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The naming game on the complete graph

Eric Foxall*

Abstract

We consider a model of language development, known as the naming game, in which
agents invent, share and then select descriptive words for a single object, in such a
way as to promote local consensus. When formulated on a finite and connected graph,
a global consensus eventually emerges in which all agents use a common unique word.
Previous numerical studies of the model on the complete graph with n agents suggest
that when no words initially exist, the time to consensus is of order n1/2, assuming
each agent speaks at a constant rate. We show rigorously that the time to consensus
is at least n1/2−o(1), and that it is at most constant times logn when only two words
remain. In order to do so we develop some useful estimates for semimartingales with
bounded jumps.
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1 Introduction

The study of social dynamics from the standpoint of statistical physics is an area
which has seen increased attention in recent years [5]. Historically, interacting particle
system models of opinion dynamics, such as the voter model, have been of interest to
mathematicians and studied in detail. However, new models emerging in the physics
literature have yet to be given a fully rigorous mathematical treatment. One of these is
a model of language development known as the naming game. This is a simple model
of invention, sharing, and selection of words that displays eventual consensus towards
a common vocabulary. It has been studied, using numerical simulations and heuristic
computations, on lattices [1], the complete graph [3] and some random graphs [6]. As a
first effort from the standpoint of probability theory, we study the naming game on the
complete graph and give rigorous proof of some scaling relations that were observed
numerically in [3].

We first recall the definition of the naming game on a general locally finite undirected
graph G = (V,E). Individuals correspond to vertices of the graph, and each individual
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The naming game on the complete graph

speaks to its neighbours at a certain rate. The idea is that individuals are attempting to
agree on a word to describe a certain object, for which initially, no descriptive words
exist. The interaction rules are as follows.

• Speaker:

– If the speaker does not know a word to describe the object then she invents a
word and speaks it to the listener.

– On the other hand, if the speaker does know at least one word to describe the
object then she selects a word uniformly at random from her vocabulary and
speaks it to the listener.

• Listener:

– If the listener already knows the chosen word, then both speaker and listener
delete the remainder of their vocabulary and remember only that word. This
is called agreement.

– Otherwise, the listener adds the chosen word to their vocabulary.

Thus there is a mechanism both for the creation of new words, and for deletion and
eventual agreement upon a single word. We now make this description rigorous. The
process is denoted (Wt)t≥0 with Wt : V → Po(V ) for each t ≥ 0, where Po(V ) is the
collection of finite subsets of V . Thus, for each vertex v ∈ V , we have a process Wt(v),
the vocabulary of v, whose state space consists of all finite subsets of the vertex set V
and which is defined as

Wt(v) = {w ∈ V : v knows the word invented by w}.

The process evolves as follows: For each v ∈ V , at the times of an independent Poisson
process with rate one, v chooses a listener w uniformly at random from the set {u : uv ∈
E}; say this occurs at time t.

• If Wt−(v) is empty then v speaks word v to w, so that Wt(v) = {v} and Wt(w) =

Wt−(w) ∪ {v}.
• If Wt−(v) is non-empty then v chooses a uniform random word u from Wt−(v) and

speaks it to w.

– If u ∈Wt−(w) then Wt(v) = Wt(w) = {u}.
– If u /∈Wt−(w) then Wt(v) is unchanged and Wt(w) = Wt−(w) ∪ {u}.

If G is connected and finite, then with probability one, the system eventually settles into
one of the set of absorbing states

{Wt(v) = {w} for all v ∈ V : w ∈ V }

and we would like to know what happens on the way to this consensus. Let

Vt =
⋃
v

Wt(v)

denote the set of words in existence at time t. If G is the complete graph on n vertices,
i.e.,

V = {1, . . . , n} and E = {{v, w} : v, w ∈ V, v 6= w},

numerical studies and heuristic computations [2] indicate three distinct phases.

1. Early phase: Vt rises from 0 to about n/2 in about 1
2 log n time.
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2. Middle phase: Vt remains fairly constant up till about n1/2 time.
3. Late phase: Vt falls sharply to 1 within about n1/4 time.

Some heuristics give a sense of the early and middle phases:

1. Early phase: a vertex creates a new word if it speaks before listening, which has
probability 1/2, so an average of n/2 words are created. This phase ends when
every vertex has either spoken or listened. Since for each vertex this occurs after
exponential time with rate 2, if these times were independent then the early phase
would end after the maximum of n exponential(2) random variables, which has
expectation

∑n
i=1 1/(2i) ≈ 1

2 log n.

2. Middle phase: suppose that, at first, vertices tend to learn only new words. Then,
the vocabulary of each vertex grows at rate 1, so

∑
v |Wt(v)| ≈ nt and assuming

vocabularies are evenly distributed, each of the roughly n/2 words in the population
is known by about 2t/n individuals, so each time a word is spoken, the probability
its listener already knows that word is about 2t/n. Thus, agreements occur at a
total rate of about 2t, so about t2 agreements occur on the time interval [0, t]. In
order to achieve a global consensus, at least one agreement must occur at each of
the roughly n/2 vertices that invent a word, so consensus requires at least

√
n/2

amount of time.

In this article we consider the early and middle phases, and the tail end of the late
phase, that we call the final phase, in which Vt goes from 2 to 1. We note that it is
possible that Vt jumps directly to 1 from a value larger than 2, although we think this is
an unlikely event, for large n. The bulk of the late phase, during which the diversity of
language collapses from a large number to a small number of different words, is more
difficult to assess and is not considered here.

In the next section we construct the model as a stochastic process, then describe the
main results and give the layout for the rest of the article.

2 Construction and main results

We first note a useful “graphical construction” of the process, on a general locally
finite graph G, from arbitrary initial data. We assume the vertices are totally ordered
according to some fixed order. Given µ > 0, let {(si, ui) : i ≥ 1} be an independent and
identically distributed sequence, with each si exponentially distributed with mean one
and each ui independent of si and uniform on [0, 1], and for i ≥ 1, let ti = µ−1

∑i
j=1 sj .

Then, the set of points
U := {(ti, ui) : i ≥ 1} ⊂ R+ × [0, 1]

defines what we call an augmented Poisson point process with intensity µ, since (ti) are
the jump times of a Poisson process with intensity µ and each point ti comes equipped
with an independent uniform random variable ui to help with the decision-making
process.

Let F denote the set of directed edges {(v, w) : vw ∈ E}, and associate to each
directed edge (v, w) ∈ F an independent augmented Poisson point process U(v, w) with
intensity (deg v)−1. Suppose that (t, u) ∈ U(v, w) and |Wt−(v)| = k, with Wt−(v) =

{w1, . . . , wk} labelled in increasing order.

• If k = 0 then v speaks word v to w at time t.

• If k ≥ 1, then v speaks word wi to w at time t if and only if

(i− 1)/k ≤ u < i/k.
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The naming game on the complete graph

We then follow the rules as described above to determine Wt. If G is a finite graph,
then since the intensity of the union

⋃
(v,w)∈F U(v, w) is finite, its points are well-ordered

in time with probability 1, and so Wt can be determined from the initial state and the
points U(v, w) by updating sequentially in time. If G is an infinite graph, one needs
to ensure that for each spacetime point (v, t), a finite number of events suffices to
determine Wt(v). Although this is not hard to do when there is some control on the
degree, we will ignore it since from here on we focus on the case where G is the complete
graph on n vertices and thus finite for any n.

Recall that Vt =
⋃
vWt(v) denotes the set of words in existence at time t. The

following result gives estimates of |Vt|, the cardinality of Vt, in the middle phase of the
process.

Theorem 2.1. For small enough ε > 0, let t0 = ( 1
2 + ε) log n and t1 = n1/2−ε. Then

P ( sup
t0≤t≤t1

||Vt| −
n

2
| ≤ n1−ε)→ 1 as n→∞.

The result is proved in two main steps.

1. First, we show that n/2 + n1/2+o(1) are ever created, and within ( 1
2 + o(1)) log n

time.
2. Then, we show that o(n) words are deleted in n1/2−o(1) time.

The proof relies on approximating the size of the cluster Ct(w) corresponding to a given
word w by a sort of branching process evolving in a non-stationary random environment.
The cluster is defined by

Ct(w) = {v : w ∈Wt(v)}

and is the set of individuals that know word w at time t. We also need to control the
correlation between distinct clusters Ct(w1, ), Ct(w2). To achieve both tasks we will use a
slightly modified graphical construction which is better tailored to tracking the evolution
of one or more distinguished clusters.

Suppose the process is started from an initial configuration in which, for some distinct
pair of words A,B and each v ∈ V , W0(v) ∈ {{A}, {B}, {A,B}}. Then, the same is true of
Wt(v), for all v ∈ V and t > 0. Since vertices in the complete graph are indistinguishable,
if we let

xt = n−1|{v ∈ V : Wt(v) = {A}}|, (2.1)

yt = n−1|{v ∈ V : Wt(v) = {B}}| and (2.2)

zt = n−1|{v ∈ V : Wt(v) = {A,B}}| (2.3)

denote the proportion of each type, then (x, y, z) is a continuous-time Markov chain
with state space Λn = {(x, y, z) ∈ N3/n : x+ y + z = 1}. The set of possible interactions
between pairs of individuals of the three possible types A,B and AB, and the rate of
each, is recorded in Table 1. Counting the number of edges connecting such pairs, we
then easily obtain Table 2, that records the jump sizes ∆ and transition rates q for the
set of possible transitions of (x, y, z).

As mentioned earlier, the process eventually reaches an absorbing state.
In this context, that means that with probability one,

lim
t→∞

(xt, yt, zt) ∈ {(1, 0, 0), (0, 1, 0)}.

The following result gives a sharp upper bound, over initial values in Λn, on how long
this will take as a function of n, up to a 1 + o(1) multiple of precision as n→∞.
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reactants product (n− 1)·(rate)

A+AB → 2AB 1/2

A+AB → 2A 3/2

B +AB → 2AB 1/2

B +AB → 2B 3/2

AB +AB → 2A 1

AB +AB → 2B 1

A+B → B +AB 1

A+B → A+AB 1

Figure 1: List of possible interactions between two individuals

n∆x n∆y n∆z (n− 1)q/n2

−1 0 1 xz/2

1 0 −1 3xz/2

0 −1 1 yz/2

0 1 −1 3yz/2

2 0 −2 z(z − n−1)/2

0 2 −2 z(z − n−1)/2

−1 0 1 xy

0 −1 1 xy

Figure 2: List of transitions with jumps ∆ and rates q

Theorem 2.2. Let z∗ be the positive solution to z∗(4 + z∗) = 1 and define the time to
consensus

Tc = inf {t : (xt, yt, zt) ∈ {(1, 0, 0), (0, 1, 0)}}.

(i) For any sequence of initial distributions and any α > 0,

P (Tc/ log(n) ≤ 1 + 1/2z∗ + α)→ 1 as n→∞,

(ii) and if |x0 − y0| = O(1/
√
n) and |z0 − z∗| = o(1) then

Tc/ log n→ 1 + 1/2z∗ in probability as n→∞.

Notice that, if individuals only remember the last word they heard, then starting from
a configuration with two words, we obtain the voter model on the complete graph, for
which the time to consensus is of order n. The reason it is much faster here is because,
once a majority of type A or B develops, it is maintained. An easy way to see this is
using the following informal argument. The average rate of change of (x, y, z) is given
by summing ∆ times q over the transitions in Table 2, which leads to the system of ODEs
with z = 1− (x+ y) and

x′ = xz + z2 − xy, (2.4)

y′ = yz + z2 − xy.

As depicted in Figure 3, on the set {(x, y) ∈ R2
+ : x+ y ≤ 1}, there is a saddle point on the

blue line x = y and two stable equilibria, (1, 0) and (0, 1), that attract all points except
those on the blue line. Since ours is a stochastic process, trajectories beginning on the
blue line stray from it due to fluctuations, and are then swept away to one of the two
stable equilibria. Quantitative arguments are given in Section 5.
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Figure 3: Phase portrait for the ODE system (2.4) in the (x, y) plane. Image generated us-
ing Darryl Nester’s applet on https://bluffton.edu/homepages/facstaff/nesterd/
java/slopefields.html

The paper is laid out as follows. In Section 3 we derive some useful estimates for
semimartingales with bounded jumps, and give some formulas that help with compu-
tations later on. This section can be read independently of the rest of the paper, and
may be of use in other applications. In Section 4 we prove Theorem 2.1 in several steps.
In Section 4.1 we show that about n/2 words are created in about 1

2 log n time, using
Chebyshev’s inequality and a coupon-collecting argument, respectively. In Section 4.2
we show that at most n1−ε/2 words are deleted in n1/2−ε time, which as noted above is
achieved by controlling the number of individuals that know a given word, and which
requires the estimates of Section 3. In Section 5 we use the approximating ODEs and
the estimates of Section 3 to prove Theorem 2.2. Some additional results are collected
in an Appendix, including the results of Section 3 and a general pathwise estimate for
Poisson processes.

3 Sample path estimation

We use the theory of semimartingales, that is summarized in [8, Chapter I]. For our
applications, we define the class of quasi-absolutely continuous semimartingales, which
are (possibly discontinuous) processes for which we have drift and diffusion coefficients,
generalizing the usual definition in the context of stochastic differential equations. We
assume the reader is familiar with the notions of càdlàg, stopping time, predictable time
and process, localization and martingale, which can be found in I.1 and I.2 of [8].

Below, we assume that processes are defined on a filtered probability space (Ω,F ,F, P )

satisfying the usual conditions as described in [8, I.1.3], are optional as defined in [8,
I.1.20], and take values in a complete metric space. If X is a càdlàg Feller process
equipped with the completion of its natural filtration then since it is cádlág and adapted
it is optional, and as shown in [10, I.5] it satisfies the usual conditions. Since the naming
game is a continuous-time Markov chain, it is Feller (see for example [9, Proposition
17.2].

Given a càdlàg process X we denote by X− = (Xt−)t≥0 the left-continuous process
(with X0− = X0) and by ∆X = X−X− the process of jumps. We say that X has bounded
jumps if |∆X| ≤ c a.s. for some constant c > 0, and let ∆?(X) denote the infimum of
such values of c. X is quasi-left continuous (qlc) if ∆Xτ = 0 a.s. on {τ < ∞} for any
predictable time τ .
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Given a process A, define the process V ar(A) by setting V ar(A)t(ω) equal to the total
variation of the function s 7→ As(ω) on the interval [0, t]. A process A has finite variation
if V ar(A)t(ω) <∞ for each t, ω, and is locally integrable if it has a localizing sequence
(τn) such that E[V ar(A)τn ] < ∞ for each n. The compensator of a locally integrable
process A, denoted Ap, is the unique predictable and locally integrable process such
that A−Ap is a local martingale (see [8, I.3.18]).

A semimartingale (s-m) X is an R-valued process that can be written as X = X0 +

M +A, where X0 is an F0-measurable random variable, M is a local martingale and A
has finite variation. We call a semimartingale special if it can be written in the above
manner with a process A that is also predictable. If X is special, then as noted in [8,
I.4.22], the decomposition with A predictable is unique, so we write

X = X0 +Xm +Xp (3.1)

where Xm is a local martingale with Xm
0 = 0 and Xp is predictable, both uniquely

defined. By [8, I.4.24], if X has bounded jumps then it is special and |∆Xm| ≤ 2∆?(X),
and if it also qlc then using [8, I.2.35] in the proof of [8, I.4.24], we have the more
convenient estimate ∆?(X

m) ≤ ∆?(X).
Any R-valued Markov chain is a semimartingale, since it is right-continuous and has

locally finite variation, and is also quasi-left continuous, effectively because the jump
times of a Poisson process are totally inaccessible; if this explanation is insufficient use
Proposition 22.20 in [9] and note that Markov chains are Feller processes. As shown in [8,
I.4.28], a deterministic function f : R+ → R is a semimartingale iff it is right-continuous
with finite variation over each compact interval, and is quasi-left continuous iff it is
continuous, since any fixed time is predictable.

We will occasionally assume X is defined only up to some predictable time ζ that
may be finite; in this case, information about X can be recovered from the stopped
processes Xτn defined by Xτn

t = Xt∧τn , where τn is an announcing sequence for ζ, i.e.,
an increasing sequence of stopping times with limit ζ.

If local martingales M,N are locally square-integrable then as shown in [8, I.4.2],
MN has a compensator, denoted 〈M,N〉 and called the predictable quadratic covariation.
If M = N we denote it 〈M〉 and call it predictable quadratic variation (pqv). Any local
martingale M with M0 = 0 and bounded jumps is locally square integrable (see [8, I.4.1]).
If X is a special s-m and Xm is locally square-integrable we use 〈X〉 to denote 〈Xm〉.

We begin with a simple result that leads to an exponential estimate. It can probably
be deduced from Theorem 2.3 in [7], but since the proof is not long, we include it in the
Appendix.

