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variables. In this article, we propose a new SDR method called principal
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can naturally be extended to a nonlinear version via kernel trick. Asymp-
totic properties are established and an efficient solution path-based algo-
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data demonstrate the PQR’s advantageous performance over existing SDR
methods. PQR still performs very competitively even for the case without
heteroscedasticity.
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1. Introduction

1.1. Background on sufficient dimension reduction

Dimension reduction is often of primary interest in high dimensional data anal-
ysis. The principal component analysis (PCA) is widely used in this regard, but
it suffers when identifying relationship between response and covariates. Vari-
able selection can be regarded as another type of dimension reduction. However,
it often relies on specific model assumptions which can possibly be violated in
practice.

Sufficient dimension reduction (SDR) has recently received much attention
thanks to its promising performance in reducing data dimensionality under
relatively mild model assumptions. SDR achieves dimension reduction of p-
dimensional predictor X by finding a matrix B = (b1, · · · ,bd) ∈ R

p×d which
satisfies

Y ⊥ X | B�X. (1.1)

Under model (1.1), dimension reduction is naturally achieved as long as d <
p. Compared to the traditional parametric models such as linear regression
and generalized linear models, (1.1) is less stringent in the sense that it does
not impose a specific model between Y and X. Unlike PCA, it also preserves
information about the association between Y and X.

Notice that B satisfying (1.1) is not unique. Hence the goal is to identify
the central subspace [2], which is defined as the intersection of all subspaces
spanned by columns of B satisfying (1.1). The central subspace uniquely exists
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under mild conditions (Cook [3]; Yin, Li and Cook [38]) and is typically denoted
by SY |X. Thus, we assume its existence throughout this article and further
span(B) = SY|X to facilitate the estimation. The dimension of SY |X, d is called
the structural dimension which is another important quantity to be inferred
from the data.

The SDR model (1.1) is often called the linear SDR since the dimension
reduction is achieved through finding a linear mapping, B�X. The linear SDR
can naturally be extended in a nonlinear fashion by assuming

Y ⊥ X | φ(X), (1.2)

where φ : Rp → R
d is an arbitrary function of X defined on a Hilbert space

denoted by H [5]. Similarly as B, φ is not unique and we assume that φ is a
unique modulo injective transformation to guarantee its uniqueness [18].

A variety of SDR methods have been developed in the literature. Sliced in-
verse regression [SIR, 15] and sliced average variance estimation [SAVE, 8] are
the two seminal works for the linear SDR and they are still widely-used in
many applications. Other linear SDR methods include, but are not limited to,
principal Hessian direction [pHd, 17, 4], partial least squares [PLS, 11], inverse
regression[6], contour regression[23], directional regression[22], and composite
quantile outer-product of gradients method [qOPG, 13]. Toward the nonlinear
SDR, several methods are proposed by exploiting reproducing kernel Hilbert
space for H to estimate the nonlinear function φ via kernel trick. See, for ex-
ample, Wu [34], Wu, Liang and Mukherjee [35], and Yeh, Huang and Lee [37].

The principal support vector machine [PSVM, 18] is the first attempt to
tackle both linear and nonlinear SDR in a unified framework. PSVM connects
SDR to the support vector machine [SVM, 33] and the idea is as follows. First
dichotomize the continuous response Y based on its value. A pseudo binary
variable is introduced as Ỹ = 1 if Y is larger than a pre-specified cutoff c and
−1 otherwise. Next, find a hyperplane of the standardized X that separates
the two classes by training a linear SVM with respect to (X, Ỹ ). Then it turns
out that the normal of the hyperplane lies on SY |X and hence SDR naturally
follows. The PSVM can be readily extended to nonlinear SDR via kernel trick,
just like the SVM.

1.2. Motivation

In practice, it is often observed that the data display heteroscedasticity. The
heteroscedasticity itself can be of scientific importance, but is often overlooked
since most existing statistical methods primarily focus only on conditional mean
relationship. In principle, SDR only requires the conditional independence as-
sumption as shown in (1.1) or (1.2), and there is no difficulty to uncover un-
derlying heteroscedasticity in the data. However, most of SDR methods are
designed mainly for the mean relationship and may be inefficient to uncover
heteroscedasticity. This is illustrated in the upcoming toy example.
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The quantile regression (QR) is known as a reasonable alternative to the
least squares (LS) regression when errors are non-iid or have heteroscedastic
variance. The QR explores the entire conditional distribution of Y given X
by controlling target quantile levels while the LS regression focuses only on
the conditional mean E(Y | X). Kong and Xia [13] showed that the gradients
of regression quantiles lie on SY |X and proposed an associated SDR method,
qOPG. Compared with moment-based methods such as SIR and SAVE, qOPG
requires less restrictive assumptions and can identify all dimension reduction
directions including those associated with a heteroscedastic structure.

The QR also has a very close connection to the SVM due to the similarity
of their loss functions. However, the SVM solution depends only on a part of
data, data points either close to the classification boundary or misclassified,
while the QR takes into account all the data points for estimating the condi-
tional quantile function. For this reason, the SVM is not proper to capture the
heteroscedasticity and this makes PSVM inefficient for extracting information
from the heteroscedasticity. Motivated by this, we propose the principal quantile
regression (PQR) for SDR with heteroscedasticity.

Fig 1. A motivating toy example: red solid lines are the classification boundaries estimated
by the SVM in panel (a) and the regression functions estimated by the QR in panel (b).

In order to illustrate how the SVM and QR behave differently with het-
eroscedastic data, we consider the following toy example with error term only:

Yi = Xiεi where εi
iid∼ N(0, 0.2) and Xi

iid∼ Uniform(0, 5), i = 1, · · · , 100. No-
tice that the conditional variance of Y given X depends on X. For the PSVM,
the continuous response Yi is artificially dichotomized based on a given c as
Ỹi,c = 1 if Yi > c and −1 otherwise. We set two values of c1 and c2 as the
33.3% and 66.6% sample percentiles of Yis, respectively and apply the SVM
to {(Xi, Ỹi,ch), i = 1, · · · , n} for the two different ch, h = 1, 2. Next, the QR is
applied to {(Xi, Yi), i = 1, 2, · · · , n} with two different quantile levels, 33.3%
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and 66.6%. The results are depicted in Figure 1. Panel (a) shows the SVM
classification boundaries and panel (b) plots the regression functions estimated
by the QR. As shown in the left panel (a), the two classification boundaries
estimated from the SVM (red solid lines) are parallel with both slopes nearly
zero. It clearly shows that their normals are not affected very much by the
heteroscedasticity and fails the PSVM. On the other hand, the QR produces
different (non-zero coefficient) slope estimates for different quantile levels since
it takes into account the behaviors of all data points. See panel (b) of Figure 1.
This simple example justifies the use of quantile regression as an alternative of
the SVM in the presence of heteroscedasticity and provides a clear motivation
of the PQR.

The rest of article is organized as follows. In Section 2, the PQR for linear
SDR, which is referred to as the linear PQR, is developed and its theoretical
properties and computational issues are described in details. The kernel PQR
(KPQR) is proposed in Section 3 as a nonlinear extension of the linear PQR for
nonlinear SDR. Finite sample performance of the proposed methods are investi-
gated via simulation in Section 4 and real data analysis in Section 5. Discussions
follow in Section 6. All the technical proofs are relegated in Appendix.

