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Absolute continuity of semimartingales
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Abstract

We derive equivalent conditions for the (local) absolute continuity of two laws of
semimartingales on random sets. Our result generalizes previous results for classical
semimartingales by replacing a strong uniqueness assumption by a weaker uniqueness
assumption. The main tool is a generalized Girsanov’s theorem, which relates laws of
two possibly explosive semimartingales to a candidate density process. Its proof is
based on an extension theorem for consistent families of probability measures. More-
over, we show that in a one-dimensional Itô-diffusion setting our result reproduces the
known deterministic characterizations for (local) absolute continuity. Finally, we give a
Khasminskii-type test for the absolute continuity of multidimensional Itô-diffusions and
derive linear growth conditions for the martingale property of stochastic exponentials.
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1 Introduction

In the 1970s, probabilists studied conditions under which laws of semimartingales
are (locally) absolutely continuous. The most general results were obtained by Jacod
and Mémin [12] and Kabanov, Lipster and Shiryaev [14, 15] under a strong uniqueness
assumption, called local uniqueness in the monograph of Jacod and Shiryaev [13].

In this article we provide equivalent statements for the (local) absolute continuity of
semimartingales on random sets under the assumption that the dominated law is unique.
While in Markovian settings local uniqueness is implied by uniqueness, it is surprising
that this weaker condition suffices also beyond Markovian setups.

Our main tool is a generalized version of Girsanov’s theorem for semimartingales,
which relates two laws of semimartingales on random sets through a local martingale
density. Key of the proof is to replace the classical Skorokhod space by a slightly larger

*Technical University of Munich, Germany.
E-mail: david.criens@tum.de

†Queen Mary University of London, United Kingdom.
E-mail: k.glau@qmul.ac.uk

http://www.imstat.org/ejp/
https://doi.org/10.1214/18-EJP238
mailto:david.criens@tum.de
mailto:k.glau@qmul.ac.uk


Absolute continuity of semimartingales

path space whose topological properties allow the extension of relevant consistent
families of probability measures.

Let us highlight related results from the literature. Under the so-called Engelbert-
Schmidt conditions, a deterministic characterization of the (local) absolute continuity of
one-dimensional Itô-diffusions was given by Cherny and Urusov [4]. In a similar setting,
Mijativić and Urusov [21] proved equivalent conditions for the martingale property of
stochastic exponentials. In both cases, the proofs are based on an extension of stopping
times and different from ours. We relate our main result to these observations and
explain that the deterministic characterizations also follow from our main result, see
Section 4.1 below. In other words, we provide alternative proofs for the results. In an Itô-
jump-diffusion setting, Cheridito, Filipović and Yor [3] proved local absolute continuity if
the dominated measure is unique and non-explosive. In Section 4.2 below, we explain
the relation of their result to ours. In a multidimensional Itô-diffusion setting, Ruf [27]
proved equivalent conditions for the martingale property of stochastic exponentials
using an extension argument similar to ours. The result can be deduced from ours, see
Section 5 below.

We also present two applications of our main result. First, we give deterministic
conditions for (local) absolute continuity of multidimensional Itô-diffusions, extending
the work of Ruf [27]. The idea is similar to Khasminskii’s test for explosion, i.e. using
comparison arguments we reduce the question when two multidimensional Itô-diffusions
are (locally) absolutely continuous to the question when an integral functional of a
one-dimensional Itô-diffusion converges, see Section 5 below. As a second application of
our main result, we generalize Benes̆’s [1] linear growth condition for the martingale
property of stochastic exponentials to continuous Itô-process drivers. We emphasis that
this application differs from the other, because no uniqueness argument is necessary.

Let us also comment on further related literature. An extension argument similar to
ours was used by Ruf and Perkovski [24] to study Föllmer measures, and by Kardaras,
Kreher and Nikeghbali [18] to study the influence of strict local martingales on pricing
financial derivatives.

The article is structured as follows. In Section 2 we introduce our setting and present
our main results. Criteria for absolute continuity of semimartingales are studied in
Section 3 and in Section 4 we relate our results to those in [3, 21]. Finally, in Section 5
we discuss conditions for the absolute continuity of multidimensional diffusions and in
Section 6 we derive criteria for the martingale property of stochastic exponentials.

Let us end the introduction with a remark on notation: All non-explained notation
can be found in the monograph of Jacod and Shiryaev [13]. Furthermore, all standing
assumptions are imposed only for the section they are stated in.

2 A generalized Girsanov theorem

We start by introducing our probabilistic setup. We adjoint an isolated point ∆ to
Rd and write Rd∆ , Rd ∪ {∆}. For a function α : R+ → Rd∆ we define τ∆(α) , inf(t ≥
0: α(t) = ∆). Let Ω to be the set of all functions α : [0,∞)→ Rd∆ such that α is càdlàg on
[0, τ∆(α)) and α(t) = ∆ for all t ≥ τ∆(α). Let Xt(α) = α(t) be the coordinate process and
define F , σ(Xt, t ≥ 0). Moreover, for each t ≥ 0 we define Fot , σ(Xs, s ∈ [0, t]) and
Ft ,

⋂
s>t Fos . We work with the right-continuous filtration F , (Ft)t≥0.

In general, if we use terms such as local martingale, semimartingale, stopping time,
predictable, etc. we refer to F as the underlying filtration.

Note that for all t ≥ 0

{τ∆ ≤ t} = {Xt = ∆} ∈ Fot ⊆ Ft,

which implies that τ∆ is a stopping time.
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Absolute continuity of semimartingales

For a stopping time ξ we set

Fξ , {A ∈ F : A ∩ {ξ ≤ t} ∈ Ft for all t ≥ 0},

and
Fξ− , σ (Fo0 , {A ∩ {ξ > t} : t ≥ 0, A ∈ Ft}) .

We stress that in the second definition the treatment of the initial σ-field is different from
the classical definition, where F0 is used instead of Fo0 . In our case, Fξ− is countably
generated, see [24, Lemma E.1], which is important for the extension argument in the
proof of our fist main result, Theorem 2.4 below.

The following facts for Fξ− can be verified as in the classical case:

(a) Fξ− ⊆ Fξ.
(b) For two stopping times ξ and ρ and any G ∈ Fξ we have G ∩ {ρ > ξ} ∈ Fρ− and for

all G ∈ F we have G ∩ {ρ =∞} ∈ Fρ−.

(c) For an increasing sequence (ρn)n∈N of stopping times with ρ , limn→∞ ρn it holds
that ∨

n∈N
Fρn− = Fρ−.

For two stopping times ξ and ρ we define the stochastic interval

[[ξ, ρ]] , {(ω, t) ∈ Ω× [0,∞) : ξ(ω) ≤ t ≤ ρ(ω)}.