Lemma 3.1. Let M be a local martingale with M0 = 0 and |∆M | ≤ c for some c > 0.
Then,

exp(M − (ec/2)〈M〉)

is a supermartingale with initial value 1.

The next result characterizes quasi-left continuity for semimartingales whose martin-
gale part is locally square-integrable, and also motivates the definition of quasi-absolute
continuity below.

Lemma 3.2. Let X be a special semimartingale with locally square-integrable martin-
gale part Xm.
The following are equivalent:

1. X is quasi-left continuous.
2. Xp is continuous and Xm is quasi-left continuous.
3. Xp and 〈X〉 are continuous.
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The following result is the exponential sample path estimate that we use throughout
the paper. It resembles the estimates given in [7], but is different in the following sense:
instead of bounding the running maximum of |Xm| subject to a fixed constraint on 〈X〉,
it bounds |Xm|t by a multiple of 〈X〉t, plus a fixed error, uniformly over t > 0.

Lemma 3.3. Let X be a semimartingale with |∆X| ≤ c for some c > 0. Then for λ, a > 0,

if 0 < λc ≤ 1/2 then P ( sup
t≥0
|Xm

t | − λ〈X〉t ≥ a ) ≤ 2e−λa. (3.2)

Using Lemma 3.2 as inspiration, say that a special semimartingale X with locally
square-integrable martingale part Xm is quasi-absolutely continuous (qac) if both Xp

and 〈Xm〉 are absolutely continuous. In this case define the drift µ(X) = (µt(X))t and
the diffusivity σ2(X) = (σt(X))t for Lebesgue-a.e. t by

µt(X) =
d

dt
Xp
t , σ2

t (X) =
d

dt
〈X〉t. (3.3)

Note that since X is assumed optional, we can take a single set of Lebesgue-a.e. t for
which µt(X), σ2

t (X) are defined a.s. This is necessary when performing calculations, as
in the proof of Lemma 3.4.

For deterministic processes, qac is equivalent to absolute continuity, since µt(f) =

f(t), σ2
t (f) = 0 and absolute continuity implies locally finite variation. If X is a pure jump

Markov process on a space S with bounded rate kernel α as in [9, 17.2] and f : S → R is
bounded, then the process with Yt = f(Xt) is qac with

µt(Y ) =

∫
S

(f(x)− Yt)α(Xt, dx) and σ2
t (Y ) =

∫
S

(f(x)− Yt)2α(Xt, dx). (3.4)

Most of the processes dealt with in this paper will be of the above form, with X the
naming game and f some observable. The next result gives a formula for the drift of the
product of two qac semimartingales.

Lemma 3.4 (Product rule). Suppose Xt, Yt are R-valued qac s-m on a common filtered
probability space. Then both (XY )p and 〈Xm, Y m〉 exist and are absolutely continuous,
and µt(XY ) = d

dt (XY )pt is given by

µ(XY ) = σ(X,Y ) +X−µ(Y ) + Y−µ(X),

where σt(X,Y ) = d
dt 〈X

m, Y m〉t.
The following result helps to estimate the drift of functions of qac processes. It is

Lemma 3 in [4].

Lemma 3.5 (Taylor approximation). Let X be a qac s-m with bounded jumps and let
f ∈ C2(R). Then, f(X) is a qac s-m and satisfies the following inequality for Lebesgue-a.e.
t:

|µt(f(X))− f ′(Xt)µt(X)| ≤ 1

2
σ2
t (X) sup

|x−Xt|≤∆?(X)

|f ′′(x)|.

The next result, which is Corollary 1 in [4], shows it is difficult for a process to
surmount a “drift barrier”, i.e., an interval (0, x) in which there is at least a fixed amount
µ? > 0 of negative drift, and diffusivity at most σ2

?. The strength of the estimate is
exponential in µ?x/σ2

?, both in time and probability.

Lemma 3.6 (Drift barrier). Fix x > 0 and let X be a qac s-m on R with bounded jumps,
such that ∆?(X) ≤ x/2. Let τ be a stopping time. Suppose there are positive reals
µ?, σ

2
?, Cµ, C∆ with max{∆?(X)µ?/σ

2
?, 1/2} ≤ C∆ so that if 0 < Xt < x and t < τ then

µt(X) ≤ −µ?, |µt(X)| ≤ Cµ and σ2
t (X) ≤ σ2

?. (3.5)
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Let Γ = exp(µ?x/(32C∆σ
2
?)). Then we have

P

(
sup

t≤τ∧bΓcx/16Cµ

Xt ≥ x | X0 ≤ x/2

)
≤ 4/Γ. (3.6)

This result gives an upper bound on a non-decreasing qac s-m with bounded jumps,
whose drift is sublinear with respect to some deterministic functions.

Lemma 3.7 (Sublinear drift). Let X be a qac s-m on R+ with jumps bounded by c > 0,
defined for all t < ζ = supr>0 inf{t : Xt ≥ r}. Suppose moreover that X is either

(i) non-decreasing or
(ii) satisfies σ2(X) ≤ cµ(X),

and also that µ(X) satisfies the inequality

µt(X) ≤ b(t) + `(t)Xt (3.7)

for some locally integrable non-nonegative deterministic functions b(t), `(t). Let m(t) =

exp(
∫ t

0
`(s)ds) and let Yt = Xt/(X0m(t)) −

∫ t
0
b(s)/m(s)ds denote the rescaled process.

Let ζ ′ = ζ ∧ inf{t : m(t) =∞} and β =
∫∞

0
b(t)/m(t)2dt, and assume β <∞. Then, ζ ≥ ζ ′

and for y ≥ 2,
P (sup

t<ζ′
Yt ≥ y) ≤ 2E[e−(y−2)X0/4c(1+β)].

4 Early and middle phases

In this section we consider the behaviour of |Vt| for t ≤ n1/2−o(1). Define

V ot =
⋃

(v,s):s≤t

Ws(v) and V ×t = Vt \ V ot ,

respectively the set of words created up to time t, and the set of words created and then
deleted by time t. Theorem 2.1 is implied by the following two propositions, whose proof
is the objective of this section.

Proposition 4.1. For each ε > 0, limn→∞ P (supt≥( 1
2 +ε) logn | |V ot | − n

2 | ≥ n
1/2+ε) = 0.

Proposition 4.2. For each ε > 0, limn→∞ P (supt≤n1/2−ε |V ×t | ≤ n1−ε/2) = 1.

In words, in order to estimate |Vt| we obtain good control on |V ot |, then show that
|V ×t | is not too big. We begin with V ot .

4.1 Creation of vocabulary

Our first task is to prove Proposition 4.1, and to do so we show that |V ot | rises from
0 to n/2 + O(n1/2+o(1)) within 1

2 log n time, then remains constant. For a vertex v let
Nt(v) = |Wt(v)| denote the size of the vocabulary of individual v, and let

To = inf{t : min
v
Nt(v) ≥ 1}

be the first time that every individual knows at least one word. Clearly V ot is non-
decreasing as a set, so V o∞ = limt→∞ V ot exists and |V o∞| ≤ n. Once everyone knows a
word, no new words are created, so Vt = V oTo = V o∞ for t ≥ To. Proposition 4.1 is implied
by the following two lemmas, in which we estimate To and V oTo .

Lemma 4.3. For c ≥ 0,

P (|To −
1

2
log n| ≥ c) ≤ 2e−c + o(1) as n→∞.
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Proof of Lemma 4.3. Let Mt = {v : Nt(v) = 0} denote mute vertices, those not yet
knowing a word, and observe that To ≤ t is equivalent to |Mt| = 0. For each distinct
ordered pair of vertices (v, w), at rate (n− 1)−1, the directed edge (v, w) has an event,
and both v and w are removed from Mt, if either or both still belongs. If we let Zt = |Mt|
denote the number of mute vertices at time t, it follows that Zt is a Markov chain with
Z0 = n and transitions

Zt →

{
Zt − 1 at rate 2(n− 1)−1Zt(n− Zt), and

Zt − 2 at rate (n− 1)−1Zt(Zt − 1).

We find that

lim
h→0+

h−1E[Zt+h − Zt | Zt = z] = −2(n− 1)−1z(n− z)− 2(n− 1)−1z(z − 1)

= −2(n− 1)−1(nz − z2 + z2 − z)
= −2(n− 1)−1(n− 1)z = −2z.

Letting m(t) = E[Zt], m(0) = n and taking expectations in the above, m′(t) = −2m(t),
which has the unique solution m(t) = ne−2t. Fix c ∈ R and let tc = 1

2 log n + c. Using
Markov’s inequality,

P (To > tc) = P (Ztc ≥ 1) ≤ E[Ztc ] = e−2c.

To get a lower bound we turn to Z2
t , which has transitions

Z2
t →

{
Z2
t − Zt + 1 at rate 2(n− 1)−1Zt(n− Zt), and

Z2
t − 4Zt + 4 at rate (n− 1)−1Zt(Zt − 1),

so

lim
h→0+

h−1E[Z2
t+h − Z2

t | Zt = z] = −(2z − 1)2(n− 1)−1z(n− z)− (4z − 4)(n− 1)−1z(z − 1)

= −4z(n− 1)−1((z − 1

2
)(n− z) + (z − 1)2)

= −4z(n− 1)−1(nz − z2 − n

2
+
z

2
+ z2 − 2z + 1)

= −4z(n− 1)−1((n− 3

2
)z + 1− n

2
)

=
2(n− 2)

n− 1
z − 4(n− 3/2)

n− 1
z2.

Letting ν(t) = E[Z2
t ], ν(0) = n2 and taking expectations above,

ν′(t) = −4(1− (2(n− 1))−1)ν(t)2 + 2(1− (n− 1)−1)m(t),

so letting γ = 4− 2/(n− 1), using m(t) = ne−2t and solving the above DE, we find

ν(t) = n2e−γt + 2(1− 1/(n− 1))ne−γt(e(γ−2)t − 1)/(γ − 2).

As above let tc = 1
2 log n+ c, then m(tc) = e−2c and for fixed c,

ν(tc) = e−4c + e−2c + o(1) as n→∞,

so V ar(Ztc) = ν(tc)−m(tc)
2 = e−2c + o(1). Using Chebyshev’s inequality,

P (To ≤ tc) = P (Zt = 0) ≤ P (|Zt − E[Zt]| ≥ E[Zt]) ≤ V ar(Ztc)/E[Ztc ]
2 ≤ e−2c + o(1)

e−4c

= e2c + o(1).

The result follows by taking a union bound of both estimates.
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The naming game on the complete graph

We note in passing that |V o0 | = 0 and |V ot | increases by 1 at rate Zt. Heuristically,
Zt ≈ ne−2t, so |V ot | ≈ (n/2)(1 − e−2t), for t ≤ 1

2 log n. This can be made precise using
stochastic calculus, although we do not pursue it here.

Lemma 4.4. Let X = |V oTo | be the number of words ever created. Then,

limn→∞ P (|X − n/2| ≥ nα) = 0 for all α > 1/2.

Proof of Lemma 4.4. Letting Xv for each vertex v ∈ V be the Bernoulli random variable
equal to one if and only if v speaks before listening, by construction and obvious
symmetry, we have

X =
∑
v∈V Xv and P (Xv = 0) = P (Xv = 1) = 1/2.

It follows that the expected number of words is given by

E(X) =
∑
v∈V E(Xv) =

∑
v∈V P (Xv = 1) = n/2. (4.1)

To also compute the variance, fix v, w ∈ V and let B be the event that the first edge
becoming active starting from v or w is edge vw. Since there are n− 1 edges starting
from each vertex,

P (B) =
1

2(n− 1)− 1
=

1

2n− 3
. (4.2)

In addition, the two vertices cannot both speak before listening when B occurs whereas
the two events are independent on the event Bc therefore

P (Xv = Xw = 1 |B) = 0

P (Xv = Xw = 1 |Bc) = P (Xv = 1 |Bc)P (Xw = 1 |Bc) = 1/4.
(4.3)

Combining (4.2)–(4.3), we deduce that

E(X2) =
∑
v∈V

P (X2
v = 1) +

∑
v 6=w

P (Xv = Xw = 1)

=
∑
v∈V

1

2
+
∑
v 6=w

1

4

2n− 4

2n− 3
=
n

2

(
1 +

(n− 1)(n− 2)

2n− 3

)
which, together with some basic algebra, gives the variance

V ar(X) =
n

2

(
1 +

(n− 1)(n− 2)

2n− 3
− n

2

)
=
n

4

(
n− 2

2n− 3

)
= O(n). (4.4)

From (4.1) and (4.4) and Chebyshev’s inequality, we conclude that

limn→∞ P (|X − n/2| ≥ nα) ≤ limn→∞ n−2αV ar(X) = 0

for all α > 1/2. This completes the proof.

4.2 Maintenance of vocabulary

Next, we prove Proposition 4.2, that says that with probability tending to 1 as n→∞,

sup
t≤n1/2−o(1)

|V ×t | = o(n).

Clearly V ×t , like V ot , is non-decreasing, since once a word vanishes from the population,
it does not come back. We first bound |V ×t | by a simpler quantity. Say that agreement
upon word y occurs at (v, w, t) if

y ∈Wt−(w) and v speaks word y to w at time t.
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The naming game on the complete graph

If word w is created at some time s ≤ t, then w ∈Ws(w), and remains in individual w’s
vocabulary at least until the first time t > s that agreement occurs at (·, w, t) or (w, ·, t)}.
This implies

V ×t ⊆ Ht = {w : agreement occurs at (·, w, s) or (w, ·, s) for some s ≤ t}.

In words, in order to delete a word w from the population, it must at least be deleted
from its source. Since each agreement contributes at most 2 to Ht, it follows that

|V ×t | ≤ 2At where At = |{s ≤ t : agreement occurs at (·, ·, s)}|
(number of agreements up to time t).

In order to control At we first define some useful observable quantities. For w ∈ V we
recall the cluster Ct(w) of w, that is, the set of individuals that know word w at time t:

Ct(w) = {v : w ∈Wt(v)}.

Recall that Nt(v) = |Wt(v)| denotes the size of the vocabulary of individual v, and let

Rt(w) = 1(Nt(w) = 0) +
∑

v∈Ct(w)

1/Nt(v) (4.5)

denote the rate at which word w is spoken. Let J(w, v) denote the times at which w

speaks to v, and let

N `
t (v) =

∑
w

|J(w, v) ∩ [0, t]| = number of listening events for v up to time t,

noting that Nt(v) ≤ N `
t (v) and {(N `

t (v)) : v ∈ V } is a collection of independent Poisson
processes with intensity 1. If we let

τa(v) = inf{t : v ∈ Ht} and
τa(v, t) = 0 ∨ sup{s ≤ t : agreement occurs at (v, ·, s) or (·, v, s)},

then Nt(v) = N `
t (v)−N `

τa(v,t)−(v), and in particular,

Nt(v) = N `
t (v) for t < τa(v).

Let St(w) = |Ct(w)| and Pt(w) = (St(w) − 1)/(n − 1), and let St = maxw St(w). Each
site v that knows word w speaks it at rate Nt(v)−1/(n− 1) to each of the other St(w)− 1

sites in Ct(w). Letting

At(w) = |{s ≤ t : agreement occurs upon word w at time s}|,

so that At =
∑
w At(w), it follows that At(w) increases by 1 at rate

(St(w)− 1)
∑

v∈Ct(w)

Nt(v)−1

n− 1
= Rt(w)Pt(w).

Since
∑
w∈V Rt(w) = n is the total speaking rate and Pt(w) ≤ (St − 1)/(n − 1) ≤ St/n,

summing the above display over w ∈ V we find

At increases by 1 at rate at most St. (4.6)

We have reduced the problem of controlling |V ×t | to that of controlling St. The
following becomes the goal of this subsection. Since its proof has a few parts, we call it
a theorem.
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Theorem 4.5. For small ε > 0,

lim
n→∞

P ( sup
t≤n1/2−ε

St
(1 + t)1+ε

≥ (log n)9) = 0.

Before moving onto the proof of Theorem 4.5 we first use it to obtain Proposition 4.2.

Proof of Proposition 4.2. From (4.6), for any T > 0, supt≤T At ≤ Poisson(
∫ T

0
Sudu). Us-

ing Theorem 4.5, with probability 1− o(1) as n→∞

∫ n1/2−ε

0
Sudu ≤ (log n)9

∫ n1/2−ε

0
(1 + u)1+εdu ≤ (log n)9(2 + ε)−1(1 + n1/2−ε)2+ε

≤ (log n)9n1−3ε/2−ε2

with the last inequality holding for large n. Since P (Poisson(λ) ≤ 2λ) → 1 as λ → ∞
it follows that for large n, supt≤n1/2−ε At ≤ n1−ε/4 with probability 1 − o(1), and since
|V ×t | ≤ 2At, this gives supt≤n1/2−ε |V ×t | ≤ n1−ε/2 as desired.