2. Linear principal quantile regression

2.1. Principal quantile regression

Let us begin with a brief introduction of the linear QR model: Y = α+β�X+
ε, where the random error ε satisfies P (ε ≤ 0 | X) = τ for a given target
quantile level τ ∈ (0, 1). The regression function α + β�X thus represents the
τth conditional quantile of Y given X, and α and β are parameters of interest.
The QR does not require the error term to be i.i.d. and hence is often regarded
as an attractive alternative to the conventional mean regression in the presence
of heteroscedasticity. At the population level, the QR solves

(α0,β
�
0 )

� = argmin
α,β

E
[
ρτ (Y − α− β�X)

]
, (2.1)

where ρτ (u) = u{τ−I(u < 0)} denotes the check loss function. Sample estimates
of α0 and β0 are obtained by minimizing the empirical counterpart of (2.1).

Motivated by Li, Artemiou and Li [18] and Shin et al. [28], the τth PQR
objective function at the population level is defined by

Λτ (θ) = β�Σβ + λE
[
ρτ

(
Y − α− β�{X− E(X)}

)]
, (2.2)

where θ = (α,β�)�, Σ = cov(X) and λ > 0 is the regularization param-
eter which balances the data fitting and the model complexity. Let θ0,τ =

(α0,τ ,β
�
0,τ )

� be the minimizer of (2.2). Then it can be shown that β0,τ is un-
biased for the linear SDR (1.1) as follows.
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Theorem 1. Under the linearity condition that E(X | B�X) is a linear func-
tion of B�X, β0,τ ∈ SY |X for any given τ ∈ (0, 1).

The linearity condition plays an essential role in many SDR methods. It im-
plies E(β�X|B�X) = β�P�

B(Σ)X when X is centered such that E(X) = 0,
where PB(Σ) = B(B�ΣB)−1B�Σ. It is known that the linearity condition
holds when X is elliptically symmetric [20, 19] or when p is large [9]. It is im-
portant to note that the linearity condition is only for the marginal distribution
of X, not the conditional distribution of Y | X.

The proposed PQR shares a fundamental similarity to Kong and Xia [13]
that recovers SY |X from derivatives of the conditional quantile Y |X with respect
to X, since β0,τ can be viewed as a linear approximation of derivative of the
τth quantile of Y |X. We admit Theorem 1 is a similar but weaker result than
Lemma 1 of Kong and Xia [13] in the sense that the linear PQR requires the
linearity condition and do not recover SY |X exhaustively. Both drawbacks are

due to the global linearity of the target function, α + βT {X − E(X)}, and
are finally resolved when kernel PQR is employed. However, the linear target
quantile function works reasonably well in many real applications and brings in
substantial amount of computational savings as demonstrated in Section 4.1.

Since linear PQR do not possess exhaustiveness, we assume the coverage con-
dition that span(B) = SY |X. See Cook and Ni [7] for the practical impact of the
coverage condition. Now, one can recover SY |X by obtaining multiple solutions
of β0,τ for different values of τ . More explicitly, we consider H distinctive values
of τh, h = 1, · · · , H, where H is assumed to be larger than d to fully recover a
d-dimensional subspace. The selection of d will be further discussed in section
2.4. Let θ0,h = (α0,h,β

�
0,h)

� denote the sequence of minimizers of (2.2) for dif-
ferent values of τh, h = 1, · · · , H, then SY |X is estimated by the eigenvectors of
M0 associated with non-zero eigenvalues, where

M0 =

H∑
h=1

β0,hβ
�
0,h.

Notice that unlike PSVM [18], an additional step of dichotomizing the response
is not required for PQR. Instead, PQR obtains multiple solutions β0,h by varying
the quantile level parameter τ that controls the shape of the loss function ρτ .
This makes PQR fundamentally different from PSVM whose objective function
varies as the (pseudo) binary response changes while the loss function remains
fixed. In fact, the idea is much similar to the principal weighted SVM [28].

In order to see the connection to the QR, suppose that X has E(X) = 0p

and cov(X) = Ip where 0p and Ip are the p-dimensional zero vector and identity
matrix, respectively. Then (2.2) reduces to

β�β + λE
[
ρτ

(
Y − α− β�X

)]
, (2.3)

which can be viewed as a population version of the L2-penalized linear QR.
That is, the L2-penalized linear QR coefficient β is unbiased for linear SDR
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when X is standardized. This provides intuitive explanation why the PQR is
advantageous in handling heteroscedasticity.

2.2. Finite sample estimation

Given a set of data {(Xi, Yi), i = 1, · · · , n}, the sample PQR objective function
is given by

Λ̂n,τ (θ) = β�Σ̂nβ +
λ

n

n∑
i=1

ρτ

(
Yi − α− β�(Xi − X̄n)

)
, (2.4)

where X̄n and Σ̂n are sample mean and covariance matrix, respectively. Denote

θ̂n,h = (α̂n,h, β̂
�
n,h)

� = argminθ Λ̂n,τh(θ), h = 1, · · · , H, for a given a grid 0 <
τ1 < · · · < τH < 1. The PQR candidate matrix of the linear SDR is

M̂n =

H∑
h=1

β̂n,hβ̂
�
n,h. (2.5)

The first d leading eigenvectors of (2.5) denoted by V̂n = (v̂1, · · · , v̂d) can be
considered as a PQR estimate of B in (1.1), the basis set of SY |X.

We remark that the optimization should be repeatedly carried out for dif-
ferent values of τ to obtain (2.5), which can be too computationally intensive
especially when n and/or H is large. To improve computational efficiency, we

consider the following transformation η = Σ̂
1/2

n β and Zi = Σ̂
−1/2

n (Xi − X̄n),
which makes (2.4) equivalent to the (linear) kernel quantile regression [KQR,
31, 21] as follows:

η�η +
λ

n

n∑
i=1

ρτ
(
Yi − α− η�Zi

)
. (2.6)

It is shown that the solution of (2.6) moves in a piecewise linear manner as
τ varies, which enables us to develop an efficient algorithm that computes the
entire solution trajectories of η (and hence β) as a function of τ ∈ (0, 1) with the
same computational complexity of solving a single optimization problem for a
single τ [30, 27]. In order to illustrate the solution paths for the aforementioned

toy example, we add four additional noise variables X2, · · · , X5
iid∼ Uniform(0, 5)

irrelevant to the response, i.e., Yi = (e�1 Xi)εi where e1 = (1, 0, 0, 0, 0)�,Xi =
(Xi1, · · · , Xi5, )

�, i = 1, · · · , 100. The five paths of β1, · · · ,β5 as a function of
τ are depicted in Figure 2. Notice that X1 is the only signal variable whose
corresponding solution profile of β1 (red solid line) shows significantly larger
variability compared to those of β2, · · · , β5 (black dashed lines) corresponding
to noise variables X2, · · · , X5.

