Xj is relevant in
making treatment decision for a patient.

3. Simulation

We consider three simulation settings with different baseline functions:

• Case 1: Y = 1 +XXXγ +A(X̃XXβ0) + ε,
• Case 2: Y = 1 + 0.5(1 +XXXγ)2 +A(X̃XXβ0) + ε,
• Case 3: Y = 1 + 1.5sin(πXXXγ) + X2

1 + A(X̃XXβ0) + ε, where X1 is the first
covariate of XXX.

We simulate the random error ε from N(0, 1) and the design matrix XXX from
multivariate normal MN(0,ΣΣΣ), where ΣΣΣ = AR(0.5). The parameters in the
baseline functions is set as γ = (1, 1, 0, · · · , 0)T , and the parameter of interest
β0 has s nonzero elements with values 1 or 1.5. The treatment main effect is set
at zero.

We apply our de-sparsified estimator b̂ in (4) with μ̂π(X̃i) = γ̂T X̃i and derive
confidence intervals by (10). To evaluate the finite-sample performance of our
method, we report the following measures. Denote CIj as the 95% confidence
interval for β0,j and Strue = {j ∈ {2, . . . p+ 1} : β0,j 	= 0}.
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• MAB(b̂): the mean absolute bias of b̂ for relevant variables, calculated as

s−1
∑

j∈Strue
|b̂j − β0,j |.

• MAB(β̂): the mean absolute bias of lasso solution for relevant variables,
calculated as
s−1

∑
j∈Strue

|β̂j − β0,j |.
• Coverage for noise variables: the empirical value of

(p− s)−1
∑

j∈Sc
true

P [0 ∈ CIj ].

• Coverage for relevant variables: the empirical value of
s−1

∑
j∈Strue

P [β0,j ∈ CIj ].

• Length of CI for noise variables: the empirical value of
(p− s)−1

∑
j∈Sc

true
length(CIj).

• Length of CI for relevant variables: the empirical value of
s−1

∑
j∈Strue

length(CIj).

Tables 1-2 summarize the performance measures for case 1-3 from 100 sim-
ulations with n = 200, p = 300 and s = 5 or 10. It is shown that the mean
absolute bias for relevant variables of our estimator b̂ is significantly smaller
than that of the lasso solution in all settings. The coverages of the confidence
intervals are fairly consistent for all cases 1-3, concurring with the theoretical
results on the robustness of the method in Corollary 2.6. We notice that the
coverage of confidence intervals for noise variables is very close to the nomi-
nal level of 0.95, but that for the relevant variants is lower than 0.95. Similar
phenomena have been observed for the original de-sparsified estimator in [20]
and [4]. This phenomenon indicates that even though the bias of the original
Lasso estimator has been corrected asymptotically by the de-sparsifying proce-
dure, the non-zero coefficients can still be under-estimated with finite sample.
Further, given that the implemented μ̂π(X̃i) = γ̂T X̃i, it agrees with our expec-
tation that the lengths of the confidence intervals are shortest for Case 1 when
the true baseline function is linear and increases in Case 2 and 3 with nonlinear
baseline functions.

Table 1

Coverage of confidence interval and mean absolute bias (MAB) of b̂ with p = 300 and s = 5.
Standard errors are in parenthesis.

Intensity=1 Intensity=1.5
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

MAB(b̂) 0.17(0.06) 0.40(0.14) 0.30(0.10) 0.17(0.06) 0.41(0.15) 0.30(0.11)

MAB(β̂) 0.23(0.06) 0.50(0.14) 0.39(0.11) 0.23(0.06) 0.53(0.18) 0.40(0.13)

Coverage for
noise variables

0.95(0.01) 0.95(0.01) 0.95(0.03) 0.95(0.01) 0.94(0.05) 0.95(0.01)

Coverage for
relevant variables

0.88(0.13) 0.89(0.15) 0.85(0.18) 0.88(0.13) 0.86(0.20) 0.86(0.17)

Length of CI for
noise variables

0.65(0.04) 1.50(0.17) 1.21(0.91) 0.65(0.04) 1.50(0.17) 1.12(0.12)

Length of CI for
relevant variables

0.65(0.04) 1.49(0.16) 1.20(0.92) 0.65(0.04) 1.49(0.16) 1.11(0.11)
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Table 2

Coverage of confidence interval and mean absolute bias (MAB) of b̂ with p = 300 and
s = 10.

