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Abstract: We consider a semiparametric mixture of two univariate den-
sity functions where one of them is known while the weight and the other
function are unknown. We do not assume any additional structure on the
unknown density function. For this mixture model, we derive a new suffi-
cient identifiability condition and pinpoint a specific class of distributions
describing the unknown component for which this condition is mostly sat-
isfied. We also suggest a novel approach to estimation of this model that
is based on an idea of applying a maximum smoothed likelihood to what
would otherwise have been an ill-posed problem. We introduce an iterative
MM (Majorization-Minimization) algorithm that estimates all of the model
parameters. We establish that the algorithm possesses a descent property
with respect to a log-likelihood objective functional and prove that the al-
gorithm, indeed, converges. Finally, we also illustrate the performance of
our algorithm in a simulation study and apply it to a real dataset.
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1. Introduction

We consider a general case of a two-component univariate mixture model where
one component distribution is known while the mixing proportion and the other
component distribution are unknown. Such a model can be defined at its most
general as

g(x) = (1− p)f0(x) + pf(x), (1.1)

where f0 is a known density component, while p ∈ (0, 1) and f(x) are the un-
known weight and the unknown density component, respectively. The semipara-
metric mixtures of density functions have been considered by now in a number
of publications. The earliest seminal publications in this area are Hall and Zhou
[16] and Hall et al. [15]. From the practical viewpoint, the model (1.1) is re-
lated to the multiple testing problem where p-values are uniformly distributed
on [0, 1] under the null hypothesis but their distribution under the alternative
is unknown. In the setting of model (1.1), this means that the known distri-
bution is uniform while the goal is to estimate the proportion of the false null
hypothesis p and the distribution of the p-values under the alternative. More
detailed descriptions in statistical literature can be found in e.g. Efron [11] and
Robin et al. [27]. Historically, whenever a two-component mixture model with a
known component was considered, some assumptions were imposed on the un-
known density function f(x). Most commonly, it was assumed that an unknown
distribution belongs to a particular parametric family. In such a case, Cohen [7]
and Lindsay [22] used the maximum likelihood-based method to fit it; Day [10]
used the minimum χ2 method, while Lindsay and Basak [23] used the method
of moments. Jin [20] and Cai and Jin [5] used empirical characteristic functions
to estimate the unknown cumulative density function under a semiparametric
normal mixture model. A somewhat different direction was taken by Bordes
et al. [3] who considered a special case of the model (1.1) where the unknown
component belonged to a location family. In other words, their model is defined
as

g(x) = (1− p)f0(x) + pf(x− μ), (1.2)

where f0 is known while p ∈ (0, 1), the non-null location parameter μ and the
pdf f that is symmetric around μ are the unknown parameters. The model of
Bordes et al. [3] was motivated by the problem of detection of differentially ex-
pressed genes under two or more conditions in microarray data. Typically, a test
statistic is built for each gene. Under the null hypothesis (which corresponds to
a lack of difference in expression), such a test statistic has a known distribution
(commonly, Student’s or Fisher). Then, the response of thousands of genes is
observed; such a response can be thought of as coming from a mixture of two
distributions: the known distribution f0 (under the null hypothesis) and the
unknown distribution f under the alternative hypothesis. Once the parameters
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p, μ, and f are estimated, we can estimate the probability that a gene belongs
to a null component distribution conditionally on observations.

Bordes et al. [3] establish some sufficient identifiability conditions for their
proposed model; they also suggest two estimation methods for it, both of which
rely heavily on the fact that the density function of the unknown component
is symmetric. A sequel paper, Bordes and Vandekerkhove [4], also establishes
a joint central limit theorem for estimators that are based on one of these
methods. There is no particular practical reason to make the unknown com-
ponent symmetric and Bordes et al. [3] themselves note that “In our opinion,
a challenging problem would be to consider model (1.2) without the symmetry
assumption on the unknown component”. This is the goal we set for ourselves in
this manuscript. Our approach is based on, first, defining the (joint) estimator
of f and p as a minimizer of the log-likelihood type objective functional of p
and f . Such a definition is implicit in nature; however, we construct an MM
(Majorization-Minimization) iterative algorithm that possesses a descent prop-
erty with respect to that objective functional. Moreover, we also show that the
resulting algorithm actually converges. Our simulation studies also show that
the algorithm is rather well-behaved in practice.

Just as we were finishing our work, a related publication Patra and Sen [26]
came to our attention. They also consider a two-component mixture model with
one unknown component. Their identifiability approach is somewhat more gen-
eral as our discussion mostly concerns sufficient conditions for specific functional
classes containing the function f . They propose some general identifiability cri-
teria for this model and obtain a separate estimator of the weight p; moreover,
they also construct a distribution free finite sample lower confidence bound for
the weight p. Patra and Sen [26] start with estimating parameter p first; then,
a completely automated and tuning parameter free estimate of f can be con-
structed when f is decreasing. When f is not decreasing, one can start with e.g.
estimating ĝ based on observations X1, . . . , Xn; then, one can construct e.g. a
kernel estimate of unknown f that is proportional to max(ĝ − (1 − p̂)f0, 0). In
contrast to their approach, our approach estimates both p and f jointly and the
algorithm works the same way regardless of the shape of f .

The rest of our manuscript is structured as follows. Section 2 discusses iden-
tifiability of the model (1.1). Section 3 introduces our approach to estimation
of the model (1.1). Section 4 suggests an empirical version of the algorithm first
introduced in Section 3 that can be implemented in practice. Section 5 provides
simulated examples of the performance of our algorithm. Section 6 gives a real
data example. Finally, Section 7 rounds out the manuscript with a discussion
of our result and delineation of some related future research.

2. Identifiability

In general, the model (1.1) is not identifiable. In what follows, we investigate
some special cases. For an unknown density function f , let us denote its mean
μf and its variance σ2

f . To state a sufficient identifiability result, we consider a
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general equation

(1− p)f0(x) + pf(x) = (1− p1)f0(x) + p1f1(x). (2.1)

We also denote variance of the distribution f(x) as a function of its mean μf as
V (μf ).

Lemma 2.1. Consider the model (1.1) with the unknown density function f .
Without loss of generality, assume that the first moment of f0 is zero while its
second moment is finite. We assume that the function f belongs to a set of
density functions whose first two moments are finite, whose means are not equal
to zero and that are all of the same sign; that is, f ∈ F = {f :

∫
x2f(x) dx <

+∞;μf > 0 or μf < 0}. Moreover, we assume that for any f ∈ F the function

G(μf ) =
V (μf )
μf

is strictly increasing. Then, the equation (2.1) has the unique

solution p1 = p and f1 = f .

Proof. First, let us assume that the mean μf > 0. Then, the assumption of our
lemma implies that the function V : (0,∞) �→ (0,∞) is strictly increasing. Let
us use the notation θ0 for the second moment of f0. If we assume that there are
distinct p1 �= p and f1 �= f such that (1 − p)f0(x) + pf(x) = (1 − p1)f0(x) +
p1f1(x), the following two moment equations are easily obtained,

ζ = p1μf1 = pμf (2.2)

and
(p1 − p)θ0 = ζ(μf1 − μf ) + p1V (μf1)− pV (μf ), (2.3)

where ζ > 0. Our task is now to show that if (2.2) and (2.3) are true, then p = p1
and f = f1. To see this, let us assume p1 > p (the case p1 < p can be treated in
exactly the same way). Then from the first equation we have immediately that
μf1 < μf ; moreover, since the function G(μf ) is a strictly increasing one, then
so is the function μf +G(μf ). With this in mind, we have

μf1 +
V (μf1)

μf1

< μf +
V (μf )

μf
.

On the other hand, (p1 − p)θ0 ≥ 0 which implies

0 ≤ ζ(μf1 − μf ) + p1V (μf1)− pV (μf ) = ζ(μf1 − μf ) + ζ

(
V (μf1)

μf1

− V (μf )

μf

)
.

Therefore, this implies that

μf1 +
V (μf1)

μf1

≥ μf +
V (μf )

μf
.

and we end up with a contradiction. Therefore, we must have p = p1. This, in
turn, implies immediately that f = f1.