2.3. Large sample properties

Without loss of generality, we assume that E(X) = 0p in this section. We define

mτ (θ,Z) = θ�Σ̃θ + λ{ρτ (Y − θ�X̃)},
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Fig 2. Illustration of piecewise linear solution paths of the PQR: solution path of β1 (red
solid line) corresponding to X1, the only signal variable, shows significantly larger variability
compared to those of β2, · · · , β5 (black dashed lines) corresponding to the noise variables
X2, · · · , X5.

where Z = (X̃�, Y )�, X̃ = (1,X�)�, and Σ̃ = diag(0,Σ). Notice that Λτ (θ) =
E [mτ (θ,Z)]. For notational simplicity, we omit subscript τ if τ is fixed, and let

θ0 and θ̂n be the minimizers of Λτ (θ) and Λ̂n,τ (θ), respectively, where Λ̂n,τ (θ)
denotes the empirical version of Λτ (θ) based on a sample.

We first establish consistency of θ̂n for an arbitrary given τ .

Theorem 2. Suppose var(X) = Σ is positive definite,

θ̂n → θ0 in probability

In order to derive asymptotic distribution of PQR solution θ̂n, a Bahadur
representation is given in Theorem 3

Theorem 3. Under the assumptions (C1)–(C4) in the Appendix

√
n(θ̂n − θ0) = −n−1/2H−1

θ0

n∑
i=1

Dθ0(Zi) + op(1), (2.7)

where

Dθ(Z) = 2Σ̃θ − λ[X̃(τ − 1{Y ≤ θ�X̃})],

Hθ = 2Σ̃− λEY

[
fU |Y (y − α | y)E(X̃X̃�|U = y)

]
with U = θ�X̃.

As a consequence of Theorem 3, a Bahadur representation of β̂n,h is given
by

√
n(β̂n,h − β0,h) = − 1√

n

n∑
i=1

S(θ0,h,Zi) + op(1), (2.8)
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where S(θ0,h,Z) = Fθ0Dθ0,h
(Z) with Fθ0 denoting the last p rows of H−1

θ0
and

Dθ0,h
(Z) being the value of Dθ(Z) with θ = θ0 and τ = τh for h = 1, · · · , H.

With the above Bahadur representation, we can establish the asymptotic nor-

mality of M̂n as follows.

Theorem 4. Under conditions (C1)–(C4),

√
n[vec(M̂n −M0)] → N(0,ΣM), (2.9)

where M0 =
∑H

h=1 β0,hβ
�
0,h and the asymptotic covariance matrix ΣM is ex-

plicitly provided in the Appendix.

Finally a basis of the central subspace SY |X is estimated by the first d leading

eigenvectors of M̂n, denoted by V̂n = (v̂1, · · · , v̂d). The asymptotic normality

of V̂n is established in the following corollary which is a direct consequence of
Theorem 4 and Bura and Pfeiffer [1].

Corollary 1. Let rank(M0) = d and V0 = (v1, · · · ,vd) be p× d matrix whose
columns are the eigenvectors of M0 corresponding to the nonzero eigenvalues.
Then √

nvec(V̂n −V0) → N(0,ΣV),

where ΣV = (D−1V�
0 ⊗ Ip)ΣM(V0D

−1 ⊗ Ip) with D being a d-dimensional
diagonal matrix whose diagonal elements are nonzero eigenvalues of M0. Here
the operator ⊗ denotes Kronecker product.

2.4. Determination of structural dimension

In practice the structural dimension d is typically unknown, and should be
inferred from data. Following the spirit of Li, Artemiou and Li [18], we estimate

it by d̂ that maximizes

Gn(k; ρ, M̂n) =

k∑
j=1

υj − ρ
k logn√

n
υ1, (2.10)

where υj is the jth leading eigenvalue of the candidate matrix M̂n and ρ > 0 is
a tuning parameter. By Theorem 4 and Theorem 8 of Li, Artemiou and Li [18],

we can proof that d̂ is a consistent estimator of d, i.e., limn→∞ P (d̂ = d) = 1.
In order to tune ρ, we propose the following procedure based on cross-

validation. First, randomly split the data into the training and test sets, which
are denoted by {(Xtr

j , Y
tr
j ) : j = 1, · · · , ntr} and {(Xts

j′ , Y
ts
j′ ) : j

′ = 1, · · · , nts},
respectively. Note nts = n − ntr. Then apply the linear PQR to the training

set {(Xtr
j , Y

tr
j ) : j = 1, · · · , ntr}. Let M̂tr

n denote the corresponding candidate
matrix. For an appropriate grid of ρ given, repeat the steps 1–4 below.

1. Compute d̂tr = argmaxk∈{1,··· ,p} Gn(k; ρ, M̂
tr
n ).

2. Transform the training predictors by X̃tr
j = (V̂tr

n )
�Xtr

j , where V̂tr
n =

(v̂tr
1 , · · · , v̂tr

d̂tr
) are the first d̂tr leading eigenvectors of M̂tr

n .
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3. For the given τh, h = 1, · · · , H, apply the linear QR to {(X̃tr
j , Y

tr
j ) : j =

1, · · · , ntr} to obtain τhth conditional quantile function estimates of Y |X,

denoted by f̂τh(X).
4. Compute the total test quantile loss

TC(ρ) =

H∑
h=1

nts∑
j′=1

ρτh

(
Y ts
j′ − f̂τh(X

ts
j′)

)
.

We repeat the above procedure on each fold in the cross validation and select
ρ∗ to be the minimizer of the sum of TC(ρ) across different folds.

Finally, we propose to choose d̂ which maximizes Gn(k; ρ
∗, M̂n) using the

full data. This tuning method is named cross validation Bayesian information
criterion (CVBIC). In Section 4.3, we investigate the numerical performance of
CVBIC under a variety of combinations of p, d, and n using different models.

3. Kernel PQR for nonlinear dimension reduction

3.1. Kernel PQR (KPQR)

As a nonlinear generalization of (2.2), we replace the linear function β�X with
the nonlinear one ψ(X) and propose the following objective function:

Λτ (α, ψ) = var(ψ(X)) + λE{ρτ (Y − α− ψ̄(X))}, (3.1)

where ψ̄(X) = ψ(X)−Eψ(X) for ψ ∈ H. Let (α0,τ , ψ0,τ ) minimize the objective
function (3.1), Theorem 5 states the unbiasedness of ψ0,τ (X) for the nonlinear
SDR (1.2) and provides a foundation of the KPQR.

Theorem 5. Consider the identity mapping from a function in H to a function
in L2(PX) where L2(PX) = {f :

∫
|f |2dPX < ∞} with PX the probability mea-

sure induced by X. Assume that the mapping is continuous and H is a dense
subset of L2(PX). Then ψ0,τ (X) has a one-to-one transformation that is mea-
surable with respect to σ{φ(X)}, where σ{φ(X)} denotes the σ-field generated
by φ(X).

The concept of unbiasedness of nonlinear SDR is firstly introduced by Li,
Artemiou and Li [18]. See also Lee, Li and Chiaromonte [14] for a general theory
for nonlinear SDR.