To begin the proof of Theorem 4.5 we introduce a modified construction to help us
make a coupling. First, for each ordered triple (y, z, v) let Rt(y, z, v) be the rate at which
word y is spoken by site z to v, let Rt(y, v) =

∑
z Rt(y, z, v) be the rate at which site v

hears word y, and as above let Rt(y) =
∑
v Rt(y, v) be the rate at which word y is spoken.

We calculate

Rt(y, z, v) = (Nt(z))
−11(z ∈ Ct(y), z 6= v) + 1(y = z 6= v, Nt(y) = 0))/(n− 1) and

Rt(y, v) = (1(Nt(y) = 0, v 6= y) +
∑
z∈Ct(y)\{v}Nt(z)

−1)/(n− 1).
(4.7)

Clearly
∑
y Rt(y, v) = 1 for each v, w and t ≥ 0. Fix an ordering v1 < · · · < vn of V and

define an independent family {Uv : v ∈ V } of augmented Poisson point processes with
intensity 1, that will correspond to listening events. For v ∈ V , 1 ≤ i, j ≤ n and t ≥ 0 let

It(v, i, j) =

[
i−1∑
k=1

Rt(vk, v) +

j−1∑
m=1

Rt(vi, vm, v),

i−1∑
k=1

Rt(vk, v) +

j∑
m=1

Rt(vi, vm, v)

)
,

noting that {It(v, i, j) : 1 ≤ i, j ≤ n} partitions [0, 1). Then, if (t, u) ∈ Uv and u ∈ It−(v, i, j),
word vi is spoken by vj to v, which defines the process. Using this construction and
given C,R > 0 we obtain upper bounds Ct(w),Rt(w) on Ct(w), Rt(w) for all w ∈ V , valid
up to the time

TC,R = minw∈V Tw(C,R) where
Tw(C,R) = inf{t :

∑
v∈Ct(w)∩Ht Nt(v)−1 ≥ C or Rt(w) ≥ R}.

That is, we obtain for each w ∈ V a pair of processes Ct(w),Rt(w) with nice properties,
such that Ct(w) ⊆ Ct(w) and Rt(w) ≤ Rt(w) for t ≤ TC,R pointwise on realizations of
the process. The definitions will look a bit strange but should be easier to understand
after reading the proof of the upcoming Lemma 4.6. Given w ∈ V , Ct(w),Rt(w) are
non-decreasing and defined as follows. For i ∈ {1, . . . , n} let

bt(v, i) =
∑i−1
k=1Rt(vk, v), and for x ∈ [0, 1) let

It(v, i, x) = [bt(v, i), bt(v, i) + x) mod 1.

Define

N `
t (v, i, R) = |{(s, u) ∈ Uv : s ≤ t, u /∈ It(v, i, R)}| ≤ N `

t (v),
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The naming game on the complete graph

which increases at constant rate 1−R, and ignores listening events during which word vi
is spoken, so long as vi is spoken at rate at most R. Let C0(w) = {w} and R0(w) = 1 +C

for each w. Rt(vi) is defined for each i and t > 0 as follows:

Rt(vi) = 1 + C +
∑

v∈Ct(vi)\{vi}

1/(1 +N `
t (v, i, R)).

In words, Rt(vi) assigns a basic speaking rate of 1 (for vi) plus C (to account for sites
in Ct(vi) at which agreement has occurred – see the definition of Tw(C,R)), plus an
additional (smaller and more accurate) speaking rate for all sites in Ct(vi) aside from vi.
Then, Ct(vi) is defined as follows.

if (t, u) ∈ Uv and u ∈ It−(v, i,Rt−(vi)/(n− 1)),

then Ct(vi) = Ct−(vi) ∪ {v}.

This is such that, if word vi is spoken at rate at most Rt(vi), then any site that is added
to Ct(vi) is also added to Ct(vi). We now demonstrate the claimed comparison.

Lemma 4.6. For each w ∈ V and all t < TC,R, Ct(w) ⊆ Ct(w) and Rt(w) ≤ Rt(w).

Proof. Let
τc(w) = inf{t : Ct(w) 6= ∅},

then Ct(w) ⊂ {w} ⊆ Ct(w) and Rt(w) ≤ 1 ≤ Rt for t < τc(w). For the remainder, assume
t ≥ τc(w) and let i be such that w = vi. By construction, v ∈ V is added to Ct(w) if

v /∈ Ct−(w), (t, u) ∈ Uv and u ∈ It−(v, i, Rt(w, v)) (4.8)

and otherwise, Ct(w) does not increase. If t ≥ τc(w) then Nt(w) ≥ 1, and if z /∈ Ht then
N `
t (z) = Nt(z). So, from the second line of (4.7),

(n− 1)Rt(w, v) =
∑
z∈Ct(w)\{v} 1/Nt(z)

≤
∑
z∈Ct(w) 1/N `

t (z) +
∑
z∈Ct(w)∩Ht 1/Nt(z).

If w ∈ Ct(w) then Nt(w)−1 ≤ 1. By definition of TC,R, if Ct(w) ⊆ Ct(w) and t < TC,R then

(n− 1)Rt(w, v) ≤ (1 + C +
∑

z∈Ct(w)\{w}

1/N `
t (z)).

If v ∈ Ct(w) and t < TC,R then N `
t (v) ≥ N `

t (v,R) + 1, since this implies existence of a
point in

Uv ∩ {(s, u) : s ≤ t and u ∈ Is(v, i,Rt(w)/(n− 1))},

that is counted in N `
t (v) but not in N `

t (v, i, R). If Ct(w) ⊆ Ct(w) it follows that Rt(w, v) ≤
Rt(w)/(n − 1) for each v which implies the containment Ct(w) ⊆ Ct(w) is preserved
across transitions (4.8) that cause Ct(w) to increase. Since Ct(w) is non-decreasing and
transitions are well-ordered this implies Ct(w) ⊆ Ct(w) for t < TC,R. It remains to check
Rt(w) ≤ Rt(w) for τc(w) ≤ t < TC,R. But in this case, (4.5) and the previous argument
give

Rt(w) =
∑

v∈Ct(w)

1/Nt(v) ≤ 1 + C +
∑

v∈Ct(w)\{w}

1/N `
t (v) ≤ Rt(w).

Next we fix w and examine Ct(w),Rt(w) assuming t < TC,R, and dropping the (w)

for neatness. Notice that |Ct| is non-decreasing and increases by 1 at rate at least
(1 + C)(n − |Ct|)/(n − 1), which implies limt→∞ |Ct| = n. Since |Ct| increases by one
at a time, let y1, . . . , yn be the order in which vertices are added to Ct, with w = y1,
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and condition on (y1, . . . , yn). We track Zt = |Ct| and N i
t = N `

t (yi, R), i = 1, . . . , n which
suffices to determine Ct,Rt. Let ti = inf{Zt = i} denote the time at which yi is added to
Ct, and let k be such that w = vk. For i ∈ {2, . . . , n}, ti is the least value of t such that
there is a point

(t, u) ∈
⋃
j≥i

Uyj ∩ {(s, v) : s ∈ [ti−1,∞), v ∈ Is(yj , k,Rti−1
/(n− 1))},

and in addition, this point belongs to Uyi . Using this and basic properties of exponential
random variables, together with the thinning property of the Poisson process, we find
that conditioned on (y1, . . . , yn),

(Zt, N
1
t , . . . , N

n
t )t<TC,R

is a Markov chain with the following transitions:

Zt → Zt + 1 at rate Rt(n− Zt)/(n− 1), and
for i = 1, . . . , n, N i

t → N i
t + 1 at rate 1−R/(n− 1).

In particular, {(N i
t )t<TC,R : i = 1, . . . , n} is an i.i.d. collection of Poisson processes with

intensity 1 − R/(n − 1). Since the above does not depend on the choice of values for
(y1, . . . , yn) the same holds unconditionally. Thus Zt can be viewed as follows: initially
Z0 = 1, then subject to the random environment determined by the {(N i

t )}ni=2, Zt
increases by 1 at rate Rt(n− Zt)/(n− 1). Define (Λt, Xt) by

Λt(z) = 1 + C +

z∑
i=2

1/(1 +N i
t ) and

X0 = 1, Xt increases by 1 at rate Λt(Xt). (4.9)

Since (n− Zt)/(n− 1) ≤ 1 and Λt is non-decreasing in z, it follows that

(Zt,Rt)t<TC,R is dominated by (Xt,Λt(Xt)). (4.10)

We can think of (Xt) as a branching process with immigration rate 1 + C, in which
individual i produces offspring at the time-decreasing rate 1/(1 + N i

t ). Two tasks lie
ahead. The first is to estimate (Xt). The second is to estimate TC,R. We then combine
the results to obtain Theorem 4.5. This is outlined as follows.

Proposition 4.7. Let b = 1 + C. If ε > 0, b ≤ (27 log n)4 and R = o(n) then

P ( sup
t≤TC,R

St/(1 + t)1+ε > (log n)9) = o(1/n).

Proposition 4.8. If ε > 0 is small, b = (27 log n)4 and R = b+ (log n)11 then

lim
n→∞

P (TC,R ≤ n1/2−ε) = 0.

Proof of Theorem 4.5. Use Propositions 4.7 and 4.8 with b = (27 log n)4 and R = b +

(log n)11.

4.2.1 Estimation of (Xt)

Since n does not appear in the definition of (Xt) we may as well define it using an infinite
sequence {(N i

t )t≥0 : i = 1, 2, . . . } of Poisson processes with intensity r = 1− R/(n− 1).
Clearly r ≤ 1. Since R will be chosen o(n), we will have r → 1 as n→∞, so throughout
we assume r ≥ 1/2.
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We begin with a useful heuristic. Let b = 1 + C. Replacing N i
t with its expectation rt,

Xt increases by 1 at rate b+Xt(1 + rt)−1, which we approximate with the differential
equation

x′ = b+ x/(1 + rt).

Let m(t) = exp(
∫ t

0
(1 + rs)−1ds) = (1 + rt)1/r. The above equation is linear and has

solution

x(t) = m(t)x(0) + bm(t)

∫ t

0

ds/m(s).

If r is close to 1 then x(t) grows just a bit faster than linearly in time. In order to analyze
(Xt) we break it up into two steps:

1. Up to a fixed time T , when the N i
t are fairly small.

2. From time T to∞, when the N i
t are fairly large.

The reason to do this is because the estimates that say |N i
t − rt| = o(rt) are only effective

once rt has had time to increase. The following is the main result of this subsection.

Proposition 4.9. There exist M,x0 ∈ [1,∞) so that if r ∈ [1/2, 1], b ≥ 2 and x ≥ b ∨ x0

then
P (sup

t≥0
Xt −Mx(1 + t)1/r(x+ log(1 + t)) > 0) ≤ 3e−x

1/4/9.

Recall St = maxw |Ct(w)|. Using this result we can prove Proposition 4.7.

Proof of Proposition 4.7. For each w ∈ V , using Lemma 4.6 and (4.10),

(|Ct(w)|)t≤TC,R is dominated by (Xt).

Since R = o(n) by assumption and recalling r = 1−R/(n− 1), r ≥ 1/2 and 1/r ≤ 1 + ε/2

for large n. Letting x = (27 log n)4, x ≥ b by assumption and x ≥ x0 for large n, so
applying the result of Proposition 4.9 and taking a union bound over w,

P (supt≤TC,R St − Φ(t, x) > 0) ≤ 3ne−x
1/4/9 = 3n1−3 = o(1/n), where

Φ(t, x) = Mx(x+ log(1 + t))(1 + t)1/r.

Since 1 + log(1 + t) = O((1 + t)ε/2) and using 1/r ≤ 1 + ε/2,

Φ(t, x) = O((log n)8(1 + t)1+ε),

which is at most (log n)9(1 + t)1+ε for large n and all t ≥ 0, completing the proof.

We tackle the proof of Proposition 4.9 in a couple of steps.

Step 1. We obtain a somewhat crude upper bound on (Xt) that has the virtue of being
effective starting at time 0. For i ≥ 1 let ti = inf{t : Xt = i}, define Ni = N i

ti then define
Yt, Qt by

Y0 = 1 and Yt → Yt + 1 at rate Qt = b+

Yt∑
i=2

1/(1 +N i
ti).

In words, at the moment ti an individual i is added to the process, the corresponding
counting process N i

t is stopped, so that i always contributes (1 + N i
ti)
−1 to Qt. Since

(1 + N i
ti)
−1 ≥ (1 + N i

t )
−1 for t ≥ ti, (Xt) is dominated by (Yt). The next result controls

(Yt).

Lemma 4.10. There is M1 ∈ [1,∞) so that for a, b ≥ 2 and r ∈ [1/2, 1],

P (sup
t≥0

Yt/(1 + t)1+1/r ≥ abM1) ≤ 4e−(a−2)/2
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Proof. Begin by observing that (Qt) has the concise description

Q0 = b and Qt → Qt + ∆t at rate Qt

where the increment ∆t
d
= (1 + Poisson(rt))−1 is independently sampled every time there

is a jump. Our first task is to control the size of Qt. We compute the drift:

µt(Q) = `(t)Qt with `(t) := E[∆t]

Let g(t) = exp(
∫ t

0
E[(1 + Poisson(rs))−1]ds). Using Lemma 3.7 with b(t) = 0 and c = 1, for

a ≥ 2 we find
P (sup

t
Qt/g(t)) ≥ ab) ≤ 2e−(a−2)b/4 (4.11)

This translates to a bound on (Yt)t≥0 as follows. Since µt(Y ) = Qt,

Y mt = Yt − Y0 −
∫ t

0

Qsds

Since (Yt)t≥0 has transition rate Qt and jump size exactly 1, σ2(Yt) = Qt. Using Lemma
3.3 with λ = 1/2 and c = 1 while noting Y0 = 1,

P (Yt ≥ 1 + a+
3

2

∫ t

0

Qsds for some t ≥ 0) ≤ 2e−a/2

Combining with (4.11), taking a union bound, and noting e−(a−2)b/4, e−a/2 ≤ e−(a−2)/2 if
b ≥ 2,

P (Yt ≥ 1 + a

(
1 +

3b

2

∫ t

0

g(s)ds

)
for some t ≥ 0) ≤ 4e−(a−2)/2. (4.12)

Intuitively, g(t) grows roughly like m(t). Let ξ = Poisson(λ). Since x 7→ (1 + x)−1 is
convex, the inequality E[(1 + ξ)−1] ≥ (1 + E[ξ])−1 goes in the wrong direction for an
upper bound on g(t). Anticipating our needs, we let x = λα/2 in Lemma 5.11 to find

P (ξ < λ− λ1/2+α/2) ≤ e−λ
2α/8 if 0 < α ≤ 1/2.

Using the fact that (1 + ξ)−1 ≤ 1 and that probabilities are at most 1, then using Lemma
5.10 with c = 1/2, if λ ≥ 1 (which implies cλα−1 ≤ 1) then

E[(1 + ξ)−1] = E[(1 + ξ)−1 ; ξ ≥ λ− λ1/2+α/2] + E[(1 + ξ)−1 ; ξ < λ− λ1/2+α/2]

≤ (1 + λ− λ1/2+α/2)−1P (ξ ≥ λ− λ1/2+α/2) + P (ξ < λ− λ1/2+α/2)

≤ (1 + λ− λ1/2+α/2)−1 + e−λ
2α/8

≤ (1 + λ)−1 + (1 + λ)−3/2+α + e−λ
2α/8.

If λ < 1 we will use the trivial estimate E[(1 + ξ)−1] ≤ 1. If 0 < α < 1/2 and 0 < r ≤ 1

then

c(r, α) := 2 +

∫ ∞
0

((1 + rs)−3/2+α + e−(rs)2α/8)ds <∞.

Let c(r) = inf{c(r, α) : α ∈ (0, 1/2)} and let c = c(1/2). Since c(r, α) decreases with r, it
follows that c(r) ≤ c for r ≥ 1/2. Recalling m(t) = exp(

∫ t
0
ds/(1 + rs)) defined earlier, and

noting rs ≥ 1 if s ≥ 2, it follows that

g(t) ≤ inf
α∈(0,1/2)

exp

(∫ 2

0

1ds+

∫ t

2

((1 + rs)−1 + (1 + rs)−3/2+α + e−(rs)2α/8)ds

)
≤ inf

α∈(0,1/2)
exp

(
2 +

∫ t

0

((1 + rs)−1 + (1 + rs)−3/2+α + e−(rs)2α/8)ds

)
≤ ecm(t)
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Since m(t) = (1 + rt)1/r and 1/(r(1 + 1/r)) = 1/(r + 1), it follows that∫ t
0
g(s)ds ≤ ec

∫ t
0
(1 + rt)1/r = ec((1 + rt)1/r+1 − 1)/(r + 1)

≤ ec((1 + t)1/r+1 − 1),

using r > 0 and r ≤ 1 in the last step. If a ≥ 2 and b ≥ 1 then since c > 0, 1+a(1−3bec/2) ≤
0 and

1 + a

(
1 +

3b

2

∫ t

0

g(s)ds

)
≤ 3abec

2
(1 + t)1/r+1.

