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Abstract: A large class of sequential change point tests are based on esti-
mating functions where estimation is computationally efficient as (possibly
numeric) optimization is restricted to an initial estimation. This includes
examples as diverse as mean changes, linear or non-linear autoregressive and
binary models. While the standard cumulative-sum-detector (CUSUM) has
recently been considered in this general setup, we consider several modi-
fications that have faster detection rates in particular if changes do oc-
cur late in the monitoring period. More presicely, we use three different
types of detector statistics based on partial sums of a monitoring function,
namely the modified moving-sum-statistic (mnMOSUM), Page’s cumulative-
sum-statistic (Page-CUSUM) and the standard moving-sum-statistic (MO-
SUM). The statistics only differ in the number of observations included in
the partial sum. The mMOSUM uses a bandwidth parameter which multi-
plicatively scales the lower bound of the moving sum. The MOSUM uses a
constant bandwidth parameter, while Page-CUSUM chooses the maximum
over all possible lower bounds for the partial sums. So far, the first two
schemes have only been studied in a linear model, the MOSUM only for a
mean change.

We develop the asymptotics under the null hypothesis and alternatives
under mild regularity conditions for each test statistic, which include the
existing theory but also many new examples. In a simulation study we
compare all four types of test procedures in terms of their size, power
and run length. Additionally we illustrate their behavior by applications to
exchange rate data as well as the Boston homicide data.
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1. Introduction

Despite a relatively long tradition in statistics, change point analysis is a very
active field and has become increasingly popular in the last years due to its
importance in many areas where data is collected over time. In addition to
a-posteriori change point methods, there has been a recent interest in sequen-
tial methodology due to the fact that an increasing number of data sets are
collected automatically or without significant costs such that the observations
arrive steadily. Examples include financial data sets, e.g., in risk management
(Andreou and Ghysels (2006)) or CAPM models (Aue et al. (2011)) as well
as medical data sets, e.g., monitoring intensive care patients (Fried and Imhoff
(2004)).

Chu et al. (1996) introduced a new way of sequential testing, which allows
to control the asymptotic a-error if no changes occur while having asymptotic
power one under alternatives, which has then be pursued by others e.g. Horvath
et al. (2004), Aue et al. (2006), Horvath et al. (2008), Aue et al. (2008), Aue
and Horvath (2004), Fremdt (2014) and Huskovd and Koubkovd (2005) (see
Section 1.2 below for more details). The key assumption is the existence of a
historic data set which is used for initial estimation before monitoring starts.
This is usually given in applications as some data collection must have taken
place before one can safely build or monitor a model. This approach allows for
nonparametric inference by means of asymptotics by letting the length of the
historic data set grow to infinity even if a possibly infinite observation horizon
is used. Nonparametric inference is meant in the sense that e.g. the stochas-
tic structure of the innovation process in a regression model is not completely
specified.

As recently pointed out by Kirch and Kamgaing (2015) most of these statistics
can be written by means of estimating and monitoring functions, which then
provide a unifying framework for the derivation of the asymptotic results. Kirch
and Kamgaing (2015) derive regularity conditions under which they prove limit
results for the standard CUSUM monitoring scheme as originally proposed by
Chu et al. (1996), that has been used in most follow-up works for different
change point scenarios, e.g. Horvdth et al. (2004), Aue et al. (2006), Aue and
Horvath (2004) and Huskova and Koubkova (2005).

The main disadvantage of the standard sequential CUSUM statistic is the
fact that the detection time can be rather long if changes occur late in the
monitoring period. This is due to the fact that effectively a (properly scaled)
two-sample test is applied comparing the historic data set with the data set after
monitoring starts up to the most recent observation. Thus for a late change many
‘null observations’ contaminate the second data set so that more ’alternative’
observations need to be collected before significance is reached. This is why,
recently, alternative monitoring schemes based only on more recent observations
have been proposed in the literature: The mMOSUM in a linear model setup
in Chen and Tian (2010) (where their null limit distribution is not correct),
the Page-CUSUM in a linear model setup in Fremdt (2014) and the standard
MOSUM for the location model in Horvath et al. (2008) and Aue et al. (2008).
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In this paper, we generalize the latter monitoring schemes to the general
framework of estimating functions thus greatly extending their range of appli-
cations to examples as diverse as the non-linear autoregressive or the binary
time series model. Furthermore, we investigate the differences in terms of size,
power and run length in a simulation study and illustrate the behavior on two
data sets.

The paper is organized as follows: First, the general setup and the new statis-
tics are introduced, namely the mMOSUM, the Page-CUSUM and the MOSUM
statistic. Examples for change point problems that fall into that framework are
given in Section 1.2. In Section 2 we develop the limit distributions for these
statistics in the general setting under the null hypothesis and mild assumptions.
We first focus on the mMOSUM and the Page-CUSUM statistic before develop-
ping the asymptotics for the MOSUM statistic under slightly different assump-
tions. In Subsection 2.3 we show that the different procedures have asymptotic
power one under very general conditions. Finally, in Section 3 we compare the
different types of statistics, including the CUSUM statistic in an extensive simu-
lation study by means of their empirical size, power and run lengths in different
scenarios before giving two data examples.

1.1. Monitoring schemes based on estimating functions

As already mentioned we assume the existence of a historic training data set
Xi,...,X,, with no change points. Based on this initial observations we estimate
the unknown parameter 6y C R? by means of an estimating function, i.e. the
estimator 6, is obtained as the zero of the following sum:

m

> G(Xy,0,) =0, 1)

t=1

where X;,t = 1,...,m, are the historical data and the estimating function G
takes values in R%. All vectors given in this work are column vectors.

The simplest example is the estimating function G(z,0) = (x—6) in a location
model which leads to the mean (as estimator for the expectation), i.e. O = Xom
In a linear model with Y; = 67 Z; + e, we consider X;T = (Yz, ZtT) as well as
G((y,2),0) = z(y — 6T 2), which yields the usual least squares estimator in this
context. Similarly, in an autoregressive linear model Z; is given by the lagged
observations (Y;_1,... ,Yt_p)T. The examples show that the data X; can be
naturally or artificially multivariate.

Estimating functions are effectively generalized method of moments (also
related to M-estimators, which are a particular class of estimating functions),
where it is exploited that the true parameter 6y is the only one fulfilling
EG(X1,600) = 0. In our setting, we do not require that the model is actu-
ally true but can use the model as a tool for feature extraction. In this case
is the best approximating parameter (in the above sense). This enables us to
construct a change point method which will detect changes that cause a change
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in the best approximating parameter (see e.g. Kirch et al. (2015) as well as Kirch
and Kamgaing (2012) where this idea was exploited for offline tests).

Because EG(X (™ 6y) # 0 for the observations X(!) after the change, we
consider monitoring schemes based on means of G(Xj, é\m), i > m. However, it
is somewhat restrictive to require that the same estimating function G needs to
be used, hence we allow for a different function H, which does not necessarily
need to be an estimating function itself but can for example be lower-dimensional
in order to increase power for certain alternatives. Furthermore, this allows to
use a more precise but less robust function for estimating (e.g. if it is known that
the historic data set does not contain any outliers) while using a more robust
monitoring function (as there may be outliers during the observation period).
See Kirch and Kamgaing (2015) for more details as well as examples for this
idea.

All detector statistics are based on partial sum processes

m—+tu

Sm(lvu) = Z H(Xtvam)'

t=m+I1+1

Because the monitoring function H and hence the partial sum processes are often
multivariate the test decision will be based on quadratic forms [|S|% = STAS
with a suitable matrix A resulting in the following statistics

Ly(m, k) = [[Sm (0, k)| a CUSUM,
Ty(m, k) :=Ta(m, k, he) := ||Sm (| kh2], k)] 4, mMOSUM,
Ls(m, k) = sup |Sm(i,k)||a Page-CUSUM,
0<i<k
Ty(m, k) :=Tq(m,k, hy) = ||Sm(k — ha, k)| 4, MOSUM (2)
where I'j = I'; 4 for j = 1,...,4 and the dependence on A is suppressed

where possible for better readability. The notation |z | indicates the lower Gauss
bracket, i.e. the largest natural number smaller or equal than z, while [z] indi-
cates the upper Gauss bracket, i.e. the smallest natural number larger or equal
to x.

The bandwidth hy € (0,1) (fixed) is a tuning parameter determining the rate
with which early observations are discarded, hy = h4,, € N is the window size
in the moving sum (MOSUM) procedure.