3.2. Sample estimation

The objective function (3.1) is not as easy to minimize as in the linear case
since the space H is of infinite dimensionality. To tackle this issue, we employ
the reproducing kernel Hilbert space (RKHS) theory and let HK be the RKHS
associated with a positive definite kernel K(·, ·). Common choices of the kernel
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function include the radial basis kernel K(X,X′) = exp(−r‖X − X′‖2), r > 0
and the polynomial kernel (c + X�X′)q with a positive integer q and c ≥ 0.
Based on the RKHS theory, the minimizer of the empirical version of (3.1)
has a finite representation [12]. Namely, the solution can always be represented
by the following form: ψ(·) = α�kn(·) where α = (α1, · · · , αn)

� and kn =
{K(·,Xi) : i = 1, · · · , n}�. However as pointed out by Li, Artemiou and Li
[18] in the context of PSVM, such a finite form cannot be directly used for the
KPQR because it always overfits the training data. Instead, Li, Artemiou and
Li [18] introduce the following alternative:

ψ(X) = γ�ω(X), (3.2)

where γ = (γ1, · · · , γb)�, ω(X) = {ωj(X) : j = 1, · · · , b}�, and ωj(X) is
the jth leading eigenfunction of the sample covariance operator Σn defined by
〈ψ1,Σnψ2〉HK

= covn{ψ1(X), ψ2(X)} for ψ1, ψ2 ∈ HK . Here covn(X,X′) de-
notes the sample covariance betweenX andX′. By Proposition 2 of Li, Artemiou
and Li [18], we have

ωj(X) = {kn(X)}�wj/λj , j = 1, · · · b, (3.3)

where wj and λj are the jth leading eigenvector and eigenvalue of the matrix
(In − Jn/n)Kn(In − Jn/n), respectively. Here Kn is the kernel matrix whose
(i, j)th element is K(Xi,Xj), i, j = 1, · · · , n, and Jn denotes the n-dimensional
square matrix whose elements are all one. In fact, ωj(Xi) is closely related to the
kernel principle component analysis [26] for the covariates Xi, i = 1, · · · , n on
the RKHS generated by K(·, ·). Essentially, the representation (3.2) proposes
to restrict the full solution space corresponding to K(·,Xi), i = 1, · · · , n by
focusing on its subspace spanned by the first b principal directions on the RKHS,
to avoid over-fitting. For the choice of b, any integer between n/3 and 2n/3 can
be used [18]. For our KPQR, we propose to use b = n/4 based on our limited
numerical experience.

Finally, the sample version of (3.1) is given by

Λ̂n,τ (α, γ) = γ�Ω�Ωγ + λ

n∑
i=1

{ρτ (Yi − α+Ωiγ)}, (3.4)

where Ω is a (n× b) matrix whose (i, j) element is ωj(Xi)−n−1
∑n

m=1 ωj(Xm)
for i = 1, · · · , n and j = 1, · · · , b and Ωi is the ith row of Ω. The dual problem
of (3.4) is even simpler quadratic programming as shown in Theorem 6.

Theorem 6. Let v̂ = (v̂1, · · · , v̂n)� and η̂ = (η̂1, · · · , η̂n)� denote the maxi-
mizer of the following quadratic programming

max
v1,··· ,vn,η1,··· ,ηn

n∑
i=1

(vi − ηi)Yi −
1

4

n∑
i=1

n∑
j=1

(vi − ηi)(vj − ηj)P
{i,j}
Ω

subject to 0 ≤ vi ≤ λτ and 0 ≤ ηi ≤ λ(1 − τ) and
∑n

i=1(vi − ηi) = 0, where

P
{i,j}
Ω is the (i, j)th element of PΩ = Ω(Ω�Ω)−1Ω�. Then the minimizer of
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(3.4) is given by

γ̂n =
λ

2

n∑
i=1

ν̂i(Ω
�Ω)−1Ω�

i ,

where ν̂i = v̂i − η̂i.

Similar to the linear PQR we can obtain the entire solution profile ν̂ =
(ν̂1, · · · , ν̂n)�. For a given grid τ1 < · · · < τH , we extract from the solution
profile a sequence of kernel PQR solutions, (α̂n,h, γ̂n,h) corresponding to τh and

obtain the first d leading eigenvectors, V̂n = (v̂1, · · · , v̂d), of
∑H

h=1 γ̂n,hγ̂
�
n,h.

Then the estimated d sufficient predictors evaluated at X is given by φ̂(X) =

{φ̂1(X), · · · , φ̂d(X)}� = V̂�
n {ω1(X), · · · , ωb(X)}�.

At the best of our knowledge, there is no method developed for the estimation
of the structural dimension d in nonlinear SDR. In this article, we have skipped
developing the estimation of d for the kernel PQR since it requires the theoretical
analysis for RKHS, which is somewhat beyond of the scope of this paper. In
practice, we can consider the cross-validation idea proposed by Xia et al. [36]
that selects an optimal d that results in the best (cross-validated) prediction
accuracy on the reduced space. Although the idea is originally proposed in the
linear SDR context, we believe that it can be readily extended to the nonlinear
SDR as long as the notion of the reduced space is clearly defined at the sample
level, which is the case for the kernel PQR.

4. Simulation studies

We carried out simulations to investigate the finite sample performance of the
proposed linear and kernel PQR. We assume that the true structural dimension
d is known for both linear and kernel PQR in Sections 4.1 and 4.2, respectively.
In Section 4.3, we demonstrate the performance of the CVBIC procedure for
estimating d for the linear PQR.

4.1. Linear sufficient dimension reduction

We consider the following six models:

(L1) Y = X1 + 0.5X2ε;
(L2) Y = X1 + 0.5 exp(0.15X2)ε;
(L3) Y = X3

1 + 0.5 exp(X2)ε;
(L4) Y = exp(X1)− 1.05 + 0.5 exp(X2)ε;
(L5) Y = X1

0.5+(X2+1.5)2 + ε;

(L6) Y = X1(X1 +X2 + 1) + (X3 + 2)ε,

where ε ∼ N(0, 1), p = 10, 20, 30 and the sample size n is taken to be 300.
Note that only two predictors X1 and X2 are informative (i.e., d = 2) in models
(L1)-(L5) and there is a third informative predictor X3 (i.e., d = 3) in (L6).
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Additional uninformative predictors are included and the total number of pre-
dictors is denoted by p. Each predictor is independently generated from U(0.1, 5)
for models (L1) and (L2), from U(−1, 1) for (L3) and (L4), and from N(0, 1) for
(L5) and (L6). In particular, model (L5) is taken from Li [16] and model (L6)
is from an example of Li [16] by introducing heteroscedasticity.

We compare the linear PQR with SIR, PSVM and qOPG. To evaluate the
performance of each method, we use the following distance measure

dist(B1,B2) = ||PB1 −PB2 ||F , (4.1)

where PA denotes the orthogonal projection matrix onto span(A) and ‖A‖F is
the Frobenius norm of a matrix A.

The number of slices is fixed at 10 for SIR and PSVM. Our choice is in line
with the usual practice in the SDR literature for such a sample size. For linear
PQR and qOPG, to be fair we set the number of different quantile levels to
be 10 as well. For simplicity, we also refer to the number of τ as number of
slices from now on. Note that both PSVM and PQR involve a cost parameter λ.
We tried different values of λ and observed that the performance is not overly
sensitive to the value of λ. The reported values are from the best case that each
method can achieve. Table 1 contains the averaged distance measure (4.1) over
100 independent repetitions.