The case where μf < 0 proceeds similarly. Let us now consider the case
where the variance function V : (−∞, 0) → (0,∞) and is strictly monotonically
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increasing. As a first step, again take p1 > p. Clearly, the first moment equation
is yet again (2.2) where now ζ < 0. If p1 > p, we now have μf1 > μf and, due

to the strict monotonicity of G(μ), we have μf1 +
V (μf1

)

μf1
> μf +

V (μf )
μf

. On the

other hand, since (p1 − p)θ0 ≥ 0, we have

0 ≤ ζ(μf1 − μf ) + p1V (μf1)− pV (μf )

= ζ

({
μf1 +

V (μf1)

μf1

}
−

{
μf +

V (μf )

μf

})
.

Because ζ < 0, the above implies that
{
μf1 +

V (μf1
)

μf1

}
−

{
μf +

V (μf )
μf

}
< 0 which

contradicts the assumption that the function G(μ) is strictly increasing.

Remark 1. To understand better what is going on here, it is helpful if we can
suggest a more specific density class which satisfies the sufficient condition in
Lemma 2.1. The form of Lemma 2.1 suggests one such possibility - a family
of natural exponential families with power variance functions (NEF-PVF). For
convenience, we give the definition due to Bar-Lev and Stramer [2]: “A natural
exponential family (NEF for short) is said to have a power variance function
if its variance function is of the form V (μ) = αμγ , μ ∈ Ω, for some constants
α �= 0 and γ, called the scale and power parameters, respectively”. This family
of distributions is discussed in detail in Bar-Lev and Enis [1] and Bar-Lev and
Stramer [2]. In particular, they establish that the parameter space Ω can only be
R, R+ and R

−; moreover, we can only have γ = 0 iff Ω = R. The most inter-
esting for us property is that (see Theorem 2.1 from Bar-Lev and Stramer [2]
for details) is that for any NEF-PVF, it is necessary that γ /∈ (−∞, 0) ∪ (0, 1);
in other words, possible values of γ are 0, corresponding to the normal distribu-
tion, 1, corresponding to Poisson, and any positive real numbers that are greater
than 1. In particular, the case γ = 2 corresponds to gamma distribution. Out
of these choices, the only one that does not result in a monotonically increasing
function G(μ) is γ = 0 that corresponds to the normal distribution; thus, we
have to exclude it from consideration. With this exception gone, the NEF-PVF
framework includes only density families with either strictly positive or strictly
negative means; due to this, it seems a rather good fit for the description of the
family of density functions f in the Lemma 2.1.

Note that the exclusion of the normal distribution is also rather sensible from
the practical viewpoint because it belongs to a location family; therefore, it can
be treated in the framework of Bordes et al. [3]. More specifically, Proposition 1
of Bordes et al. [3] suggests that, when f(x) is normal, the equation (2.1) has
at most two solutions if f0 is an even pdf and at most three solutions if f0 is
not an even pdf.

Remark 2. It is also of interest to compare our Lemma 2.1 with the Lemma 4
of Patra and Sen [26] that also establishes an identifiability result for the model
(1.1). The notions of identifiability that are considered in the two results differ:
whereas we discuss the identifiability based on the first two moments, Lemma 4
of Patra and Sen [26] looks at a somewhat different definition of identifiability.
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At the same time, the interpretation given in the previous Remark, suggests
an interesting connection. For example, the case where the unknown density
function f is gamma corresponds to the power parameter of the NEF-PVF family
being equal to 2. According to our identifiability result Lemma 2.1, the mixture
model (1.1) is, then, identifiable with respect to the first two moments. On the
other hand, let us assume that the known density function f0 is the standard
normal. Since its support fully contains the support of any density from the
gamma family, identifiability in the sense of Patra and Sen [26] now follows
from their Lemma 4.

Remark 3. We only assumed that the first moment of f0 is equal to zero for
simplicity. It is not hard to reformulate the Lemma 2.1 if this is not the case.
The proof is analogous.

Corollary 2.1.1. Consider the model (1.1) with the unknown density function
f . We assume that the known density f0 has finite first two moments and denote
its first moment μf0 . We also assume that the function f belongs to a set of
density functions whose first two moments are finite, and whose means are all
either greater than μf0 or less than μf0 :

f ∈ F = {f :

∫
x2f(x) dx < +∞;μf > μf0 or μf < μf0}.

Let us assume that G(μf ) =
V (μf )
μf−μf0

is a strictly increasing function in μf for

a fixed, known f0. Then, the equation (2.1) has the unique solution p1 = p and
f1 = f .

3. Estimation

3.1. Possible interpretations of our approach

Let h be a positive bandwidth and K a symmetric positive-valued kernel func-
tion that is also a true density; as a technical assumption, we will also assume
that K is continuously differentiable. The rescaled version of this kernel func-
tion is denoted Kh(x) = K(x/h)/h for any x ∈ R. We will also need a linear
smoothing operator Sf(x) =

∫
Kh(x − u)f(u)du and a nonlinear smoothing

operator N f(x) = exp(S log f(x)) for any generic density function f . For sim-
plicity, let us assume that our densities are defined on a closed interval, e.g.
[0, 1]. This assumption is here for technical convenience only when proving al-
gorithmic convergence related results. Simulations in the Section 5 show that
the algorithm works well also when the support of the density f is e.g. half the
real line. In the future, we will omit these integration limits whenever doing so
doesn’t cause confusion. A simple application of Jensen’s inequality and Fubini’s
theorem suggests that

∫
N f(x) dx ≤

∫
Sf(x) dx =

∫
f(x) dx = 1.

Our estimation approach is based on selecting p and f that minimize the
following log-likelihood type objective functional:

�(p, f) =

∫
g(x) log

g(x)

(1− p)f0(x) + pN f(x)
dx. (3.1)
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The reason the functional (3.1) is of interest as an objective functional is as

follows. First, recall that KL(a(x), b(x)) =
∫ [

a(x) log a(x)
b(x) + b(x)− a(x)

]
dx

is a Kullback-Leibler distance between the two arbitrary positive integrable
functions (not necessarily densities) a(x) and b(x); as usual, KL(a, b) ≥ 0.
This version of the Kullback-Leibler distance is a special case of the so-called
Bregman divergence; one can find its definition in e.g. Eggermont et al. [12] p.
16. Note that the functional (3.1) can be represented as a penalized Kullback-
Leibler distance between the target density g(x) and the smoothed version of
the mixture (1− p)f0(x) + pN f(x); indeed, we can represent �(p, f) as

�(p, f) = KL(g(x), (1− p)f0(x) + pN f(x)) + p

{
1−

∫
N f(x) dx

}
. (3.2)

The quantity 1 −
∫
N f(x) dx =

∫
[f(x) − N f(x)] dx is effectively the penalty

on the smoothness of the unknown density. Thus, the functional (3.1) can be
interpreted as a penalized smoothed likelihood functional.

Of course, it is a matter of serious interest to find out if the optimization
problem (3.2) has a solution at all. This problem can be thought of as a kind
of generalized Tikhonov regularization problem; these problems have recently
become an object of substantial interest in the area of ill-posed inverse prob-
lems. A very nice framework for these problems is described in the monograph
Flemming [14] and we will follow it here. First of all, we define the domain
of the operator N to be a set of square integrable densities, i.e. all densities
on [0, 1] that belong in L2[0, 1]. We also define L+

2 ([0, 1]) to be the set of all
non-negative functions that belong to L2([0, 1]). Define a nonlinear smoothing
operator A : D(A) ⊆ L2(D) → L2(D) as

Af(x) := (1− p)f0(x) + pN f(x)

where D(A) = {f(x) : f ∈ L+
2 ([0, 1]), f(x) ≥ η > 0,

∫ 1

0
f(x) dx = 1, ∃F ∈

R
+ s.t. ||f ||2 ≤ F}. In optimization theory, A is commonly called a forward

operator. Note that, as long as ||K||22 :=
∫
K2(u) du < ∞, it is easy to show

that N f(x) ∈ L2([0, 1]) if f(x) ∈ L2([0, 1]) and, therefore, this framework is
justified.