To conclude, take M1 = 3
2e
c and use (4.12).

Step 2. Next, we do two things.

1. Lemma 4.11. We control the environment {(N i
t )}i≥1 for t ∈ [T,∞).

2. Lemma 4.12. We use this to get an upper bound on (Xt) for t ∈ [T,∞).

Let
τlp(i) = sup{t : N i

t − rt+ 2(rt)3/4 < 0} for i ≥ 1

denote the last passage time of N i
t below the curve v(t) = rt− 2(rt)3/4, and for t ≥ 0 let

It = max{i : τlp(j) ≤ t for all j ≤ i}.

For later use, we note that

Λt(x) ≤ b+ x/(1 + v(t)) for x ≤ It. (4.13)

Lemma 4.11. If T > 0 is large enough, then for any r ∈ [1, 2/1],

P ( inf
t>T

It − et
1/2/9 < 0) ≤ e−T

1/2/9.

Proof. For each i, using Lemma 5.12 with α = 1/4 and τ2 = τlp(i),

P (τlp(i) ≥ t) ≤ 6t1/2e−(rt)1/2/3 if t ≥ 4 and t1/2 ≥ 24.

Let f(t) = t−1/4e(rt)1/2/6/
√

6, so the right-hand side above is 1/f(t)2.
For t large enough that f(t) ≥ 1, a union bound gives

P (It < f(t)) = P (maxj≤df(t)e τlp(j) > t) ≤ df(t)e/f(t)2

≤ f(t)−1(1 + f(t)−1) ≤ 2f(t)−1.

For T > 0 let c1(T ) = supt≥T f(t)/f(t+ 1) and note that c1(T )→ 1 as T →∞.
Since It is non-decreasing, if It ≥ f(t) and t > T then

It+h ≥ f(t) ≥ c1(T )f(t+ h) for h ∈ [0, 1).

Taking a union bound over the estimate at times T + k, k ≥ 0 gives

p(T ) := P ( inf
t>T

It − c1(T )f(t) < 0) ≤
∑
k≥0

P (IT+k < f(T + k))

≤
∑
k≥0

2/f(T + k)

If T is large enough that f(t) is increasing, it follows that

p(T ) ≤
∫ ∞
T−1

2
√

6t1/4e−(rt)1/2/6dt.
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With α = 1/4 let c2(T ) = (αr2α/3 − (3/2 − 3α)T−2α)−1. Using Lemma 5.9 with a =

1/2− α, β = 2α and c = r2α/6 while noting 1 + a− β = 3/2− 3α > 0, if 1/c2(T ) > 0 then
we obtain

p(T ) ≤ 2
√

6c2(T )(T − 1)3/4e−r
1/2(T−1)1/2/6.

For large T , c1(T ) ≥ 1/2 and c2(T ) ≤ 6r−2α/α = 24r−1/2 ≤ 48, since r ≥ 1/2. Since
r1/2 ≥ 1/

√
2 > 2/3, by giving up a bit in the exponents, for large T we have

p(T ) ≤ e−(1+T )1/2/9 and c1(T )f(t) ≥ et
1/2/9

and the result follows.

Lemma 4.12. There is M2 ∈ [1,∞) so that if T > 0, τ = inf{t > T : Xt > It}, r ∈ [1/2, 1),
a ≥ 2 and x1, b > 0 then

P ( sup
T≤t<τ

Xt −M2(1 + t)1/r

(
ax1

(1 + T )1/r
+ b log(1 + t)

)
> 0 | XT ≤ x1)

≤ 2e−(a−2)x1/4(1+b(1+T ))

Proof. Recall Λt defined in (4.9). Using (4.9) and (4.13), it follows that for T ≤ t < τ

and conditioned on XT ≤ x1, (Xt) is dominated by the process (X̃t) with X̃T = x1 that
increases by 1 at rate b+ X̃t/(1 + v(t)), where v(t) = rt− 2(rt)3/4. We proceed as in the
proof of Lemma 4.10. We have

µt(X̃) = b+ `(t)X̃t with `(t) := 1/(1 + v(t)).

For a > 0 let Ea = {supt≥T X̃t/g(t)−(ax1+b
∫ t
T
ds/g(s)) > 0}, where g(t) = exp(

∫ t
T
`(s)ds),

and let β = b
∫∞
T
ds/g(s)2. Using Lemma 3.7 with c = 1, for a ≥ 2 we find

P (Ea) ≤ 2e−(a−2)x1/4(1+β). (4.14)

Using Lemma 5.10 with λ = rt, α = 1/4 and c = 2, if 4(rt)−1/2 ≤ 1, i.e., rt ≥ 16, then

`(t) = 1/(1 + v(t)) ≤ (1 + rt)−1 + (1 + rt)−5/4. (4.15)

Let c(r) =
∫∞

0
(1 + rs)−5/4ds, which is finite for r ∈ (0, 1] and decreases with r. Let

c = c(1/2), so that c(r) ≤ c for r ∈ [1/2, 1]. Combining and noting that u 7→ (1+ut)/(1+uT )

is non-decreasing in u if t ≥ T ,

g(t) ≤ ec exp

(∫ t

T

ds/(1 + rs)

)
= ec

(
1 + rt

1 + rT

)1/r

≤
(

1 + t

1 + T

)1/r

.

Therefore

Ea ⊇ {sup
T≤t

X̃t − ec(1 + t)1/r

(
ax1

(1 + T )1/r
+

b

(1 + T )1/r

∫ t

T

ds/g(s)

)
> 0.

Using `(t) ≥ 1/(1 + t) and integrating, g(t) ≥ (1 + t)/(1 + T ). Since 1/r ≥ 1 and
log(1 + T ) ≥ 0,

b

(1 + T )1/r

∫ t

T

ds/g(s) ≤ b
∫ t

T

ds/(1 + s) ≤ b log(1 + t),

so with M2 = ec,

Ea ⊇ {sup
T≤t

X̃t −M2(1 + t)1/r

(
ax1

(1 + T )1/r
+ b log(1 + t)

)
> 0. (4.16)
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Using again g(t) ≥ (1 + t)/(1 + T ),

β = b
∫∞
T
ds/g(s)2 ≤ b(1 + T )2

∫∞
T

(1 + s)−2ds

= b(1 + T ).

Using the above in (4.14) and combining with (4.16), we obtain the result.

Proof of Proposition 4.9. We note that Lemma 4.10 is true with Xt in place of Yt since
(Xt) is dominated by (Yt). Let L(t) = et

1/2/9. Recall x from the statement of the
Proposition, and let T = x1/2 − 1 so that x = (1 + T )2. Let x1 = abM1(1 + T )1+1/r. Let

E = {supt≤T Xt/(1 + t)1+1/r ≤ abM1},
F = {inft≥T It − L(t) ≥ 0} and
G = {supT≤t<τ Xt − (1 + rt)1/r(aM2x1/(1 + rT )1/r + bM2 log(1 + t)) ≤ 0}

be the complements of the events from, respectively, Lemma 4.10, 4.11 and 4.12. On E,

sup
t≤T

Xt/(1 + t)1/r ≤ abM1(1 + T ).

In particular, XT ≤ x1, so using Lemma 4.12, for b ≥ 2 and large T ,

P (Gc ∩ E) ≤ P (Gc ∩ {XT ≤ x1}) ≤ P (Gc | Xt ≤ x1)

≤ 2 exp(−(a− 2)x1/4(1 + b(1 + T )))

≤ 2 exp(−(a− 2)aM1(1 + T )1/r/5).

(4.17)

On G, using the definition of x1 and the assumption b ≤ x,

sup
T≤t<τ

Xt − (1 + t)1/r(M(a, T ) + xM2 log(1 + t)) ≤ 0, where M(a, T ) = a2xM1M2(1 + T ).

Since a,M2 ≥ 1, on E ∩G the above inequality holds for all t < τ . Let a = T 1/2 and let
M = M1M2. Since x = (1+T )2 by definition, M(a, T ) ≤ TxM1M2(1+T ) ≤ xM(1+T )2 =

x2M , so on E ∩G, since M1 ≥ 1,

sup
t<τ

Xt −Mx(1 + t)1/r(x+ log(1 + t)) ≤ 0.

Writing x as (1 + T )2, on E ∩ F ∩G, for T ≤ t < τ

It ≥ L(t) = et
1/2/9 and Xt ≤M(1 + T )2(1 + t)1/r((1 + T )2 + log(1 + t)).

Since τ = inf{t > T : Xt > It}, if T is large enough then L(t) ≥ M(1 + t)2+1/r((1 +

T )2 + log(1 + t) ≥M(1 + T )2(1 + t)1/r((1 + T )2 + log(1 + t) for all t ≥ T and so τ =∞ on
E ∩ F ∩G.

Using Lemmas 4.10 and 4.11, for large T ,

P (Ec) ≤ 4e−T
1/2/2+1 and

P (F c) ≤ e−(1+T )1/2/9.

Comparing to (4.17), the weakest bound is on F c. So, for large T ,

P ((E ∩ F ∩G)c) ≤ P (F c) + P (Ec) + P (Gc ∩ E) ≤ 3e−(1+T )1/2/9

Let T0 be large enough that above estimates hold for T > T0 and let x0 = (1 + T0)2. The
result is proved.
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4.2.2 Estimation of TC,R

Write TC,R = TC ∧ TR, where

TC = inf{t : maxw
∑
v∈Ct(w)∩Ht Nt(v)−1 ≥ C} and

TR = inf{t : maxwRt(w) ≥ R}.

Proposition 4.13. Let b = 1 + C. If b+ (log n)11 ≤ R = o(n/ log n) then

lim
n→∞

P (TR ≤ n1/2 ∧ TC) = 0.

Proposition 4.14. For each ε > 0 and with b = (27 log n)4, if R ≤ (log n)12 then

lim
n→∞

P (TC ≤ n1/2−ε ∧ TR) = 0.

Proof of Proposition 4.8. Notice that

TC,R ≤ t ⇔ TC ≤ t ∧ TR or TR ≤ t ∧ TC ,

then use Propositions 4.13 and 4.14 and take a union bound.

Next we prove Proposition 4.13, which is the simpler of the two.

Proof of Proposition 4.13. For any w, Rt(w) is dominated by Λt(Xt) on the time interval
[0, TC,R].
Thus for any t > 0, a union bound gives

P (TR ≤ t ∧ TC) ≤ nP (sup
s≤t

Λs(Xs) ≥ R).

For any function Φ : R+ → R+,

{sup
s≤t

Λs(Xs) ≥ R} ⊂ {sup
s≥0

Xs − Φ(s) > 0} ∪ {sup
s≤t

Λs(Φs) ≥ R}. (4.18)

Let Φ(s) = M(27 log n)4((27 log n)4 + log(1 + s))(1 + s)1/r. Taking x = (27 log n)4 in
Proposition 4.9,

P (sup
s≥0

Xs − Φ(s) > 0) = o(1/n). (4.19)

We have the trivial bound Λs(x) ≤ b + x, so since s 7→ Φ(s) is non-decreasing, for any
T > 0, sups≤T Λs(Φ(s)) ≤ b+ Φ(T ). Using (4.15) and (4.13),

Λs(x) ≤ b+ 2x(1 + rs)−1 for x ≤ It.

Let L(s) = es
1/2/9. Taking T = (18 log n)2, if n is large enough and r ∈ [1/2, 1] then

Φ(s) ≤ L(s) for s ≥ T . Using Lemma 4.11 for s ≥ T and the trivial bound for s ≤ T ,

P (sup
s≥0

Λs(Φ(s))− (b+ Φ((18 log n)2) ∨ (2Φ(s)(1 + rs)−1)) > 0) = o(1/n). (4.20)

Since R = o(n) by assumption, r ≥ 1/2 for large n and so Φ((18 log n)2) = O((log n)10).
Since R = o(n/ log n) by assumption, for large n, r = 1 − R/(n − 1) ≥ 1 − o(1/ log n) so
1/r − 1 = o(1/ log n) and for s ≤ n1/2,

(1 + s)1/r/(1 + rs) = O((1 + s)1/r−1) = O(no(1/ logn)) = O(1),

so
sup

s≤n1/2

2Φ(s)(1 + rs)−1 = O((log n)8).

SinceR ≥ b+(log n)11 by assumption, which is at least b+Φ((18 log n)2)∨(2Φ(s)(1+rs)−1))

for large n and s ≤ n1/2, the result follows from (4.18),(4.19) and (4.20) with t = n1/2.

EJP 23 (2018), paper 126.
Page 21/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP250
http://www.imstat.org/ejp/


The naming game on the complete graph

It remains to prove Proposition 4.14. Define the non-decreasing spacetime set of
points

At(w)

=

{
(v, s) :s ≤ t and either

v ∈ Cs−(w) and agreement occurs at (v, ·, s) or (·, v, s), or
v ∈ Hs(w) ∩Cs(w) \Cs−(w).

}
To get a more workable quantity we will use the fact that∑

v∈Ct(w)∩Ht

Nt(v)−1 ≤ Ct(w) =
∑

(v,s)∈At(w)

1/(1 +N `
t−s(v)).

This way,

if sup
s≤t

max
w

Cs(w) < C then TC > t. (4.21)

So, to estimate TC we control contributions to Ct(w). Let Qt(w) denote the rate at
which At(w) increases. Let {N i

t : t ≥ 0, i ≥ 1} be an independent collection of Poisson
processes with intensity 1, let Q,T > 0 and let N(t) be an independent Poisson process
with intensity Q. Let ti = inf{t : N(t) = i} and let

Bt =
∑

i≤N(t)

1/(1 +N i
t−ti).

Let TQ(w) = inf{t : Qt(w) > Q} and TQ = minw TQ(w). Then for any w,

(Ct(w))t≤TQ is stochastically dominated by (Bt). (4.22)

In the next lemma we control Bt.

Lemma 4.15. Fix T > T0 ≥ 1 and Q ≥ 1. Then,

P (sup
t≤T

Bt > 2QT0 + 4Q log(2 ∨ T )) ≤ Q(2 + T )2e−T0/16.

Proof. We first bound Bt over intervals [k−1, k], k ∈ Z∩[0, 1+T ], then take a union bound
to control the value over the interval [0, T ]. Fix k ≤ T + 1 and let Ñ(t) = N(k)−N(k− t).
Define

E1 = {Ñ(t) ≥ 2Q(t ∨ T0) for some t ≤ k} and

E2 = {N i
t < t/2 for some t ≥ T0 and 2QT0 < i ≤ 2Qk}.

Note that P (E2 = 0) if k ≤ T0, since the range of i values is empty. Using Lemma 3.3
with Xt = Ñ(t), Xp

t = 〈Xm〉t = Qt, c = 1, a = QT0/2 and λ = 1/2,

P (E1) ≤ 2e−QT0/4 ≤ 2e−T0/4.

Using Lemma 3.3 with Xt = N i
t , X

p
t = 〈Xm〉t = t, a = T0/4 and λ = 1/4 and taking a

union bound,

P (E2) ≤ 2Q(0 ∨ (k − T0))e−T0/16.

Order the jump times of Ñ(t) for t ≤ k in increasing order as t̃1, t̃2, . . . , t̃Ñ(k).

On Ec1, t̃i > i/2Q for 2QT0 < i ≤ 2Qk, so on Ec1 ∩ Ec2, N i
t̃i−1

≥ (i/2Q − 1)/2 for 2QT0 <
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i ≤ 2Qk and

sup
t∈[k−1,k]

Bt ≤ 2QT0 +

2Qk∑
i=2QT0+1

1/(1 + (i/2Q− 1)/2)

≤ 2QT0 +

∫ 2QT

2QT0

(1 + (t/2Q− 1)/2)−1dt

= 2QT0 + 4Q(log(1/2 + k/2)− log(1/2 + T0/2))

≤ 2QT0 + 4Q log(k),

using k, T0 ≥ 1 on the last step so that 1/2+k/2 ≤ k and log(1/2+T0/2) ≥ 0. Summarizing,

P (Bt > 2QT0 + 4Q log k for some t ∈ [k − 1, k])

≤ 2Q(0 ∨ (k − T0))e−T0/16 + 2e−T0/4 ≤ 2Qke−T0/16

since 2e−T0/4 ≤ 2QT0e
−T0/16 if k > T0 and 2e−T0/4 ≤ 2Qke−T0/16 if k ≤ T0, noting

k,Q ≥ 1 by assumption. Taking a union bound over k = 1, 2, . . . , bT c, bT c+ 1 and noting∑bTc+1
k=1 k ≤ (2 + T )2/2 gives the result.