Intensity=1 Intensity=1.5
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

MAB(b̂) 0.19(0.04) 0.42(0.10) 0.33(0.08) 0.19(0.04) 0.46(0.27) 0.43(0.96)

MAB(β̂) 0.24(0.06) 0.51(0.10) 0.40(0.09) 0.24(0.06) 0.57(0.27) 0.52(0.96)

Coverage for
noise variables

0.95(0.03) 0.94(0.04) 0.95(0.03) 0.94(0.05) 0.94(0.04) 0.94(0.05)

Coverage for
relevant variables

0.86(0.14) 0.86(0.16) 0.84(0.14) 0.84(0.18) 0.84(0.16) 0.82(0.18)

Length of CI for
noise variables

0.69(0.05) 1.58(0.18) 1.19(0.13) 0.69(0.05) 1.64(0.46) 1.23(0.47)

Length of CI for
relevant variables

0.69(0.05) 1.58(0.18) 1.18(0.13) 0.69(0.05) 1.63(0.45) 1.22(0.47)

4. Application to STAR*D study

We consider the dataset from multi-site, randomized, multi-step STAR*D (Se-
quenced Treatment Alternatives to Relieve Depression) study for Major de-
pressive disorder (MDD), which is a chronic and recurrent common disorder
[5, 14]. In STAR*D study, patients received citalopram (CIT) which is a selec-
tive serotonin reuptake inhibitor antidepressant at Level 1. Patients who have
had unsatisfactory outcome at level 1 are included in level 2 to randomly re-
ceive one of the two treatment switch options: sertraline (SER) and bupropion
(BUP). Patients who received treatment at level 2 but have not showed sufficient
improvement will be randomized at level 2A.

Our data contains 319 patients who received treatment switch options at level
2. Among them, 48% of the patients received BUP and 52% received SER. Ex-
cept for treatment indicator, 308 covariate variables of the patients are included.
The outcome of interest is the Quick Inventory of Depressive Symptomatology-
Self-report QIDS-SR16. Similar to existing studies on STAR*D [15], we trans-
form the outcome to be the negative of the original outcome. We are interested
in making optimal treatment decision between SER and BUR to maximize the
mean outcome.

We apply the de-sparsified estimator b̂ in (4) with μ̂π(X̃i) = γ̂T X̃i and derive
the p-value based on the limiting distribution in Corollary 2.6. The top-ranked
p-values that are less than 0.05 are presented in Table 3 with the corresponding
covariates.

The meanings of the notations in Table 3 are as follows. Qccur r rate : QIDS-
C score changing rates. URNONE: no symptoms in patients’ urination category.
NVTRM: tremors. IMPWR: indicating whether patients thought they have spe-
cial powers. hWL: hRS Weight loss. DSMTD: recurrent thoughts of death, re-
current suicidal ideation, or suicide attempt. hMNIN: hRS Middle insomnia.
EMSTU: did you worry a lot that you might do something to make people
think that you were stupid or foolish?

We have also derived the 95% confidence intervals by (10) for the interaction
effects between all covariates and treatment options. The confidence intervals
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Table 3

Top-ranked p-values and the corresponding covariates that are most relevant for making
treatment decision.