Next, for any two functions a(x) and b(x), we define a fitting functional
Q : L2([0, 1]) × L2([0, 1]) → [0,∞) as Q(a(x), b(x)); = KL(a(x), b(x)). Finally,
we also define a non-negative stabilizing functional Ω : D(Ω) ⊆ L2([0, 1]) → [0, 1]

as Ω(f) :=
{
1−

∫ 1

0
N f(x) dx

}
whereD(Ω) = D(A). Now, we are ready to define

the minimization problem

Tp,g(f) = Qp(g,Af) + pΩ(f) → min (3.3)

where p plays the role of regularization parameter. We use the subscript p for Q
to stress the fact that the fitting functional is dependent on the regularization
parameter; this doesn’t seem to be common in optimization literature but we can
still obtain the existence result that we need. The following set of assumptions is
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needed to establish existence of the solution of this problem; although a version
of these assumptions is given in Flemming [14] , we give them here in full for
ease of reading.

Assumption 3.1. Assumptions on A : D(A) ⊂ L2([0, 1]) → L2([0, 1]):

1. A is sequentially continuous with respect to the weak topology of the space
L2([0, 1]), i.e. if fk ⇀ f for f, fk ∈ D(A), then we have A(fk) ⇀ A(f).

2. D(A) is sequentially closed with respect to the weak topology on L2([0, 1]),
that is fk ⇀ f for {fk} ∈ D(A) implies that f ∈ D(A).

Assumptions on Q : L2([0, 1])× L2([0, 1]) → [0,∞):

3. Qp(g, v) is sequentially lower semi-continuous with respect to the weak
topology on L2([0, 1]) × L2([0, 1]), that is if pk → p, gk ⇀ g and vk ⇀ v,
then Qp(g, v) ≤ lim infk→∞ Qpk

(gk, vk).
4. If Qp(g, vk) → 0 then there exists some v ∈ L2([0, 1]) such that vk ⇀ v.
5. If vk ⇀ v and Qp(g, v) < ∞, then Qp(g, vK) → Qp(g, v).

Assumptions on Ω : D(A) → [0, 1]:

6. Ω is sequentially lower semicontinuous with respect to the weak topology
in L2([0, 1]), that is, if fk ⇀ f for f, fk ∈ L2([0, 1]), we have Ω(f) ≤
lim infk→∞ Ω(fk).

7. The sets MΩ(c) := {f ∈ D(A) : Ω(f) ≤ c} are sequentially pre-compact
with respect to the weak topology on L2([0, 1]) for all c ∈ R, that is each se-
quence in MΩ(c) has a subsequence that is convergent in the weak topology
on L2([0, 1]).

Lemma 3.1. Assume that the kernel function K is bounded from above: K(x) ≤
K. Then, the optimization problem (3.3) satisfies all of Assumption 3.1.

Proof. We start with the Assumption 3.1(1). The space dual to L2([0, 1]) is again
L2([0, 1]); therefore, the weak convergence fk ⇀ f in L2([0, 1]) means that, for

any q ∈ L2([0, 1]), we have
∫ 1

0
fk(x)q(x) dx →

∫ 1

0
f(x)q(x) dx as k → ∞. To

show that the Assumption 3.1(1) is, indeed, true, we first note that {fk} and f
are bounded away from 0 which tells∫ 1

0

| log fk(x)− log f(x)|q(x)dx ≤
∫ 1

0

|fk(x)− f(x)|1
η
q(x)dx → 0

as k → ∞ for some positive η that does not depend on k. Therefore, fk ⇀ f
implies log fk ⇀ log f . Second,∫

S log fk(x)q(x)dx =

∫
q(x)

∫ 1

0

Kh(x− u) log fk(u)du dx

=

∫ 1

0

log fk(u)

∫
Kh(x− u)q(x)dx du.
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Note that, since log fk ⇀ log f , and the function q̃(u) =
∫
Kh(x − u)q(x)dx

belongs to L2([0, 1]), we can claim that∫
S log fk(x)q(x)dx →

∫ 1

0

log f(u)

∫
Kh(x− u)q(x)dx du

=

∫
S log f(x)q(x)dx

as k → ∞. In other words, we just established that S log fk ⇀ S log f as k →
∞. Moving ahead, we find out, using the Cauchy - Schwarz inequality that∫ 1

0
Kh(x − u) log fk(u)du <

∫ 1

0
Kh(x − u)fk(u)du ≤ K

∫ 1

0
fk(u)du = K. The

same is true for f(x) and so
∫
|exp{S log fk(x)} − exp{S log f(x)}|g(x)dx ≤∫

|S log fk(x)−S log f(x)| ≤ E · g(x)dx → 0 where E is a positive constant that
does not depend on k. Therefore, fk ⇀ f finally implies N fk ⇀ N f and thus
Afk ⇀ Af .

Next, we need to prove that the Assumption 3.1(2) is also valid. To show
that D(A) is sequentially closed, we select a particular function q ≡ 1 on [0, 1].

Such a function clearly belongs to L2([0, 1]) and so we have
∫ 1

0
fk(x)q(x) dx ≡∫ 1

0
fk(x) dx →

∫ 1

0
f(x) dx as k → ∞. Since we know that, for any k, we have∫

fk(x) dx = 1, it follows that
∫ 1

0
f(x)dx = 1 as well. It is not hard to check that

other characteristics of D(A) are preserved under weak convergence as well.
The fitting functional Q is a Kullback-Leibler functional; the fact that it

satisfies Assumption 3.1(3)(4)(5) has been demonstrated several times in op-
timization literature concerned with variational regularization with non-metric
fitting functionals. The details can be found in e.g. Flemming [13].

The sequential lower semi-continuity of the stabilizing functional Ω in As-
sumption 3.1(6) is guaranteed by the weak version of Fatou’s Lemma. Indeed,
let us define φk(x) = Sfk(x)−N fk(x). Then, due to Jensen’s inequality, {φk}
is a sequence of non-negative measurable functions. We already know that
fk ⇀ f guarantees N fk ⇀ N f ; therefore, we have φk ⇀ φ where φ(x) =
Sf(x)−N f(x). By the weak version of Fatou’s lemma, we then have

∫
φ(x) dx ≤

lim infk→∞
∫
φk(x) dx, or equivalently, Ω(f) ≤ lim infk→∞ Ω(fk). Therefore,

Ω : D(A) → [0, 1] is lower semi-continuous with respect to the weak topol-
ogy on L2([0, 1]). Finally, the Assumption 3.1(7) is always true simply because
D(A) is a closed subset of a closed ball in L2([0, 1]); sequential Banach-Alaoglu
theorem lets us conclude then that MΩ(c) is sequentially compact with respect
to the weak topology on L2([0, 1]).

Finally, we can state the existence result. Note that in optimization literature
sometimes one can see results of this nature under the heading of well-posedness,
not existence; see, e.g. Hofmann et al. [18].

Theorem 3.2. (Existence) For any mixture density g(x) ∈ L2([0, 1]) and
any 0 < p < 1, the minimization problem (3.3) has a solution. The minimizer
f∗ ∈ D(A) satisfies Tp,g(f

∗) < ∞ if and only if there exists a density function
f̄ ∈ D(A) with Qp(g,Af̄) < ∞.
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Proof. Set c := inff∈D(A) Tp,g(f) < ∞. Note that c < ∞ due to existence
of f̄ and thus the trivial case of c = ∞ is excluded. Next, take a sequence
(fk)k∈N ∈ D(A) with Tp,g(fk) → c. Then

Ω(fk) ≤
1

p
Tp,g(fk) ≤

1

p
(c+ 1) (3.4)

for sufficiently large k and by the compactness of the sublevel sets of Ω there
is a subsequence (fkl

)l∈N converging to some f̃ ∈ D(A). The continuity of A
implies Afkl

⇀ Af̃ and the lower semi-continuity of Qp and Ω gives

Tp,g(f̃) ≤ lim inf
l→∞

Tp,g(fkl
) = c, (3.5)

that is, f̃ is a minimizer of Tp,g.

3.2. Algorithm

Now we go back to introducing the algorithm that would search for unknown p
and f(x). The first result that we need is the following technical Lemma.

Lemma 3.3. For any pdf f̃ and any real number p̃ ∈ (0, 1),

�(p̃, f̃)− �(p, f) (3.6)

≤ −
∫
g(x)

[
(1− w(x)) log

(
1−p̃
1−p

)
+ w(x) log

(
p̃N f̃(x)
pNf(x)

)]
dx,

where w(x) = pNf(x)
(1−p)f0(x)+pNf(x) .