It remains to prove the following result.

Proposition 4.16. If ε > 0 is small, k > 0 is fixed, Q = log n and R ≤ (log n)k, then

lim
n→∞

P (TQ ≤ n1/2−ε ∧ TC,R) = 0.

Before proving it, we show how it implies Proposition 4.14. Recall that whp (with high
probability) refers to an event whose probability tends to 1 as n→∞. Note that if E1, E2

whp then E1 ∩ E2 whp.

Proof of Proposition 4.14. We want to show that TC > n1/2−ε ∧ TR whp. Since TC ≥
TC ∧ TQ, if TC ∧ TQ > n1/2−ε ∧ TR then TC > n1/2−ε ∧ TR. Moreover

TC ∧ TQ > n1/2−ε ∧ TR ⇔ TC > n1/2−ε ∧ TR ∧ TQ and TQ > n1/2−ε ∧ TR ∧ TC .

Proposition 4.16 says that TQ > n1/2−ε ∧ TR ∧ TC whp, so it is enough to show that if
b = 1 + C = (27 log n)4 and Q = log n then TC > n1/2−ε ∧ TR ∧ TQ whp, or equivalently
that

P (TC ≤ n1/2−ε ∧ TR ∧ TQ) = o(1).

In Lemma 4.15 take T = n1/2, T0 = 48 log n and Q = log n to find that

P ( sup
t≤n1/2

Bt > 98(log n)2) = O(n−2 log n) = o(1/n).

Then, using (4.22) and Proposition 4.16 and taking a union bound over the n possible
values of w,

P ( sup
t≤n1/2−ε∧TR∧TQ

max
w

Ct(w) > 98(log n)2) = o(1).

The result then follows from (4.21) and the fact that 98(log n)2 < (27 log n)4 − 1 for large
n.

By taking a union bound over w and noting the probability does not depend on w, to
obtain Proposition 4.16 it is sufficient to show that for any w and small ε > 0,

lim
n→∞

P ( sup
t≤n1/2−ε

Qt(w) > log n) = o(1/n), (4.23)

noting that the probability is the same for any w. There are three ways that At(w)

increases:
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1. a site already in Ht is added to Ct,
2. agreement occurs at a site already in Ct, or
3. a site is added simultaneously to Ct and Ht.

Let Qit(w), i = 1, 2, 3 denote the rate of each event, so that Qt(w) =
∑3
i=1Q

i
t(w). Since

each site in V \Ct(w) is added to Ct(w) at rate Rt(w)/(n− 1) ≤ R/(n− 1),

Q1
t (w) ≤ |Ht|R/(n− 1). (4.24)

Since there are |Ct(w) ∩ Ct(v)| sites in Ct(w) that can agree on word v, and each word is
spoken at rate at most R/(n− 1) to each site,

Q2
t (w) ≤

∑
v |Ct(w) ∩ Ct(v)|R/(n− 1)

≤
∑
v 6=w |Ct(w) ∩ Ct(v)|R/(n− 1) + StR/(n− 1),

(4.25)

recalling that St = maxw |Ct(w)| is the size of the largest cluster. Each time a person
speaks, the probability that agreement occurs is at most St/(n−1). Since Ct(w) increases
at rate ≤ R, it follows that

Q3
t (w) ≤ StR/(n− 1). (4.26)

The reader may think that Q3
t (w) should be 0, since a new addition to a cluster does

not yet know the word. However, the upper bound cluster Ct(w) can grow when in the
process itself, a word other than w is being spoken. Using Proposition 4.7 we control
Q1
t (w) and Q3

t (w), which is two thirds of Proposition 4.16.

Lemma 4.17. For each w, small ε > 0, R ≤ nε, b = 1 + C ≤ (27 log n)4 and i = 1, 3,

P ( sup
t≤n1/2−ε∧TC,R

Qit(w) > 1) = o(1/n).

Proof. From (4.24) and (4.26) and the choice of R, it suffices to show that

P ( sup
t≤n1/2−ε∧TC,R

maxSt, |Ht| > n1−ε) = o(1/n).

Using Proposition 4.7,
P ( sup

t≤TC,R
St − Φ(t, x) > 0) = o(1/n),

where Φ(t, x) = (log n)9(1 + t)1+ε). The desired result for i = 3 then follows from (4.26),
since supt≤n1/2−ε(log n)9(1+t)1+ε = (log n)9(1+n1/2−ε)1+ε = o(n1−ε). To get the result for
i = 1 recall from the beginning of this section that |Ht| ≤ 2At, the number of agreements
up to time t, and from (4.6) that At ≤ Poisson(

∫ u
0
Sudu). Using the above bound on St,

with probability 1− o(1/n),∫ n1/2−ε∧TC,R
0

Sudu ≤
∫ n1/2−ε

0
Φ(u, x)du

= (log n)9 1
2+ε ((1 + n1/2−ε)2+ε)− 1) = o(n1−ε)

for large n. From Lemma 5.11, P (Poisson(λ) > 2λ) ≤ e−λ/3. The above implies that wp
1− o(1/n), Ht is dominated by Poisson(n1−ε/2) for large n. So, it follows that

P ( sup
t≤n1/2−ε∧TC,R

|Ht| > n1−ε) ≤ e−n
1−ε/6 + o(1/n) = o(1/n).

It remains to control |Ct(w) ∩ Ct(v)|. First we modify slightly the construction from
the beginning of Section 4.2, using a randomization trick. The reason it needs modifying
is to ensure the growth of Ct(w) and any Ct(v) are not strongly correlated. Since we only
randomize the location of “exceptional” events that expand Ct(w), the reader may verify
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that up to a random permutation of certain vertices, the marginal distribution of each
Ct(w), and its domination of Ct(w), are unchanged.

To carry out the modification, make the {Uv} doubly-augmented, that is, each Uv is
again a Poisson point process with intensity 1, but on [0,∞)×[0, 1]2 instead of [0,∞)×[0, 1].
Rt(w) is defined in the same way as before, and Ct(w) is defined as follows.

if (t, u1, u2) ∈ Uv and u1 ∈ It−(v, i, Rt−(w)/(n− 1)),

or if (t, u1, u2) ∈ Uv, u1 /∈ It−(v, i, Rt−(w)/(n− 1))

and u2 ≤ (n− 1)−1(Rt−(w)−Rt−(w))/(1−Rt−(w)),

then Ct = Ct− ∪ {v}.

In other words,

• if Ct(w) was about to include v, then Ct(w) will too, and
• if Ct(w) increases when Ct(w) does not, then with respect to

what other clusters are doing, it does so as randomly as possible.

We now control the size of Ct(w) ∩ Ct(v), for any v 6= w. “wp” is shorthand for “with
probability”.

Lemma 4.18. For any ε, k > 0, if R ≤ nε/4 then

P ( sup
t≤n1/2−ε∧TC,R

∑
v 6=w

|Ct(w) ∩ Ct(v)| ≥ n/(log n)k) = o(1/n).

Proof. Let Kt =
∑
v 6=w |Ct(w) ∩ Ct(v)|. There are three ways Kt can increase.

1. Ct(w) acquires a site that belongs to some (possibly many) Ct(v), v 6= w,
2. some Ct(v), v 6= w acquires a site that belongs to Ct(w), and
3. Ct(w) and some Ct(v), v 6= w simultaneously acquire the same site.

It suffices to show the contribution to supt≤n1/2−ε∧TC,R Kt from each item is o(n/(log n)k)

wp 1− o(1/n). For item 1, the jump size is at most maxv N
`
t (v), while for items 2,3 the

jump size is 1. Let R1(t), R2(t), R3(t) denote the rate of each event. Then,

Ri(t) ≤ Rt(w) for i ∈ {1, 3}, and
R2(t) ≤ |Ct(w)|

∑
v 6=w Rt(v)/(n− 1).

Since N `
t (v) ≤ N `

n1/2(v) for t ≤ n1/2 and each v, and since each N `
n1/2(v) ∼ Poisson(n1/2),

using Lemma 5.11 with x = n1/4 and a union bound,

P ( sup
t≤n1/2

max
v

N `
t (v) > 2n1/2) ≤ ne−n

1/2/3 = o(1/n).

For t < TC,R, Rt(w) ≤ R ≤ nε/4 by assumption, so wp 1− o(1/n), the contribution from
item 1 is at most 2n1/2Poisson(Rn1/2−ε) ≤ 2n1/2Poisson(n1/2−3ε/4 which (using again
Lemma 5.11 with x = λ) is wp 1− o(1/n) at most 4n1−3ε/4 = o(n/(log n)k) for any fixed k.
This also bounds the contribution from item 3 since the rate has the same bound and the
jump size is 1.

For item 2, note that
∑
v 6=w Rt(v) ≤

∑
v Rt(v) = n and that for t < TC,R, Ct(w) is

dominated by Xt. Applying Proposition 4.9, bounding log(1 + t) by log(1 + n1/2) for
t ≤ n1/2 and using the trivial but convenient n/(n − 1) ≤ 2 for n ≥ 2, we find that for
x ≥ b = 1 + C large enough,

P ( sup
t<n1/2∧TC,R

R2(t) ≥ 2Mx(x+ log(1 + n1/2))(1 + t)1/r) ≤ 3e−x
1/4/9.
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Taking x = (27 log n)4 the probability above is o(1/n2). Thus the contribution from item 2
is at most Poisson(f(n1/2−ε)), where

f(t) =
∫ t

0
2M(27 log n)4((27 log n)4 + log(1 + n1/2))(1 + s)1/rds

≤ 4M(27 log n)8(1 + t)1+1/r,

using log(1+n1/2) ≤ (27 log n)4 and 1+1/r ≥ 1. If R = o(n) then for any ε > 0, 1/r ≤ 1+ε

for large n. Therefore

f(n1/2−ε) = O((log n)8n(1/2−ε)(2+ε)) = O((log n)8n1−3ε/2−ε2) = o(n/(log n)k).

It follows as before that Poisson(f(n1/2−ε)) = o(n/(log n)k) wp 1− o(1/n), and the proof
is complete.

Combining this with the other term in (4.25) we control Q2
t (w).

Lemma 4.19. For any k > 0 and small ε > 0, each w and R ≤ (log n)k,

P ( sup
t≤n1/2−ε∧TC,R

Q2
t (w) > 2) = o(1/n).

Proof. From the proof of Lemma 4.17 we know that P (supt≤n1/2−ε∧TC,R St > n1−ε) =

o(1/n). Using this, (4.25), R ≤ (log n)k and Lemma 4.18,

P ( sup
t≤n1/2−ε∧TC,R

Q2
t (w) > (n/(log n)k) + n1−ε)(log n)k/(n− 1)) = o(1/n).

If n is large then (n/(log n)k + n1−ε)(log n)k/(n− 1) ≤ 2 and the result follows.

Proof of Proposition 4.16. This follows from (4.23), and Lemmas 4.17 and 4.19.

5 Final phase

Change of variables. Recall (x, y, z) defined in (2.1), and let ut = |xt − yt|, then for Tc
from Theorem 2.2 we have Tc = inf {t : ut = 1}. Conveniently, (u, z) has a closed system
of approximating ODEs. Take x′ − y′ in (2.4) to obtain

u′ = sgn(x− y)(x− y)′ = sgn(x− y)(x− y)z = uz.

The above assumes sgn(x− y) does not change along trajectories of the ODEs, but this
is confirmed by the resulting equation. Next, since z = 1− (x+ y),

z′ = −(x′ + y′) = −(x+ y)z − 2z2 + 2xy = −(1− z)z − 2z2 + 2xy = −z − z2 + 2xy.

The 2xy part should be written in terms of u, z. To do so note

z2 = 1− 2(x+ y) + (x+ y)2 = 2z − 1 + (x+ y)2,

so z2 − 4xy = 2z − 1 + (x− y)2 = 2z − 1 + u2. Thus 4xy = 1− u2 − 2z + z2 and so

z′ =
1

2
(−2z − 2z2 + 4xy) =

1

2
(1− u2 − 4z − z2).

Summarizing, we have the following system of approximating ODEs for (u, z):

u′ = uz (5.1)

z′ =
1

2
(1− u2 − 4z − z2).
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Figure 4: Phase portrait for the ODE system (5.1) in the (u, z) plane. Image generated us-
ing Darryl Nester’s applet on https://bluffton.edu/homepages/facstaff/nesterd/
java/slopefields.html

The direction field and a representative trajectory are depicted in Figure 4. The figure
coincides with the portion of Figure 3 above the line x = y, rotated clockwise by an
angle of 3π/4. There are two relevant equilibria: the saddle point (0, z∗) with z∗ the
positive solution of z∗(4 + z∗) = 1, and the stable equilibrium (1, 0). Solutions approach
the unstable manifold (red) of (0, z∗) from above and below, then are attracted to the
equilibrium (1, 0). Approach to the red line is fast; the slow movemenet is near the
equilibria.

We can attempt estimation of Tc is as follows. If r > 0 is a small fixed distance, then to
reach an r-neighbourhood (nbhd) of the red line, and to go from within an r-nbhd of (0, z∗)

to within an r-nbhd of (1, 0) takes O(1) time. Linearizing around (0, z∗) gives u′ = z∗u and
z′ = 0, so for u to go from a value of 1/n up to r takes (1/z∗) log(n/r) = (1/z∗) log(n)−O(1)

time. Linearizing around (1, 0) gives

(
(1− u)′

z′

)
=

(
0 −1

1 −2

)(
(1− u)

z

)
,

which has eigenvalues −1,−1, so the approach to (1, 0) is like e−t or te−t. Thus, to go
from distance r of (1, 0) to distance less than 1/n takes about log(n/r) = log(n) − O(1)

time. In total, this gives the estimate Tc ∼ (1+1/z∗) log nwhen (u0, z0) ≈ (0, z∗). However,
this disagrees with the statement of Theorem 2.2 by an amount (1/2z∗) log n. To see why
we need to include fluctuations.

Drift and diffusivity. Here we compute the drift and diffusivity of (u, z). The drift is
the same as the right-hand side of (5.1) up to some o(1) terms, but the diffusivity gives
information which is unavailable from the deterministic approximation. We use the
notation of Section 3. From (3.4), and indexing the rates qi and jumps ∆i in Table 2 by
their row i, we have

µ(x) =
∑
i

qi∆i(x) and σ2(x) =
∑
i

qi∆
2
i (x), (5.2)

and similarly for y, z, u. It will be convenient for computations to slow time by a factor
(n − 1)/n, so that transition rates in the table are equal to q/n instead of (n − 1)q/n2.
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Using Table 2 with q/n in place of (n− 1)q/n2 and using (5.2), we compute

µ(x) = xz + z2 − xy − z/n and

µ(y) = yz + z2 − xy − z/n,

so following the approach used to obtain (5.1) we find µ(z) = 1
2 (1−u2− 4(1− 1/n)z− z2).

The computation of µ(u) is complicated by the absolute value. However, from Table 2 we
have ∆?(u) ≤ 2/n, so if u ≥ 2/n then sgn(u) does not change after a jump, which easily
implies that

if u ≥ 2/n then µ(u) = sgn(x− y)µ(x− y) = sgn(x− y)(x− y)z = uz.

On the other hand, since ∆u ≥ |∆x − ∆y|, we always have the inequality µ(u) ≥
|µ(x)− µ(y)| = |(x− y)z| = uz. Altogether, this gives

µ(z) =
1

2
(1− u2 − 4(1− 1/n)z − z2) and (5.3)

µ(u)

{
= uz if u ≥ 2/n,

≥ uz if u < 2/n.

We can obtain coarse upper bounds on the magnitude of the drift and diffusivity as
follows. Note the total jump rate before time change is equal to n (each vertex speaks at
rate 1), the jump size of each of x, y, z, u is at most 2/n, and the time change only slows
things down. Thus,

|µ(x)| ≤ n(2/n) = 2, σ2(x) ≤ n(2/n)2 = 4/n and similarly for y, z, u. (5.4)

For u, z we can obtain a tighter bound on the diffusivity. The total speaking rate of n− 1

(after time change) includes interactions of type A+A and B +B, that have no effect on
u, z. The rates of these interactions are respectively

nx
nx− 1

n− 1

n− 1

n
= x(nx− 1) and y(ny − 1).

Thus the rate of interactions affecting u, z is at most n− 1− n(x2 + y2) + x+ y = n(1−
(x2 +y2))−z. Since x2 +y2 = u2 +2xy ≥ u2, an easy upper bound is n(1−u2) ≤ 2n(1−u).
Since |∆u|, |∆z| ≤ 2/n at each jump, it follows that σ2(u), σ2(z) ≤ 8(1− u)/n.