We observe that the linear PQR performs consistently better than SIR and
PSVM for all scenarios under consideration. The improvement over SIR and
PSVM is dramatic for models (L1)–(L4). Note that models (L1)–(L4) have
heteroscedasticity and PQR shows promising performance as expected. Even
for model (L5) without heteroscedasticity, PQR performs very competitively
in comparison to SIR and PSVM. Although the improvement compared to the
qOPG turns out not to be significant, it reduces the computational time dra-
matically. The qOPG is more computationally intensive than all other methods.
It takes the qOPG 478.1 minutes to estimate the central subspace when p = 10,
and up to 3645 minutes for p = 30, while the PQR takes less than 5 minutes.
Figure 3 shows computing time of the two methods for different p on model (L2).
Under model (L6) the linear PQR performs unsatisfactory. This is because the
regression function is approximately symmetric about the origin, in which both
SIR and the linear PSVM fail badly as well. This motivates the kernel version.

In the review process, one referee asked us to include comparison to SAVE
[8], contour regression[CR, 23], directional regression[DR, 22]. The performance
of these three methods are summarized in the last three columns of Table 1. It
shows that our new method PQR outperforms all these three methods as well.

4.2. Nonlinear sufficient dimension reduction

To investigate performance of nonlinear SDR methods, we consider the following
six models:
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Table 1. Performance of the linear SDR methods: Averaged Frobenius norm distances (4.1) over 100 independent repetitions. Corresponding
standard deviations are given in parentheses.

Model p SIR PSVM qOPG PQR CR SAVE DR
10 0.814 (.206) 1.130 (.228) 0.314(.074) 0.280 (.074) 1.225 (.179) 1.299 (.171) 0.908 (.249)

(L1) 20 1.115 (.178) 1.185 (.169) 0.498(.094) 0.491 (.096) 1.363 (.095) 1.894 (.073) 1.282 (.164)
30 1.245 (.145) 1.253 (.113) 0.667(.095) 0.672 (.096) 1.426 (.073) 1.948 (.036) 1.412 (.110)
10 1.306 (.131) 1.332 (.098) 0.821(.183) 0.796 (.186) 1.314 (.111) 1.339 (.099) 1.319 (.109)

(L2) 20 1.380 (.065) 1.371 (.084) 1.054(.145) 1.055 (.146) 1.392 (.055) 1.852 (.108) 1.403 (.046)
30 1.399 (.052) 1.400 (.052) 1.186(.118) 1.174 (.124) 1.420 (.035) 1.959 (.031) 1.430 (.031)
10 0.700 (.132) 0.986 (.244) 0.514(.094) 0.487 (.086) 1.000 (.209) 1.529 (.198) 1.012 (.240)

(L3) 20 0.990 (.113) 1.159 (.162) 0.774(.109) 0.759 (.116) 1.351 (.143) 1.893 (.074) 1.466 (.188)
30 1.229 (.136) 1.274 (.120) 0.963(.102) 0.952 (.099) 1.503 (.111) 1.943 (.038) 1.633 (.141)
10 0.830 (.216) 1.156 (.237) 0.419(.095) 0.408 (.089) 1.118 (.198) 1.313 (.164) 0.960 (.253)

(L4) 20 1.084 (.180) 1.203 (.181) 0.636(.092) 0.642 (.096) 1.317 (.116) 1.886 (.079) 1.300 (.154)
30 1.248 (.137) 1.268 (.121) 0.799(.096) 0.801 (.099) 1.407 (.086) 1.955 (.035) 1.426 (.092)
10 1.137(0.223) 1.189(0.210) 1.007(.255) 1.077(0.185) 1.283 (.197) 1.731 (.150) 1.264 (.247)

(L5) 20 1.384(0.153) 1.371(0.370) 1.440(.116) 1.223(0.336) 1.522 (.118) 1.904 (.073) 1.587 (.179)
30 1.533(0.121) 1.444(0.189) 1.580(.075) 1.469(0.181) 1.639 (.106) 1.943 (.047) 1.713 (.123)
10 1.567(0.146) 1.696(0.143) 1.131(.243) 1.409(0.154) 1.598 (.184) 1.763 (.144) 1.588 (.201)

(L6) 20 1.835(0.119) 1.895(0.100) 1.559(.141) 1.737(0.106) 1.874 (.102) 2.077 (.121) 1.902 (.117)
30 1.980(0.099) 1.992(0.114) 1.839(.111) 1.895(0.096) 2.016 (.076) 2.175 (.097) 2.042 (.083)
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Fig 3. Comparison of the execution time (in minutes) for the qOPG (red solid line) and PQR
(blue solid line) under model (L2).

(Single-index location-only models with d = 1)

(N11) Y =
√
φ1 log(

√
φ1) + 0.5ε with φ1 =

√
X2

1 +X2
2 ,

(N12) Y = φ1 + 0.2ε with φ1 = X1/{0.5 + (X2 + 1.5)2},
(N13) Y = φ1 + 0.2ε with φ1 = sin(X1) + sin(X2).

(Two-index location-scale models with d = 2)

(N21) Y = φ1 + φ2ε with φ1 = sin(X1 +X2) and φ2 = exp(X2)/10,
(N22) Y = φ1 + φ2ε with φ1 = exp(X1 +X2)− 1.05 and φ = exp(X2)/5,
(N23) Y = φ1 + φ2ε with φ1 = X2

1 +X2
2 and φ2 = sin(X2)/2.

We set p = 10 and n = 100. The predictor X is independently generated from
U(−1, 1) for models (N22) and (N23) and from standard normal distribution for
the rest four models. We compare the kernel PQR (KPQR) with the kernel SIR
[KSIR, 34] and the kernel PSVM [KPSVM, 18]. For all of these kernel-based
methods, we employ Gaussian kernel K(X,X′) = exp{−||X−X′||2/(2σ2)} with
σ chosen as the median pairwise distance of predictors in the data.

It is not appropriate to use (4.1) to evaluate the performance of nonlinear
SDR methods and we consider two alternatives. The first is the distance corre-
lation [29] between φ̂(X) and φ(X), denoted by dCor{φ̂(X),φ(X)}. To avoid
potential overfitting, we generate an independent test set of size 1000, and the
distance correlations are evaluated over the test set. The second one measures
prediction performance of the regression model built on the dimension reduc-
tion space. Toward this we fit a nonparametric regression model of Y on φ̂(X)
via local constant smoothing from the training set. Then the coefficient of de-
termination, R2 = Cor(Y, Ŷ ) over the independent test set can regarded as a
reasonable performance measure for nonlinear SDR methods. Here Ŷ denotes
predicted value of the test Y from the nonparametric regression model.