Proof of Lemma 3.3. The result follows by the following straightforward calcu-
lations:

�(p̃, f̃)− �(p, f) = −
∫

g(x) log

(
(1− p̃)f0(x) + p̃N f̃(x)

(1− p)f0(x) + pN f(x)

)
dx

= −
∫

g(x) log

(
(1− w(x))

1− p̃

1− p
+ w(x)

p̃N f̃(x)

pN f(x)

)
dx

≤ −
∫

g(x)

[
(1− w(x)) log

(
1− p̃

1− p

)
+ w(x) log

(
p̃N f̃(x)

pN f(x)

)]
,

where the last inequality follows by convexity of the negative logarithm function.

Suppose at iteration t, we get the updated pdf f t and the updated mixing

proportion pt. Let wt(x) = ptNft(x)
(1−pt)f0(x)+ptNft(x) , and define

pt+1 =

∫
g(x)wt(x)dx,

f t+1(x) = αt+1

∫
Kh(x− u)g(u)wt(u)du,
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where αt+1 is a normalizing constant needed to ensure that f t+1 integrates to
one. Then the following result holds.

Theorem 3.4. For any t ≥ 0, �(pt+1, f t+1) ≤ �(pt, f t).

Proof of Theorem 3.4. By Lemma 3.3, for an arbitrary density function f̃ and
an arbitrary number 0 < p̃ < 1,

�(p̃, f̃)− �(pt, f t) (3.7)

≤ −
∫
g(x)

[
(1− wt(x)) log

(
1−p̃
1−pt

)
+ wt(x) log

(
p̃N f̃(x)
ptNft(x)

)]
dx.

Let (p̂, f̂) be the minimizer of the right hand side of (3.7) with respect to p̃

and f̃ . Note that the right-hand side becomes zero when p̃ = pt and f̃ = f t;
therefore, the minimum value of the functional on the right hand side must be
less then or equal to 0. Therefore, it is clear that �(p̂, f̂) ≤ �(pt, f t). To verify
that the statement of the Theorem 3.4 is true, it remains only to show that
(p̂, f̂) = (pt+1, f t+1).

Note that the right hand side of (3.7) can be rewritten as

−
∫

g(x)[(1− wt(x)) log(1− p̃) + wt(x) log p̃]dx

−
∫

g(x)wt(x) logN f̃(x)dx+ T,

where the term T only depends on (pt, f t). The first integral in the above only

depends on p̃ but not on f̃ . It is easy to see that the minimizer of this first
integral with respect to p̃ is p̂ =

∫
g(x)wt(x)dx. The second integral, on the

contrary, depends only on f̃ but not on p̃. It can be rewritten as

−
∫

g(x)wt(x) logN f̃(x)dx

= −
∫ ∫

g(x)wt(x)Kh(x− u) log f̃(u)dudx

= −
∫ (∫

Kh(u− x)g(x)wt(x)dx

)
log f̃(u)du

= − 1

αt+1

∫
f t+1(u) log f̃(u)du

=
1

αt+1

∫
f t+1(u) log

f t+1(u)

f̃(u)
du− 1

αt+1

∫
f t+1(u) log f t+1(u)du.

The first term in the above is the Kullback-Leibler divergence between f t+1 and
f̃ scaled by αt+1, which is minimized at f t+1, i.e., for f̂ = f t+1. Since the second
term does not depend on f̃ at all, we arrive at the needed conclusion.

The above suggests that the following algorithm can be used to estimate the
parameters of the model (1.1). First, we start with initial values p0, f

0 at the
step t = 0. Then, for any t = 1, 2, . . .
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• Define the weight

wt(x) =
ptN f t(x)

(1− pt)f0(x) + ptN f t(x)
. (3.8)

• Define the updated probability

pt+1 =

∫
g(x)wt(x)dx. (3.9)

• Define

f t+1(u) = αt+1

∫
Kh(u− x)g(x)wt(x)dx. (3.10)

Remark 4. Note that the proposed algorithm is an MM (majorization mini-
mization) algorithm. MM algorithms represent a generalization of the classical
EM framework and are commonly used whenever optimization of a difficult ob-
jective function is best avoided and a series of simpler objective functions is
optimized instead. The concept underlying MM algorithms was stated originally
in Ortega and Reinboldt [25] in the context of line search methods. A general
introduction to MM algorithms from the statistical viewpoint is available in, for
example, Hunter and Lange [19]. As a first step, let (pt, f t) denote the cur-
rent parameter values in our iterative algorithm. The main goal is to obtain
a new functional bt(p, f) such that, when shifted by a constant, it majorizes
�(p, f). In other words, there must exist a constant Ct such that, for any (p, f)
bt(p, f) + Ct ≥ �(p, f) with equality when (p, f) = (pt, f t). The use of t as
a superscript in this context indicates that the definition of the new functional
bt(p, f) depends on the parameter values (pt, f t); these change from one iteration
to the other.

In our case, we define a functional

bt(p̃, f̃) = −
∫
g(x)[(1− ωt(x)) log(1− p̃) + ωt(x) log p̃] dx (3.11)

−
∫
g(x)ωt(x) logN f̃(x) dx.

Note that the dependence on f t is through weights ωt. From the proof of the
Theorem 3.4, it follows that, for any argument (p̃, f̃) we have

�(p̃, f̃)− �(pt, f t) ≤ bt(p̃, f̃)− bt(pt, f t).

This means, that bt(p̃, f̃) is a majorizing functional; indeed, it is enough to
select the constant Ct such that Ct = �(pt, f t) − bt(pt, f t). In the proof of the
Theorem 3.4 it is the series of functionals bt(p̃, f̃) (note that they are different
at each step of iteration) that is being minimized with respect to (p̃, f̃), and not
the original functional �(p̃, f̃). This, indeed, establishes that our algorithm is an
MM algorithm.

The following lemma shows that the sequence ξt = �(pt, f t), defined by our
algorithm, also has a non-negative limit (which is not necessarily a global min-
imum of �(p, f)).
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Lemma 3.5. There exists a finite limit of the sequence ξt = �(pt, f t) as t → ∞:

L := lim
t→∞

ξt

for some L ≥ 0.

Proof of Lemma 3.5. First, note that ξt is a non-increasing sequence for any
integer t due to the Theorem 3.4. Thus, if we can show that it is bounded from
below by zero, the proof will be finished. Then, the functional �(pt, f t) can be
represented as

�(pt, f t) = KL(g(x), (1− pt)f0(x) + ptN f t(x)) +

∫
g(x) dx

−
∫

[(1− pt)f0(x) + ptN f t(x)] dx

= KL(g(x), (1− pt)f0(x) + ptN f t(x)) + 1

−(1− pt)− pt
∫

N f t(x) dx

= KL(g(x), (1− pt)f0(x) + ptN f t(x)) + pt
[
1−

∫
N f t(x) dx

]
.

Now, since K is a proper density function, by Jensen’s inequality,

N f t(x) = exp

{∫
Kh(x− u) log f t(u) du

}
≤

∫
Kh(x− u)ft(u) du ≡ Sf t(x).

Moreover, using Fubini’s theorem, one can easily show that
∫
Sf t(x) dx =

1 since f t is a proper density function. Therefore, one concludes easily that∫
N f t(x) dx ≤

∫
Sf t(x) dx = 1. Thus, �(pt, f t) ≥ 0 is non-negative due to

non-negativity of the Kullback-Leibler distance.

It is, of course, not clear directly from the Lemma 3.5 if the sequence (pt, f t),
generated by this algorithm, also converges. Being able to answer this question
requires establishing a lower semicontinuity property of the functional �(p, f).
Some additional requirements have to be imposed on the kernel function K in
order to obtain the needed result that is given below. We denote Δ the domain
of the kernel function K.

Theorem 3.6. Let the kernel K : Δ → R be bounded from below and Lip-
schitz continuous with the Lipschitz constant CK . Then, the minimizing se-
quence (pt, f t) converges to (p∗h, f

∗
h) that depends on the bandwidth h such that

L = l(p∗h, f
∗
h).