Index Covariate p-value b̂ se of b̂
1 qccur r rate 0.0056 -1.84 0.66
2 URNONE 0.0079 2.35 0.88
3 NVTRM 0.0097 -1.45 0.56
4 IMPWR 0.010 -1.47 0.57
5 hWL 0.011 -1.58 0.62
6 GLT2W 0.013 -1.52 0.61
7 DSMTD 0.017 -1.50 0.63
8 IMSPY 0.019 -1.36 0.58
9 hMNIN 0.020 1.40 0.60
10 EARNG 0.028 -1.43 0.65
11 URPN 0.029 -1.23 0.56
12 PETLK 0.039 -1.18 0.57
13 NVCRD 0.041 1.17 0.57
14 EMSTU 0.046 -1.39 0.69

for the top 14 interaction effects are presented in Figure 1.

Fig 1. The 95% confidence intervals of the top 14 interaction effects.

We also apply cross validation to evaluate the effects of the selected variables
in making optimal treatment decision. Specifically, we randomly divide the data
in half into the training dataset and the testing dataset. On the training dataset,
we use the 14 selected variables to compute the least squares estimator for inter-
action coefficients and formulate the estimated optimal treatment regime. On
the corresponding testing dataset, we use the estimated value function derived
by the inverse probability weighted estimator [23] to measure the performance
of the estimated optimal treatment regime. For comparison, we also compute
the estimated value functions for the regimes of assigning only SER and only
BUP. We conducted 1000 data splittings and present the boxplot of the esti-
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mated value functions of all the treatment regimes in Figure 2. It shows that
our estimated optimal treatment regime generally gives larger estimated value
functions than those of assigning only SER and only BUP.

Fig 2. Boxplot of the estimated value functions from cross validation testing samples. ‘opti-
mal’ is for the estimated optimal treatment regime; ‘all.BUP’ is for the regime of assigning
only BUP; ‘all.SER’ is for the regime of assigning only SER.

5. Discussion

In this paper, we have considered randomized studies with a pre-specified
propensity score. The proposed method can be extended to observation studies
with high-dimensional covariates, where the propensity score model needs to be
correctly specified from data. Related work on propensity score estimation can
be found in [16]. However, the derivation of the limiting distribution of our de-
sparsified estimator for the treatment-covariates interaction coefficients would
be much more involved and requires further investigation.

Appendix A: Appendix

A.1. Construction of Θ̂

We apply lasso for nodewise regression to obtain a matrix Θ̂ such that Θ̂Σ̂ is
close to I as in [9]. Let X̃−j denote the matrix obtained by removing the jth

column of D(A, π)X̃. For each j = 1, . . . , p+ 1, let

γ̂j = argmin
γ∈Rp

(
n−1

∥∥∥D(A, π)X̃j − X̃−jγ
∥∥∥2
2
+ 2λj ‖γ‖1

)

with components γ̂j,k, k = 1, . . . , p+ 1 and k 	= j. Further, define

τ̂2j = n−1
∥∥∥D(A, π)X̃j − X̃−j γ̂j

∥∥∥2
2
+ 2λj ‖γ̂j‖1
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and

Θ̂ = diag
(
τ̂−2
1 , · · · , τ̂−2

p+1

)
⎛
⎜⎜⎜⎝

1 −γ̂1,2 · · · −γ̂1,p+1

−γ̂2,1 1 · · · −γ̂2,p+1

...
...

...
...

−γ̂p+1,1 −γ̂p+1,2 · · · 1

⎞
⎟⎟⎟⎠ .

A.2. A preliminary lemma

Define
εμ̂ = ε− [μ̂π(X̃)− μπ(X̃)]. (11)

Lemma A.1. Assume conditions 1 - 3, we have

‖2εTμ̂D(A, π)X̃/n‖∞ = Op(
√

log p/
√
n).

Proof of Lemma A.1:

εTμ̂D(A, π)X̃ = (ε− [μ∗
π(X̃)− μπ(X̃)]− [μ̂π(X̃)− μ∗

π(X̃)])TD(A, π)X̃

= εTD(A, π)X̃− [μ∗
π(X̃)− μπ(X̃)]TD(A, π)X̃

− [μ̂π(X̃)− μ∗
π(X̃)]TD(A, π)X̃ (12)

For the first term of (12), it is clear that by condition 1,

E(εTD(A, π)X̃) = EE(εTD(A, π)X̃|A, X̃) = 0.