Statistic I'; has already been dealt with in detail in Kirch and Kamgaing
(2015) and will not be considered here except in the simulation study and data
analysis.

In order to control the asymptotic size of the detection procedure even in
the presence of an infinite observation horizon, weight functions w;(k) are
introduced that depend on the point of time and either the length of his-
toric data set m (i.e. w;j(k) = w;(m,k), j = 1,2,3, for the CUSUM, mMO-
SUM and Page-CUSUM or the window width hy for the MOSUM method (i.e.
wq (k) = wa(ha, k)). As before we supress the dependence on m and h in order
to obtain a unified notation.
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The null hypothesis of no change will be rejected at the first point in time &
when

w](k:)FJ(m,k) > ¢y, j = 1,2,3,4,

where ¢; is a critical value which will be derived from the limit distribution under
the null hypothesis. An alternative way of thinking about this is that ¢;/w; (k)
is a critical curve that needs to be crossed by the detector statistics I';(m, k).
In Section 3.2 we will plot w;(k)I';(m, k)/c; for an easier visual comparison, so
that all detector statistics need to cross the horizontal 1-line.

The stopping times of the corresponding sequential procedures are defined as

Tim =min{l <k < N(m) : w;(k)T'j(m, k) > ¢;},

where we set min () = co. We distinguish between the open-end procedure with
N(m) = oo and the closed-end procedure with N(m) =mN + 1, N > 0.

If the weight function and critical value are chosen appropriately, the type-I-
error is controlled and the method has asymptotic power one under alternatives,
ie.

m—r o0 m—r 00 1<k:<N(m)

lim Py, (1jm < o0)= lim Py, ( sup  w;(k)Tj(m, k) > cj) = q,

n}i_r)noo Py, (Tjm < 00) = 1.
The matrix A is wusually chosen such that the null limit of
SUD| << N(m) Wi (K)Tj(m, k) is pivotal, e.g. A~' = cov(H(X1,6)) for i.i.d. data

or A7 = lim,,_,o, cov (ﬁ Z;;l H(X;, 90)) the long-run covariance matrix in

case of a time series.

1.2. Examples

The mMOSUM has, to the best of our knowledge, only been considered in the
linear model in Chen and Tian (2010), where — due to an error in the proof
— the asymptotic limit distribution under the null hypothesis is incorrect. The
Page-CUSUM has been considered in Fremdt (2014) also for the linear model.
The MOSUM statistic has been analysed in the location model in Horvath et al.
(2008) and Aue et al. (2008).

Kirch and Kamgaing (2015) develop the theory for the CUSUM statistic in an
equivalent setting to the one investigated in this paper. To unify the theory for
all statistics we use the same assumptions in this paper to prove the correspond-
ing limit results under the null hypothesis with the exception of the MOSUM
statistic with hy/m — 0, which needs somewhat different assumptions. There-
fore, the validity of the procedures based on the mMOSUM, Page-CUSUM as
well as MOSUM (with A/m — S > 0) monitoring schemes follows for all ex-
amples considered in Kirch and Kamgaing (2015). Similarly, under alternatives
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we give a stricter assumption than necessary in order to unify the theory for
all statistics, which can be relaxed (see Weber (2017), Chapter 4). We will now
give a short overview over these examples, more details can be found in Kirch
and Kamgaing (2015).

1.2.1. Linear regression model

The model is given by
Xt:m?ﬁt+6t7 0<t<OO,

where B, = IRTRREE Bt,p)T are the unknown parameters and x; =
(1,x¢2,...,2¢p)" are regressors. Moreover, the errors {¢;} have mean zero and
variance o7 = o3 and are independent of {x;}. In the literature the residuals are
often supposed to be i.i.d. or uncorrelated with some moment conditions, but
the minimal requirement is that they fulfill a functional central limit theorem.

As before, we consider the null hypothesis of no change (Hy : 3, = B, for all
t) against the alternative hypothesis of a change at m + k* (Ha : 8, = B, for
t<m+Ek*but 8, = B4 # By for t > m + k*). Here, k* is the change point,
and m denotes the length of the historical data set.

Both Chen and Tian (2010) for the mMOSUM as well as Fremdt (2014) for
the Page-CUSUM use the least squares estimator to obtain an approximation for
the unknown parameter 3, based on the historical data set. The corresponding
estimating function is given by G((X;, =!)7, 8) = x+(X; — 8" @;). Their moni-
toring function for parameter changes is given by H((X;,z1)T,8) = X; — BT,
with B(6y) = (1,0,...,0)T, i.e. their detector is based on the estimated resid-
uals. However, this monitoring function cannot detect all alternatives so that
Huskova and Koubkové (2005) propose the CUSUM statistic with H = G re-
sulting in a test with asymptotic power one for all alternatives.

In order to find changes in the error variance o, we can extend the estimating
function to G((X,, 1)7,(8,0%)) = (G(Xy, =D)T, 8)7, (X, —B /) —02)T and
H(( Xy, 2T, (8",0%)7T) = (X; — B ;)% — 02 with B(6y) = (0,...,0,1)T. The
corresponding procedures have also been considered by Chen and Tian (2010)
as well as Fremdt (2014) respectively.

!

1.2.2. Location model

This is the simplest change point setting, where
Xt = + A1{t>m+k*} + €, 0 <t< oo,

where k* is the change point, u© € R is the mean prior the change, A # 0,
and ¢ is an error sequence with mean zero and variance 0. The multivariate
mean change model is also included in the general setup but for simplicity we
concentrate on the univariate model.
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In fact, this model is a special case of the previous regression model with
p = 1. Estimating and monitoring function simplify to G(X¢,u) = X — p
resulting in i = X,,, and H = G. Horvéth et al. (2008) and Aue et al. (2008)
investigate this procedure for the MOSUM detector.

It is also possible to use more robust monitoring procedures e.g. based on
M-estimators in this context and one can even combine a non-robust initial
estimator with a robust monitoring function by choosing the monitoring function
appropriately and different from the estimating function. For more details, we
refer to Kirch and Kamgaing (2015), Section 6.2.

1.2.83. Non-linear models

Several monitoring procedures based on the CUSUM detectors that fit into
the above framework have already been investigated in the literature including
one for GARCH-sequences (Berkes et al., 2004), for nonlinear regression models
with Y; = f(x¢, By) +€: (Ciupera, 2013) as well as nonlinear autoregressive time
series Xy = g(X;—1,...,X1—p) + € for some function g where a neural network
approximation is used to construct the detectors (Kirch and Kamgaing, 2015).
More details can be found in Kirch and Kamgaing (2015), Section 6.3.

1.2.4. Integer-valued time series

A binary autoregressive time series is given by

Xt|Xt717 Xi—oy ooy By 1, Zp_g,- -~ Bern(m(ﬁ)), Q(Wt(ﬁ)) = IBTZt—h

where Z;,_y = (Z4_1,...,Z,_,) are regressors which can be purely autoregres-
sive, purely exogenous or a combination of both. In this case a typical estimating
function is based on the partial likelihood scores with a monitoring function ei-
ther being of the same form or a projection onto one or more of the components
of the full partial likelihood scores.

Similarly, the Poisson autoregressive model is defined by

thXt—la v aXt—p ~ POiS(At)a At = f@(Xt—l)a Xt—l - (Xt—la e 7Xt—p)T7

where the estimating function (as well as monitoring function) is also typically
obtained by the partial log likelihood scores. For more details we refer to Kirch
and Kamgaing (2015), Sections 6.4 and 6.5.

2. Asymptotics

We first derive the null asymptotics for the respective statistics, allowing us to
control the type-I-error of the procedures, before showing that the procedures
are asymptotically consistent under alternatives.
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2.1. Asymptotics under the null hypothesis

In this section, we give regularity conditions under which we can prove the limit
distribution for the above statistics. For the CUSUM statistic this was already
done in Kirch and Kamgaing (2015). It turns out that we can derive the null
asymptotics for the mMOSUM, the Page-CUSUM as well as the MOSUM with
hg/m — f > 0 under the same set of regularity conditions. In particular, the
limit results carry over to all the examples given in Kirch and Kamgaing (2015)
as shortly introduced in the previous section. Unlike Chen and Tian (2010) we
do not use a weight function for the mMOSUM that depends on the bandwidth,
although such results can also be obtained with the below methods. Their choice
of weight function seems to result in a very nice limit distribution in their paper,
which is however only due to an error in the proof. More precisely the second
formula in the proof of Theorem 3.1 in Chen and Tian (2010) is not correct: An
application of the invariance principle correctly gives (in our notation, where
{e;} are the innovations in a linear regression model with variance o?)

m+k

supw(m, k — |kha]) Z g; — (Wi (k) = Wi m(lkha])| = op(1)
k21 i=m-+1+|khs]

for standard Wiener processes Wi ,,,(-). In Chen and Tian (2010) the term
Wi,m (k) — Wi m(|kha]) was then replaced by Wy, (k — |kha]). However, the
two processes are distributionally different, as e.g. for kq, ko with |kiha| > ko
it holds due to the independent increments of a Wiener process

cov (Wi m(k1) = Wi m([kiha]), Wim(k2) — Wi m([k2ha]) = 0,
while
cov (Wi, m (k1 — [kiha]), Wi m (k2 — |k2h2])) # 0.