To get a matching lower bound, note that interactions of type A+ !A and B+ !B,
with ! meaning “not”, has |∆u|, |∆z| ≥ 1/n, and the rate of such interactions is nx(1 −
x) + ny(1 − y). If x ≥ y then since u = x − y and y = 1 − (x + z) ≤ 1 − x, 1 − u =

1− x+ y ≤ 2(1− x), so 1− x ≥ (1− u)/2, and similarly 1− y ≥ (1− u)/2 if y ≥ x. Thus,
nx(1− x) + ny(1− y) ≥ n(1− u)/2, and we obtain σ2(u), σ2(z) ≥ (1− u)/2n. We record
the two estimates for later:

(1− u)/2 ≤ nσ2(z), nσ2(u) ≤ 8(1− u). (5.5)

Determination of Tc. From (5.5) we see that when u is bounded below 1, (u, z) has fluc-
tuations of order 1/

√
n on constant time scale. Including this in our previous estimation

of Tc, we see that to escape from (0, z∗), u only needs to go from 1/
√
n up to r, which

takes time (1/z∗) log(
√
n/r) = (1/2z∗) log(n)−O(1). Including the log(n) time needed to

close in on (1, 0) gives the correct estimate Tc ∼ (1 + 1/2z∗) log n.

To make these observations rigorous and to compute the growth of Tc as a function
of n, we introduce two small parameters: δ > 0 for small values of z, |z − z∗| and ε > 0

for small values of u, 1− u, and one large parameter B > 0 for the diffusion of
√
nu. We

will focus on the following sequence of desirable events:
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(i) wait until either z ≥ 2δ or u ≥ 1− ε,
(ii) z > δ until either u > 2ε or |z − z∗| ≤ δ,

(iii) |z − z∗| ≤ 2δ until
√
nu > 2B,

(iv) |z − z∗| ≤ 2δ and
√
nu > B until u > 2ε,

(v) u > ε and z > δ until u ≥ 1− ε,
(vi) u ≥ 1− 4ε until u = 1.

To encode these six events we use the following notation.
For an R-valued process X, x ∈ R and s ≥ 0 define

τ+
x (X, s) = inf{t ≥ s : Xt > x} and τ−x (X, s) = inf{t ≥ s : Xt ≤ x},

and let τ+
x (X) = τ+

x (X, 0) and τ−x (X) = τ−x (X, 0). Also, to avoid crowding notation we’ll
use X(t) interchangeably with Xt for any process X. We then define the following
succession of five stopping times:

T1 = τ+
2δ(z) ∧ τ

−
ε (1− u),

T2 = τ−δ (z, T1) ∧ τ−δ (|z − z∗|, T1) ∧ τ+
2ε(u, T1),

T3 = τ+
2δ(|z − z

∗|, T2) ∧ τ+
2B(
√
nu, T2),

T4 = τ+
2δ(|z − z

∗|, T3) ∧ τ−B (
√
nu, T3) ∧ τ+

2ε(u, T3),

T5 = τ−δ (z, T4) ∧ τ−ε (u, T4) ∧ τ−ε (1− u, T4),

T6 = τ+
4ε(1− u, T5) ∧ τ−0 (1− u, T5).

Clearly T1 ≤ · · · ≤ T6. The next result says the above sequence of desirable events is the
most likely outcome.

Proposition 5.1. If constants ε, δ, 1/B > 0 are small enough and . . . then each of the
following occurs with high probability as n→∞.

(a) u(T2) > 2ε or |z(T2)− z∗| ≤ δ.
(b)
√
nu(T3) > 2B.

(c) u(T4) > 2ε.
(d) u(T5) ≥ 1− ε.
(e) u(T6) = 1.

We then need to estimate how much time passes between each event. For i ∈
{1, . . . , 6} let Wi = Ti − Ti−1. The next result gives estimates on the times Wi.

Proposition 5.2. Let Wi be as above. Fix any α > 0 and any initial distribution. If
constants ε, δ, 1/B > 0 are small enough and . . . then

(a) P (Wi > (α/6) log n)→ 0 as n→∞ for every i ∈ {1, 2, 3, 5}.
(b) P (W4 > (1/2z∗ + α/6) log n→ 0 as n→∞.
(c) P (W4 < (1/2z∗ − α/2) log n |

√
nu(0) ≤ 2B and |z(0)− z∗| ≤ δ)→ 0 as n→∞.

(d) P (W6 > (1 + α/6) log n))→ 0 as n→∞.
(e) P (W6 < (1− α/2) log n | u(0) < 1− ε)→ 0 as n→∞.

Theorem 2.2 then follows easily from the above two propositions.

Proof of Theorem 2.2. If 2B/
√
n < 2ε < 1 − ε it is easy to check that T6 ≤ Tc. From

Proposition 5.1, whp u(T6) = 1 which implies Tc ≤ T6, so whp Tc = T6 = W1 + · · ·+W6.
Using the events in Proposition 5.2 and taking a union bound,
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P (Tc > (1 + 1/2z∗ + α) log n) ≤
∑

i∈{1,2,3,5}

P (Wi > (α/6) log n)

+ P (W4 > (1/2z∗ + α/6) log n)

+ P (W6 > (1 + α/6) log n)

+ P (Tc 6= W1 + · · ·+W6)

→ 0 as n→∞,

which proves statement (i). If |x(0)− y(0)| = O(1/
√
n) then

√
nu(0) ≤ B for large enough

constant B > 0 and large n, and if |z(0)− z∗| = o(1) then |z(0)− z∗| ≤ δ for any constant
δ > 0 and large n. Using again Proposition 5.2 and taking a union bound as before gives

P (Tc < (1 + 1/2z∗ − α) log n | |x(0)− y(0)| = O(1/
√
n) and |z(0)− z∗| = o(1))

≤ P (W4 < (1/2z∗ − α/2) log n |
√
nu(0) ≤ 2B and |z(0)− z∗| ≤ δ)

+ P (W6 < (1− α/2) log n | u(0) < 1− 2ε)

+ P (Tc 6= W1 + · · ·+W6)

→ 0 as n→∞.

Combining with the previous estimate and noting that α > 0 is arbitrary proves statement
(ii).

Proof of Propositions 5.1 and 5.2

For technical reasons it’s easier to let z∗ be the positive solution to z∗(4(1−1/n)+z∗) =

1. Each of the next six lemmas corresponds respectively to the times T1, . . . , T6. A few
notes on the proofs:

• The key estimates are given in statements (i), (ii) and occasionally (iii) of each
lemma, in terms of conditions on initial values. Estimates on the relevant Ti and
Wi are then deduced.

• When deducing estimates on Ti,Wi for i > 1, the strong Markov property is used
without mention.

• Since the process is a finite state Markov chain, if τ is a hitting time such that
P (τ = 1), then τ has an exponential tail, so optional stopping can be invoked at
time τ .

• When we say “fix a small ε > 0” or “fix a large B > 0”, we mean “if the constant
ε > 0 is chosen small enough” or “if the constant B > 0 is chosen large enough”.

• If conditions are given on initial values, it means the statement holds for any initial
distribution satisfying those conditions. If none are given, it holds for any initial
distribution.

Lemma 5.3. Fix small ε, δ > 0 such that ε ≥ 18δ. Then

(i) E[T1] ≤ 12δ/ε and
(ii) P (τ−δ (z) ≤ τ−ε (1− u) ∧ exp(Ω(n)) | z(0) ≥ 2δ) = exp(−Ω(n)).

In particular, for any α > 0, P (W1 > (α/6) log n)→ 0 as n→∞.

Proof. Recall T1 = τ+
2δ(z) ∧ τ−ε (1− u).
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Statement (i). If z < 2δ, u < 1 − ε and δ ≤ 1 then 4(1 − 1/n)z + z2 ≤ 8δ + δ2 ≤ 9δ and
1− u2 = (1− u)(1 + u) > ε, so if in addition ε ≥ 18/δ then µ(z) ≥ (ε− 9δ)/2 ≥ ε/4, so the
process with X(t) = z(t ∧ T1)− (ε/4)(t ∧ T1) is a submartingale. Using optional stopping,

E[z(0)] = E[X(0)] ≤ E[X(T1)] = E[z(T1)]− (ε/4)E[T1],

so E[T1] ≤ (4/ε)E[z(T1) − z(0)]. Since z(T1) ≤ 2δ + 2/n ≤ 3δ for large n and z(0) ≥ 0,
E[T1] ≤ 12δ/ε, which is statement (i).

Statement (ii). From (5.4), |µ(z)| ≤ 2 and σ2(z) ≤ 4/n, use Lemma 3.6 with X = 2δ − z,
x = δ, τ = τ−ε (1 − u, 0), µ? = ε/4, σ? = 4/n, Cµ = 2 and C∆ = 1/2. Since ∆?(z) = 2/n,
∆?(z) ≤ x/2 for large n and ∆?(z)µ?/σ

2
? = ε/8 ≤ 1/2. By the above, (3.5) is satisfied. We

then compute Γ = exp(εδn/28) and (3.6) gives

P (τ−δ (z) ≤ τ−ε (1− u) ∧ εbΓc/32 | z(0) ≥ 3δ/2) ≤ 4/Γ,

which implies statement (ii).

Estimate on W1. Since W1 = T1, this follows from (i) and Markov’s inequality.

Lemma 5.4. Fix small δ, ε > 0 such that ε ≥ 18δ and δ ≥ 4ε2. Then

(i) P (τ−δ (|z − z∗|) ∧ τ+
2ε(u) > log(1/δ) + t) ≤ e−t for any t > 0, and

(ii) P (τ+
2δ(|z − z∗|) ≤ τ

+
2ε(u) ∧ exp(Ωn) | |z(0)− z∗| ≤ δ) = exp(−Ω(n)).

In particular,

• for any α > 0, P (W2 > (α/6) log n)→ 0 as n→∞.
• P (u(T2) > 2ε or |z(T2)− z∗| ≤ δ) = 1− exp(Ω(n)).

Proof. We first prove (i) and (ii).

Statement (i). Let f(z) = 1−4(1−1/n)z−z2, then f(z∗) = 0. Moreover f ′(0) = −4(1−1/n)

and f ′′(z) = −2 < 0, so f ′(z) ≤ −4(1 − 1/n) for z ≥ 0. Letting b = z − z∗n, we have
f(z∗n + b)/b ≤ −4(1− 1/n) for b 6= 0 and

µ(b) =
1

2
(f(z∗n + b)− u2)

so if b > δ and u < 2ε then µ(b) ≤ −2(1− 1/n)b+ 2ε2 ≤ −b for large n, if δ ≥ 4ε2. Letting
τ = τ−δ (b) ∧ τ+

2ε(u), the process with Xt = et∧τ bt∧τ has µ(X) ≤ 0, so is a supermartingale,
and since b0 ≤ 1, X0 ≤ 1. Using Markov’s inequality and E[Xt] ≤ E[X0] ≤ 1,

P (τ > t) ≤ P (Xt ≥ etδ) ≤ e−t/δ.

Thus P (τ > log(1/δ) + t) ≤ e−t for t ≥ 0. The same argument with −b in place of b gives
the same result, and combining gives statement (i).

Statement (ii). Using again the estimate µ(b) ≤ −b for b > δ and u < 2ε, let τ =

τ+
2δ(b) ∧ τ

+
2ε(u) and let Xt = bt − δ. We will use Lemma 3.6 with x = δ, µ? = δ, σ2

? = 4/n,
and Cµ = C∆ = 1/2. We have ∆?(X) = 2/n ≤ δ = x/2 for large n. Again, (3.5) is easily
verified. Then, Γ = exp(δ2n/64), and (3.6) gives

P (τ+
2δ(|z − z

∗|) ≤ τ+
2ε(u) ∧ δbΓc/4 | |z(0)− z∗| ≤ 3δ/2) ≤ 4/Γ,

which implies statement (ii).
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Estimate on W2. Since T2 ≤ τ−δ (|z − z∗|, T1) ∧ τ+
2ε(u, T1), statement (i) implies

P (W2 ≥ log(1/δ) + t) ≤ e−t for any t > 0. (5.6)

The estimate on W2 follows by letting t = (α/8) log n.

Statement on T2. If u(T1) ≥ 1 − ε > 2ε then τ+
2ε(u, T1) = T1, so T2 = T1 and u(T2) > 2ε.

Otherwise, z(T1) ≥ 2δ. Since T2 ≤ τ+
2ε(u, T1) ≤ τ−ε (1−u, T1), using Lemma 5.3, statement

(ii) it follows that

P (τ−δ (z, T1) ≤ T2 ∧ (T1 + exp(Ω(n))) | u(T1) < 1− ε) = exp(−Ω(n)).

Letting t = n in (5.6), P (T2 ≥ T1 +log(1/δ)+n) ≤ e−n = exp(−Ω(n)). Since log(1/δ)+n =

o(exp(Ω(n))) and τ−δ (z, T1), combining the last two estimates and noting that T2 ≤
τ−δ (z, T1) it follows that

P (τ−δ (z, T1) = T2 | u(T1) < 1− ε) = exp(−Ω(n)). (5.7)

If E1, E2, F are events with E ⊆ E2, F then P (E1) = P (E1 ∩ F ) ≤ P (E2 ∩ F ) ≤ P (E2 ∩
F )/P (F ) = P (E2 | F ). Let E1 = {u(T2) ≤ 2ε and |z(T2)− z∗| > δ}, E2 = {z(T2) ≤ δ} and
F = {u(T1) < 1− ε}. Then, E1 ⊆ {u(T2) ≤ 2ε} ⊆ F , E1 ⊆ E2 by definition of T2, and (5.7)
says that P (E2 | F ) = exp(−Ω(n)), so P (E1) = exp(−Ω(n)), which implies the result.

Lemma 5.5. Fix small δ, ε > 0 and large B > 0 such that ε ≥ 18δ and δ ≥ 4ε2. Then for
large n,

(i) E[τ+
2B(
√
nu)] ≤ 16B2, and

(ii) P (τ−B (
√
nu) ≤ τ+

2ε(u) ∧ τ+
2δ(|z − z∗|) |

√
nu(0) > 2B) = exp(−Ω(B2)).

In particular,

• for any α > 0, P (W3 > (α/6) log n)→ 0 as n→∞ and
• P (

√
nu(T3) > 2B) ≥ 1−O(1/n).

Proof. We begin with (i) and (ii).

Statement (i). Let C = (2B)2 so that τ+
2B(
√
nu) = τ+

C (nu2). From (5.3) we note µ(u) ≥ 0,
and if u ≤ 2ε then from (5.5), σ2(u) ≥ (1− 2ε)/2n. Using linearity of drift and the product
rule of Lemma 3.4, if u ≤ 2ε, ε is small and n is large then

µ(nu2) = nµ(u2) = 2nuµ(u) + nσ2(u) ≥ (1− 2ε)/2 ≥ 1/3.

It follows that X(t) = nu2(t ∧ τ+
C (nu2)) − (1/3)t ∧ τ+

C (nu2) is a submartingale. Since
(u + ∆u)2 − u2 = (2u + ∆u)∆u and ∆?(u) = 2/n, if nu2 ≤ C and n is large, then
1/n ≤

√
C/n and ∆?(nu

2) ≤ 8
√
C/n, so nu2(τ+

C (nu2)) ≤ C + 8
√
C/n. Using optional

stopping,
C + 8

√
C/n− (1/3)E[τ+

C (nu2)] ≥ E[X(τ+
C (nu2)] ≥ E[X0] ≥ 0,

so E[τ+
C (nu2)] ≤ 3C + 24

√
C/n ≤ 4C for large n, which is statement (i).

Statement (ii). The relevant stopping time is

τ = τ+
2δ(|z − z

∗|) ∧ τ−B (
√
nu) ∧ τ+

2ε(u).

If |z − z∗| ≤ 2δ then µ(u) ≥ (z∗ − 2δ)u, and σ2(u) ≤ 4/n. If we can find θ > 0 such that
µt(e

−θ
√
nu) ≤ 0 for t < τ then exp(−θ

√
nu(t ∧ τ)) is a supermartingale and

P (
√
nu(τ) ≤ B) = P (exp(−θ

√
nu(τ)) ≥ e−θB) ≤ eθBE[exp(−θ

√
nu(0))],
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and so P (τ = τ−B (
√
nu) |

√
nu(0) > 2B) ≤ e−θB. From (5.4) we have σ2(

√
nu) ≤ 4, and if√

nu > B and |z − z∗| ≤ 2δ then µ(
√
nu) ≥ (z∗ − 2δ)B ≥ z∗B/2 if δ > 0 is small, so using

Lemma 3.5,

µ(exp(−θ
√
nu)) ≤ −θe−θ

√
nuµ(

√
nu) +

θ2

2
σ2(
√
nu) e−θ

√
nu+2θ/

√
n

= θe−θ
√
nu(−z∗B/2 + 2θe2θ/

√
n).