For both measure, the larger values indicate better performance in terms of
SDR. For both KPQR and KPSVM, we try different values of cost parameter
λ and set it to the value which gives best performance. Results over 100 inde-
pendent repetitions are reported in Table 2. It is observed that the proposed
KPQR outperforms KSIR and KPSVM under all scenarios under consideration
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including both heteroscedastic and homoscedastic models. In the review pro-
cess, one referee pointed out that it is not easy to tell whether the improvement
over KPSVM is significant. While revising, we have performed paired t tests,
which show that the improvement over KPSVM are significant with p-value less
than .0001 for all models and for both distance correlation and coefficient of
determination criteria.

Table 2

Performance of nonlinear SDR methods: averaged distance correlation and R2 measures for
independent test sets over 100 independent repetitions. Corresponding standard deviations

are given in parentheses.

Model
dCor{φ̂(X),φ(X)} R2

KSIR KPSVM KPQR KSIR KPSVM KPQR
(N11) .203 (.074) .494 (.062) .508 (.061) .042 (.094) .302 (.085) .322 (.085)
(N12) .697 (.046) .683 (.030) .700 (.029) .399 (.113) .451 (.068) .482 (.067)
(N13) .855 (.150) .854 (.022) .869 (.019) .759 (.164) .738 (.038) .761 (.034)
(N21) .679 (.105) .857 (.016) .868 (.015) .712 (.071) .828 (.025) .834 (.022)
(N22) .620 (.134) .809 (.018) .821 (.017) .670 (.121) .732 (.044) .747 (.043)
(N23) .328 (.108) .549 (.047) .557 (.048) .250 (.218) .458 (.070) .464 (.071)

To provide better snapshot of the PQR with heteroscedasticity, we addition-
ally consider error-only models (i.e. d = 1) as follows.

(N31): Y = (X1 +X2 + 0.5)2ε,
(N32): Y = (X1 +X2)

2ε,
(N33): Y = (X2

1 +X2
2 )ε,

(N34): Y = (X3
1 +X3

2 )ε,

where ε ∼ N(0, 0.5) and X ∼ Np(0p, Ip) with p = 10 and n = 100. Averaged

distance correlation dCor{φ̂(X),φ(X)} for test sets over 100 repetitions are
reported in Table 3. Note that R2 measure does not make sense because there
is no mean relations between Y and X. KPQR shows clear improvement for
capturing signals from heteroscedasticity.

4.3. Estimation of structural dimension

We now investigate the performance of the proposed CVBIC procedure to es-
timate the structural dimension from the linear PQR candidate matrix. Table
4 reports the empirical probabilities (in percentage) that the CVBIC correctly
estimates d. One can observe that the numerical performance of the proposed
CVBIC approach for the linear PQR is quite promising especially when n is
large enough.

5. Real data analysis

We apply the proposed method to the Boston housing data [10]. The dependent
variable Y is the logarithm of the median value of owner occupied homes in each
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Table 3

Performance of nonlinear SDR methods: averaged distance correlation measures over 100
independent repetitions for error-only models. Corresponding standard deviations are given

in parentheses.

Model
dCor{φ̂(X),φ(X)}

KSIR KPSVM KPQR
(N31) .291 (.144) .169 (.094) .493 (.055)
(N32) .204 (.124) .151 (.082) .426 (.067)
(N33) .192 (.084) .161 (.083) .451 (.061)
(N34) .256 (.116) .191 (.084) .373 (.048)

Table 4

Empirical probabilities (in percentage) that the CVBIC correctly estimates true d over 100
independent repetitions.

d Model n p = 10 p = 20 p = 30

2

(L1)
200 70% 48% 24%
500 89% 79% 42%

(L2)
200 69% 50% 29%
500 89% 79% 51%

(L3)
200 66% 45% 24%
500 89% 79% 56%

(L4)
200 79% 47% 33%
500 96% 76% 53%

(L5)
200 97% 72% 58%
500 100% 100% 98%

3 (L6)
200 84% 65% 41%
500 93% 80% 57%

of the 506 census tracts in Boston Standard Metropolitan Statistical Areas.
There are 13 predictors (Table 5). We do not consider the houses with tract
bounds the Charles river, so X4 is excluded in the following analysis. The sample
size ends up to be 471 with each observation/case representing a census tract.

Y median value of owner-occupied homes in $1000’s
X1 per capita crime rate by town
X2 proportion of residential land zoned for lots over 25,000 sq.ft.
X3 proportion of non-retail business acres per town
X4 Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
X5 nitric oxides concentration (parts per 10 million)
X6 average number of rooms per dwelling
X7 proportion of owner-occupied units built prior to 1940
X8 weighted distances to five Boston employment centres
X9 index of accessibility to radial highways
X10 full-value property-tax rate per $10, 000
X11 pupil-teacher ratio by town
X12 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
X13 % lower status of the population

Table 5

Variables in Boston housing data
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Fig 4. Scatter plots of the response variable vs the first SDR predictor estimated by SIR,
PSVM(λ = 0.1), qOPG and PQR(λ = 0.01).

Method
λ

1e-6 .01 .05 0.1 0.3 1 10 100
PSVM .809 .813 .834 .836 .828 .809 .738 .723
PQR .843 .869 .866 .866 .864 .864 .864 .864

Table 6

The distance correlations between the dependent variable Y and the first SDR predictor
estimated by PSVM and PQR for different values of λ.

We first apply linear SDR methods considered in Section 4. Detailed settings
of these methods are the same as done for simulated data in Section 4. In order
to estimate the structure dimension d in the PKQR, we employ the four-fold
CVBIC approach and select an optimal ρ as 0.02. The corresponding BIC-type
criterion in (2.10) is maximized at k = 1 and gives d̂ = 1. Since the true B is
not available for the real data, we use the distance correlation between sufficient
predictors projected onto the estimated SY |X, b̂�

1 X and Y , dCor(b̂1X,Y) as a
performance measure. Table 6 reports the distance correlations from the SDR
results of PSVM and PQR under different values of λ. The performance of
PQR is not overly sensitive to λ, and their best performances are 0.836 and
0.869 respectively. The distance correlations of SIR and qOPG are 0.856 and
0.865, respectively. Figure 4 depicts the scatter plots of Y against b̂1X obtained
from different SDR methods. Based on the distance measurements and scatter
plots, we see that PQR achieves a slightly better prediction comparing with SIR
and PSVM. Comparing with qOPG, PQR has a great computational advantage.
It takes 6.9 seconds for PQR while it takes 9.7 minutes for qOPG to estimate
B.

Toward nonlinear SDR, we also apply KPQR, KSIR and KPSVM with the
Gaussian kernel to the Boston housing data. First, we randomly divide the
dataset into nonoverlapping training and test data sets with 300 and 171 ob-
servations respectively. The performance measures used in Section 4.2 for non-
linear SDR methods are then computed. We repeat this process on 100 random
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KSIR KPSVM KPQR

R2 .507 .580 .608
(.193) (.064) (.065)

dCor
.591 .777 .791
(.040) (.039) (.036)

Table 7

The Boston housing data: averaged R2 and distance correlations computed from kernel SDR
methods.