Proof. We prove this result in two parts. First, let us introduce a subset of
functions B = {Sφ : 0 ≤ φ ∈ L+

1 (Δ),
∫
φ = 1} where L+

1 (Δ) denotes a subset
of all non-negative functions from L1(Δ). Such a subset represents all densi-
ties on a closed compact interval that can be represented as linearly smoothed
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integrable functions. Every function ft generated in our algorithm except, per-
haps, the initial one, can clearly be represented in this form. This is because,
at every step of iteration, f t+1(x) = αt+1

∫
Kh(x− u)g(u)wt(u) du =

∫
Kh(x−

u)φ(u) du where φ(u) = αt+1g(u)wt(u). Moreover, we observe that
∫
φ(u) du =

αt+1
∫
g(u)wt(u) du = αt+1pt+1. Next, one concludes, by using Fubini theorem

that, for any t = 1, 2, . . .∫
f t+1(x) dx = αt+1

∫
g(u)wt(u)

[∫
Kh(x− u) dx

]
du = 1.

Since the iteration step t in the above is arbitrary, we established that αtpt = 1
and, therefore,

∫
φ(u) du = 1.

By definition of set B, it is clear that, as long as the kernel function is a proper
density function (and so is non-negative), any f ∈ B is non-negative and so every
function in the set B is bounded from below. If the kernel function is Lipschitz
continuous on Δ it is clearly bounded from above by some positive constant
M : supx∈Δ K(x) < M . Thus, every function f ∈ B satisfies f(x) ≤ M < ∞.
This implies that the set B is uniformly bounded. Also, by definition of set B,
for any two points x, y ∈ Δ we have

|f(x)− f(y)| ≤
∫

|Kh(x− u)−Kh(y − u)|φ(u) du ≤ CK |x− y|,

where the constant CK depends on the choice of kernelK but not on the function
f . This establishes the equicontinuity of the set B. Therefore, by Arzela-Ascoli
theorem the set of functions B is a compact subset of C(Δ) with a sup metric.

Since for every t = 2, 3, . . . f t ∈ B, by Arzela-Ascoli theorem we have a
subsequence f tk → f∗

h as k → ∞ uniformly over Ω. Since for every t = 1, 2, . . .
pt is bounded between 0 and 1, there exists, by Bolzano-Weierstrass theorem,
a subsequence ptk → p∗h as k → ∞ in the usual Euclidean metric. Consider a
Cartesian product space {(p, f)} where every p ∈ [0, 1] and f ∈ C(Δ). To define
a metric on such a space we introduce an m-product of individual metrics for
some non-negative m. This means that, if the first component space has a metric
d1 and the second d2, the metric on the Cartesian product is (|d1|m+ |d2|m)1/m

for some non-negative m. For example, the specific case m = 0 corresponds to
|d1|+|d2| andm = ∞ corresponds to max(d1, d2). For such anm-product metric,
clearly, we have a subsequence (ptk , f tk) → (p∗h, f

∗
h) that converges to (p∗h, f

∗
h) in

the m-product metric. Without loss of generality, assume that the subsequence
coincides with the whole sequence (pt, f t). Of course, such a sequence (pt, f t) ∈
[0, 1]× C(Δ) for any t.

Now, that we know that there is always a converging sequence (pt, f t),
we can proceed further. Since each f t is bounded away from zero and from
above, then so is the limit function f∗

h(x) in the limit (p∗h, f
∗
h). This implies

that (pt, log f t) → (p∗h, log f
∗
h) uniformly in the m-product topology as well

and the same is true also for (pt,S log f t). Analogously, the uniform conver-
gence follows also in (pt,N f t) → (p∗h,N f∗

h); moreover, (1 − pt)f0 + ptN f t →
(1 − p∗h)f0 + p∗hN f∗

h uniformly in the m-product topology. Since the function
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ψ(t) = − log t+ t− 1 ≥ 0, Fatou Lemma implies that∫
g(x)ψ((1− p∗h)f0(x) + p∗hN f∗

h(x)) dx

≤ lim inf

∫
g(x)ψ((1− pt)f0(x) + ptN f t(x)) dx.

The lower semicontinuity of the functional �(p, f) follows immediately and with
it the conclusion of the Theorem 3.6.

The above result can also be proved in the case where the densities involved
have their support on the entire real line. To do so, it is necessary to impose con-
straints on the tails of these densities. The following result from the functional
analysis forms the cornerstone of this analysis.

Lemma 3.7. (Fréchet-Kolmogorov theorem) Let B be a bounded set in Lp(R)
with p ∈ [1,∞). The subset B is relatively compact if and only if the following
properties hold for any function f ∈ B:

1. limr→∞
∫
|x|>r

|f |p = 0 uniformly on B,

2. lima→0 ||τaf − f ||p = 0 uniformly on B.

where τaf denotes the translation of f by a, that is, τaf(x) = f(x− a).

A very nice proof of this result can be found in e.g. an expository paper
Hanche-Olsen and Holden [17]. Now we can formulate the following result.

Corollary 3.7.1. Let all of the conditions of Theorem 3.6 be true but assume
that the unknown density f(x) and the known density f0(x) are now defined
on the entire real line R. Also, assume that f0(x) is bounded everywhere from
above. Then, the convergence result of Theorem 3.6 remains correct.

Proof. The only part of the proof of Theorem 3.6 that needs updating is that
of establishing compactness of the subset B. Now, we need to establish its
compactness as a subset of L1(R). To get this done, we will use Lemma 3.7.
Fist, recall that our algorithm updates the density estimate at each step as
f t+1(x) = αt+1

∫
Kh(x − u)g(u)wt(u) du =

∫
Kh(x − u)φ(u) du where φ(u) =

αt+1g(u)wt(u) is a density function belonging to L+
1 (R), and so

∫
φ(u) du = 1.

Earlier, we showed that there exists a subsequence ptk → p∗h by Bolzano-
Weierstrass theorem. In order to use Lemma 3.7, we first show that at any
step of iteration pt+1 is bounded away from zero. Indeed, from our algorithm
we can see that pt+1 =

∫
g(x)wt(x) dx; thus, if we show that the weight wt(x)

is always bounded away from zero for any t, the probability pt+1 is bounded
away from zero as well. Since the kernel function K is bounded from be-
low, we can easily claim that for any f ∈ B f =

∫
Kh(x − u)φ(u) du ≥

infx∈Ω Kh(x− u)
∫
φ(u) du = K∗ > 0. Next, by definition of the smoothing op-

erator N f t(x), and since f t ∈ B for any step of iteration t, we have N f t(x) =
exp{

∫
Kh(x−u) log ft(u) du} ≥ exp{logK∗ ∫

Kh(x−u) du} = K∗ > 0 since the
kernel function is a proper density function. Now, recall that at each step t the
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weight is wt(x) = ptNft(x)
(1−pt)f0(x)+ptNft(x) . If we assume that f0(x) is bounded from

above, and since N f t(x) is always bounded from above by M , we can conclude
that the denominator of the integrand in the definition of wt(x) is bounded
from above and, therefore, wt(x) is always bounded from below as long as pt is
bounded from below. Using the above argument, it is easy to see that as long
as we start with p0 > 0, pt will stay bounded away from zero at every step of
iteration. Thus, we can claim that the limit p∗h > 0. Since akpk = 1 for all k,
there must be atk → a∗h and atk is bounded from above by some Ma > 0.

Now, we can check the first condition in Lemma 3.7 for functions that belong
to the set B. For any fixed mixture density g(x), limr→∞

∫
|x|>r

g(x) dx = 0;

therefore, for any εg > 0, there exists r′ > 0 such that
∫
|x|>r′ g(x) dx < εg. Since

the kernel function K is a proper density function defined on a finite interval
support Δ, for any εK > 0 there exists r > r′ such that

∫
|x|>r

Kh(x−u) dx < εK
for any |u| ≤ r′. This implies that∫

|x|>r

|f tk | dx =

∫
|x|>r

αtk dx

∫ ∞

−∞
Kh(x− u)g(u)wtk−1(u) du

≤ αtk

∫
|x|>r

dx

∫ ∞

−∞
Kh(x− u)g(u) du

= αtk

∫
|x|>r

dx

(∫
|u|≤r′

Kh(x− u)g(u) du+

∫
|u|>r′

Kh(x− u)g(u) du

)

= αtk

∫
|u|≤r′

g(u) du

∫
|x|>r

Kh(x− u) dx

+αtk

∫
|u|>r′

g(u) du

∫
|x|>r

Kh(x− u) dx

≤ αtk

(∫
|u|≤r′

εK g(u) du+

∫
|u|>r′

g(u) du

)
≤ Ma (εK + εg) ,

and so the first condition of the Lemma 3.7 has been verified. To verify the
second condition we note first that, due to Lipschitz continuity of the kernel
function and the fact that it is defined on a finite interval, we have∫ ∞

−∞
|f tk(x− a)− f tk(x)| dx

=

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
(Kh(x− a− u)−Kh(x− u)φ(u)) du

∣∣∣∣ dx
≤

∫ ∞

−∞
dx

∫ ∞

−∞
|(Kh(x− a− u)−Kh(x− u)|φ(u)) du

=

∫ ∞

−∞
φ(u) du

∫ ∞

−∞
|(Kh(x− a− u)−Kh(x− u)| dx

≤
∫ ∞

−∞
|a|CK |Δ|φ(u) du = |a|CK |Δ|,
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and so for any |a| < ρ we have the integral bounded from above by CKρ|Δ| that
does not depend on the function f ∈ B.