Letting θ = z∗B/6 the above is ≤ 0 for large n, and so P (τ = τ−B (
√
nu) |

√
nu(0) > 2B) ≤

e−z
∗B2/6, which implies statement (ii).

Estimate on W3. Since T3 ≤ τ+
2B(
√
nu, T2), statement (i) implies E[W3] ≤ 16B2, so the

desired estimate follows from Markov’s inequality.

Estimate on T3. Let E = {
√
nu(T3) ≤ 2B} and F = {|z(T2) − z∗| ≤ δ}; we wish to

show P (E) = O(1/n). If u(T2) > 2ε then for large n, 2B/
√
n ≤ 2ε so T3 = T2 and√

nu(T3) > 2ε
√
n ≥ 2B, which means E ⊆ {u(T2) ≤ 2ε}. Using Lemma 5.4, P ({u(T2) ≤

2ε} ∩ F c) = exp(−Ω(n)) which implies P (E ∩ F c) = exp(−Ω(n)). On the other hand, if F
holds then since T3 ≤ τ+

2B(
√
nu, T2) ≤ τ+

2ε(u, T2), from Lemma 5.4 statement (ii),

P (τ+
2δ(|z − z

∗|, T2) ≤ T3 ∧ (T2 + exp(Ω(n)) | F ) = exp(−Ω(n)).

Using T3 = T2 +W3 and E[W3] ≤ 16B2, P (T3 ≥ T2 + n) ≤ 16B2/n.
Combining with the above and noting that T3 ≤ τ+

2δ(|z − z∗|, T2),

P (τ+
2δ(|z − z

∗|, T2) = T3 | F ) ≤ exp(−Ω(n)) + 16B2/n = O(1/n).

If
√
nu(T3) ≤ 2B then by definition of T3, |z(T3) − z∗| > 2δ, so we deduce P (E | F ) =

O(1/n).
Noting that P (E∩F ) = P (E | F )P (F ) ≤ P (E | F ) and combining the two main estimates,

P (E) = P (E ∩ F ) + P (E ∩ F c) ≤ P (E | F ) + P (E ∩ F c) = O(1/n),

which is the desired result.

Lemma 5.6. Fix small δ, ε > 0 and large B > 0 such that ε ≥ 18δ and δ ≥ 4ε2.
Let τ = τ+

2δ(|z − z∗|) ∧ τ
−
B (
√
nu) ∧ τ+

2ε(u). Then

(i) P (τ ≥ ((1/2z∗) + α/6) log n |
√
nu(0) > 2B)→ 0 as n→∞, and

(ii) P (τ = τ+
2ε(u) ≤ ((1/2z∗)− α/6) log n |

√
nu(0) ≤ 2B + 2/

√
n)→ 0 as n→∞.

In particular,

• P (W4 > ((1/2z∗) + α/6) log n)→ 0 as n→∞,
• P (u(T4) > 2ε) ≥ 1− exp(−Ω(B2))− o(1), and
• P (W4 < ((1/2z∗)−α/6) log n | u(0) ≤ 2B and |z(0)−z∗| ≤ δ) ≤ o(1)+exp(−Ω(B2))+

o(1).

Proof. We first prove (i) and (ii).

Statement (i). Let z∗− = z∗ − 2δ and let v = 1/u. Recall from (5.4) that σ2(u) ≤ 4/n. If
t < τ then µ(u) ≥ z∗−u and since u ≥ B/

√
n, u− 2/n ≥ u/21/3 for large n and v3 ≤ nv/B2,

so using Lemma 3.5,

µ(v) ≤ − 1

u2
µ(u) +

1

2
σ2(u)

1

(u− 2/n)3

≤ −z∗−v + 4v3/n

≤ −(z∗− − 1/B2)v.
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Let zB = z∗− − 1/B2, then the process with X(t) = v(t ∧ τ) exp(zB(t ∧ τ)) is a super-
martingale. If u(0) > 2ε then τ = 0. If u(0) ≤ 2ε and τ ≥ t then u(τ) ≤ 2ε + 2/n and
X(τ) ≥ exp(zBt)/(2ε+ 2/n) ≥ exp(zBt)/ε for large n. Thus for t > 0

P (τ ≥ t) ≤ P (X(τ) ≥ ezBt/ε) ≤ ε e−zBtE[X0].

If
√
nu(0) > 2B then X(0) = v(0) <

√
n/2B, so the above is at most ε e−zBt

√
n/2B. Let

t = (1/zB)(log(n)/2 + log(ε) + log(1/2B)) + (α/4) log n,

then the above probability is at most n−zBα/4 which is o(1). Moreover, since |zB−z∗| → 0

uniformly in n as min(1/B, δ) → 0, if 1/B, δ are small enough then t ≥ ((1/2z∗) +

α/6)) log n for large n. Together this gives (i).

Statement (ii). Let z∗+ = z∗ + 2δ. If t < τ then ut ≥ 2/n and z ≤ z∗+ so from (5.3),
µ(u) ≤ z∗+u and the process with X(t) = exp(−z∗+(t ∧ τ))u(t ∧ τ) is a supermartingale.
Thus

P (τ = τ+
2ε(u) ≤ t) ≤ P (X(t) ≥ 2ε exp(−z∗+t)) ≤ E[X(0)] exp(z∗+t)/(2ε).

If
√
nu(0) ≤ 2B + 2/

√
n then X(0) ≤ 3B/

√
n for large n and the above is at most

(3B/
√
n)ez

∗
+t/(2ε). Let

t = (1/z∗+)(log(1/3B) + log(n)/2 + log(2ε))− (α/4) log n,

then the above probability is at most n−z
∗
+α/4 which is o(1). Moreover, since |z∗+− z∗| → 0

uniformly in n as δ → 0, if δ is small enough then for large n, t ≤ ((1/2z∗)− (α/6)) log n.
Together this gives (ii).

Upper bound on W4. Let E = {W4 ≥ ((1/2z∗) + α/6) log n} and F = {
√
nu(T3) > 2B}.

From Lemma 5.5, P (F c) = O(1/n), and from statement (i), P (E | F ) → 0 as n → ∞.
Therefore

P (E) = P (E ∩ F ) + P (E ∩ F c) = P (E | F ) + P (F c)→ 0 as n→∞.

Statement on T4. If u(T3) > 2ε or if |z(T3)− z∗| > 2δ then T3 = T4, so we can also express
T4 as

T4 = τ+
2δ(|z − z

∗|, T2) ∧ τ−B (
√
nu, T3) ∧ τ+

2ε(u, T2).

From Lemma 5.5, P (
√
nu(T3) ≤ 2B) = O(1/n). Noting that τ±x (X, s) ≤ τ±x (X, t) for any

x,X and s ≤ t and combining with (ii) from Lemma 5.5, it follows that

P (T4 6= τ+
2δ(|z − z

∗|, T2) ∧ τ+
2ε(u, T2))

= P (τ−B (
√
nu, T3) < τ+

2δ(|z − z
∗|, T2) ∧ τ+

2ε(u, T2))

≤ P (τ−B (
√
nu, T3) < τ+

2δ(|z − z
∗|, T3) ∧ τ+

2ε(u, T3))

≤ P (
√
nu(T3) ≤ 2B) + P (τ−B (

√
nu, T3) < τ+

2δ(|z − z
∗|, T3) ∧ τ+

2ε(u, T3) |
√
nu(T3) > 2B)

≤ O(1/n) + exp(−Ω(B2)).

Using (ii) from Lemma 5.4,

P (τ+
2δ(|z − z

∗|, T2) ≤ τ+
2ε(u, T2) ∧ (T2 + exp(Ω(n))) | |z(T2)− z∗| ≤ δ) = exp(−Ω(n)).

By Lemmas 5.4 and 5.5, P (W2 + W3 ≥ (α/3) log n) → 0. Since τ+
2δ(|z − z∗|, T2) ≥ T4 =

T2 +W2 +W3, it follows that

P (τ+
2δ(|z − z

∗|, T2) ≤ τ+
2ε(u, T2) | |z(T2)− z∗| ≤ δ) = exp(−Ω(n)) + o(1) = o(1).
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If u(T2) > 2ε then T2 = T3 = T4 so u(T4) > 2ε, and from Lemma 5.4, P (u(T2) ≤
2ε and |z(T2)− z∗| > δ) = exp(−Ω(n)). Combining with the previous estimates,

P (u(T4) ≤ 2ε) ≤ P (T4 6= τ+
2δ(|z − z

∗|, T2) ∧ τ+
2ε(u, T2))

+ P (τ+
2δ(|z − z

∗|, T2) ≤ τ+
2ε(u, T2) | |z(T2)− z∗| ≤ δ)

+ P (u(T2) ≤ 2ε and |z(T2)− z∗| > δ)

= exp(−Ω(B2)) + o(1).

Lower bound on W4. If
√
nu(0) ≤ 2B and |z(0)− z∗| ≤ δ then T2 = 0 and so

√
nu(T3) ≤

2B + 2/
√
n. Using statement (ii) above,

P (W4 ≤ ((1/2z∗)− α/6) log n |
√
nu(0) ≤ 2B and |z(0)− z∗| ≤ δ)

≤ P (u(T4) ≤ 2ε) + P (τ = τ+
2ε(u, T3) ≤ ((1/2z∗)− α/6) log n |

√
nu(T3) ≤ 2B + 2/

√
n)

= exp(−Ω(B2)) + o(1).

Lemma 5.7. Fix small δ, ε > 0 and large B > 0 such that ε ≥ 18δ and δ ≥ 4ε2.
Let τ = τ−δ (z) ∧ τ−ε (u) ∧ τ−ε (1− u). Then

(i) E[τ ] ≤ 1/(δε) and
(ii) P (τ = τ−ε (u) ≤ exp(Ω(n)) | u(0) > 2ε) = exp(−Ω(n)).

In particular,

• for any α > 0, P (W5 > (1/6α) log n)→ 0 as n→∞, and
• P (u(T5) ≥ 1− ε) ≥ 1− o(1)− exp(−Ω(B2)).

Proof. From (5.3), µ(u) ≥ uz. If t < τ then zt > δ and ut > ε so µt(u) ≥ δε. Thus, the
process with X(t) = u(t∧τ)−δε(t∧τ) is a submartingale. Moreover X(0) = u(0) ≥ 0 and
X(τ) = u(τ)−δετ ≤ 1−δε τ . Using optional stopping, 0 = E[X(0)] ≤ E[X(τ)] ≤ 1−δεE[τ ]

and (i) follows.

To show (ii), use Lemma 3.6 with x = ε, X = 2ε − u, µ? = δε, σ2
? = 4/n, Cµ = 2

and C∆ = 1/2. Then ∆?(X) = 2/n so ∆?(X)µ?/σ
2
? = εδ/2 ≤ 1/2 for small ε, δ > 0 and

(3.5) follows from µt(u) ≥ δε for t < τ and (5.4). Then, Γ = exp(δε2n/64) = exp(Ω(n)),
bΓcx/16Cµ = bΓcε/32 = exp(Ω(n)) and (ii) follows from (3.6).

Estimate on W5. This follows from (i) and Markov’s inequality.

Statement on T5. For any i ∈ {1, 2, 3, 4}, if u(Ti) ≥ 1− ε then T5 = Ti = τ−ε (1− u, Ti), and
similarly if z(Ti) ≤ δ then T5 = Ti = τ−δ (z, Ti). In particular,

{T5 = τ−δ (z, T4)} = {T5 = τ−δ (z, T1) ≤ τ−ε (1− u, T1)}

If u(T1) > 1 − ε then T5 = T1 so u(T5) > 1 − ε, and if u(T1) < 1 − ε then z(T1) ≥ 2δ.
Combining,

{u(T5) < 1− ε} ⊆ {T5 = τ−δ (z, T4)} ∪ {T5 = τ−ε (u, T4)}
⊆ {T5 ≥ T4 + (α/6) log n}
∪ {u(T4) ≤ 2ε}
∪ ({T5 = τ−δ (z, T1) ≤ τ−ε (1− u, T1) ∧ (T4 + α/6) log n} ∩ {z(T1) ≥ 2δ})
∪ ({T5 = τ−ε (u, T4) ≤ (T4 + α/6) log n} ∩ {u(T4) > 2ε}).
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Using the above estimate on W5, Lemma 5.3 statement (ii), and statement (ii) above,

P (u(T5) < 1− ε) ≤ P (T5 ≥ T4 + (α/6) log n)

+ P (u(T4) ≤ 2ε)

+ P (T5 = τ−δ (z, T1) ≤ τ−ε (1− u, T1) ∧ (T4 + (α/6) log n) | z(T1) ≥ 2δ)

+ P (T5 = τ−ε (u, T4) ≤ (T4 + (α/6) log n) | u(T4) > 2ε)

= o(1) + exp(−Ω(B2)).

Lemma 5.8. Fix small δ, ε > 0 and large B > 0 such that ε ≥ 18δ and δ ≥ 4ε2.
Let τ = τ+

4ε(1− u) ∧ τ−0 (1− u). Then,

(i) P (u(τ) < 1 | u(0) ≥ 1− ε) = exp(−Ω(n)),
(ii) P (τ > (1 + α/6) log n)→ 0 as n→∞, and

(iii) P (τ < (1− α/6) log n | u(0) ≤ 1− ε+ 2/n)→ 0 as n→∞.

In particular,

• P (u(T6) = 1) ≥ 1− o(1)− exp(−Ω(B2)),
• for any α > 0, P (W6 > (1 + α/6) log n)→ 0 as n→∞, and
• for any α > 0, P (W6 < (1− α/6) log n) | u(0) < 1− ε)→ 0 as n→∞.

Proof. Let b = 1− u. From (5.3), if u ≥ 1− 4ε then u ≥ 2/n for large n and

µ(b) = −µ(u) = −uz = bz − z

µ(z) =
1

2
((1− u)(1 + u)− 4(1− 1/n)z − z2) =

1

2
(b(2− b)− 4z − z2) +O(z/n),

so linearizing around (b, z) = (0, 0),(
µ(b)

µ(z)

)
=

((
0 −1

1 −2

)
+O(ε+ 1/n)

)(
u

z

)
.

The above matrix has trace −2 and determinant 1, so repeated eigenvalues −1,−1, and
(1, 1)> is an eigenvector. Let ξ(t) = (1, 1)>(b(t), z(t)) = b(t) + z(t), so that for t < τ ,

µt(ξ) = −(1 +O(ε+ 1/n))ξt.

Using the inequality (x+ y)2 ≤ 2x2 + 2y2,

σ2(ξ) =
∑
i

qi(∆i(u) + ∆i(z))
2 ≤ 2

∑
i

qi(∆i(u)2 + ∆i(z)
2) = 2(σ2(u) + σ2(z)).

Using (5.5), σ2(b), σ2(z) ≤ 8b/n ≤ 8 ξ/n, so σ2(ξ) ≤ 32 ξ/n. If θ > 0 is such that µt(eθξ) ≤ 0

for t < τ then exp(θξ(t ∧ τ)) is a supermartingale. By definition of τ , if b(τ) 6= 0 then
b(τ) > 4ε, so

P (b(τ) 6= 0) = P (exp(θξ(τ)) > e4θε) ≤ e−4θεE[eθξ(0)]. (5.8)

Using Lemma 3.5, the above estimates on µ(ξ), σ2(ξ), and the fact that ∆?(ξ) ≤ 4/n, if
t < τ then

µt(e
θξ) ≤ eθξt(−(1−O(ε+ 1/n)) θ ξt +

θ2

2
e4θ/n 32 ξt

n
)

= θ ξt e
θξt(−1 +O(ε+ 1/n)) +

16 θ

n
e4θ/n).
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Letting θ = n/32, the above is ≤ 0 for small ε > 0 and large n. Recall that z ≤ 1− u = b,
so ξ = b+ z ≤ 2b. Using (5.8),

P (b(τ) 6= 0 | b(0) ≤ ε) ≤ e−4θε+2θε = e−2θε = e−nε/16,

which gives statement (i).

Statement (ii). For small ε > 0 and large n, from the estimate on µt(ξ) the process with
X(t) = e(1−α/8)(t∧τ)ξ(t ∧ τ) is a supermartingale. If τ > t then ξ(t) ≥ b(t) ≥ 1/n, and if
b(0) > 4ε then τ = 0. Since ξ(0) ≤ 2b(0), it follows that

P (τ > t) ≤ P (X(t) ≥ exp((1− α/8)t)/n | b(0) ≤ 2ε) ≤ ne−(1−α/8)t(8ε).

Letting t = (1 + (α/6) log n, if α > 0 is small enough the above probability is n−Ω(1), so
→ 0 as n→∞.