All other stochastic intervals [[ξ, ρ[[, ]]ξ, ρ]] and ]]ξ, ρ[[ are defined in the same manner.
In the spirit of stochastic differential equations up to explosion, we now formulate a

semimartingale problem up to explosion. We start by introducing the parameters:

(i) Let (B,C, ν) be a so-called candidate triplet consisting of

– a predictable Rd∆-valued process B.

– a predictable (R ∪ {∞})d×d -valued process C, which admits a decomposition

C =

∫ ·
0

cs dAs,

where c is a predictable Sd-valued process and A is a non-negative, increasing,
predictable and right-continuous process starting in the origin. Here, Sd

denotes the set of all symmetric non-negative definite real d× d matrices. The
entries of the integral are set to be∞ whenever they diverge.

– a predictable random measure ν on [0,∞)×Rd.

(ii) Let η be a probability measure on (Rd,B(Rd)), which we call initial law.

(iii) Let ρ be a stopping time, which we call lifetime.

We fix a truncation function h and suppose that all terms such as semimartingale
characteristics refer to this truncation function.

The idea of the semimartingale problem formulated below is to find a probabil-
ity measure on (Ω,F) such that the coordinate process X is a semimartingale with
characteristics (B,C, ν) up to the lifetime ρ and with initial law η.

Definition 2.1. We call a probability measure P on (Ω,F) a solution to the semimartin-
gale problem (SMP) associated with (ρ; η;B,C, ν), if there exists an increasing sequence
(ρn)n∈N of stopping times and a sequence of P -semimartingales (Xn)n∈N such that
ρn ↗ ρ as n→∞ and for all n ∈ N the following holds:
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(i) The stopped process Xρn , (Xt∧ρn)t≥0 is P -indistinguishable from Xn.

(ii) The P -characteristics of the P -semimartingale Xn are P -indistinguishable from
the stopped triplet (Bρn , Cρn , νρn), where

νρn(ω,dt× dx) , 1[[0,ρn]]×Rd(ω, t, x)ν(ω,dt× dx).

(iii) P ◦X−1
0 = η.

The sequence (ρn)n∈N is called ρ-localization sequence and the sequence (Xn)n∈N is
called fundamental sequence. If P (ρ =∞) = 1, we say that P is conservative.

In a conservative setting the semimartingale problem was first introduced by Jacod
[9]. In this section we impose the following standing assumption.

Standing Assumption 2.1. The underlying probability measure P is a solution to
the SMP (ρ; η;B,C, ν) with ρ-localization sequence (ρn)n∈N and fundamental sequence
(Xn)n∈N, and Z is a non-negative local P -martingale such that EP [Z0] = 1 and (σn)n∈N
is an increasing sequence of stopping times such that Zσn is a uniformly integrable
P -martingale. Furthermore, P -a.s. σn < σ , limn→∞ σn and, w.l.o.g., ρn ∨ σn ≤ n for all
n ∈ N.

Of course, since we assume that σn ≤ n, the stopped process Zσn is a uniformly
integrable P -martingale whenever it is a P -martingale.

Let us further comment on this standing assumption. Our aim is to relate P and Z to
another solution of an SMP. We start with a local relation and define a sequence (Qn)n∈N
of probability measures via

Qn , Zσn
· P, (2.1)

which means Qn(G) = EP [Zσn
1G] for all G ∈ F . Each Qn solves an SMP by Girsanov’s

theorem. The next step is to extend this sequence and to show that the extension also
solves an SMP. We observe that the sequence (Qn)n∈N is consistent and consequently
classical extension arguments yield that we find a probability measure Q such that
Q = Qn on Fσn− for all n ∈ N. Next, we want to conclude that Q solves an SMP. For this
aim, however, the identity Q = Qn on Fσn− is not sufficient. At this point, the last part of
our standing assumption comes into play. In the proof of Theorem 2.4 below we show
that for any G ∈ Fσn

Q(G ∩ {σn < σ}) = EP
[
Zσn1G∩{σn<σ}

]
.

Using our assumption that P -a.s. σn < σ, this identity implies that Qn = Q on Fσn
, which

allows us to conclude that Q solves a SMP.
In the following two remarks we comment on choices for (σn)n∈N and explain how to

construct Z from a non-negative local P -martingale, which is only defined on a random
set.

Remark 2.2. An example for the sequence (σn)n∈N in Standing Assumption 2.1 is

σn , inf(t ≥ 0: Zt > n) ∧ n.

To see this, it suffices to note that Zt∧σn ≤ n+ Zσn . Since Zσn is P -integrable by Fatou’s
lemma, Zσn is a uniformly integrable P -martingale by the dominated convergence
theorem. Furthermore, in this case {σ = ∞} and {σn < σ} are P -full sets. More
generally, σn can be chosen as γn ∧ n, where (γn)n∈N is a P -localizing sequence for Z.

Remark 2.3. Let (ξn)n∈N be an increasing sequence of stopping times. We say that a
process Ẑ is a non-negative local P -martingale on the random set

⋃
n∈N[[0, ξn]], if the
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stopped process Ẑξn is a non-negative local P -martingale. It is always possible to extend
the process to a globally defined non-negative local P -martingale by setting

Z ,

{
Ẑ, on

⋃
n∈N[[0, ξn]],

lim infn→∞ Ẑξn , otherwise.
(2.2)

By Fatou’s lemma, the extension Z is a P -supermartingale. Using the Doob-Meyer
decomposition theorem for supermartingales, it can be shown that Z is even a local
P -martingale, see [10, Lemma 12.43].

So far we have explained that we want to relate P and Z to a solution of an SMP.
Our next step is to formally introduce the parameters of the SMP to which we want to
connect P and Z.

For n ∈ N denote by Xc,n the continuous local P -martingale part of Xn and by Zc the
continuous local P -martingale part of Z. Both are unique up to P -indistinguishability.
The predictable quadratic covariation process (w.r.t. P ) is denoted by 〈〈·, ·〉〉. We set
σ0 , ρ0 , 0. For all k ∈ N let βk be an Rd-valued predictable process such that up to
P -evanescence

〈〈Zc, Xc,k〉〉σk∧ρk − 〈〈Zc, Xc,k〉〉σk−1∧ρk−1
=

∫ ·
0

1{σk−1∧ρk−1<s≤σk∧ρk}Zs−csβ
k
s dAs,

and Y k be a non-negative P̃ , P ⊗ B(Rd)-measurable function such that MP
µk -a.e.