4. An empirical version of our algorithm

In practice, the number of observations n sampled from the target density func-
tion g is finite. This necessitates the development of the empirical version of
our algorithm that can be implemented in practice. Many proof details here are
similar to proofs of properties of the algorithm we introduced in the previous
chapter. Therefore, we will be brief in our explanations. Denote the empirical
cdf of the observations Xi, i = 1, . . . , n Gn(x) where Gn(x) = 1

n

∑n
i=1 IXi≤x.

Then, we define a functional

ln(f, p) = −
∫

log((1− p)f0(x) + pN f(x)) dGn(x)

≡ −
n∑

i=1

log((1− p)f0(Xi) + pN f(Xi)).

The following analogue of the Lemma 3.3 can be easily established.

Lemma 4.1. For any pdf f̃ and p̃ ∈ (0, 1),

ln(f̃ , p̃)− ln(f, p)

≤ −
∫ [

(1− w(x)) log

(
1− p̃

1− p

)
+ w(x) log

(
p̃N f̃(x)

pN f(x)

)]
dGn(x),

where the weight w(x) = pNf(x)
(1−p)f0(x)+pNf(x) .

The proof is omitted since it is almost exactly the same as the proof of the
Lemma 3.3.

Now we can define the empirical version of our algorithm. Denote (ptn, f
t
n)

values of the density f and probability p at the iteration step t. Define the

weights as wt
n(x) =

pt
nNft

n(x)
(1−pt

n)f0(x)+pt
nNft

n(x)
. We use the subscript n everywhere

intentionally to stress that these quantities depend on the sample size n. For
the next step, define (pt+1

n , f t+1
n ) as

pt+1
n =

∫
wt

n(x)dGn(x) =
1

n

n∑
i=1

wt
n(Xi)

f t+1
n (x) = αt+1

n

∫
Kh(x− u)wt

n(u)dGn(u)

=
αt+1
n

n

n∑
i=1

Kh(x−Xi)w
t
n(Xi),
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where αt+1
n is a normalizing constant such that f t+1

n is a valid pdf. Since∫
Kh(Xi − u)du = 1 for i = 1, . . . , n, we get

1 =

∫
f t+1
n (u)du =

αt+1
n

n

n∑
i=1

wt
n(Xi),

and hence,

αt+1
n =

n∑n
i=1 w

t
n(Xi)

.

The following result establishes the descent property of the empirical version of
our algorithm.

Theorem 4.2. For any t ≥ 0, �n(p
t+1
n , f t+1

n ) ≤ �n(p
t
n, f

t
n).

The proof of this result follows very closely the proof of the Theorem 3.4 and
is also omitted for brevity.

Remark 5. As before, the empirical version of the proposed algorithm is an
MM (majorization - minimization) algorithm that represents a generalization of
the classical EM setting. More specifically, we can show that there exists another
functional btn(p, f) such that, when shifted by a constant, it majorizes ln(p, f).
It is easy to check that such a functional is

btn(p̃, f̃) = −
∫

[(1− ωt
n(x)) log(1− p̃) + ωt

n(x) log p̃] dGn(x) (4.1)

−
∫

ωt
n(x) logN f̃(x) dGn(x).

Note that in the proof of the Theorem 4.2 it is the series of functionals btn(p̃, f̃)
that is being minimized with respect to (p̃, f̃), and not the original functional
ln(p̃, f̃).

Remark 6. Note also that this algorithm can be easily generalized to the multi-
variate case. Let f : Rd → R be the unknown density function and f0 : Rd → R

be the unknown one. We assume that the target density g : Rd → R is a two-
component mixture of the unknown component f and the known component f0
with the weight 0 < p < 1. Our data consist of sample �X1, . . . , �Xn generated
by g. Since Lemma 4.1 and Theorem 4.2 of our manuscript only depend on
some fairly basic tools, such as Jensen’s inequality and convexity of the negative
logarithm function, both of them remain true in the multivariate case and the
following algorithm can be defined.

Denote (ptn, f
t
n) values of the density f and probability p at the iteration step

t. We use the subscript n everywhere intentionally to stress that these quantities
depend on the sample size n. For the next step, define (pt+1

n , f t+1
n ) as

pt+1
n =

1

n

n∑
i=1

wt
n(Xi)

f t+1
n (x) =

αt+1
n

n

n∑
i=1

Kh(x−Xi)w
t
n(Xi),
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where wt
n(x) =

pt
nNft

n(x)
(1−pt

n)f0(x)+pt
nNft

n(x)
is the weight (probability) that an ob-

servation x has been generated by an unknown component density, and αt+1
n

is a normalizing constant such that f t+1
n is a valid density function. Since∫

Kh(Xi − u)du = 1 for i = 1, . . . , n, and we assume that K is a symmet-
ric density function, we find that

1 =

∫
f t+1
n (u)du =

αt+1
n

n

n∑
i=1

wt
n(Xi), (4.2)

and hence,

αt+1
n =

n∑n
i=1 w

t
n(Xi)

. (4.3)

It can be verified immediately that the resulting algorithm possesses the descent
property and is an MM algorithm, as before.

As before, we can also show that the sequence �n(p
t
n, f

t
n) generated by our

algorithm does not only possess the descent property but is also bounded from
below.

Lemma 4.3. There exists a finite limit of the sequence ξtn = �n(p
t
n, f

t
n) as

t → ∞:
Ln = lim

t→∞
ξtn

for some Ln ≥ 0.

The proof is almost exactly the same as the proof of the Lemma 3.5 and
is omitted in the interest of brevity. Finally, one can also show that the se-
quence (ptn, f

t
n) generated by our algorithm converges to (p∗n, f

∗
n) such that

Ln = ln(p
∗
n, f

∗
n). The proof is almost the same as that of the Theorem 3.6

and is omitted for conciseness.

5. Simulations and comparison

In this section, we will use the notation I[x>0] for the indicator function of
the positive half of the real line and φ(x) for the standard Gaussian distribu-
tion. For our first experiment, we generate n independent and identically dis-
tributed observations from a two component normal gamma mixture with the
density g(x) defined as g(x) = (1 − p)f0(x) + pf(x). Thus, the known compo-
nent is f0(x) =

2
σφ

(
x−μ
σ

)
I[x>0] while the unknown component is Gamma(α, β),

i.e., f(x) = βα

Γ(α)x
α−1e−βxI[x>0]. Note that we truncate the normal distri-

bution so that it stays on the positive half of the real line. We choose the
sample size n = 500, the probability p = 0.6, μ = 6, σ = 1, α = 2 and
β = 1. The initial weight is p0 = 0.2 and the initial assumption for the un-
known component distribution is Gamma(4, 2). The rescaled triangular func-

tion Kh(x) = 1
h

(
1− |x|

h

)
I(|x| ≤ h) is used as the kernel function. We use a
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Fig 1. Mixture of Gaussian (6,1) and Gamma (2,1)

fixed bandwidth throughout the sequence of iterations and this fixed bandwidth
is selected according to the classical Silverman’s rule of thumb that we describe
here briefly for completeness; for more details, see Silverman [28]. Let SD and
IQR be the standard deviation and interquartile range of the data, respectively.