Statement (iii). Let ρ = τ−n−1+ε(b) ∧ τ+
4ε(b) so that ρ ≤ τ and let v = 1/ξ so that v(t) is

defined at least for t < ρ. If t < ρ then ξ(t) ≥ b(t) ≥ n−1+ε. Recall that σ2(ξ) ≤ 32 ξ.
Using Lemma 3.5, if t < ρ and n is large enough that n−1+ε − 4/n ≥ 2−1/3n−(1+ε) then

µt(v) ≤ µt(ξ)
−1

ξ2
t

+
σ2
t (ξ)

2

2

(ξt − 4/n)3

≤ (1 +O(ε+ 1/n))
ξt
ξ2
t

+
16 ξt
nξ3
t

≤ ((1 +O(ε+ 1/n) + 16n−ε)v(t).

If ε > 0 is small and n large then the process with X(t) = e−(1+α/8)(t∧ρ)v(t ∧ ρ) is a
supermartingale. If b ≤ n−1+ε then v ≥ n1−ε, so

P (ρ = τ−n−1+ε(b) ≤ t) ≤ P (X(t) ≥ e−(1+α/8)tn1−ε) ≤ e(1+α/8)tn−1+εE[X(0)].

If τ = τ+
4ε(b) then ρ = τ+

4ε(b), so by statement (i), P (ρ 6= τ−n−1+ε(b)) = o(1). If b(0) ≥ ε− 2/n

then X(0) ≤ 1/(ε− 2/n) ≤ 2/ε for large n. Letting t = (1−α/6) log n, if α, ε > 0 are small
and b(0) ≥ ε− 2/n the above probability is n−Ω(n) = o(1), and gives statement (iii).

Statement on T6. From Lemma 5.7, P (u(T5) < 1− ε) = o(1) + exp(−Ω(B2)). Using this
and statement (i) above,

P (u(T6) < 1) ≤ P (u(T5) < 1− ε) + P (u(T6) = 1 | u(T5) ≥ 1− ε)
≤ o(1) + exp(−Ω(B2)).

Upper bound on W6. This follows from statement (ii) and Markov’s inequality.
Lower bound on W6. If u(0) < 1− ε then u(T5) ≤ 1− ε+ 2/n. Using statement (ii) above,

P (W6 < (1− α/6) log n | u(0) < 1− ε)
≤ P (W6 < (1− α/6) log n | u(T5) ≤ 1− ε+ 2/n) = o(1).

Proof of Propositions 5.1 and 5.2. The results follow directly from Lemmas 5.3–5.8, let-
ting B →∞ slowly enough as n→∞.
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Appendix

Results of Section 3

Proof of Lemma 3.1. For a semimartingale (s-m) X and locally bounded, predictable H,
the notation H ·X refers to the stochastic integral, defined in [8, I.4d]. Since M has
bounded jumps it is locally square-integrable. Let V = (ec/2)〈M〉, noting that V is locally
integrable. Since M is a local martingale, M − V is a s-m. Let E = exp(M − V ). Then by
[8, I.4.57] (Itô’s formula), E is a s-m and

E = 1 + E− · (M − V +
1

2
〈M c〉+ Y ), where (5.9)

Yt =
∑
s≤t

e∆Ms − 1−∆Ms.

Since E ≥ 0, if E is the sum of a local martingale and a non-increasing process, it is a
supermartingale, so our goal is to obtain such a decomposition for the right-hand side of
the first line in (5.9).

If |x| ≤ c then ex − 1− x ≤ 1
2e
cx2, so letting Wt =

∑
s≤t(∆Ms)

2 and Z = Y − (ec/2)W ,
Z is non-increasing. By [8, I.4.52], [M ] = 〈M c〉+W , so

−V +
1

2
〈M c〉+ Y = −e

c

2
〈M〉+

1

2
〈M c〉+ Z +

ec

2
W

= −e
c

2
〈M〉+

1− ec

2
〈M c〉+ Z +

ec

2
(〈M c〉+W )

=
ec

2
([M ]− 〈M〉) +

1− ec

2
〈M c〉+ Z.

By [8, I.4.50(b)], the first term is a local martingale, and since 〈M c〉 is non-decreasing
and c ≥ 0, both the second and third terms are non-increasing. Combining with (5.9), we
find there is a local martingale N and a non-decreasing process Q such that

E = 1 + E− · (N +Q).

Using [8, I.4.34(b)], since N is a local martingale, so is E− ·N , and since E ≥ 0, 1+E− ·Q
is non-increasing. Since E has the desired form, it is a supermartingale.

Proof of Lemma 3.2. 1⇒ 2. By [8, I.3.21], ∆(Xp) = p(∆X). If X is qlc, then by [8,
I.2.35] its predictable projection pX has pX = X−. From uniqueness and property (ii) in
[8, I.2.28] it follows that the p( · ) operation is linear. Therefore

∆(Xp) = p(∆X) = pX − pX− = 0,

i.e., Xp is continuous. Using (3.1), ∆Xm = ∆X which implies that Xm is qlc, by
definition of qlc.
2⇒ 1. If Xp is continuous then ∆X = ∆Xm. Thus if, in addition, Xm is qlc then X is
qlc.
2⇔ 3. By [8, I.4.2], 〈X〉 is continuous iff Xm is qlc.

Proof of Lemma 3.3. Since X has bounded jumps, it is special, so Xm, Xp are defined.
Note that for λ > 0 and • ∈ ±, 〈•λXm〉 = λ2〈Xm〉. Since X is qlc, by Lemma 3.2, Xm

is qlc, and as noted below (3.1), ∆?(X
m) ≤ ∆?(X) ≤ c. Let M = •λXm in Lemma 3.1,

which has |∆M | ≤ λc, and use Doob’s inequality to find

P ( sup
t≥0
•λXm

t − (λ2eλc/2 )〈Xm〉t ≥ λa) ≤ e−λa.

Since 1/2 ≤ log 2, if λc ≤ 1/2 then eλc ≤ 2, and the result follows.
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Proof of Lemma 3.4. By definition of quadratic variation,

XY = X0Y0 + [X,Y ] +X− · Y + Y− ·X.

Since X = X0 + Xp + Xm, Y = Y0 + Y p + Y m and X0 + Xp, Y0 + Y p have locally
finite variation, [X,Y ] = [Xm, Y m]. Since Xm, Y m are locally square-int, [Xm, Y m] has
compensator 〈Xm, Y m〉, so XY has compensator

(XY )p = 〈Xm, Y m〉+X− · Y p + Y− ·Xp.

The result will follow if we can show 〈Xm, Y m〉 is absolutely continuous. For any s < t,
applying the Cauchy-Schwarz inequality to the symmetric, bilinear and semidefinite map
(X, y) 7→ 〈X,Y 〉t − 〈X,Y 〉s gives

|〈Xm, Y m〉t − 〈Xm, Y m〉s| ≤
√

(〈Xm〉t − 〈Xm〉s)(〈Y m〉t − 〈Y m〉s).

Absolutely continuity of t 7→ 〈Xm〉t, 〈Y m〉t means that for any ε > 0 there is δ > 0 so
that if

∑
i |ti − si| < δ then

∑
i |〈Xm〉ti − 〈Xm〉si |,

∑
i |〈Y m〉ti − 〈Y m〉si | < ε. Using the

Cauchy-Schwarz inequality to obtain the second line,∑
i

|〈Xm, Y m〉ti − 〈Xm, Y m〉si | ≤
∑
i

√
(〈Xm〉ti − 〈Xm〉si)(〈Y m〉ti − 〈Y m〉si)

≤

(∑
i

|〈Xm〉ti − 〈Xm〉si |
∑
i

|〈Y m〉ti − 〈Y m〉si |

)1/2

< (ε · ε)1/2 = ε

which shows that 〈Xm, Y m〉 is absolutely continuous.

Proof of Lemma 3.7. First we treat the caseX0 = 1, so that Yt = Xt/m(t)−
∫ t

0
b(s)/m(s)ds.

Given y > 0 define τ(y) = inf{t : Yt ≥ y}, and note that τ(y) < ζ ′. Since 1/m(t) =

e−
∫ t
0
`(s)ds, (1/m(t))′ = −`(t)/m(t), so using linearity of the drift and Lemma 3.4,

µ(Yt) ≤ (b(t) + `(t)Xt)/m(t) +Xt(−`(t)/m(t))− b(t)/m(t) = 0,

which implies Y p ≤ 0. Clearly σ2
t (Y ) = (1/m(t))2σ2

t (X). Suppose that X satisfies
hypothesis (i) of the lemma. Since X is non-decreasing, it has finite variation, so has zero
continuous martingale part. ThusXm is purely discontinuous and 〈X〉t = (

∑
s≤t(∆Xs)

2)p.
In addition, 0 ≤ ∆Xs ≤ c, so (∆Xs)

2 ≤ c∆Xs. Using this and
∑
t≤s≤t+r ∆Xs ≤ Xt+r−Xt,

for any t, r ≥ 0,

〈Xm〉t+r − 〈Xm〉t ≤ c(
∑

t≤s≤t+r

∆Xs)
p ≤ c(Xp

t −Xp
r )

which implies σ2
t (X) ≤ cµt(X), i.e., hypothesis (ii) of the lemma. Using µt(X) ≤

b(t) + `(t)Xt = b(t) + `(t)m(t)Yt, hypothesis (ii), and continuity of t 7→ m(t) and t 7→∫ t
0
b(s)/m(s)ds,

σ2
t (Y ) = σ2

t (X)/m(t)2 ≤ cµt(X)/m(t)2 = cb(t)/m(t)2 + (c/m(t))`(t)Yt.

Since Yt < y for t < τ(y),

〈Y 〉τ(y) ≤ c
∫ τ(y)

0

b(s)/m(s)2ds+ yc

∫ τ(y)

0

`(s)/m(s)ds = cβ(τ(y)) + ycα(τ(y)),
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the last equality defining α(t) and β(t). Taking the antiderivative,

α(t) =

∫ t

0

e−
∫ s
0
`(r)dr`(s)ds = 1− e−

∫ t
0
`(s)ds = 1− 1/m(t) ≤ 1 for all t ≥ 0.

Since Y0 = 1, Yτ(y) ≥ y and Y p ≤ 0, it follows that for λ > 0,

Y mτ(y) − λ〈Y 〉τ(y) = Yτ(y) − Y0 − Y pτ(y) − λ〈Y 〉τ(y) ≥ y − 1− λc(β + y).

Since m(t) ≥ 1, ∆?(Y ) ≤ ∆?(X) ≤ c, so using Lemma 3.3 with a = y − 1 − λc(β + y),
assuming λc ≤ 1/2 we find

P (sup
t<ζ′

Yt ≥ y) ≤ 2e−λa.

Optimizing λa gives λ = (y − 1)/(2c(y + β)) and

λa ≥ (y − 1)2/(4cy(1 + β/y)) ≥ (y − 2)/(4c(1 + β)),

and if y ≥ 1 the assumption cλ ≤ 1/2 holds. For general X0, first condition on X0

and apply the above to Xt/X0, whose jumps are bounded by c/X0 instead of c. Then,
integrate over X0 to obtain the result.

To see that ζ ≥ ζ ′, note that {ζ ≥ ζ ′} ⊃
⋃
y{supt<ζ′ Yt < y} and that the above

estimate implies the latter event has probability 1.

Miscellaneous estimates

Lemma 5.9. Suppose β > 0 and βc > 0 ∨ (1 + a− β)x−β , then∫ ∞
x

tae−ct
β

dt ≤ (βc− 0 ∨ (1 + a− β)x−β)−1x1+a−βe−cx
β

.

Proof. Since
d

dx
(x1+a−βe−cx

β

) = ((1 + a− β)x−β − βc)xae−cx
β

and βc− (1 + a− β)t−β ≥ βc− 0 ∨ (1 + a− β)x−β for t ≥ x (to verify, consider separately
the cases 1 + a − β ≥ 0 and 1 + a − β < 0), if βc − 0 ∨ (1 + a − β)x−β > 0 we have the
upper bound∫∞

x
tae−ct

β

dt ≤ (βc− 0 ∨ (1 + a− β)x−β)−1
∫∞
x

(βc− (1 + a− β)t−β)tae−ct
β

dt

= (βc− 0 ∨ (1 + a− β)x−β)−1x1+a−βe−cx
β

.
(5.10)

Lemma 5.10. Suppose c, λ > 0, α ∈ [0, 1/2] and 2cλα−1 ≤ 1. Then

(1 + λ− cλ1/2+α)−1 ≤ (1 + λ)−1 + (1 + λ)−3/2+α.

Proof. Factoring and using the fact that |(1+λ)−1cλ1/2+α| ≤ cλα−1 ≤ 1/2 and (1−x)−1 ≤
1 + 2x for |x| ≤ 1/2,

(1 + λ− cλ1/2+α)−1 = (1 + λ)−1(1− (1 + λ)−1cλ1/2+α)−1

≤ (1 + λ)−1(1 + 2(1 + λ)−1cλ1/2+α)

≤ (1 + λ)−1 + (1 + λ)−3/2+α.

(5.11)

Lemma 5.11. Let X be a Poisson random variable with mean λ.

For 0 < x ≤ λ1/2, P (X < λ− xλ1/2) ≤ e−x2/2 and

P (X > λ+ xλ1/2) ≤ e−x2/3.
(5.12)
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Proof. We have

E[eθX ] =
∑
k≥0

eθke−λλk/k! = e−λ
∑
k≥0

(λeθ)k/k! = exp(λ(eθ − 1)).

Also,

P (eθX ≥ eλθc) =

{
P (X ≥ cλ) if θ > 0

P (X ≤ cλ) if θ < 0.

Using Markov’s inequality,

P (eθX ≥ eλθc) ≤ e−λθcE[eθX ] = exp(λ(eθ − 1− θc))

Optimizing in θ gives θ = log c which is positive for c > 1 and negative for c < 1, and

γ(c) := eθ − 1− θc = c− 1− c log c.

Expanding γ(1 + δ) in an alternating Taylor series around δ = 0,

γ(1 + δ) ≤ −δ2/2 + δ3/6 for |δ| < 1, so

≤

{
−δ2/2 for − 1 < δ ≤ 0

−δ2/3 for 0 ≤ δ < 1,

using δ3 ≤ δ2 for δ ∈ [0, 1) and 1
2 −

1
6 = 1

3 . (5.12) follows for 0 < x < λ1/2 by letting
δ = xλ−1/2. For x = λ1/2 it follows by continuity of probability.

Lemma 5.12. Let (Nt) be a Poisson process with intensity r. Fix α ∈ (0, 1/2] and let

τ1 = sup{t : Nt − rt ≥ 2(rt)1/2+α} and
τ2 = sup{t : Nt − rt ≤ −2(rt)1/2+α}

denote the last passage time of Nt above/below the curve rt± 2(rt)1/2+α, respectively.
If r ∈ [1/2, 1], t ≥ 4 and t2α ≥ 6/α then

P (τ1 > t) ≤ 6t1−2αe−(rt)2α/3 and

P (τ2 > t) ≤ 6t1−2αe−(rt)2α/3.

Proof. Let f denote the function defined by f(t) = rt+ (rt)1/2+α. By assumption, rt ≥ 1

and α ≤ 1/2 so (rt)α ≤ (rt)1/2. Using Lemma 5.11,

P (Nt > f(t)) ≤ e−(rt)2α/3.

Since |f ′(t)| ≤ 2r for any t ≥ 0, f is Lipschitz with constant 2r. Using this and the fact
that t 7→ Nt is non-decreasing,

{ sup
s∈[t−1,t]

Ns − f(s) > 2r} ⊆ {Nt > f(t)},

so taking a union bound over t ∈ {T + 1, T + 2, . . . },

P (sup
t≥T

Nt − f(t) > 2r) ≤
∑
k≥1

e−(r(T+k))2α/3 ≤
∫ ∞
T

e−(rt)2α/3dt.

Since 2(rt)1/2+α increases with t, we have {τ1 > t} ⊆ {supt≥T Nt − f(t) > 2r} if 2r ≤
(rt)1/2+α, i.e., if 2r1/2−α ≤ t1/2+α, for which t ≥ 4 suffices. It remains to estimate the
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above integral. Using Lemma 5.9 with a = 0, β = 2α, c = r2α/3 and x = T and noting
1 + a− β ≥ 0, if 2αr2α/3− (1− 2α)T−2α > 0 then∫ ∞

T

e−(rt)2α/3dt ≤ (2αr2α/3− (1− 2α))T−2α)−1T 1−2αe−(rT )2α/3.

By assumption, r2α ≥ (1/2)2α ≥ 1/2, 1 − 2α ∈ [0, 1] and T−2α ≤ α/6, so 2αr2α/3 − (1 −
2α))T−2α ≥ α/6 > 0 and the right-hand side above is at most (6/α)T 1−2αe−(rT )2α/3. The
lower bound is analogous – note Lemma 5.11 gives a somewhat better estimate in that
case, but just be lazy and use e−(rt)2α/3 as before.
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