Z−Y
k1]]σk−1∧ρk−1,σk∧ρk]]×Rd = MP

µk

(
Z
∣∣P̃)1]]σk−1∧ρk−1,σk∧ρk]]×Rd ,

where MP
µk( · |P̃) denotes the conditional expectation w.r.t. the Doléans measure

MP
µk(dω × dt× dx) , µk(ω,dt× dx)P (dω)

conditioned on P̃, see [13, Section III.3.c)] for more details. Here, µk is the random
measure of jumps associated to Xk. We set

β ,
∞∑
k=1

βk1]]σk−1∧ρk−1,σk∧ρk]],

Y ,
∞∑
k=1

Y k1]]σk−1∧ρk−1,σk∧ρk]]×Rd .

Finally, let (B′, C, ν′) be a candidate triplet, such that on
⋃
n∈N[[0, σn ∧ ρn]] up to P -

evanescence

B′ = B +

∫ ·
0

csβs dAs + h(x)(Y − 1) ? ν,

ν′ = Y · ν,
(2.3)

where

h(x)(Y − 1) ? ν ,
∫ ·

0

∫
h(x)(Y (s, x)− 1)ν(ds× dx)

and

(Y · ν)(dt× dx) , Y (t, x)ν(dt× dx).

The integrals in (2.3) are well-defined, see the proof of [13, Theorem III.3.24] for details.

EJP 23 (2018), paper 125.
Page 5/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP238
http://www.imstat.org/ejp/


Absolute continuity of semimartingales

Let us shortly comment on the intuition behind the modified candidate triplet
(B′, C, ν′). The idea is to consider the probability measure Qn as defined in (2.1). Then,
by Girsanov’s theorem, the stopped process Xn

·∧σn
is a Qn-semimartingale whose charac-

teristics are Qn -indistinguishable from the stopped modified triplet

(B′·∧σn∧ρn , C·∧σn∧ρn ,1[[0,σn∧ρn]] · ν′).

Thus, if an extension of Qn solves a SMP with lifetime σ∧ ρ, the corresponding candidate
triplet should be (B′, C, ν′).

For a second probability measure Q on (Ω,F), we write Q�loc P if Q� P on Ft for
all t ≥ 0. Moreover, we set

ζ , σ ∧ ρ.

We are now in the position to state our first main result.

Theorem 2.4. There exists a solution Q to the SMP (ζ; η′;B′, C, ν′), where

η′(G) , EP
[
Z01{X0∈G}

]
for G ∈ B(Rd), and

Q = Zσn · P on Fσn for all n ∈ N. (2.4)

Moreover, the following holds:

(a) For all stopping times ξ we have

Q = Zξ · P on Fξ ∩ {σ > ξ}. (2.5)

(b) The following are equivalent:

(b.i) Q-a.s. σ =∞.

(b.ii) The process Z is a P -martingale and P -a.s. Z = 0 on [[σ,∞[[.

If these statements hold true, then Q�loc P with dQ
dP |Ft = Zt for all t ≥ 0.

(c) The following are equivalent:

(c.i) There exists an increasing sequence (γn)n∈N of stopping times such that
γn ↗ σ as n→∞, Zγn is a uniformly integrable P -martingale and

lim
n→∞

Q (γn =∞) = 1.

(c.ii) The process Z is a uniformly integrable P -martingale with P -a.s. Z = 0 on
[[σ,∞[[.

If these statements hold true, then Q� P with dQ
dP = limt→∞ Zt , Z∞.

(d) Suppose that at least one of the following conditions holds:

(d.i) Q-a.s. ρn < σ for all n ∈ N.

(d.ii) P -a.s. ρn < σ and EP
[
Zρn

]
= 1 for all n ∈ N.

Then, Q solves the SMP (ρ; η′;B′, C, ν′). Moreover, (d.ii) implies (d.i).
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We stress that the terminal random variable Z∞ is well-defined due to the super-
martingale convergence theorem.

Part (a) of this theorem is a Girsanov-type formula, part (b) gives a criterion for the
local absolute continuity of Q and P and part (c) gives a criterion for the global absolute
continuity. In part (d) we give conditions such that Q solves an SMP with lifetime ρ. In
this case, our observations from (b) and (c) give criteria for the (local) absolute continuity
of solutions of two SMPs with the same lifetime. In (d) we present a condition which
only depends on Q and a condition which only depends on P . The latter is important for
applications because it allows us to check properties of P to conclude that Q solves an
SMP with lifetime ρ. The condition EP

[
Zρn

]
= 1 means that the stopped process Zρn is

a uniformly integrable P -martingale.

Remark 2.5. If P -a.s. Z = 0 on [[σ,∞[[, then (b.i) and (b.ii) in Theorem 2.4 are equivalent
to Q�loc P with dQ

dP |Ft = Zt for all t ≥ 0, and (c.i) and (c.ii) in Theorem 2.4 are equivalent

to Q� P with dQ
dP = Z∞.

We would like to choose (σn)n∈N such that P -a.s. Z = 0 on [[σ,∞[[. Of course, this
is the case if P -a.s. σ = ∞, which is true when σn is chosen as proposed in Remark
2.2. In particular, it is interesting to note that when P -a.s. σ =∞, then (σn)n∈N is a P
-localization sequence for the local P -martingale Z.

Let us mention another natural choice for (σn)n∈N. Suppose that

Z , exp
(
U − 1

2 〈〈U,U〉〉
)
,

where U is a continuous local P -martingale. Set

σn , inf(t ≥ 0: 〈〈U,U〉〉t ≥ n) ∧ n,

then P -a.s. Z = 0 on [[σ,∞[[, which follows from the strong law of large numbers for
continuous local martingales, see [26, Exercise V.1.16]. In view of Theorem 2.4, this
choice of (σn)n∈N shows that Q�loc P is equivalent to Q-a.s. 〈〈U,U〉〉t <∞ for all t ≥ 0,
and that Q� P is equivalent to Q-a.s. 〈〈U,U〉〉∞ <∞. This observation is in the spirit of
classical results for the local absolute continuity of globally defined semimartingales. We
comment on this in Section 3 below, where we also define a version of σn in the presence
of jumps.

Proof of Theorem 2.4: We construct Q using the extension theorem of Parthasarathy. We
recall a definition due to Föllmer [6]. Let T ⊆ [0,∞) be an index set and (Ω∗,F∗t )t∈T be a
sequence of measurable spaces.

Definition 2.6. We call (Ω∗,F∗t )t∈T a standard system, if

(i) F∗t ⊆ F∗s for t, s ∈ T with t < s,

(ii) for each t ∈ T the space (Ω∗,F∗t ) is a standard Borel space, i.e. F∗t is σ-isomorphic
to the Borel σ-field of a Polish space,

(iii) for each increasing sequence (tn)n∈N of elements in T and any decreasing sequence
(An)n∈N, where An is an atom in F∗tn , we have

⋂
n∈NAn 6= ∅.

