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The proof of Lemma 15 in [1] is invalid because it uses that the distribution of
Y given Ỹ is independent of X. Unfortunately, this is not true even if Ỹ given
Y is independent of X, as can easily be verified using Bayes rule.

Fortunately, the other results [1] that depend on Lemma 15 can still be
proved, using an analogue to Lemma 15 for the label flipping model [2, 3].
We state this alternate lemma and offer a concise proof, using the notation of
[1].

Lemma 1. Let (X,Y, Ỹ ) be jointly distributed. Assume Ỹ given Y is indepen-
dent of X, denote ρi = Pr(Ỹ �= i|Y = i) and assume ρ0 + ρ1 < 1. Then for any f ,

(1− ρ0 − ρ1)(RP (f)−R∗
P ) = RP̃ ,α(f)−R∗

P̃ ,α

where

α =
1

2
+

1

2
(ρ0 − ρ1).

Proof. We have

η̃(x) = Pr(Ỹ = 1|X = x)

= Pr(Ỹ = 1|Y = 1, X = x) Pr(Y = 1|X = x)

+ Pr(Ỹ = 1|Y = 0, X = x) Pr(Y = 0|X = x)

= (1− ρ1)η(x) + ρ0(1− η(x))

= (1− ρ0 − ρ1)η(x) + ρ0.
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It follows that

η(x)− 1

2
=

η̃(x)− α

1− ρ0 − ρ1

where

α =
1

2
+

1

2
(ρ0 − ρ1),

and therefore

(1− ρ0 − ρ1)(RP (f)−R∗
P ) = (1− ρ0 − ρ1)EX [|η(X)− 1

2 |1{u(f(X)) �=u(η(X)− 1
2 )}}]

= EX [|η̃(X)− α|1{u(f(X)) �=u(η̃(X)−α)}]

= RP̃ ,α(f)−R∗
P̃ ,α

where we have used Eqns. (20) and (21) from [1] (Note that the left-hand side
of Eqn. (21) should be RP,α(f)−R∗

P,α).

Remark 1. π0+π1 < 1 is equivalent to ρ0+ρ1 < 1 provide q := Pr(Y = 1) and
q̃ := Pr(Ỹ = 1) satisfy 0 < q, q̃ < 1. To see this, suppose ρ0 + ρ1 < 1. Bayes’
rule gives

π0 =
ρ1q

ρ1q + (1− ρ0)(1− q)

and

π1 =
ρ0(1− q)

ρ0(1− q) + (1− ρ1)q
,

and algebra leads to

1− π0 − π1 = (1− ρ0 − ρ1)
q(1− q)

[ρ1q + (1− ρ0)(1− q)][ρ0(1− q) + (1− ρ1)q]
.

The ratio on the right is positive provided 0 < q < 1, and thus π0 + π1 < 1. The
reverse implication uses identical reasoning, and establishes that if π0 + π1 < 1,
then

ρ0 =
π1q̃

π1q̃ + (1− π0)(1− q̃)

and

ρ1 =
π0(1− q̃)

π0(1− q̃) + (1− π1)q̃

and ρ0 + ρ1 < 1. In light of this remark, it should be stipulated that 0 < q, q̃ < 1
throughout Section 7.

Remark 2. The remainder of the arguments in Section 7 now carry forward
with this new α. The only difference is that a different estimator for α = 1

2 +
1
2 (ρ0−ρ1) is needed. Such an estimator is obtained from the formulas for ρ0 and
ρ1 in terms of π0, π1, and q̃ in the previous remark. Since q̃ can be estimated
easily from the noisy training data, and π0 and π1 can be estimated in the same
way as described in the paper, we still get a consistent estimator for α, and this
estimator will still satisfy Proposition 17 (the rate of convergence of α̂ to α)
under (C’). Thus, the proofs of the main consistency results still hold.
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Remark 3. The alternate lemma described above actually allows us to drop the
condition (A’) in the consistency results, and return to the weaker condition
(A).

Remark 4. In light of Remark 1 above, the assumption in the co-training the-
orem of Section 8 can be replaced by the equivalent condition that the sum of
the false positive and false negative rates of h is less than 1. In light of Remark
3, the last sentence of Section 8 should be modified so that assuming (A’) is no
longer required.
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