Fig 5. The Boston housing data: scatter plots of the response variable vs the estimated first
SDR predictor in the test set for KSIR (left), KPSVM (center), and KPQR (right).

splitting of training and test sets under a wide range of cost parameters and
with the number of slices fixed at 10. Table 7 reports the averaged R2 and
dCor{φ̂(X), Y } for test set under selected cost parameter values. The paired t
tests show that the improvements of our new method KPQR over both KSIR
and KPSVM are significant in terms of both distance correlation and coefficient
of determination criteria. Figure 5 depict the scatter plots of Y against φ̂(X),
and its corresponding predicted value Ŷ over the test set for one random split-
ting. They indicate that PQR achieves a slightly better prediction compared
with KSIR and KPSVM. Between the linear and kernel methods, we think that
linear methods give a better prediction for the Boston housing data set.

6. Conclusion

In this paper we proposed a new SDR method, PQR by exploiting QR that is
particularly useful in the presence of heteroscedasticity. Compared to PSVM,
PQR greatly improves the performance in capturing the conditional variance
structure of Y |X. Thanks to the flexibility of SDR under very mild assump-
tion, PQR possess a wide range of applicability in a variety of applications in
which heteroscedasticity itself is of interest. Our limited numerical experience
shows that PQR still performs very competitively even for the case without
heteroscedasticity.
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Appendix

Proof of Theorem 1

Assume E(X) = 0 without loss of generality. The linear PQR objective function
(2.2) is

Λτ (θ) = var(β�X) + λE
[
ρτ

(
Y − α− β�X

)]
.

The first term is decomposed as

var(β�X)=var[E(β�X | B�X)]+E[var(β�X|B�X)] ≥ var[E(β�X | B�X)].
(A.1)

Now, the second term is

E{ρτ (Y − α− β�X)} = E[E{ρτ (Y − α− β�X)|B�X, Y }]
≥ E[ρτ (Y − α− E(β�X|B�X)). (A.2)

The last inequality holds since ρτ (·) is a convex function. Thus, the (possibly
nonunique) minimum is achieved at E(β�X | B�X). By the Linearity condition,
we have E(β�X | B�X) = β�P�

B(Σ)X and hence E(β�X | B�X) ∈ SY |X.

Suppose β̃ /∈ SY |X, then var(β̃
�
X | B�X) > 0, and the inequality in (A.1)

must be strict. Therefore β̃ cannot be the minimizer. �

Proof of Theorem 2

It is obvious that both Λτ (θ) and Λ̂n,τ (θ) are strictly convex functions of θ

since Σ is positive definite and the check loss is the strictly convex. Λ̂n,τ (θ) →
Λτ (θ) in probability for each θ. Applying Convexity Lemma of Pollard [25], we
have sup|Λ̂n,τ (θ) − Λτ (θ)| → 0, in probability. By Theorem 2.1 of Newey and
McFadden [24], the consistency of θn follows. �

The following regularity conditions are required to study the asymptotic prop-
erties of the linear PQR.

(C1) X has an open and convex support and satisfies that E(||X||2) < ∞.
(C2) The conditional distribution X|Y = y is dominated by the Lebesgue mea-

sure for y ∈ R.
(C3) For arbitrary vector β, δ ∈ R

p, define U = β�X and V = δ�X. A map
u → E(X | U = u, V, Y )fU |V,Y (U = u | V, Y ) is continuous for any given
V ∈ R, where fU |V,Y denotes the conditional density of U given V and Y .

(C4) Given U = u, there exists a nonnegative R
p+1-valued function c(V, Y )

such that E[c(V, Y )] < ∞ and E(X | U = u, V, Y )fU |V,Y (U = u | V, Y ) <
c(V, Y ) where the inequality holds component-wisely.
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Proof of Theorem 3

Notice that ρτ (a) = τa − [a]+ with [a]+ = max(a, 0), and hence Λτ (θ) =
E[mτ (θ,Z)] where mτ (θ,Z) = θ�Σ̃θ+λ{(Y −θ�X̃)τ +[θ�X̃−Y ]+}. We first
claim the following:

(a) mτ (θ,Z) satisfies the Lipschitz condition with respect to θ. That is, for
any θ1,θ2 there exists an integrable function Q(Z) such that

|mτ (θ1,Z)−mτ (θ2,Z)| ≤ Q(Z)||θ1 − θ2||. (A.3)

(b) For every θ, mτ (θ,Z) is differentiable for almost every Z.
(c) Λτ (θ) is twice differentiable with respect to θ with the gradient vector Dθ

and Hessian matrix Hθ given by

Dθ(Z) = 2Σ̃θ − λ[X̃(τ − 1{Y ≤ θ�X̃})],

Hθ = 2Σ̃− λEY

[
fU |Y (y − α | y)E(X̃X̃�|U = y)

]
with U = θ�X̃.

Finally Theorem 3 follows from the consistency established in Theorem 2 and
the claims (a)-(c) by applying Theorem 5.23 of Van der Vaart [32].

– Proof of (a)
It suffice to show that the second term of mτ (θ,Z) satisfies the Lipschitz condi-
tion. Let m∗

τ (θ,Z) = (Y −θ�X̃)τ+[θ�X̃−Y ]+. Then for any θi = (αi,βi) ∈ Θ,
i = 1, 2, we have

m∗
τ (θ1,Z)−m∗

τ (θ2,Z)

= (α2 + β�
2 X− α1 − β�

1 X)τ + [α1 + β�
1 X− Y ]+ − [α2 + β�

2 X− Y ]+

≤ (α2 + β�
2 X− α1 − β�

1 X)τ + |α2 + β�
2 X− α1 − β�

1 X|
≤ |α2 + β�

2 X− α1 − β�
1 X|(1 + τ)

≤ (1 + ||X||2)1/2||θ1 − θ2||(1 + τ).

The first inequality holds because u+ − v+ ≤ |u+ − v+| ≤ |u − v| and the last
inequality holds by Cauchy Schwarz inequality. By (C1), E[(1+ ||X||2)1/2||θ1−
θ2||(1 + τ)] < ∞ and hence mτ (θ,Z) satisfies the Lipschitz condition.

– Proof of (b)
The first term θ�Σ̃θ is differentiable. Let Nθ(m

∗
τ ) be the set of z for which the

function m∗
τ is not differentiable at θ, i.e.,

Nθ(m
∗
τ ) = {m∗

τ (·, z) is not differentiable at θ}.

Under condition (C2),

P [Z ∈ Nθ(m
∗
τ )] =

∫ ∞

−∞
f(y)P (X ∈ {x : α+ β�x = Y }|Y = y)dy = 0.
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Therefore, mτ (θ,Z) is almost sure differentiable with respect to any θ ∈ Θ.

– Proof of (c)
Under (a) and (b), we can compute the gradient vector of mτ (θ,Z)

∂

∂θ
Λτ (θ) =

∂

∂θ
E[mτ (θ,Z)]

= E[
∂

∂θ
mτ (θ,Z)]

= E[
∂

∂θ
{θ�Σ̃θ + λ{(Y − θ�X̃)τ + [θ�X̃− Y ]+}}]

= 2Σ̃θ − λE[X̃τ − X̃1{Y ≤ θ�X̃}]

by applying Lemma 2 of Li, Artemiou and Li [18]. The second-order derivative
is given by

Hθ =
∂2

∂θ∂θ�Λτ (θ) =
∂

∂θ
{2Σ̃θ − λE[X̃τ − X̃1{Y ≤ θ�X̃}]}

=2Σ̃+ λ
∂

∂θ
E[X̃1{Y ≤ θ�X̃}]

=2Σ̃+ λ
∂

∂θ
E{E[X̃1{y ≤ θ�X̃} | Y = y]}

=2Σ̃+ λ

∫ ∞

−∞
f(y)

∂

∂θ
E[X̃1{y ≤ θ�X̃} | Y = y]dy.