It is shown in [6, Appendix] that (Ω,Fσn−)n∈N is a standard system. Here, the choice
of the underlying measurable space is crucial, because (Ω,Fot )t≥0 is a standard system,
too. Furthermore, it is important to define Fσn− with Fo0 instead of F0, because the
proof of Definition 2.6 (ii) requires Fσn− to be countably generated. For n ∈ N define
the probability measure

Qn , Zσn
· P
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on (Ω,F). We deduce from Parthasarathy’s extension theorem, see [23, Theorem V.4.2],
together with [24, Theorem D.4, Lemma E.1], where it is again important that Fσ− is
countably generated, that there exists a probability measure Q on (Ω,F) such that

Q = Qn on Fσn− for all n ∈ N. (2.6)

Next, we show (a).

(a) Let ξ be a stopping time and A ∈ Fξ, then A ∩ {σn > ξ} ∈ Fξ ∩ Fσn− and hence

Q(A ∩ {σ > ξ}) = lim
n→∞

Q(A ∩ {σn > ξ})

= lim
n→∞

EP
[
Zσn

1A∩{σn>ξ}
]

= lim
n→∞

EP
[
Zξ1A∩{σn>ξ}

]
= EP

[
Zξ1A∩{σ>ξ}

]
,

due to the monotone convergence theorem and the optional stopping theorem.

This observation allows us to deduce (2.4) from (2.6). For all G ∈ Fσn

Q(G ∩ {σ > σn}) = EP
[
Zσn

1G∩{σ>σn}
]

= EP
[
Zσn

1G
]

= Qn(G),

where we also use our assumption that P -a.s. σn < σ. In particular, Q(σ > σn) =

Qn(Ω) = 1. Thus, we have shown that

Q(G) = Q(G ∩ {σ > σn}) = Qn(G),

i.e. in other words

Q = Qn on Fσn for all n ∈ N.

Next, we show that Q solves the SMP (ζ; η;B′, C, ν′). Set ζn , σn ∧ ρn. Since Qn � P

with density process

Zσn∧t =
dQn
dP

∣∣∣∣
Ft

,

we deduce from Girsanov’s theorem for semimartingales, see [13, Theorem III.3.24],
that the stopped process Xn

·∧ζn is a Qn-semimartingale whose characteristics are Qn-
indistinguishable from (B′·∧ζn , C·∧ζn ,1[[0,ζn]] · ν′). Here, we use the following two facts: If

U and V are two Rd-valued semimartingales and ξ is a stopping time such that U = V

on [[0, ξ]] up to evanescence, then V c = U c on [[0, ξ]] up to evanescence, and

MµU

(
· |P̃

)
= MµV

(
· |P̃

)
on [[0, ξ]] ×Rd up to a MµU -null set. The first claim follows from the uniqueness of the
continuous local martingale part, and the second claim follows from the uniqueness of
the conditional expectation w.r.t. the Doléans measures.

Let us now transfer this observation from Qn to the extension Q. We can consider
Xn
·∧ζn as a semimartingale on the filtered probability space (Ω,Fζn , (Ft∧ζn)t≥0, Qn), see

[10, Section 10.1]. The identity Q = Qn on Fζn ⊆ Fσn implies that Xn
·∧ζn is an Q-

semimartingale whose characteristics are Q -indistinguishable from (B′·∧ζn , C·∧ζn ,1[[0,ζn]] ·
ν′). We conclude that Q solves the SMP (ζ; η′;B′, C, ν′).

We proceed with the proofs of (b) – (d).
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(b) Suppose that (b.i) holds. Then, due to (a), we obtain

1 = Q(σ > t) = EP
[
Zt1{σ>t}

]
.

Since Z is a P -supermartingale by Fatou’s lemma, we have

EP
[
Zt
]
≤ EP

[
Z0

]
= 1.

We conclude that

0 ≤ EP
[
Zt1{t≥σ}

]
= EP

[
Zt
]
− 1 ≤ 0,

which implies that P -a.s. Zt = 0 on {t ≥ σ}. This yields that for all G ∈ Ft

Q(G) = EP
[
Zt1G

]
,

and Q �loc P with Zt = dQ
dP |Ft follows immediately. In particular, Z is a P -

martingale. In other words, we have shown that (b.i)⇒ (b.ii) and that (b.i) implies
Q�loc P with Zt = dQ

dP |Ft .

It remains to prove the implication (b.ii)⇒ (b.i). If (b.ii) holds, (a) implies that for
all t ≥ 0

Q(σ > t) = EP
[
Zt1{σ>t}

]
= EP

[
Zt
]

= EP
[
Z0

]
= 1.

It follows that Q(σ =∞) = 1, i.e. that (b.i) holds.

(c) To see the implication (c.ii) ⇒ (c.i), we set γn , σ for all n ∈ N. Then, the
implication (c.ii) ⇒ (b.ii) ⇔ (b.i) yields that this sequence has all properties as
claimed in (c.i).

Let us assume that (c.i) holds. Since (c.i)⇒ (b.i)⇔ (b.ii), it suffices to prove that Z
is a uniformly integrable P -martingale. In fact, since Z is a P -supermartingale, it
suffices to show that EP [Z∞] ≥ 1. Let A ∈ Fγn ∩ Fσm

= Fγn∧σm
. Then,

Q(A) = EP
[
Zσm

1A
]

= EP
[
Zγn1A

]
,

where we use (2.4) and the optional stopping theorem. By a monotone class
argument, we have

Q = Zγn · P on Fγn−,

where we use that γn ≤ σ. Note that {γn =∞} ∈ Fγn−. Thus, we obtain

1 = lim
n→∞

Q (γn =∞) = lim
n→∞

EP
[
Zγn1{γn=∞}

]
= lim
n→∞

EP
[
Z∞1{γn=∞}

]
≤ EP

[
Z∞
]
.

This proves (c.i)⇒ (c.ii).

Finally, if (c.ii) holds, then (b) implies that Q �loc P with dQ
dP |Ft = Zt. Hence,

Q � P with dQ
dP = Z∞ follows immediately from [13, Proposition III.3.5] and the

uniform integrability of Z.

(d) We first show that (d.ii)⇒ (d.i). If P -a.s. ρn < σ and EP
[
Zρn

]
= 1, then (a) yields

Q(ρn < σ) = EP
[
Zρn1{ρn<σ}

]
= EP

[
Zρn

]
= 1. (2.7)
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Absolute continuity of semimartingales

Thus, (d.ii)⇒ (d.i).