As one consequence, we can no longer substitute k — |kho| with s (as in the
line after (20) in the proof of Theorem 3.2 in Chen and Tian (2010)), so that
it is no longer beneficial to use the weight function w(m, k — |khz]). Therefore,
we decided to return to the usual shape of the weight function — after all the
bandwidth in this case is merely a way of using only more recent observations
for later comparisons.

For the MOSUM statistic with hy/m — 0 we get related but somewhat
different regularity conditions. Exemplary, we prove their validity for a linear
regression model thus extending the existing results from the location to a linear
regression model (see Section 2.2).

In the remainder of the paper, we will give some high-level regularity condi-
tions under which we can derive the asymptotic behavior both under the null
as well as under alternative hypotheses of the proposed monitoring schemes. In
particular, some effort is needed to verify those regularity condition for a given
change point problem and a given set of estimating/monitoring functions. For-
tunately, the regularity conditions RC.1, RC.2 and RC.3 are the same that have
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been used in Kirch and Kamgaing (2015) for the CUSUM monitoring scheme.
In fact, these regularity conditions have already been proven to be correct by
various authors in many different situations including all examples given in Sec-
tion 1.2. A detailed collection of these papers is given in Kirch and Kamgaing
(2015), Section 6, where also simulation results and a data analysis for various
examples and the CUSUM scheme can be found. The below formulation via
regularity conditions has the important advantage that a statistician who de-
velops a new procedure in the above spirit for a new setting will immediately
have all of the above monitoring schemes at his disposal (with some additional
effort needed only for the MOSUM with hy/m — 0).

Regularity Condition RC.1.

(a) The partial sum process
{\/% ZtLZLlSJ (H(Xt,00),G(Xt,60p)): 1< s< T} fulfills a functional cen-
tral limit theorem for any T > 0:

Lms]

1
NG > (H(X1,00),G(Xy1,600)) : 1< s < T
t=1

B (Wi (s), Wa(s)) : 1 < s < T},

¥ C

ct »,) -

(b) The following Hdjek -Rényi-type inequality is fulfilled for all 0 < a <
uniformly in m

where (W1(s), Wa(s)) has the covariance matriz X =

N[ =

m+k
1
1 . H(X;,00)| = 1).
12}62Xmm%*aka t:;‘rl (X¢,60) Op(1)

(c) For the open-end procedure the following Hajék-Rényi-type inequality is
fulfilled for any k., > 0 uniformly in m

\/m m-+k B
pax ~— t_zr;lH(Xt,oo) = O0p(1).

This set of regularity conditions ensures that the limit distribution is an
appropriate functional of a Wiener process, where (b) is needed to control the
behavior at the very beginning of the monitoring period, while (c) is needed to
control the behavior at the infinite end of the monitoring period.

The regularity condition in (a) holds for example under mixing conditions
on {X;}. Obviously H(Xy,0y) and G(X¢,0y) will typically be highly correlated
(often even being equal), but the actual form of C' is not important (with the
exception of the MOSUM procedure with fixed § and an overlap of the mon-
itoring and historic data set — see Theorem 2.3 and Remark 2.1). In all other
cases, the limit only depends on the joint convergence of ﬁ ZTZI G(X;,6p) and



1588 C. Kirch and S. Weber
{ﬁ Z;n:t: 1 H(X;,00) : k> 1}, which are asymptotically independent (under
the above condition) due to the independent increments of a Wiener process.
Because of the different structures for the CUSUM, mMOSUM and Page-
CUSUM on the one hand, and MOSUM on the other hand, slightly different
regularity conditions are needed for the latter case (if hy/m — 0). Thus, we
first discuss the situation of the first three (where the results for the CUSUM
can already be found in Kirch and Kamgaing (2015) and will not be repeated),
before giving related but slightly different assumptions for the MOSUM statistic.

2.1.1. Modified MOSUM and Page-CUSUM

Regularity Condition RC.2.

a) The weight function has the following form
w(m, k) = m_%@(m, k)
with

p(5) k=am
0, k<anm

w(m, k) = {

and %= "28°°0. In addition we need that p : [0,00] — RT is a positive

and continuous function fulfilling

| =

limt7p(t) < oo for some 0<~vy<
t—0
b) For the open-end procedure we additionally need

lim sup tp(t) < oo.

t—o0

This set of regularity conditions is concerned with the regularity of the weight
function, which ensures that we can control the type-I-error even in the open-end
case. The case distinction in (a) is quite useful to allow for false alarms within the
very first observations after the monitoring starts (compare with Figure 1). A
standard weight function often used in the literature fulfilling these assumptions
is given by

w(m, k) =m~'/? g (RN 0<y <2 (3)
T m m+k ’ ST g

This corresponds to the choice p(t) =t~ (1 + )71,
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Regularity Condition RC.3. The following approzimation holds under Hy,
where N (m) is the observation horizon and can be infinite:

1 1/2 m+k N
sup  min <17, ) H(X;,0,)
1<k<N(m) m2"kY k Ml
m+k k m
- Z H(X4,00) — EB(QO) ZG(Xjﬁo) =
t=m+1 j=1

for some 0y and a suitable B(6y), where v is as in RC.2.

This assumption allows to replace the partial sum process including the es-
timated parameter value with the appropriate partial sum process with the
true or best approximating parameter 6y. The second summand may be sur-
prising at first but this accounts for the uncertainty from using the estimator
rather than the true value. A very simple example is the location model with
H(Xy,p) = G(X4, u) = Xy — p, so that fi,, = X, and

m-+k m+k m+k k m
S B = Y XS = S G- S G
i=m-+1 i=m-+1 1=m-+1 i=1

For sufficiently smooth estimating and monitoring functions, this condition can
be derived by a Taylor expansion under weak moment conditions with

B(6y) = EVH(Xo,600) (EVG(Xo,00)) ",

where V is the gradient for a vector-valued function F = (F},..., Fy)T : R —
R? defined by VF = (VFy,...,VFy) and VF; denotes the standard gradient.
Details are given in Kirch and Kamgaing (2015), Section 5.

In particular, whenever H is a linear combination of Gy,...,Gg with G =
(Gl, ceey Gd)T, then B(eo)G(X, 90) = H(X, 00) and hence 21 = B(ao)zzB(go)T,
which is important in view of Theorem 2.2 below. This includes the two stan-
dard situations that the monitoring function is either given by the estimating
function or by a projection onto one particular component of the estimating
function (such as estimated residuals if e.g. a least squares estimator is used in
a linear regression context). Most monitoring schemes developed in the litera-
ture are of this simpler type. Exceptions are the monitoring schemes based on
estimated residuals in a non-linear setting proposed by Ciupera (2013) as well
as the robust monitoring scheme combined with a more precise (but not robust)
estimating function in Kirch and Kamgaing (2015), Section 6.2.

Under these assumptions we can derive the following null asymptotics for the
mMOSUM TI'y and the Page-CUSUM I's:

Theorem 2.1. Let Regularity Conditions RC.1a), RC.2a) as well as RC.3 be
fulfilled. Then, we get the following limit distributions (for m — oo and fized
bandwidth hy > 0) under the null hypothesis for any symmetric positive semi-
definite matriz A with the notation as in (2).



1590 C. Kirch and S. Weber

(a) Closed-end procedure
For a bounded weight function p or if additionally RC.1(b) holds, we get:

(1) sup  w(m, k)La(m,k, ha)

1<k<Nm

= supp(t) [|Wi(1+£) = Wi (1 + the) — t(1 = ho)Wa (1) 4,

0<t<N

€] sup  w(m, k)T's(m, k)
1<kESKNm

D
— sup p(t) max
0<t<N 0<s<t

[Wi(1+8) = Wi(1 +s) = (t = 5)W2(1)]] 4

(b) Open-end procedure
If additionally regularity conditions RC.2b) and RC.1b)-c) hold, then we
get:

(7) sup w(m, k)Ta(m, k, ha)

1<k<oco

5 sup p(t) [Wi(0) = Wi (the)  H1 — ha)WalD) .