Then, the bandwidth is determined as h = 0.9min
{
SD, IQR

1.34

}
n−1/5. We use

the absolute difference |pt+1
n − ptn| as a stopping criterion; at every iteration

step, we check if this difference is below a small threshold value d that depends
on required precision. If it is, the algorithm is stopped. The analogous rule has
been described for classical parametric mixtures in McLachlan and Peel [24].
In our setting, we use the value d = 10−5. The computation ends after 259
iterations, with an estimate p̂ = 0.6661; the Figure 1(a) shows the true and
estimated mixture density function g(x) while the Figure 1(b) shows both true
and estimated second component density f . Both figures show a histogram of
the observed target distribution g(x) in the background. Both the fitted mixture

density ĝ(x) and the fitted unknown component density function f̂(x) are quite
close to their corresponding true density functions everywhere.

Fig 2. Mixture of Beta (0.5,0.5) and Beta (2,2)
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In the second experiment, we generate n i.i.d. observations from a two compo-
nent beta - beta mixture with the density g(x) defined as g(x) = (1− p)f0(x)+
pf(x). The known component is f0(x) = Beta(0.5, 0.5), while the unknown
component is f(x) = Beta(2, 2) with both having a [0, 1] support. The sample
size is set as n = 500 and the probability weight p = 0.6. We assume that the
starting value of the probability weight is p0 = 0.3 and the initial assumption
for the unknown component distribution is Beta(4, 4). The rescaled triangular

kernel Kh(x) = 1
h

(
1− |x|

h

)
I(|x| ≤ h) is used with a fixed bandwidth h = ...

The algorithm is stopped when the absolute difference |pt+1
n − ptn| < 10−5. The

computation ends after around 80 iterations, with an estimate p̂ = 0.601; the
Figure 2(a) shows the true and estimated mixture density function g(x) while
the Figure 2(b) shows both true and estimated second component density f .
Both figures show a histogram of the observed target distribution g(x) in the
background. Note that both the fitted mixture density ĝ(x) and the fitted un-

known component density function f̂(x) are quite close to corresponding true
density functions.

We also analyze performance of our algorithm in terms of the mean squared
error (MSE) of estimated weight p̂ and the mean integrated squared error

(MISE) of f̂ . We will use two models for this purpose. The first model is the
normal exponential model where the (known) normal component is the same as
before while the second (unknown) component is an exponential density func-
tion f(x) = λe−λxI[x>0] with λ = 0.5; the value of p used is p = 0.6. The second
model is the same normal-gamma model as before. For each of the two models,
we plot MSE of p̂ and MISE of f̂ against the true p for sample sizes n = 500
and n = 1000. Here, we use 30 replications. The algorithm appears to show
rather good performance even for the sample size n = 500. Note that MISE of
the unknown component f seems to decrease with the increase in p. Possible
reason for this is the fact that, the larger p is, the more likely it is that we
are sampling from the unknown component and so the number of observations
that are actually generated by f grows; this seems to explain better precision
in estimation of f when p is large.

Fig 3. MISE of f̂ and MSE of p̂
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Another important issue in practice is, of course, the bandwidth selection.
Earlier, we simply used a fixed bandwidth selected using the classical Silverman’s
rule of thumb. In general, when the unknown density is not likely to be normal,
the use of Silverman’s rule may be a somewhat rough approach. Moreover,
in an iterative algorithm, every successive step of iteration brings a refined
estimate of the unknown density component; therefore, it seems a good idea
to put this knowledge to use. Such an idea was suggested earlier in Chauveau
et al. [6]. Here we suggest using a version of the K-fold cross validation method
specifically adopted for use in an iterative algorithm. First, let us suppose we
have a sample X1, . . . , Xn of size n; we begin with randomly partitioning it into
K approximately equal subsamples. For ease of notation, we denote each of these
subsamples Xk, k = 1, . . . ,K. Randomly selecting one of the K subsamples, it
is possible to treat the remaining K − 1 subsamples as a training dataset and
the selected subsample as the validation dataset. We also need to select a grid of
possible bandwidths. To do so, we compute the preliminary bandwidth hs first
according to the Silverman’s rule of thumb; the bandwidth grid is defined as
lying in an interval [hs−l, hs+l] where 2∗l is the range of bandwidths we plan to
consider. Within this interval, each element of the bandwidth grid is computed
as hi = hs ± i

M l, i = 0, 1, . . . ,M for some positive integer M . At this point,
we have to decide whether a fully iterative bandwidth selection procedure is
necessary. It is worth noting that a fully iterative bandwidth selection algorithm
leads to the situation where the bandwidth changes at each step of iteration.
This, in turn, implies that the monotonicity property of our algorithm derived in
Theorem 4.2 is no longer true. To reconcile these two paradigms, we implement
the following scheme. As in earlier simulations, we use the triangular smoothing
kernel. First, we iterate a certain number of times T to obtain a reasonably stable
estimate of the unknown f ; if we do it using the full range of the data, we denote

the resulting estimate f̂T
nh(x) =

αT
n

n

∑n
i=1 Kh(x−Xi)w

T−1
n (Xi). Integrating the

resulting expression, we can obtain the squared L2-norm of f̂T
nh(x) as

||f̂T
nh||22 =

∫ [
αT
n

n

n∑
i=1

wT−1
n (Xi)Kh(x−Xi)

]2

dx.

For each of K subsamples of the original sample, we can also define a “leave-
kth subsample out” estimator of the unknown component f as f̂T

nh,−Xk
(x),

k = 1, . . . ,K obtained after T steps of iteration. At this point, we can define
the CV optimization criterion as (see, for example, Eggermont et al. [12])as

CV (h) = ||f̂T
nh||22 −

2

n

K∑
k=1

∑
xi∈Xk

f̂T
nh,−Xk

(xi).

Finally, we select
h∗ = argminCV (h)

as a proper bandwidth. Now, we fix the bandwidth h∗ and keep it constant
beginning with the iteration step T+1 until the convergence criterion is achieved
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and the process is stopped. An example of a cross validation curve of CV (h)
is given in Figure 4. Here, we took a sample of size 500 from a mixture model
with a known component of N(6, 1), an unknown component of Gamma(2, 1)
and a mixing proportion p = 0.5; we also chose K = 50, l = 0.4, M = 10,
and T = 5. We tested the possibility of using larger number of iterations before
selecting the optimal bandwidth h; however, already T = 10 results in the
selection of h∗ close to zero. We believe that the likeliest reason for that is
the overfitting of the estimate of the unknown component f . The minimum of
CV (h) is achieved at around h = 0.68. Using this bandwidth and running the
algorithm until the stopping criterion is satisfied, gives us the estimated mixing
proportion p̂ = 0.497. As a side remark, in this particular case the Silverman’s
rule of thumb gives a very similar estimated bandwidth ĥ = 0.72.

Fig 4. A plot of CV (h) used for bandwidth selection

As a last step, we want to compare our method with the symmetrization
method of Bordes et al. [3]. To do this, we will use a normal-normal model since
the method of Bordes et al. [3] is only applicable when an unknown component
belongs to a location family. Although such a model does not satisfy the sufficient
criterion of the Lemma 2.1, it satisfies the necessary and sufficient identifiability
criterion given in Lemma 4 of Patra and Sen [26] (see also Remark 3 from the
Supplement to Patra and Sen [26] for even clearer statement about identifiabil-
ity for normal-normal models in our context); therefore, we can use it for testing
purposes. The known component has Gaussian distribution with mean 0 and
standard deviation 1, the unknown has mean 6 and standard deviation 1, and
we also consider two possible choices of mixture weight, p = 0.3 and p = 0.5.
The results for two different sample sizes, n = 500, and n = 1000, and 200 repli-
cations, are given below in Tables 1 and 2. Each estimate is accompanied by its
standard deviation in parentheses. Note that the proper expectation here is that
our method should perform similarly to the method of Bordes et al. [3] but not
beat it, for several reasons. First, the mean of the unknown Gaussian distribu-
tion is directly estimated as a parameter in the symmetrization method, while it
is the nonparametric probability density function that is directly estimated by
our method. Thus, in order to calculate the mean of the second component, we
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Table 1

Mean(SD) of estimated p/μ obtained by the symmetrization method

K = 200 n = 500 n = 1000
p = 0.3/μ = 6 0.302(0.022)/5.989(0.095) 0.302(0.016)/5.998( 0.064)
p = 0.5/μ = 6 0.502(0.024)/5.999(0.067) 0.502(0.017)/6.003(0.050)