Suppose that (d.i) holds. We define the sequence of stopping times (see, e.g., [7,
Theorem III.3.9] for the fact that the following are stopping times)

γm ,

{
σm, on {ρn ≥ σm},
∞, otherwise,

and note that Q-a.s. γm ↗∞ as m→∞ and ρn∧γm = ρn∧σm. As above, it follows
from Girsanov’s theorem that for all m ∈ N the process Xn

·∧ρn∧γm = Xn
·∧ρn∧σm

is a
Q-semimartingale whose characteristics are Q-indistinguishable from the triplet
(B′·∧ρn∧γm , C·∧ρn∧γm ,1[[0,ρn∧γm]] · ν′). Recalling that the class of semimartingales is
stable under localization, see [13, Proposition I.4.25], we conclude that the process
Xn
·∧ρn is a Q-semimartingale whose characteristics are Q-indistinguishable from

the triplet (B′·∧ρn , C·∧ρn ,1[[0,ρn]] · ν′). In other words, we have shown that Q solves
the SMP (ρ; η′;B′, C, ν′).

The proof is complete.

In the next section, we discuss consequences of Theorem 2.4.

3 Absolute continuity of semimartingales

In this section we study absolute continuity of semimartingales. Systematic ap-
proaches in conservative settings were given by Kabanov, Lipster and Shiryaev [14, 15],
Jacod and Mémin [12] and Jacod [10, 11] under a strong uniqueness assumption, called
local uniqueness in the monograph [13]. As we show below, the local uniqueness as-
sumption can be replaced by a usual uniqueness assumption. This is well-known to be
true in Markovian settings and very surprising to hold in all generality.

Let β : Ω × [0,∞) → Rd be predictable and U : Ω × [0,∞) × Rd → [0,∞) be P̃-
measurable. Furthermore, let B,C and ν are given as in Section 2. We further set

B′ , B +

∫ ·
0

csβs dAs + h(x)(U − 1) ? ν,

ν′ , U · ν,
(3.1)

where B′ is set to be ∆ whenever one of the integrals diverges. The first standing
assumption in this section is the following.

Standing Assumption 3.1. Let P be a solution to the SMP (ρ; η;B,C, ν), with ρ-
localizing sequence (ρn)n∈N and fundamental sequence (Xn)n∈N, and let Q∗ be a solution
to the SMP (ρ; η;B′, C, ν′). W.l.o.g. ρn ≤ n for all n ∈ N.

For all t ≥ 0 we define

Ût ,
∫
U(t, x)ν({t} × dx), at , ν({t} ×Rd).

Standing Assumption 3.2. For all t ≥ 0 we have identically at ≤ 1 and Ût ≤ 1.

We define the [0,∞]-valued predictable process

H ,
∫ ·∧ρ

0

〈βs, csβs〉dAs +
(

1−
√
U
)2

? ν·∧ρ +
∑
s≤·∧ρ

(√
1− as −

√
1− Ûs

)2

, (3.2)

where the process is defined to be∞ whenever one of the terms diverges, and set

σn , inf(t ≥ 0: Ht ≥ n) ∧ n, σ , lim
n→∞

σn. (3.3)
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The process H is increasing, but not in the sense of [13], because it may fail to be
right-continuous, i.e. on {σ <∞} it can happen that Hσ <∞ and Hσ+ =∞. Here, we
stress that increasing functions have left and right limits. Nevertheless, for all n ∈ N the
random time σn is a stopping time. This follows from the fact that for all t ≥ 0

{σn ≤ t} =
(
{Ht ≥ n} ∩ {Ht+ <∞}

)
∪ {Ht+ =∞} ∪ {n ≤ t} ∈ Ft,

due to the right-continuity of the filtration. Consequently, also σ is a stopping time.
In the following standing assumption we suppose that P -a.a. paths of H are right-

continuous and do not jump to∞. We comment on this in Remark 3.2 below.

Standing Assumption 3.3. Up to P -evanescence, on
⋃
n∈N[[0, σn ∧ ρn]]

a = 1 ⇒ Û = 1. (3.4)

Furthermore, one of the following holds:

(a) P -a.s. Hσ− =∞ on {σ <∞}, and P -a.s. ρn < σ for all n ∈ N.

(b) P -a.s. Hσ− =∞ on {σ <∞}, and for all solutions Q̂ to the SMP (σ ∧ ρ; η;B′, C, ν′)

we have Q̂ -a.s. ρn < σ for all n ∈ N.

To get an intuition for the condition (3.4), suppose that P and Q∗ are laws of Rd-
valued semimartingales with independent increments. In this case, the triplets (B,C, ν)

and (B′, C, ν′) are deterministic and we have

P (∆Xt ∈ dx) = 1Rd\{0}ν({t} × dx) + (1− at) δ0(dx),

Q∗(∆Xt ∈ dx) = 1Rd\{0}U(t, x)ν({t} × dx) +
(
1− Ût

)
δ0(dx),

where δ denotes the Dirac measure, see [13, Theorem II.4.15]. If at = 1, then Q∗(∆Xt ∈
dx) � P (∆Xt ∈ dx) can only be true when Ût = 1. The absolute continuity Q∗(∆Xt ∈
dx)� P (∆Xt ∈ dx) is implied by Q∗ �loc P and therefore (3.4) is very natural.

We stress that P -a.s. Hσ− =∞ on {σ <∞} implies that P -a.s. σn < σ for all n ∈ N.
If P -a.s. ρn < σ for all n ∈ N, then P -a.s.

σ =

{
ρ, if Hρ =∞ on {ρ <∞},
∞, otherwise.

(3.5)

Remark 3.1. If the process H is left-continuous, then P -a.s. Hσ− = ∞ on {σ < ∞} if
and only if P -a.s. Hσ =∞ on {σ <∞}. Latter is implied by P -a.s. ρn < σ for all n ∈ N,
see (3.5).

Regardless whether (a) or (b) in Standing Assumption 3.3 holds, we have P -a.s.

Hσn
≤ n+ ∆Hσn

≤ n+ 2
(
aσn

+ Ûσn
+ 1− aσn

+ 1− Ûσn

)
= n+ 4.