Further, by the moment inequality in Chapter 6.2.2 of [1],

E(‖εTD(A, π)X̃‖2∞) ≤ 8 log(2p)

n∑
i=1

(Ai − π)2( max
1≤j≤p

|Xj
i |)2E(ε2i ) ≤ Cn log(p),

where the second inequality is by conditions 1 and 3. Then, by Markov inequal-
ity,

‖2εTD(A, π)X̃/n‖∞ = Op(
√

log(p)/
√
n). (13)

Next, consider the second term of (12). It is easy to see that since E(D(A, π)|X̃)
= 0,

E([μ∗
π(X̃)− μπ(X̃)]TD(A, π)X̃) = EE([μ∗

π(X̃)− μπ(X̃)]TD(A, π)X̃|X̃) = 0.

Then, similar arguments as those leading to (13) combined with conditions 2 (b)
and 3 gives

‖2[μ∗
π(X̃)− μπ(X̃)]TD(A, π)X̃/n‖∞ = Op(

√
log(p)/

√
n). (14)

Finally, by condition 2 (a), the third term of (12)

‖2[μ̂π(X̃)− μ∗
π(X̃)]TD(A, π)X̃/n‖∞ = op(

√
log(p)/

√
n). (15)

Combining (13) - (15) gives the claim in Lemma A.1.
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A.3. Proof of Lemma 2.1

By the construction of β̂, we have

‖Y − μ̂π(X̃)−D(A, π)X̃β̂‖22/n+ 2λn,p‖β̂‖1
≤ ‖Y − μ̂π(X̃)−D(A, π)X̃β0‖22/n+ 2λn,p‖β0‖1.

Recall the definition of εμ̂ in (11), then

‖D(A, π)X̃(β̂ − β0)‖22/n+ 2λn,p‖β̂‖1 ≤ 2εTμ̂D(A, π)X̃(β̂ − β0)/n+ 2λn,p‖β0‖1.

The first term of the righ-hand side

2εTμ̂D(A, π)X̃(β̂ − β0)/n ≤ ‖2εTμ̂D(A, π)X̃/n‖∞‖β̂ − β0‖1,

where the order of ‖2εTμ̂D(A, π)X̃/n‖∞ is derived in Lemma A.1.
The rest of the proof is similar to the proof of the second claim of Lemma

2 in [2], where it is shown that given conditions 3 - 5, the compatibility con-
dition holds with probability tending to 1. Then using Lemma A.1 and similar
arguments in Section 6.2.2 of [1], the inequality in (5) holds.

A.4. Proof of Lemma 2.2

Consider (6) first. Recall

√
nHΔ1 =

1√
n
HΘ̂ΘΘ{D(A, π)X̃̃X̃X}T {μ̂π(X̃)− μ∗

π(X̃)}.

Rewrite
√
nHΔΔΔ1 as

√
nHΔ1 = HΘ̂ΘΘ

1√
n

n∑
i=1

(Ai − π)X̃i{μ̂π(X̃i)− μ∗
π(X̃i)}

≤ sup
X̃i

|μ̂π(X̃i)− μ∗
π(X̃i)|HΘ̂ΘΘ

1√
n

n∑
i=1

(Ai − π)X̃i.

Since E[(Ai − π)X̃i] = 0 and ‖E[(Ai − π)2X̃iX̃
T
i ]‖∞ < ∞ by condition 3, by

Multivariate Central Limit Theorem, the (p+ 1)-vector

1√
n

n∑
i=1

(Ai − π)X̃i = Op(1).

On the other hand, condition 7 combined with similar arguments as in the
proof of the first claim of Lemma 2 in [2] gives ‖Θ̂j − Θj‖1 = op(1/

√
log p).

Summarizing the above with condition 6 and Slutsky’s Theorem gives

‖HΘ̂ΘΘ
1√
n

n∑
i=1

(Ai − π)X̃i‖∞ = Op(1). (16)

(6) follows from (16) and condition 2 (a).
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Next, consider (7).