Applying Lemma 4 and 5 of Li, Artemiou and Li [18] under (C3)–(C4), we have

∂

∂θ
E[X̃I{y ≤ θ�X̃} | Y = y] = −fβ�X|Y (y − α | Y = y)E[X̃X̃� | θ�X̃ = y]

and hence

Hθ = 2Σ̃− λEY

[
fU |Y (y − α | y)E[X̃X̃� | U = Y ]

]
,

where U = θ�X̃ and fU |Y is the conditional distribution of U given Y . �

Proof of Theorem 4

Let S̄n(θ0,h,Z) = 1
n

∑n
i=1 S(θ0,h,Zi), the sample average of S(θ0,h,Z). Since

E[S(θ0,h,Z)] = 0, S̄n(θ0,h,Z) = Op(n
−1/2). By (12),

vec(M̂n)− vec(M0)

=

H∑
h=1

βn,h ⊗ βn,h −
H∑

h=1

β0,h ⊗ β0,h
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=

H∑
h=1

{β0,h − S̄n(θ0,h,Z) + op(n
−1/2)} ⊗ {β0,h − S̄n(θ0,h,Z) + op(n

−1/2)}

−
H∑

h=1

β0,h ⊗ β0,h

= −
H∑

h=1

{β0,h ⊗ S̄n(θ0,h,Z) + S̄n(θ0,h,Z)⊗ β0,h}

+

H∑
h=1

S̄n(θ0,h,Z)⊗ S̄n(θ0,h,Z) + op(n
−1/2)

= −
H∑

h=1

{β0,h ⊗ S̄n(θ0,h,Z) + S̄n(θ0,h,Z)⊗ β0,h}+ op(n
−1/2),

where operator ⊗ denotes Kronecker product. Define a communication matrix
Tu,v ∈ Ruv×uv that satisfies:

• Ti1,i2 = T�
i2,i1

,

• A⊗B = Ti1,i3(B⊗A)Ti4,i2 for A ∈ R
i1,i2 and B ∈ R

i3,i4 ,

and hence Tu,vvec(A) = vec(A�) for A ∈ R
u×v. Therefore

√
n{vec(M̂n)−vec(M0)} = − 1√

n

n∑
i=1

{(Ip2+Tp,p)

H∑
h=1

β0,h⊗S(θ0,h,Zi)}+op(1),

(A.4)
where Ip2 is a p2-dimensional identity matrix. Finally, the covariance matrix
ΣM is given by

ΣM = (Ip2 +Tp,p)
H∑

h=1

H∑
h′=1

{β0,hβ
�
0,h′ ⊗ E[S(θ0,h,Z)S

�(θ0,h′ ,Z)]}(Ip2 +Tp,p).

(A.5)
�

Proof of Theorem 5

Similar to what we did in the proof of Theorem 1, we have

var{ψ(X)}

= var{ψ(X)− Eψ(X)}

= var{E[ψ(X)− Eψ(X) | φ(X)]}+ E{var[ψ(X)− Eψ(X) | φ(X)]}

≥ var{E[ψ(X)− Eψ(X)|φ(X)]}

and

E{ρτ (Y − (ψ(X)− Eψ(X)))} = E[E{ρτ (Y − (ψ(X)− Eψ(X)))}|Y, φ(X)]



Principal quantile regression 2137

≥ E[ρτ (Y − E{ψ(X)− Eψ(X)|φ(X)})].

Therefore, for any α ∈ R,

Λτ (α, ψ) ≥ Λτ (α,L(ψ)), (A.6)

where L(ψ) = E[ψ(X) − Eψ(X)|φ(X)]. If there is a version of ψ measurable
with respect to σ{φ(X)}(i.e. unbiased), then

var{E[ψ(X)− Eψ(X) | φ(X)]} = 0

and
E[ψ(X)− Eψ(X) | φ(X)] = ψ(X)− E{ψ(X)}

and the equality in (A.6) holds. Suppose a function ψ̃ has no version measurable
with respect to σ{φ(X)}, then Λτ (α, ψ̃) > Λτ (α,L(ψ)). Notice thatH ⊆ L2(PX)
and hence L(ψ) ∈ L2(PX) for all ψ ∈ H. Thus, for any given α ∈ R, we can
choose ψ′ ∈ H such that

Λτ (α, ψ̃) > Λτ (α, ψ
′) > Λτ (α,L(ψ))

since the map ψ → Λτ (α, ψ) is continuous in ψ with respect to L2(PX)-norm.
Therefore, ψ̃ cannot be the minimizer. �

Proof of Theorem 6

Define ξi = [Yi −α−γ�Ωi]+ and ξ∗i = [α+γ�Ωi −Yi]+. The sample objective
function (3.4) can be rewritten in an equivalent way as

γ�Ω�Ωγ + λ

n∑
i=1

{τξi + (1− τ)ξ∗i }

subject to
−ξ∗i ≤ Yi − f(Xi) ≤ ξi

and
ξi, ξ

∗
i ≥ 0, i = 1, ..., n,

where
f(Xi;α, ψ) = α+ γ�Ωi i = 1, ..., n.

Then the foregoing setting gives the Lagrangian primal function,

Lp(α, γ, ξi, · · · , ξn, ξ∗i , · · · , ξ∗i )

= γ�Ω�Ωγ + λ

n∑
i=1

{τξi + (1− τ)ξ∗i }+
n∑

i=1

vi(Yi − α− γ�Ωi − ξi)

−
n∑

i=1

ηi(Yi − α− γ�Ωi + ξ∗i )−
n∑

i=1

kiξi −
n∑

i=1

ρiξ
∗
i ,
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where vi, ηi, ki and ρi are nonnegative Lagrange multipliers. Setting the deriva-
tives of Lp to 0, we arrive at

∂

∂γ
: γ =

1

2

n∑
i=1

(vi − ηi)(Ω
�Ω)−1Ωi,

∂

∂α
:

n∑
i=1

vi =

n∑
i=1

ηi,

∂

∂ξi
: vi = λτ − ki,

∂

∂ξ∗i
: ηi = λ(1− τ)− ρi.

Because the Lagrange multiplier must be nonnegative, we can conclude that
both 0 ≤ vi ≤ λτ and 0 ≤ ηi ≤ λ(1− τ). Plugging the constraints into Lp, the
corresponding dual problem is given by

max
v1,...,vn,η1,...,ηn

n∑
i=1

(vi − ηi)Yi −
1

4

n∑
i=1

n∑
j=1

(vi − ηi)(vj − ηj)Ω
�
i (Ω

�Ω)−1Ωj .

Note that Ω�
i (Ω

�Ω)−1Ωj is the same as P
{i,j}
Ω .
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