(44) sup w(m, k)Ts(m,k)
1<k<oo

25 sup p(t) max [[Wy(t) — Wi(s) — (t — s)Wa(1)] 4
t>0 0<s<t

In all cases {W1(t) : t = 0} and {Wa(t) : t > 0} are independent Wiener
processes with covariance matrices X1 and B(0p)X2B(00)T with ¥, j = 1,2, as
in Assumption RC.1a) and B(6y) as in RC.3.

The matric A inI'; =1 4, 7 = 2,3, can be replaced by a consistent estimator.

The Wiener processes in the above theorem are different from the ones in
RC.1a). In fact, the Wiener processes in the above limit are given by {W;(s—1) :
s > 1} and B(#) Wa(1) (where W; are now as in RC.1a)). The covariance
structure as given in the above theorem is thus obtained from the independent
increment property.

As explained beneath RC.3 in many important cases it holds ¥, =
B(609)X2B(6p)T. In this case the limit for a weight function as in (3) simpli-
fies because it can then be expressed as a supremum over [0,1] (rather than
over an unbounded set).
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Theorem 2.2. If ¥ = B(00)X2B(0y)T, then it holds with a weight function
as in (3)

Wl(l + t) — Wl(]. + thQ) — t(]. — hQ)WQ(].)
>0 (1+1) (ILH)V

(a)

A
Wi %SS
2 qup Wl_@_(l_(l_hQ)s)M

0<s<1 s s
A

(b) sup max Wil +1) = Wil +s) = (t — s)Wa(1)

0<s<t t \”
S m—ve

A

D 1
= sup max —
0<t<10<s<t T

Wht) - Z: 1W1(s)

)

A

where {W1(-)} and {W(-)} are as in Theorem 2.1.

2.1.2. MOSUM

Since the MOSUM statistic has a different weight function, we need to replace
Regularity Condition RC.2:

Regularity Condition RC.4. The weight function has the following form

wina ) =1 () (1)

where p is a bounded and continuous function. Depending on the procedures
additional assumptions on the behavior of p at infinity have to be made that will
be specified in the theorems below.

For the MOSUM procedure one needs to distinguish two main cases: The
case where the bandwidth A4 is of the same order as the historic data set i.e.
when hy = fm + o(m) for some 0 < 8 < 1 and the situation where it is much
smaller, i.e. hy/m — 0.

In the first case, we can use the same regularity conditions on the time series
as before, in the latter case, somewhat different regularity conditions are needed.
In particular, the assertion of Theorem 2.3 below holds true for all the examples
of Section 1.2, see Section 6 in Kirch and Kamgaing (2015) for proofs of the
regularity conditions.

Theorem 2.3. Let Regularity Conditions RC.1 (a), RC.3 with v =0 and RC.4
hold. Then, we get the following limit theorem under the null hypothesis and for
hy =Bm+o(m), 0 < < 1:
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a) Closed-end procedure
For any symmetric positive semi-definite matriz A, we get as m — oo

sup w(h4ak)r4(mvka h4)
1<k<Nm

D 1 1 1
P s o)W (Gve) i (510 -1) - ma (5)

A
b) Open-end procedure
If additionally RC.1(c) holds and p fulfills RC.2 (b), then
sup w(ha, k)Ta(m, k, ha)
1<k<oo
D 1 1 1
— sup p(t) HWl (— +t) - W (— +t— 1) — BWs (—)
0<t<oo 5 5 6 A

Here, {(W1(t),Wa(t)) : t > 0} is a Wiener processes with covariance matriz

> CB(6)"
B(0o) C* B(60)%2B(6)"
with C, ¥, j = 1,2, as in Assumption RC.1a) and B(6y) as in RC.3.
The matriz A in I'y =Ty 4 can be replaced by a consistent estimator.

Remark 2.1. If p(t) = 0 for t < 1, i.e. if the supremum is only taken over
k = hg, then due to the independent increment property of Wiener processes the
limit simplifies to (with possibly N = 00)

sup () le () = Wy (t— 1) — BV, <1)
1<t<Nm ﬁ
for independent Wiener processes {W1 ()} and {Wa(-)} with covariance matrices
Y1 and B(00)X2B(0y)T respectively. Under RC.1(b) and if p fulfills the assump-
tion in RC.2 (a) for t — 0 one can also use the lower bound max(m + 1,m +
k — hy + 1) resulting also in a non-overlapping MOSUM.

A

The condition RC.2 (b) is too strict for some weight functions that have
been proposed in the literature in the case of hy/m — 0. If one wants to relax
them more moments of the process are required, in order to get a proper limit
distribution for these weight functions (see Horvéth et al. (2008) for an extensive
discussion).

In order to make this more precise, we need the following stronger assump-
tions:

Regularity Condition RC.5. Let {X;} (under Hy) be stationary and as-
sume there exists (possibly after changing the probability space) a Wiener process
{W1(t),0 < t < oo} with covariance matriz X1 such that, as k — oo

1

k
ZH(Xt,OO) —Wi(k) =0 (k?> a.s. for some v > 2. (5)
t=1
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The value of v usually corresponds to the number of moments of H (X, 6p).
The larger it is, the closer the partial sum process is already to a Wiener process.
We will see that this allows us to use boundary functions that grow to zero slower
at infinity. Invariance principles as above have been proven for many different
time series, e.g. they hold for mixing time series {X;} with sufficiently fast
mixing rate (see also Kirch and Kamgaing (2015)).

The following regularity condition is somewhat different from the one in RC.3
and has to the best of our knowledge only been verified for mean changes. In
Section 2.2 we prove exemplary its validity for the linear regression case with
least squares estimation.

Regularity Condition RC.6. The following approzimation holds under Hy,
where N(m) is the observation horizon and can be infinite:

m+k
sup min(hzl/Qa h};/y_l/Qk*l/V) Z H(Xy, 0m)
1<k<N(m)+1 i=mAk—ha+1
m-+tk h4 m
_ > H(Xi.00) — —B(0) Y G(X;.00) ||| = op(1)
i=m—+k—hs+1 m j=1

with v as in RC.5.
We can now also state the assertion for hy/m — 0.

Theorem 2.4. Let Regularity Conditions RC.J, RC.5 and RC.6 hold. Let the

weight function p fulfill limsup,_, .tV p(t) < oo, v as in RC.5. Then, we get

the following limit theorem under the null hypothesis and for hy/m — 0 for the

closed-end (with N(m) = Nm) as well as open-end procedure with N(m) = oco:
For any symmetric positive semi-definite matriz A, we get

D
sup w(h47 k) F4(m7 ka h4) — sup p(t) HW(t + 1) - W(t)HA )
1<k<N(m)+1 0<t<oo
where {W (t) : t > 0} is a Wiener process with covariance matriz ¥1. The matriz
AinTy =Ty 4 can be substituted by a consistent estimator.

Remark 2.2. If p fulfills RC.2 (b) we can replace RC.5 by RC.1(a) and (¢) and
need RC.6 with v = 1 in addition to stationarity under Hy with an analogous
proof to the proof of Theorem 2.1.

Because the above theorem still excludes some weight functions that have
been proposed in the literature such as p(t) = max(1,log(1+t))~'/? even in the
closed-end procedure, Horvéth et al. (2008) suggested to use an hy4-closed-end
procedure in the sense that the observation horizon ends after Nh,4 observations
for some finite N. In this case, we get the following limit distribution:

Corollary 2.1. Let RC.1 (a), RC.J as well as RC.6 (with any v) hold. Then

we get under the null hypothesis for any symmetric positive definite matrixz A

sup  w(h, k) Ta(m, b, ha) = sup p(t) [W(t+1) = W (D) 4,
1<k<Nhy 0<t<N



1594 C. Kirch and S. Weber

where {W (t) : t = 0} is a Wiener process with covariance matriz X1. The matriz
AinTy =Ty 4 can be substituted by a consistent estimator.

2.2. Linear regression model

In this section, we will prove the above regularity condition RC.6 for the MO-
SUM procedure with hy/m — 0 for the linear regression model as in Sec-
tion 1.2.1, showing that this condition can principally be extended to other
situations as well. Regularity condition RC.5 on the stochastic process have al-
ready been used by Kirch and Kamgaing (2015) and shown to be valid in a large
variety of situations.