‖
√
nHΔ2‖∞ = ‖

√
nH(Θ̂ΘΘΣ̂ΣΣ− III)(β̂ββ − βββ0)‖∞ ≤

√
n‖H(Θ̂ΘΘΣ̂ΣΣ− III)‖∞‖β̂ββ − βββ0‖1.

By condition 6, ‖H(Θ̂ΘΘΣ̂ΣΣ − III)‖∞ ≤ C‖Θ̂ΘΘΣ̂ΣΣ − III‖∞. Similar arguments as those
leading to inequality (10) in [20], combined with conditions 3 and 7, result in

‖Θ̂ΘΘΣ̂ΣΣ− III‖∞ = Op(
√
log p/

√
n). Combing the above with Lemma 2.2 gives (7).

A.5. Proof of Lemma 2.3

We first show E(
√
nHη) = 0. By definition of η, we have

E(
√
nHη) = E

[
1√
n
HΘ̂ΘΘ{D(A, π)X̃̃X̃X}T

(
Y − μ∗

πX̃−D(A, π)X̃̃X̃Xβ0β0β0

)]

=
1√
n
HE

[
Θ̂ΘΘ{D(A, π)X̃̃X̃X}T ε

]

+
1√
n
HE

[
Θ̂ΘΘ{D(A, π)X̃̃X̃X}T

(
μπ(X̃)− μ∗

π(X̃)
)]

The first term of the above is equal to 0 because E(ε|X̃, A) = 0 by condition 1.
The second term also equals to 0 since E(D(A, π)|X̃) = 0.

Next, rewrite
√
nHη as

√
nHη = HΘ̂

1√
n

n∑
i=1

Wi,

where
Wi = (Ai − π)(yi − μ∗

π(X̃i)− (Ai − π)βT
0 X̃i)X̃i

The second moment of Wi is

E
[
(Ai − π)2(εi + μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]

= E
[
(Ai − π)2ε2i X̃iX̃

T
i

]
+ E

[
(Ai − π)2(μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]

The first term

E
[
(Ai − π)2ε2i X̃iX̃

T
i

]
= E

[
(Ai − π)2E(ε2i |X̃, A)X̃iX̃

T
i

]

= E
[
(Ai − π)2σ2

ε (Ai, X̃i)X̃iX̃
T
i

]

The second term

E
[
(Ai − π)2(μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]

= E
[
E((Ai − π)2|X̃i)(μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]

= π(1− π)E
[
(μπ(X̃i)− μ∗

π(X̃i))
2X̃iX̃

T
i

]
.
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Note that σ2
ε (Ai, X̃i) < ∞ by condition 1. This combined with conditions 2 (b)

and 3 gives ‖V‖∞ < ∞. Consequently, ‖HΘVΘTHT ‖∞ < ∞ is implied by
conditions 6 - 7.

On the other hand, condition 7 combined with similar arguments as in the
proof of the first claim of Lemma 2 in [2] gives ‖Θ̂j −Θj‖1 = op(1/

√
log p). By

Multivariate Central Limit Theorem and Slutsky’s Theorem,

HΘ̂
1√
n

n∑
i=1

Wi →d N(0,HΘVΘTHT ).

Result in (8) follows.

A.6. Proof of Corollary 2.6

After obtaining γ̂ and β̂ from (9), implement μ̂π(X̃i) = γ̂T X̃i. Define

β∗ = argminβ

{
‖Y − X̃γ̂ −D(A, π)X̃β‖22/n+ 2λn,p‖β‖1

}
.