Table 2

Mean(SD) of estimated p/μ obtained by our algorithm

K = 200 n = 500 n = 1000
p = 0.3/μ = 6 0.315(0.024)/5.772(0.238) 0.312(0.018)/5.818(0.178)
p = 0.5/μ = 6 0.516(0.026)/5.855(0.155) 0.512(0.018)/5.883(0.117)

have to take an extra step when using our method and employ numerical inte-
gration. This is effectively equivalent to estimating a functional of an unknown
(and so estimated beforehand) density function; therefore, somewhat lower pre-
cision of our method when estimating the mean, compared to symmetrization
method, where the mean is just a Euclidean parameter, should be expected. Sec-
ond, when using symmetrization method, we followed an acceptance/rejection
procedure exactly as in [3]. That procedure amounts to dropping certain “bad”
samples whereas our method keeps all the samples. Third, the method of [3],
when estimating an unknown component, uses the fact that this component
belongs to a location family - something that our method, more general in its
assumptions, does not do. Keeping all of the above in mind, we can see from
Tables 1 and 2 that both methods produce comparable results, especially when
the sample size is n = 1000. Also, as explained above, it does turn out that our
method is practically as good as the method of [3] when it comes to estimating
probability p and slightly worse when estimating the mean of the unknown com-
ponent. However, even when estimating the mean of the unknown component,
increase in sample size from 500 to 1000 reduces the difference in performance
substantially.

6. A real data example

The acidification of lakes in parts of North America and Europe is a serious
concern. In 1983, the US Environmental Protection Agency (EPA) began the
EPA National Surface Water Survey (NSWS) to study acidification as well as
other characteristics of US lakes. The first stage of NSWS was the Eastern Lake
Survey, focusing on particular regions in Midwestern and Eastern US. Variables
measured include acid neutralizing capacity (ANC), pH, dissolved organic car-
bon, and concentrations of various chemicals such as iron and calcium. The
sampled lakes were selected systematically from an ordered list of all lakes ap-
pearing on 1 : 250, 000 scale US Geological Survey topographic maps. Only
surface lakes with the surface area of at least 4 hectares were chosen.

Out of all these variables, ANC is often the one of greatest interest. It de-
scribes the capability of the lake to neutralize acid; more specifically, low (neg-
ative) values of ANC can lead to a loss of biological resources. We use a dataset
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containing, among others, ANC data for a group of 155 lakes in north-central
Wisconsin. This dataset has been first published in Crawford et al. [9] in Table 1
and analyzed in the same manuscript. Crawford et al. [9] argue that this dataset
is rather heterogeneous due to the presence of lakes that are very different in
their ANC within the same sample. In particular, seepage lakes, that have nei-
ther inlets nor outlets tend to be very low in ANC whereas drainage lakes that
include flow paths into and out of the lake tend to be higher in ANC. Based
on this heterogeneity, Crawford et al. [9] suggested using an empirical mixture
of two lognormal densities to fit this dataset. Crawford [8] also considered that
same dataset; they suggested using a modification of Laplace method to esti-
mate posterior component density functions in the Bayesian analysis of a finite
lognormal mixture. Note that Crawford [8] viewed the number of components
in the mixture model as a parameter to be estimated; their analysis suggests a
mixture of either two or three components.

The sample histogram for the ANC dataset is given on Figure 1 of [8]. The
histogram is given for a log transformation of the original data log(ANC +50).
Crawford [8] selected this transformation to avoid numerical problems arising
from maximization involving a truncation; the choice of 50 as an additive con-
stant is explained in more detail in [8]. The empirical distribution is clearly
bimodal; moreover, it exhibits a heavy upper tail. This is suggestive of a two-
component mixture where the first component may be Gaussian while the other
is defined on the positive half of the real line and has a heavy upper tail. We
estimate a two-component density mixture model for this empirical distribution
using two approaches. First, we follow the Bayesian approach of [8] using the
prior settings of Table 4 in that manuscript. Switching to our framework next,
we assume that the normal component is a known one while the other one is un-
known. For the known normal component, we assume the mean μ1 = 4.375 and
σ1 = 0.416; these are the estimated values obtained in [8] under the assumption
of two component Gaussian mixture for the original (not log transformed) data
and given in their Table 4. Next, we apply our algorithm in order to obtain an
estimate of the mixture proportion and a non-parametric estimate of the un-
known component to compare with respective estimates in [8]. We set the initial
value of the mixture proportion as p0 = 0.3 and the initial value of the unknown
component as a normal distribution with mean μ0

2 = 8 and standard deviation
σ0
2 = 1. The iterations stop when |pt+1 − pt| < 10−4. After 171 iterations, the

algorithm terminates with an estimate of mixture proportion p̂ = 0.4875; for
comparison purposes, [8] produces an estimate p̂Bayesian = 1− 0.533 = 0.4667.
The Figure 5 shows the resulting density mixtures fitted using the method of [8]
and our method against the background histogram of the log-transformed data.
The Figure 6 illustrates the fitted first component of the mixture according to
the method of [8] as well as the second component fitted according to both
methods. Once again, the histogram of the log-transformed data is used in the
background.

Note that the mixture density curves based on both methods are rather
similar in Figure 5. One notable difference is that the method of [8] suggests
mixture with a peak at the value of transformed ANC of about 6.4 whereas our
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Fig 5. Fitted mixture densities

Fig 6. Fitted component densities

method produces a curve that seems to be following the histogram more closely
in that location. The Figure 6 also seems to show that our method describes the
data more faithfully than that of [8]. Indeed, the second parametric component
fitted by the method of [8] is unable to reproduce the first peak around 4.2 at
all. By doing so, the method of [8] suggests that the first peak is there only
due to the first component. Our method, on the contrary, suggests that the
first peak is at least partly due to the second component as well. Note that [8]
discusses the possibility of a three component mixture for this dataset; results of
our analysis suggest a possible presence of the third component as well based on
a bimodal pattern of our fitted second component density curve. Finally, note
that the method of [8] produces an estimated second component that implies
a much higher second peak than the data really suggests whereas our method
gives a more realistic estimate.

7. Discussion

The method of estimating two component semiparametric mixtures with a
known component introduced in this manuscript relies on the idea of maximiz-
ing the smoothed penalized likelihood of the available data. Another possible
view of this problem is as the Tikhonov-type regularization problem (some-
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times also called variational regularization scheme in optimization literature).
The resulting algorithm is an MM algorithm that possesses the descent prop-
erty with respect to the smoothed penalized likelihood functional. Moreover,
we also show that the resulting algorithm converges under mild restrictions on
the kernel function used to construct a nonlinear smoother N . The algorithm
also shows reasonably good numerical properties, both in simulations and when
applied to a real dataset. If necessary, a number of acceleration techniques can
be considered in case of large datasets; for more details, see e.g. Lange et al.
[21].

As opposed to the symmetrization method of Bordes et al. [3], our algorithm
is also applicable to situations where the unknown component does not belong
to any location family; thus, our method can be viewed as a more universal one
of two. Comparing our method directly to that of Bordes et al. [3] and Patra and
Sen [26] is a little difficult since our method is based,essentially, on perturbation
of observed data the amount of which is controlled by the non-zero bandwidth
h; thus, we arrive at what is apparently a solution different from that suggested
in both [3] and [26].

There are a number of outstanding questions remaining concerning the model
(1.1) that will have to be investigated as a part of our future research. First, the
constraint that an unknown density is defined on a compact space is, of course,
convenient when proving convergence of the algorithm generated sequence; how-
ever, it would be desirable to lift it later. We believe that, at the expense of some
additional technical complications, it is possible to prove all of our results when
the unknown density function f(x) is defined on the entire real line but has suf-
ficiently thin tails. Second, an area that we have not touched in this manuscript
is the convergence of resulting solutions. For example, a solution obtained by
running an empirical version of our algorithm (p∗n, f

∗
n) would be expected to

converge to a solution (p∗, f∗) obtained by the use of the original algorithm in
the integral form. Analogously, as h → 0, it is natural to expect that (p∗, f∗)
would converge to (p, f) such that the identity (1 − p)f0(x) + pf(x) = g(x) is
satisfied. We expect that some recent results in optimization theory concerning
Tikhonov-type regularization methods with non-metric fitting functionals (see,
for example, Flemming [13] ) will be helpful in this undertaking. Our research
in this area is ongoing.
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