(3.6)

Next, we define a non-negative local martingale Z which relates P and Q∗. We find a
non-negative local P -martingale on

⋃
n∈N[[0, σn ∧ ρn]] which coincides with the stochastic

exponential of ∫ ·
0

〈βs,dXn,c
s 〉+

(
U − 1 +

Û − a
1− a

)
?
(
µn − νρn

)
(3.7)
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on the random set [[0, σn ∧ ρn]], see [13, Proposition II.1.16]. Here, we use the convention
that 0

0 ≡ 0. The second stochastic integral denotes the discontinuous local P -martingale
whose jump process is P -indistinguishable from

(U(·,∆Xn)− 1)1{∆Xn 6=0} −

(
Û − a
1− a

)
1{∆Xn=0}, (3.8)

see [13, Section II.1] for more details. The non-negativity follows from the fact that (3.4)
implies that (3.8) is, up to P -evanescence, greater or equal than −1 on

⋃
n∈N[[0, σn ∧ ρn]],

see [13, Theorem I.4.61]. As pointed out in Remark 2.3, we can extend this non-negative
local P -martingale on

⋃
n∈N[[0, σn ∧ ρn]] to a global one, which we denote Z in the

following.
By [10, Theorem 8.25] and similar arguments as used in the proof of [10, Lemma

12.44], (3.6) implies that the stopped process Zσn is a uniformly integrable P -martingale
and, since P -a.s. Hσ− =∞ on {σ <∞}, [10, Theorem 8.10] yields that P -a.s. Z = 0 on
[[σ,∞[[.

Remark 3.2. If H is allowed to jump to ∞, it may happen that Z is positive on [[σ,∞[[

with positive P -probability. In this case, (b) and (c) in Theorem 2.4 do not provide a
statement on (local) absolute continuity. Of course, we could modify Z to be zero on
[[σ,∞[[, but then the modification might only be a supermartingale. Let us discuss an
explicit example. Consider a [−∞,∞]-valued diffusion

dYt = µ(Yt) dt+ a(Yt) dWt,

where W is a one-dimensional Brownian motion. If the pair (µ, a) satisfies the Engelbert-
Schmidt conditions, see [17] or Standing Assumption 4.1 below, then Y exists up to an
explosion time θ. In this case, for any Borel function f : R→ [0,∞) the integral process

K ,
∫ ·∧θ

0

f(Ys) ds

is in the spirit of H. Let D be the set of all x ∈ R for which there is no ε > 0 such that∫ x+ε

x−ε

f(y)

a2(y)
dy <∞,

and denote

ηD , θ ∧ inf(t ≥ 0: Yt ∈ D).

By [20, Theorem 2.6], we have a.s.

Kt

{
<∞, t ∈ [0, ηD),

=∞, t ∈ (ηD, θ].

This characterization follows from the occupation times formula, which states that a.s.
on {t < θ} ∫ t

0

f(Ys) ds =

∫ t

0

f(Ys)

a2(Ys)
d〈〈Y, Y 〉〉s =

∫ ∞
−∞

f(y)

a2(y)
Lyt (Y ) dy,

where L denotes the local time, see [5, Equation (4.4)]. On the set {ηD < θ} it might
happen with positive probability that KηD < ∞, see [20, Sections 2.4, 2.5] for more
details. In this case, K jumps to infinity and the extension Z is positive on [[ηD,∞[[ with
positive probability. Deterministic conditions for this case can be found in [20]. Finally,
we stress that a.a. paths of K do not jump to infinity if D = ∅.
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Standing Assumption 3.4. Standing Assumption 3.3 holds with (a) replaced by

(a)’ P -a.s. Hσ− =∞ on {σ <∞}, and P -a.s. ρn < σ and EP
[
Zρn

]
= 1 for all n ∈ N.

The additional moment assumption has a local character. In fact, in many cases it
follows easily from classical moment conditions such as Novikov’s condition. For the
readers convenience we collect two conditions:

Proposition 3.3. Let n ∈ N. Assume that at least one of the following conditions holds:

(i) The random variable Hρn is bounded up to a P -null set.

(ii) Set

H∗ ,
1

2

∫ ·
0

〈βs, csβs〉dAs +
∑
s≤·

((
1− Ûs

)
log

(
1− Ûs
1− as

)
+ Ûs − as

)
+ (U log(U)− U + 1) ? ν,

where we use the conventions that 0/0 ≡ 0, log(0) ≡ −∞ and 0× (−∞) ≡ 0. It holds
that EP

[
exp(H∗ρn)

]
<∞.

Then, EP
[
Zρn

]
= 1.

Proof. The identity EP
[
Zρn

]
= 1 is implied by (i) due to similar arguments as used in the

proof of [10, Lemma 12.44] together with [10, Theorem 8.25]. Furthermore, EP
[
Zρn

]
= 1

is implied by (ii) due to [10, Corollary 8.44].

Next, we state the main result of this section.

Corollary 3.4. Assume that all solutions to the SMP (ρ; η;B′, C, ν′) coincide on the σ-field
Fσ−. Then, for all stopping times ξ we have

Q∗ = Zξ · P on Fξ ∩ {σ > ξ}. (3.9)

Moreover, we have the following:

(a) The following are equivalent:

(a.i) Q∗-a.s. Ht <∞ for all t ≥ 0.

(a.ii) The process Z is a P -martingale.

(a.iii) Q∗ �loc P with dQ∗

dP |Ft
= Zt.

(b) The following are equivalent:

(b.i) Q∗-a.s. Hρ <∞.

(b.ii) The process Z is a uniformly integrable P -martingale.

(b.iii) Q∗ � P with dQ∗

dP = Z∞.

Proof. First, note that Standing Assumption 2.1 holds. Let Q be as in Theorem 2.4. We
have, up to P -evanescence, for all n ∈ N

〈〈Zc, Xc,n〉〉·∧σn∧ρn =

∫ ·∧σn∧ρn

0

Zs−csβs dAs,

and, in view of (3.8), MP
µn -a.e. on [[0, σn ∧ ρn]]×Rd

Z = Z− + ∆Z = Z−
(
1 + U(·,∆Xn)− 1

)
= Z−U(·,∆Xn).
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This implies that MP
µn -a.e.

1[[0,σn∧ρn]]×RdMP
µn

(
Z
∣∣P̃) = 1[[0,σn∧ρn]]×RdZ−U.

Therefore, β and U play the same role as in Section 2. Consequently, due to Standing
Assumption 3.4, Theorem 2.4 implies that Q solves the SMP (ρ; η;B′, C, ν′). Furthermore,
by hypothesis, Q coincides with Q∗ on Fσ−. Hence, the formula (3.9) immediately follows
from Theorem 2.4 (a).

Since for all G ∈ F we have G∩ {σ =∞} ∈ Fσ−, the equivalence (a.i)⇔ (a.ii) follows
from Theorem 2.4 (b). If (a.i) holds, then Q = Q∗ on F . We explain this with more details.
Since Q = Q∗ on Fσ− and {σ =∞} ∈ Fσ−, we have Q-a.s. σ =∞. Now, for all G ∈ F we
have G ∩ {σ =∞} ∈ Fσ− and therefore

Q(G) = Q(G ∩ {σ =∞}) = Q∗(G ∩ {σ =∞}) = Q∗(G).

Consequently, (a.i) ⇒ (a.iii) follows from Theorem 2.4 (b), too. Since the implication
(a.iii)⇒ (a.ii) is trivial, this completes the proof of (a).