Theorem 2.5. Let % — 0 and the errors {&;} be i.i.d. and independent of the
regressors {x;}. Furthermore, let {x;} be stationary and satisfy

1 n
- thxtT -C=0(n"") as., (6)

t=1

for a positive definite matriz C and some 7 > 0. Then, we get for the functions
G and H as in Section 1.2.1:

(a) RC.6 holds for the closed-end procedure with time horizon Nhy.
(b) If additionally the regressors {x;} fulfill a strong invariance principle

k
S(i—e) - W(k)=0(k?) as., v>2

i=1

where c1 the first column of the matrix C and W is a Wiener process
with some covariance matriz 3. Then RC.6 also holds for the closed-end
procedure with time horizon Nm as well as the open-end procedure.

2.3. Consistency under alternatives

In this section, we will show that under mild conditions all monitoring schemes
will stop in finite time with probability approaching one as m — oo if a change
occurs. This means that the corresponding testing procedures have asymptotic
power one.

Under the below regularity conditions Kirch and Kamgaing (2015) have
shown this property for the CUSUM statistic. The same holds true for the
other three statistics. For notational ease, we let

Zt7 t<m+k*7
X, =
Y, t>m+ k"
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Regularity Condition RC.7.
(a) The time series before the change fulfills
m-+k* R
> H(Xy,0m) = op(K").

t=m+1

(b) {Yi} is stationary and independent of O, and it holds as | — oo

~] =

zl: (H(ijam) - EH) =op(1)

for some Eg.

(¢) It holds AY2Ey # 0.

(d) It holds k*/m < X\ (for statistics I'; with j = 1,2,3) and k*/h < X for
the MOSUM statistic 'y for some A > 0. Furthermore, there exists a ball
U(zo) around xo with xg > X and p(z) = ¢ > 0 for x € U(xg) (where
we set p(x) = 0 if xm (resp. xh in the MOSUM case) is larger than the
observation horizon).

(e) In the open-end procedures with j = 1,2,3 for an arbitrary late change k*
it holds lixn_1>i£f xzp(x) > 0.

Regularity Condition RC.7 (a) follows from the results of the previous sec-
tion, if {Z;} fulfills the assumptions under the null hypothesis. Condition (b)
is stronger then necessary but unifies the treatment for all schemes. If this as-
sumption is not fulfilled it can be replaced by a corresponding condition, where
the lower and upper limit of the sum depend on the monitoring scheme at hand
(see Kirch and Kamgaing (2015), Section 4 in Weber (2017) or proofs below for
details). In fact, we do not need the independence of the time series after the
change {Y;} from the estimator 6,, (or the time series before the change {Z;})
nor do we need the stationarity of {Y;} allowing e.g. for starting values from
{Z:} in an autoregressive setup. This is discussed in detail in Section 5.2 in
Kirch and Kamgaing (2015), where among other things this is shown for mixing
sequences in combination to some smoothness assumptions on H. Conditions
(d) and (e) are conditions on the weight function in connection with the location
of the change but are rather mild.

Condition (c) is the key condition in the sense that it tells us what changes
can be detected with a given monitoring function H and a given matrix A.

Theorem 2.6. Let the alternative hypothesis hold in addition to reqularity con-
ditions RC.7 (a)-(c). For the closed-end-procedure let assumption (d) be fulfilled,
for the open-end procedure either (d) or for all statistics except the MOSUM
statistic (e). Then it holds (as m — o0)

P

sup  w;(k)T;(m, k) — oo.
1<k<N(m)
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for all j = 1 —4 for the closed-end procedures with N(m) = Nm + 1 as well
as the open-end procedures with N(m) = oo (with the exception of the MO-
SUM statistic). The matriz A in T'; =T'; 4 can be substituted by a consistent
estimator.

Remark 2.3. Because the sums in the MOSUM statistic have fized length, we
can not allow for an abritarily late change. However, if k* = o(h'T*/2?) and
liminf, xl/”p(:c) > 0, then it is detectable for any MOSUM procedure with
observation horizon larger than k* + h.

3. Simulation study and data analysis

In this section, we aim at illustrating the differences between the discussed
monitoring schemes by some simulations but also by a comparative application
to two real data sets. For this purpose we will use the well-known examples
of a mean change and a linear regression model because even in this case, no
comparative simulation study involving all four monitoring schemes exists in the
literature (to the best of our knowledge). We refer the reader who is interested
in the performance of this methodology in the different statistical situations
that have been discussed in Section 1.2 to Kirch and Kamgaing (2015), Section
6, where simulations results as well as data analyses for the CUSUM statistic
and many examples beyond linear regression are given in detail.

3.1. Simulation study

In this section we compare all four monitoring schemes in terms of their size,
power and run length i.e. the time until an alarm is given. Because a higher em-
pirical size leads to a better power and shorter run-length, we can only compare
the power in a meaningful way when we fix the size. So for a comparison we
use the size-corrected power and size-corrected run-length i.e. the power respec-
tively run-length corresponding to the true (not nominal) size «. Furthermore,
we give a kind of density estimator of the run-length which we scale so that
it integrates to the size-corrected power (rather than one). One can think of
this as a probability distribution with a continuous part as given by our density
estimation and a discrete part at infinity (indicating that the procedure never
rejected).

All of the empirical results are based on a training period of length m = 100,
a monitoring period of 200 and 1000, 2500 repetitions and standard normal
errors. For the CUSUM, Page-CUSUM and mMOSUM we use the boundary
function (3) and for the MOSUM we use

) = (2o s (14 5)}) "

which has been proposed by Horvath et al. (2008) and Aue et al. (2008) (with
the limit as in Corollary 2.1). For the MOSUM statistic N is chosen so that we
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Monitoring per. N =2 N =10
¥y=0 v =0.25 v=045 ¥=0

CUSUM 112 (2.96) | 2.32 (5.92) | 3.36 (5.96) || 3.4 (7.68)
Page-CUSUM || 0.96 (2.76) | 1.8 (5.32) | 2.16 (3.84) || 3.2 (7.72)
mMOSUM

am =1

he =0.1 0.88 (3) | 1.92 (4.48) | 3.04 (6.88)
h2 =0.4 176 (3.68) | 2.88  (6.08) | 4.08 (8.84)

he =0.9 44 (7.76) | 8.76  (14.24) | 38.04  (44.8)

mMOSUM

am =+/m+1

ha =0.1 0.88 (3) | 1.92 (4.48) | 2.32 (5.08) || 2.44  (5.72)
ha =04 1.76  (3.68) | 2.88 (6.08) | 2.2 (5.04) || 3.96  (8.92)
h2 =09 44 (7.76) | 4.76 (8.84) | 3.6 (6.36) || 4.64  (9.36)
MOSUM hg

10 | 20 20
4.24 (8.4) | 5.04 (10.56) || 5.52  (11.16)
TABLE 1

Empirical size (in %) for a nominal level of 5 (10) %, m = 100, where the asymptotic
critical values for the open-end procedure are used with the exception of the MOSUM
statistic.

match the monitoring length of 200 resp. 1000 (i.e. Nh = 200 resp. Nh = 1000),
while for the other three statistics the critical value for the open-end procedure
is used).

Because we are mainly interested in a comparison of all four monitoring
schemes, we use the location model X; = p + Algsp+) + € with g = 0 and
A # 0. The procedures are based on G(Xy, u) = H(X¢, u) = Xt — p. We use the
true error variance o2 = 1.