First, we show that β̂ = β∗. By the construction of β∗,

‖Y − X̃γ̂ −D(A, π)X̃β∗‖22/n+ 2λn,p‖β∗‖1
≤ ‖Y − X̃γ̂ −D(A, π)X̃β̂‖22/n+ 2λn,p‖β̂‖1. (17)

On the other hand, the construction of β̂ implies

‖Y − X̃γ̂ −D(A, π)X̃β̂‖22/n+ 2λn,p(‖γ̂‖1 + ‖β̂‖1)
≤ ‖Y − X̃γ̂ −D(A, π)X̃β∗‖22/n+ 2λn,p(‖γ̂‖1 + ‖β∗‖1)
≤ ‖Y − X̃γ̂ −D(A, π)X̃β̂‖22/n+ 2λn,p(‖γ̂‖1 + ‖β̂‖1),

where the second inequality is by (17). Therefore, by the uniqueness of the

solution of convex optimization, β̂ = β∗.
Secondly, we show that

‖γ̂ − γ∗‖1 + ‖β̂ − β0‖1 = op(1/
√
log p). (18)

Given the fact that μπ(X̃i) and (Ai − π)βT
0 X̃i are orthogonal and E(εi|X̃) = 0

from condition 1, definition of γ∗ implies

(γ∗, β0) = argminγ,β
{
E(Yi − γTXi − (Ai − π)βTXi)

2
}
.

Define ξi = Yi−γ∗TXi− (Ai−π)βT
0 Xi = εi+μπ(X̃i)−γ∗TXi. Then conditions

1 and 9 (b) imply
E(ξi)

2 ≤ C. (19)

By the second claim of Lemma 2 of [2], (19) combined with conditions 3 - 5 and
9 (a) gives (18).

Next, it is easy to see that condition 2 (a) is implied by (18) and condition 3,
and condition 2 (b) holds trivially given condition 9 (b). Therefore, condition 2
is satisfied and the rest of the proof is the same as the proof of Theorem 2.4.
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[20] van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymp-
totically optimal confidence regions and tests for high-dimensional models.
The Annals of Statistics 42 (3), 1166–1202. MR3224285

[21] Watkins, C. J. C. H. and P. Dayan (1992). Q-learning. Machine Learning 8,
279–292.

[22] Zhang, B., A. A. Tsiatis, M. Davidian, M. Zhang, and E. B. Laber (2012).
Estimating optimal treatment regimes from a classification perspective.
Stat 1, 103–104. MR3152692

[23] Zhang, B., A. A. Tsiatis, E. B. Laber, and M. Davidian (2012). A robust
method for estimating optimal treatment regimes. Biometrics 68, 1010–
1018. MR3040007

[24] Zhang, C. and S. S. Zhang (2014). Confidence intervals for low dimen-
sional parameters in high dimensional linear models. Journal of the Royal
Statistical Society. Series B 76 (1), 217–242. MR3153940

[25] Zhao, Y., D. Zeng, A. J. Rush, and M. R. Kosorok (2012). Estimating
individualized treatment rules using outcome weighted learning. Journal
of the American Statistical Association 107, 1106–1118. MR3010898

[26] Zhao, Y. Q., D. Zeng, E. B. Laber, R. Song, M. Yuan, and M. R. Kosorok
(2015). Doubly robust learning for estimating individualized treatment
with censored data. Biometrika 102, 151–168. MR3335102

http://www.ams.org/mathscinet-getitem?mr=3557316
http://www.ams.org/mathscinet-getitem?mr=3409730
http://www.ams.org/mathscinet-getitem?mr=3293607
http://www.ams.org/mathscinet-getitem?mr=3224285
http://www.ams.org/mathscinet-getitem?mr=3152692
http://www.ams.org/mathscinet-getitem?mr=3040007
http://www.ams.org/mathscinet-getitem?mr=3153940
http://www.ams.org/mathscinet-getitem?mr=3010898
http://www.ams.org/mathscinet-getitem?mr=3335102

	Introduction
	Method and theory
	An A-learning framework
	Unbiased estimation with misspecified baseline function
	Some examples for 
	Interval estimation and p-value

	Simulation
	Application to STAR*D study
	Discussion
	Appendix
	Construction of 
	A preliminary lemma
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Corollary 2.6

	References