Set

γn , inf (t ≥ 0: Ht ≥ n) ,

and note that (b.i) implies that

lim
n→∞

Q(γn =∞) = lim
n→∞

Q∗(γn =∞) = 1.

Moreover, note that P -a.s. Hγn ≤ n+ 4 for all n ∈ N. Thus, by [10, Theorem 8.25] and
similar arguments as used in the proof of [10, Lemma 12.44], the stopped process Zγn

is a uniformly integrable P -martingale. Thus, the implication (b.i)⇒ (b.ii) follows from
Theorem 2.4 (c).

If (b.ii) holds, then (a.ii) and thus also (a.i) holds and we have Q = Q∗ on F . Hence,
the implication (b.ii)⇒ (b.iii) is due to Theorem 2.4 (c).

Finally, the implication (b.iii)⇒ (b.i) follows from [10, Theorem 8.19, Lemma 12.44]
and the proof is complete.

Remark 3.5. Recalling the equalities (2.7) and (3.5), if (a)’ in Standing Assumption 3.4
holds, then (a.i) in Corollary 3.4 is equivalent to Q∗-a.s. Hρ <∞ on {ρ <∞}. In this case,
the difference between local absolute continuity and absolute continuity is captured by
the behavior of Hρ on the set {ρ =∞}.
Remark 3.6. In many cases, for instance due to parametric constraints, all solutions to
a SMP are supported on a path space Ωo ⊆ Ω, see [25, Section 1.11] for examples. In
particular, this is the case when ρ =∞ with Ωo being the classical Skorokhod space, i.e.
the space of all càdlàg functions [0,∞)→ Rd. In such a situation, uniqueness on Fσ− is
equivalent to uniqueness on the trace σ-field Fσ− ∩ Ωo. If in addition ρ = τ∆ on Ωo, then

Fρ− ∩ Ωo = Fτ∆− ∩ Ωo = F ∩ Ωo. (3.10)

Here, we use the identity Fτ∆− = F , which follows from the following: For all G ∈ B(Rd∆)

{Xt ∈ G} = ({Xt ∈ G} ∩ {τ∆ ≤ t}) ∪ ({Xt ∈ G} ∩ {τ∆ > t})

=

{
{τ∆ ≤ t} ∪ ({Xt ∈ G} ∩ {τ∆ > t}) , ∆ ∈ G,
{Xt ∈ G} ∩ {τ∆ > t}, ∆ 6∈ G.

The sets on the right hand side are in Fτ∆−. Thus, we have shown the inclusion F ⊆ Fτ∆−,
which implies the identity Fτ∆− = F . Coming back to the identity (3.10), we see that
uniqueness on Fρ− ∩ Ωo implies uniqueness on F and in particular uniqueness on Fσ−.
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Corollary 3.7. Suppose that P -a.s. ρ = ∞, that Q∗ is the only solution of the SMP
(ρ; η;B′, C, ν′) and that (a)’ in Standing Assumption 3.4 holds. Then, the following are
equivalent:

(i) Q∗-a.s. ρ =∞.

(ii) Q∗ �loc P with dQ∗

dP |Ft = Zt.

If these statement hold true, then also the following are equivalent:

(iii) P �loc Q
∗

(iv) P -a.s. 1{U=0} ? ν∞ = 0 and Û = 1⇒ a = 1.

Proof. In view of Remark 3.5, Corollary 3.4 yields that (i) implies (ii). Now, if (ii) holds,
then Q∗(ρ < t) = 0 for all t ≥ 0, because we assume P (ρ < t) = 0. Consequently, we
conclude that (i) holds.

If (i) and (ii) hold, the equivalence of (iii) and (iv) follows from [10, Theorem 12.48].

This result shows that the Q∗-integrability condition and the local uniqueness condi-
tions imposed in [13, Theorem III.5.34] can be replaced by a simple uniqueness condition
together with a P -integrability condition.

Another consequence of Corollary 3.4 is that if Q∗ is unique and H is finite and
deterministic, then Q∗ �loc P with dQ∗

dP |Ft
= Zt. This observation can be proven directly

with the same strategy as used in the proof of Theorem 2.4: Indeed, if H is finite
and deterministic, the local P -martingale Z has a deterministic P -localizing sequence,
namely (σn)n∈N. Consequently, Z is a true P -martingale. Now, because (Ω,Fon)n∈N is a
standard system, see [6] for more details, Parthasaraty’s extension theorem yields that
Q∗ can be constructed from P as an extension of the consistent sequence (Zn · P )n∈N.
By construction, Q∗ �loc P with dQ∗

dP |Ft = Zt.

In the following section we comment on related literature. We will also discuss
further applications of Corollary 3.4.

4 Comments on the literature

In this section we relate our results to the literature. In Section 4.1, we show that
Corollary 3.4 is in line with the main results of Cherny and Urusov [4] and Mijatović
and Urusov [21]. In Section 4.2, we relate Corollary 3.4 to the main result of Cheridito,
Filipović and Yor [3].

4.1 Absolute continuity of one-dimensional diffusions

The (local) absolute continuity of laws of one-dimensional diffusions was intensively
studied by Cherny and Urusov [4], who gave deterministic equivalent conditions under
the Engelbert-Schmidt conditions. In the same setting, deterministic equivalent condi-
tions for the martingale property of stochastic exponentials were given by Mijatović and
Urusov [21]. Both approaches are based on so-called separation times and are quite
different from ours. As we will illustrate in this section, their results can also be deduced
from Corollary 3.4.

We start with a formal introduction to the setup. In the following, ν will always be
the zero measure and we will remove it from all notations.

Let b, β : R→ R and c : R→ [0,∞) be Borel functions. We extend these functions to
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R∆ by setting them to zero outside R. Furthermore, we set

B ,
∫ ·

0

b(Xs) ds,

B′ ,
∫ ·

0

(b(Xs) + (βc)(Xs)) ds,

C ,
∫ ·

0

c(Xs) ds,

where B and B′ are set to be ∆ and C is set to be ∞ whenever the integrals diverge,
and define the stopping times

ρn , inf(t ≥ 0: ‖Xt‖ > n) ∧ n, ρ , lim
n→∞

ρn, (4.1)

where ‖∆‖ ,∞.

Standing Assumption 4.1. The Engelbert-Schmidt conditions hold for the pairs (b, c)

and (b+ βc, c), i.e.

c > 0,
1 + |b|+ |b+ βc|

c
∈ L1

loc(R).