Table 1 reports the empirical sizes for the different procedures. The MOSUM
procedure holds the size quite nicely. All other procedures are conservative in
particular for smaller values of v with the exception of the mMOSUM with a
large bandwidth hy = 0.9 and v # 0. The problem in this case is that for the
first 10 observations the detector sum only depends on one observation, namely
X4k, which is quite volatile (and asymptotically negligble hence not taken
care of by the asymptotic considerations). For v = 0 this is not a problem,
but other values of v put more weight on those early detector values, resulting
in too many false positives right after monitoring starts. This can clearly be
seen by the false positives at the very beginning of the monitoring sequence
as shown (circled in) in Figure 2 (¢) and (d)). A simple solution is to wait
for a,, e.g. a, = /m+1 observations before starting the monitoring (which
is permitted by Assumption RC.2). This solves the problem according to our
empirical results given in the same table. Furthermore, the empirical size of the
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N=2 N =10
Y
k* 0 0.25 0.45 0
CUSUM 0.1m 95.84 95.24 92.4 99.76
0.4m 86.36  84.48 76.24 99.6
m 45.32  42.76  31.16 98.88
1.5m 13.24 11.76 8.68 98.16
Page-CUSUM 0.1m 97.08  96.64 94.8 99.76
0.4m 92.16  90.76  85.36 99.64
m 55.36  50.32  39.76 99.4
1.5m 14.96 12.52 9.72 98.92
mMOSUM
h2 =0.1 0.1m 97.32 96.88 93.76
04m 91.92 89.72 82.08
m 51.48  46.28 34.4
1.5m 15.04 12.28 9.24
h2 =0.4 0.1m 96 95.28 87.64
04m 94.84 93.16 82.36
m 74 67.08 46.68
1.5m 21 16.28 9.12
h2 =0.9 0.1m 69.52  50.36 5.04
04m 68.8 47.08 5.04
m 57.6 32.64 5.04
1.5m 37.36 18.48 5.04
mMOSUM
with am = /m+1 =11
ha =0.1 0.1m 97.32 96.88 95.16 99.48
04m 91.92  89.72 84.2 99.4
m 51.48  46.24 37.08 97.12
1.5m 15 12.28 9.52 91.36
ha =04 0.1m 96 95.28 91.44 99.72
04m 94.84 93.12 86.6 99.72
m 74 67.04 52.6 99.76
1.5m 21 16.24 10.6 99.64
ha = 0.9 0.1m 69.52  62.68 38.28 93.44
04m 68.8 59.2 28.76 93.36
m 57.56  42.48 14.92 92.64
1.5m 37.32 24.4 8.32 91.54
MOSUM ha
10 20 20
0.1m 45.92 75.68 79.16
04m 24.12 56.96 63.88
m 10.4 30 44.64
1.5m 6.68 15 36.56
TABLE 2

Size-adjusted power (in %) for the size 5%
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Fig 1: Run-length-plot (A = 1,7 = 0.25) when monitoring only starts after
am = v/m+1 = 11 observations, level at 5%

MOSUM statistics are close to their nominal size. The other procedures use the
critical values for the open-end procedure so they are in particular conservative
for the smaller monitoring period. Furthermore, the asymptotic critical value
is based on a supremum while the actual critical values (for normal errors) are
based on a finite maximum, which shows that even with correct monitoring
length the asymptotic critical values are conservative. Similarly, the plot of the
run lengths in Figure 2 clearly shows a tendency of the mMOSUM with v = 0.25
and he = 0.9 to raise a significant number of false alarms at the very beginning
of the monitoring — an effect that disappears if one starts monitoring only with
an delay of a,, observations (see Figure 1). From these plots, one can clearly see
that the MOSUM procedures also have some trouble with early (and in contrast
to the mMOSUM not only very early) false alarms.

While for a monitoring length of m = 100 in this simple mean change situa-
tion, the asymptotic approximation yields reasonable results, for smaller historic
lengths, more dependent data or more complicated situations, the asymptotic
distribution may not yet provide good enough approximations in practise. In
these cases, bootstrap methods can be helfpul but have to be tailorsuited to
the particular situation at hand. Kirch (2008) discuss several sequential boot-
strap schemes for the mean change problem with i.i.d. errors, while Huskova
and Kirch (2012) discuss the linear regression case. Both papers prove validity
of the proposed method for the CUSUM statistics.

Table 2 reports the size-corrected power for all procedures. First of all, some-
what surprisingly the use of v = 0 is always best in all situations possibly due to
the fact that the other choices of v only yield an advantage for an almost imme-
diate change point. This can best be seen by noting that all detectors reject as
soon as they are larger than the corresponding critical curve ¢;/w;(k;~). For a



1600 C. Kirch and S. Weber

0.030
I

cusum cusum
page_cusum page_cusum

~— mod. mosum h0.1 ~— mod. mosum hO0.1

mod. mosum h0.4 mod. mosum h0.4

mod. mosum h0.9 mod. mosum h0.9

mosum h10T20

mosum h20T10

0.010
I

0.025
I

mosum h10T20
mosum h20T10

0.020
0.006 0.008
I
'
'

0.015

0.010
0.004
I

0.005
0.002
I

8 8 f- —————————
8 8 -
S T T T T S T T T
0 50 100 150 200 0 50 100 150 200
Monitoring Time Monitoring Time
(a) k* = 10,A = 0.5,7 = 0 (b) k* = 150, A = 0.5,7 = 0
8 4 cusum cusum
s

page_cusum page_cusum
~— mod. mosum h0.1 ~— mod. mosum h0.1
mod. mosum h0.4 mod. mosum h0.4
mod. mosum h0.9
mosum h10T20
mosum h20T10

~ mod. mosum h0.9
—— mosum h10T20
mosum h20T10

'
'
0.05

I
ol

0.06
I

0.02 0.04
I I
0.02 0.03 0.04
I I I

0.01
I

0.00
y
|
|
0.00
)
|
I

T T T T T T T T T
0 50 100 150 200 50 100 150 200

Monitoring Time Monitoring Time
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Fig 2: Run-length-plot (level at 5%)

given detector j, comparing the critical curves for different values of + one sees
that at the very beginning the curves for v # 0 are below the ones for v = 0
(which also explains the problem with the false positives at the very beginning
in these cases), but very early they cross and the one with v = 0 is beneath the
others. Because of this clear superiority we only report results for v = 0 for the
longer monitoring period.

The mMOSUM detector with hy = 0.4 and somewhat less so the Page-
CUSUM perform very well in all situations and are only outperformed by an
mMOSUM with a bandwidth hs chosen according to whether an early, medium
or late change occurs. To elaborate: For later changes the CUSUM detector
contains more null observations than the mMOSUM detector (that disregards
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the first |hok| observations). Therefore, more contaminated observations need
to be included in case of the CUSUM before they dominate the detector enough
to become significant. This fact was precisely the motivation for introducing
the mMOSUM detector as well as Page-CUSUM detectors. In a sense, the
bandwidth hy regulates how many observations (as a percentage of the cur-
rent position) are discarded. Consequently, the ’best’ choice of hy depends on
the (unknown) position of the change point, i.e. the later the change is expected
the larger ho should be chosen. In fact, this is confirmed by the simulation re-
sults in Table 2, where the best power for the different change scenarios is given
in bold. At the same time, one can see that even in cases where they do not pro-
vide the detection rate, the mMOSUM with h = 0.4 (and somewhat less so the
Page-CUSUM) do give satisfactory results, so that those are a good compromise
if the user is uncertain about when changes are most likely to occur).

This is also confirmed by the plots of the run-lengths 2 as well as 1, which
are rescaled so that the area under the curve integrates to the detection rate.
Furthermore, these plots clearly show that the two MOSUM procedures have
a quicker detection time than the other statistics, but at the cost of a much
lower detection rate (and a somewhat higher false detection rate in particular
at the early stages of the monitoring). While a smaller choice of hy gives the
fast detection rate, for this choice the loss of detection power is dramatic. This
effect also occurs in the a-posteriori usage of MOSUM procedures, which are
mainly useful in the context of multiple change point estimation and much less
so for testing (confer also Eichinger and Kirch (2018)).

Furthermore, the MOSUM procedure has the lowest power and more impor-
tantly, the power stays well away from one even if a longer monitoring period
is used, where all other procedures have an empirical (size-corrected) power of
almost 1 meaning they may take a while but eventually detect all change points.
The MOSUM procedure on the other hand misses a significant amount of change
points but those that are detected are detected quite quickly.

3.2. Data analysis

In this section, we analyze two data sets that have already been discussed in the
literature to compare the performance of the four different monitoring schemes.
One data examples shows a mean change and thus illustrates the performance
in the location model. The second data set involves a linear regression model
with a change in the error variance but no change in the regression coefficient
allowing us to get an impression about both the behavior under the null as well
as under alternatives.

We first analyse the Boston Homicide data set contained in the R-package
strucchange (see Zeileis et al. (2002)) containing the monthly number of youth
homicides in Boston. In early 1995 a policing initiative — the Boston-Gun-Project
was started in order to lower the youth homicides. The so-called ’Operation
Ceasefire’ began in the late spring of 1996. Zeileis (2006) analyzed this data set
in an a-posteriori change point setting not too different from ours showing that
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indeed a change occurred around that time. While the data is count data that
could well be modelled by a Poisson model, we will not make use of this fact in
this analysis, although the theory allows for this (see also Section 6.5 in Kirch
and Kamgaing (2015) or Section 10.4 in Kirch and Kamgaing (2016)). Instead we
simply use it as input sequence for the location model from Section 1.2.2 based
on the least-squares estimating and monitoring functions that have already been
used in the previous section. The asymptotic theory derived in this paper allows
to use discrete errors in that manner with the drawback that the corresponding
procedure is not optimal in this situation but the advantage of not having to
specify and justify a particular count time series model. In the same spirit, it
illustrates the applicability of the proposed methods to non-Gaussian data.

Figure 3 gives the time series as well as the corresponding detectors
T;(m,k)/(cjw;(k)) (for v = 0). This normalization is chosen for easier visual
comparison of the different procedure as in all cases the null hypothesis is re-
jected as soon as the vertical 1-line is crossed. The change should occur around
50 in the time series and we consider historic data lengths of 24 (late change),
36 (medium late change) and 48 (early change).

Only the mMOSUM (with hy = 0.4) detects the change point within the
monitoring period in all cases where the detection time is quicker the earlier the
change occurs within the monitoring period. The MOSUM (hy = 7), CUSUM
and Page-CUSUM detect the change point only within the monitoring period
for m = 48), where in this case the MOSUM has the quickest detection rate
(only merely reaching significance).

As a second example we apply our methodology to a data set from finance,
where the effective exchange rate regime is often analysed by a linear regression
model on other currencies. This yields valuable insight into whether the currency
is allowed to fluctuate freely by market forces or whether it is to all or some
extend fixed to some other currency. In our case, we consider the daily log returns
of the Chinese Yuan Renminbi (CNY) and use a basket of western currencies
as regressors. This is motivated by the fact that the CNY used to be fixed to
the US-Dollar but has since been announced to allow to move more freely. The
same data set has been used by Zeileis et al. (2010), where also much more
information on the model, the motivation behind it as well as the data set can
be found.

More precisely, we apply a linear regression setup to the daily log returns
of the Chinese Yuan Renminbi (CNY) from July 26nd, 2005 to July 31, 2009,
where we use the daily log returns of the following currencies as regressors:
USD (US Dollar), JPY (Japanese yen), EUR (Euro), GBP (British pound). In
the analysis of the data set in Zeileis et al. (2010) no change in the regression
coefficients can be found, but a change in the residual variance has been found.
For this reason, we will use the procedures based on the functions G and H from
Section 1.2.1 to find changes in the regression coefficients (or actually the mean
of the residuals) as well as G and H from Section 1.2.1 to find variance changes
in the residuals. The results for a monitoring period of m = 40 can be found
in Figure 4. Subfigure (a) shows the estimated residuals where the regression
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Fig 3: Actual time series and detector statistics for Boston Homicide Data

coeflicient is estimated from the historic data set. The vertical line indicates
the point in time when monitoring starts. A visual inspection shows no visible
mean shift but several possible changes in variance. Indeed, both assumptions
are confirmed by the monitoring, with no monitoring scheme detecting a shift
in the residuals (Subfigure (b)) but all of them detecting a variance change
(Subfigure (a)). There are some interesting observations from the latter example:
The CUSUM, Page-CUSUM and mMOSUM (h = 0.4) give an alarm around
90, where the increase starts around 70. This coincides with a period of smaller
variability between 70 and 100 as can be seen in (a). The mMOSUM with
h = 0.9 gives an alarm around 120, which corresponds to a series of some large
variability shortly before 120. The other statistics are not influenced by this
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Fig 4: Estimated residuals and detector statistics for exchange rate data, m = 40
(indicated by the vertical line in (a))

because this is balanced out by the relatively small variability from before. This
is also the reason why the three previously significant statistics drop under the
significance line again at that point. Around 160 all monitoring schemes start
to increase again and all but the CUSUM become eventually significant during
the observation period. This is due to the large variability at the end of the
monitoring period, where the mMOSUM (h = 0.9) is fastest, followed by the
mMOSUM (h = 0.4), the Page-CUSUM, the mMOSUM (h = 0.1) and the
MOSUM (h = 20). Only the CUSUM is not yet significant because all residuals
from 41 to the present are used so that it takes much longer for a late change
to be detected.

Both examples confirm the balanced behavior of the mMOSUM with A =
0.4 and to a somewhat lesser degree the Page-CUSUM detector making them
preferable in many situations.

4. Proofs

Because the proofs are in parts similar, we do not provide all details of all
proofs, but restrict our attention to the key steps. Missing details can be found
in Weber (2017), Part 1.

Proof of Theorem 2.1. By RC.2 and RC.3 it holds

m—+k

sup w(m7k.) Z H(Xt7§m)
1<k<N(m) i=m+|kha |+1

N D SR C AN R LR STy

m—+k m
j=m+|kha|+1 j=1
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E\” k k k
<2max | sup (— | p{— |, sup —p
1<k<m \ m k>m M

1 m1/2 m-+k N
X sup min (17, ) Z H(X¢,0m)
1<k<N (m) mz"7kY K i=m—+1
m—+k m
- Z H(X:,60) — —B (6o) ZG =op(1)
j=m+1 Jj=1
(®)
Consequently, it is sufficient to consider the limit distribution of
m+k I_kh m
sup  w(m,k) Z H(X:,60) — 72 ZG
1Sk<N (m) j=mt[kha | +1 i=1
With the functional limit theorem in RC.1a)i) it holds for any 7, N > 0
m—+k m
k— |kh
sup  w(m, k) Z H(X;,00) — %B(GO) ZG(X
Lrm]<k<Nm j=m+kha|+1 J=1 A

m|mt|

= swp sup p(%ﬂ) \/1— > H(X;,60)

k k41
LTmJ<k<NmE<t< ™ j=m+||mt|ha|+1

mt—mthgl -
i) = Lt} B Yo,

A

REN sup p()[IW1(1+1) = Wi(1+ tha) = (¢ = tha) Wa (1)
TS

For a more general weight function p, first note that by RC.1 (b) it holds for all
0<a<i

1 m+k

max —————— Z H(Xtveo)

1<k<m m3—afo
(LI | Py S

1 m-+k
< -
= 1I<I}ca<xm mifo‘ka Z H(Xt700) |
t=m+1
ha m+[kh2J
+ max ———————— Z H(Xtveo) :OP(l)

12k md = (bha)” || 4
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From this we conclude for v < a < %

m+k

sup  w(m, k) Z H(X;,00) — mﬂB(QO)ZG(Xj’OO)

m
1<k<tm .

j=m+|kha|+1 j=1

1 [k w
o B F
am <k<Tm j=m+|kha]+1

e | OO SEES

am<k<tm

m+k
1
< su t t su _— H ng
0<tI<)'r p()lgkggm ml/2—afo Z (X;,00)

j=m+|kho]+1

+Op(1) sup tp(t) =op(1)
o<t<r

A

(9)

as 7 — 0 (uniformly in m), where in the last line also RC.1 (a) was used. This

completes the proof of (a)(i). For (b) note first that by RC.1(c) it holds

N ha Vi
sup T Z H(Xt,go) < sup Qkh Z H(Xtago)
K>k P— K>k [Fhe] t=m+l
kel Fmha] || =
< gz s LSS 0] - onn)
mi2 ] 1> kyha] t=m-+1
From this, RC.1(c) and RC.2(b) we conclude
m+k
sup w(m, k) Z H(X;,00)
k2Tm j=m+|khs|+1 A
) I & T m+k
<Ll o E, (_) sup _Vkm S H(X;,6)
VT kztmm’ \m) g>rm j=m+ [kho]+1
L o.) 20

(10)

as T — oo (uniformly in m). Analogously, we get for the Wiener process as in

RC.1 for T — oo uniformly in m by the law of iterated logarithm

Sl>l¥ p(t) HWl(l + t) — W1(1 + thz)”A = Op(l).
t>
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By RC.1 and RC.2 it holds for m — oo and T fixed

m~+min(k,mT)
sup ||w(m, min(k, mT)) Z H(X},00)
kzTm j=m-+|min((k,mT)h2)]+1

—w(m, k)%B(Go) Z G(Xj, 90)

A

REN igp lo(min(¢, T))(W1(1 4+ min(¢, T)) — W1 (1 + min(¢, T)hs))

—t(1 = ha2)p(t)Wa(1)]| -

A careful combination of the above results yields assertion (b)(i).
The proof of (ii) is very close, so we concentrate on the difference. First, by
an argument similar to (8) it is sufficient to consider the limit distribution of

m-+k m
sup  w(m k) max || > H(X;,00) — —— B(6) > G(X;,0
LSk<N (m) OSi<h it j=1

A

The main difference in the proof is the following step:

su min (| ———, max H(X:,0,,
1<k<1€(m) (mzvm k >1<i<k tz%:ﬂ (X4, 0m)
m+k m
—1i
Y #xe) - o) S e,
t=m+i+1 Jj=1
1 1/2 m-’rl -
<2 sup min( — ’m. ) Z H(X:,0pm)
1<i< N (m) mz=7 t=m+1
m-1 m
— Z HXtﬁo——BOo G(X
t=m+1 =1

= Op(l).

A similar argument can be used to obtain analogously to (9)

m+k m
sup w(m,k) max H(X,,0p) B(6 G(X;,0 =op(1
1<k<me ( )O<z<k: o mZ_H_H 3290 O)j; (Xj.00) p(1)

A

as 7 — 0 uniformly in m.
A major difference in the proofs occurs when dealing with k& > T'm as in (10),



1608 C. Kirch and S. Weber

where the key difference is the following:

\/m m+1
Kotk 1<iSk Z H(X;, 00)
- j=m+1
m-+1 m-+1
1 1 1 vm
< = max —— H(X;,0))|| + —= max ——— H(X,,6
T i<ism ym j:;‘rl ( ! O) \/Tméiéﬁm \/Tm j:;ﬁ-l ( J O)
1 T1/4\/ﬁ m+i
+ =7 max = ——— H(X,,0
T1/4 \/ngngm Tm ];;’_1 ( J O)
m-+1
1 vT
+ o= max S ST H(X,0)|| = T40R(1),

Jj=m+1

where this follows from RC.1 (b) for the first summand and RC.1 (c) for the
last three summands.

The other parts of the proof are analogously to the arguments for (i). O

Proof of Theorem 2.2. By Huskovéd and Koubkova (2005), proof of Theorem 1,
it holds

(Wi (1 +4) — (1)} 2 {(1 LW <1t+t>}

hence

W1<1 + t) — tWQ(t) — (Wl(l + thg) - tthg(l))

t v
t>0 (]_ —+ t) (m) A
(1+t)W, (1it) — (1 +the)Wy (11@22)

= sup 5

t>0 1+1¢) (%th) A

W, (—f2r

D Wi(r) ' (17(17}””)
D —-1-Q1-hy)r)———=

Oiljgl rY ( ( 2)7) Y ’

A

where the last equality follows from the substitution r = t/(1 + t), proving
(a). The proof of (b) is analogous, where in the last step the mapping (s,t) —
(s/(1—s),t/(1 —t)) has been used. O

Proof of Theorem 2.3. The proof is analogous to the proof of Theorem 2.1 and
therefore omitted. d

Proof of Theorem 2.4. As in the proof of Theorem 2.1 by RC.6 it is sufficient
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to consider

m+k

sup  war(ha, k)| D H(Xi,00) ——B (60) Y G(X;
1<k<N(m)+1 b hat 1 = N
m—+k
= sup  wyhg, k) > H(Xi00)|| +op(1)
1<k<N(m)+1 = b hat1 N
k+hgy
2 sup hyPek/ha) || YD H(Xi00)| +op(1)
1<k<N (m)+1 P N
By RC.5 we get
k+hy
sup  hy Pplk/ha) || S H(Xi,6)
1<k<N(m)+1 ikt 1

= sup Ky Pp(k/ha) Wik + ha) — Wl<k>||A
1<k<N(m)+1

1/v 1/v
+0p max % min | 1, hy
ISh<N(m)+1  p} /2 k

= sup By P p(k/ha) Wik + ha) — Wi (E)|| 4 + op(1).
1<k<N(m)+1

The first summand converges to

sup p(t)[|[Wi(t + 1) — Wi(t)]]a,

0<t<oo

which is well-defined by Theorem 1.2.1 in Cs6rg6 and Révész (1981). This com-
pletes the proof. O

Proof of Corollary 2.1. The proof is analogous to the proof of Theorem 2.4,
where the supremum is taken over a finite stretch after substituting & with

k/ha. O

Proof of Theorem 2.5. For better readibility we use h = hy in this proof. Some
calculations yield

m —1 m m
— By = (Z :clT:m) ZfBiXi —By= C;f% 25’3161
i1 i=1 i=1

With ¢; = X; — 273, this implies

m+k m+k m—+k T 1 m
Z a = Z € — < Z 131) C:nla Z:Blfi, (11)
i=1

i=m-+k—h+1 i=m-+k—h+1 i=m-+k—h+1



1610 C. Kirch and S. Weber

where C,,

m

x;x7. Denote by c; the first column of C, so that by

1
m

eI YT wie; = Z?ll €; it holds

m+k ~ m+k hm
U W )

i=m-+k—h+1 i=m+k—h+1
m+k T
T ( ) —hel | (CP—C™) (12)
i=m+k—h+1

m+k T

T —1

T i - h‘cl C
1 m+k h+1

ol (€ - o) zmez (13)
Because {€;,1 < i < oo} and {x;,1 < i < oo} are independent, it holds
m
Zwiei = Op(\/%) (14)
i=1
Furthermore, observe that by (6)
1 h et —1
sup  min - | —=c; (C,, —C
1<k< N (m) (\/_ hi—vk ;) vm ! ( )

< \/gcl (C,.l—C™') =op(1). (15)

By the stationarity of the regressors x; we obtain

é

1 1 m+k
sup ——= < Y 1> Z z; — hey
1Sk<Nh Vh ha vk i=mtk—ht1
5 1 k+h
= sup ——min x; — hcy
1<k<Nh VM (\/_ h“?k%) 121 !
k+h
h
<\ Z @i —
1<k<Nh il
k4+h k
sup xz; — (k+h)e; sup — x; — ke
\1<k<Nhh Z ' 1<k<Nhh Z_; '
k+h B
<(N+1) sup x; — (k+h)er| + N sup x; — ke
< )1<k<Nh Nh+h Z ’ 1<k<nh NR Z ’

1=1

= Op(l).
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Putting this together with (13), (14) and (15) yields assertion (a).
For (b) it is sufficient to consider

1 k+h
sup min x; — he
koNh (f Wi kv ) ; e
. 1
— sup mm< " ;> |W1(k+h) — W1i(k)| + Op ((k—f—h)u))
k>Nh h2=vkv
1 1 1
B\ ¥ k B\ Y (k+h)*
< sup (B u ol sup () LR
k>Z\I:/)h<k) (h ) ( )' pll )k>1€h k Vh
< supt=F [Wy(t+1) = Wi @)l] + op(1) = op(1)
t>N
by Theorem 1.2.1 in Cs6rgd and Révész (1981), RC. 4a) and c). O

Proof of Theorem 2.6. We start with the proof for the mMOSUM under RC.7
(d). Choose k = |zom]. If |kha| < k*, then by RC.7 (a) and (b), it holds

m+% R m-+k* R m+‘15 R
> HX0m) = > HXu0n)+ > H(Xy,0n)
t=m+|kha |+1 t=m+|khga|+1 t=m+k*+1

=m((zo —k"/m) By +op(1)) 2 m((x0 — A) Ex +op(1)),
from which we derive by RC.7 (¢) and (d)

w(m, K)Ta(m, k, ha) > v/mp (2o +0(1)) (z0 — A) (| a4 + 0p(1)) > co.
Similarly, if |khy| > k*, then
w(m, k)T2(m, k, ha) > v/m p (zo + o(1)) 2o(1 — ha) (|Ex || 4 + 0p(1)) > co.

In case of RC.7 (c) and (e) we get similarly by the choice k = [k*/hs]

m-+k
sup w(m, k) Z H(X¢,0m)
k>1 mt [ kha ] +1

A

Sy (%) m (1= ha) (|Eull s +op(1)) 2 o,

The proof of the Page-CUSUM (j = 3) follows from this by choosing i = |khs|
or from the proof for the CUSUM (Kirch and Kamgaing (2015)) by choosing

i = 1. For the MOSUM statistics we get analogously with the choice k = |zoha]
under RC.7(c) and (d)

w(ha, B)Ca(m, &y ha) = /hap (2o + o(1))min(zo — A, 1) (| Ex| 4 + op(1)) — oo,
completing the proof. O
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