In this case, for all x ∈ R the SMP (ρ; δx;B,C) has a solution P with ρ-localizing
sequence (ρn)n∈N and the SMP (ρ; δx;B′, C) has a solution Q∗. Let Ωo be the set of all
ω ∈ Ω which are continuous on [0, τ∆(ω)) and limt↗τ∆(ω) ω(t) = −∞ or limt↗τ∆(ω) ω(t) =

+∞ whenever τ∆(ω) ∈ (0,∞). All solutions to each of these SMPs are supported on the
set Ωo and coincide on Fρ− ∩ Ωo. Thus, all solutions to these SMPs coincide on F , see
Remark 3.6. In particular, we have P -a.s.

ρn < ρ. (4.2)

In other words, the probability measures P and Q∗ and the sequence (ρn)n∈N are as in
Standing Assumption 3.1 and the uniqueness assumption of Corollary 3.4 holds. Proofs
for these claims can be found in [17, Section 5.5] or [5].

Standing Assumption 4.2. We have

β2 ∈ L1
loc(R). (4.3)

Standing Assumption 4.2 is also imposed in [21], but not in [4], where it is shown to
be necessary for Q∗ �loc P .

We define the [0,∞]-valued process

H ,
∫ ·∧ρ

0

(β2c)(Xs) ds

and set σn and σ as in (3.3). Note that H is left-continuous due to the monotone
convergence theorem. The condition (4.3) implies that∫ t

0

(β2c)(Xs) ds <∞, P -a.s. for all t < ρ, (4.4)

see [20, Theorem 2.6] and Remark 3.2. Moreover, (4.2) and (4.4) imply P -a.s.

ρn < ρ ≤ σ. (4.5)

In other words, recalling Remark 3.1, we conclude that Standing Assumption 3.3 (a)
holds. We define a non-negative local P -martingale Z as in Section 3.
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Absolute continuity of semimartingales

In this setting, (a)’ in Standing Assumption 3.4 holds, too. If the function β2c is
locally bounded, EP

[
Zρn

]
= 1 follows immediately from Novikov’s condition, see also

Proposition 3.3. However, under the weaker assumption that β2 ∈ L1
loc(R) the verification

becomes more challenging. We refer to [4, Lemma 5.30] for a proof.
Consequently, the following result follows from Corollary 3.4 and Remark 3.5.

Corollary 4.1. (a) The following are equivalent:

(a.i) Q∗-a.s. Hρ =
∫ ρ

0
(β2c)(Xs) ds <∞ on {ρ <∞}.

(a.ii) Z is a P -martingale.

(a.iii) Q∗ �loc P with dQ∗

dP |Ft
= Zt.

(b) The following are equivalent:

(b.i) Q∗-a.s. Hρ =
∫ ρ

0
(β2c)(Xs) ds <∞.

(b.ii) Z is a uniformly integrable P -martingale.

(b.iii) Q∗ � P with dQ∗

dP = Z∞.

A relation of the convergence of an integral functional and the martingale property
of a stochastic exponential is also suggested in [20, Section 2.6]. Corollary 4.1 confirms
a one-to-one relation.

Let us now explain that this corollary is in line with the deterministic conditions
for the (local) absolute continuity as given in [4] and for the (uniformly integrable) P
-martingale property of Z as given in [21]. We start with notation:

p(x) , exp

(
−
∫ x

0

2(b(y) + (βc)(y))

c(y)
dy

)
, x ∈ R,

s(x) ,
∫ x

0

p(y) dy, x ∈ R,

s(+∞) , lim
x↗+∞

s(x),

s(−∞) , lim
x↘−∞

s(x).

(4.6)

Furthermore, for z ∈ {−∞,∞} and a Borel function f : R→ [0,∞) we write f ∈ L1
loc(z)

if there is an x ∈ R such that
∫ x∨z
x∧z f(y) dy <∞. We define the following conditions:

s(+∞) = +∞, (4.7)

s(+∞) <∞ and
s(+∞)− s

pc
6∈ L1

loc(+∞), (4.8)

s(+∞) <∞ and
(s(+∞)− s)β2

p
∈ L1

loc(+∞), (4.9)

and similarly

s(−∞) = −∞, (4.10)

s(−∞) > −∞ and
s− s(−∞)

pc
6∈ L1

loc(−∞), (4.11)

s(−∞) > −∞ and
(s− s(−∞))β2

p
∈ L1

loc(−∞). (4.12)

Let us relate these conditions to (a.i) in Corollary 4.1. Define

ρ+ , lim
n→+∞

inf(t ≥ 0: Xt > n),

ρ− , lim
n→+∞

inf(t ≥ 0: Xt < −n),
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Absolute continuity of semimartingales

and note that Q∗-a.s.

{ρ <∞} = {ρ+ <∞} ∪ {ρ− <∞}.

We discuss the finiteness of Hρ separately on the two sets on the right hand side. By
Feller’s test for explosion, see [20, Propositions 2.4, 2.5, 2.12], {ρ+ < ∞} is Q∗-null if
and only if either (4.7) or (4.8) holds.

If Q∗(ρ+ < ∞) > 0, then Hρ is Q∗-a.s. finite on {ρ+ < ∞} if and only if (4.9) holds,
see [20, Theorem 2.11].

Similar arguments yield that Hρ is Q∗-a.s. finite on {ρ− <∞} if and only if one of the
conditions (4.10), (4.11) or (4.12) holds. Finally, we recover the following version of [21,
Theorem 2.1] and [4, Corollary 5.2] from Corollary 4.1.

Corollary 4.2. (a.i), (a.ii) and (a.iii) from Corollary 4.1 are equivalent to the following:

(a.iv) One of the conditions (4.7), (4.8) or (4.9) holds and one of the conditions (4.10),
(4.11) or (4.12) holds.

Let us now explain when Hρ is Q∗-a.s. finite. We distinguish four cases:

1. If s(+∞) =∞ and s(−∞) =∞, then Q∗-a.s. Hρ <∞ if and only if Lebesgue almost
everywhere β = 0, see [20, Theorem 2.10].

2. If s(+∞) <∞ and s(−∞) =∞, then Q∗-a.s. Hρ <∞ if and only if the second part
in (4.9) holds, see [20, Proposition 2.4, Theorem 2.11].

3. If s(+∞) =∞ and s(−∞) <∞, then Q∗-a.s. Hρ <∞ if and only if the second part
in (4.12) holds, see [20, Proposition 2.4, Theorem 2.11].

4. If s(+∞) <∞ and s(−∞) <∞, then Q∗-a.s. Hρ <∞ if and only if the second parts
in (4.9) and (4.12) hold, see [20, Proposition 2.4, Theorem 2.11].

We deduce the following version of [21, Theorem 2.3] and [4, Corollary 5.1] from
Corollary 4.1.

Corollary 4.3. (b.i), (b.ii) and (b.iii) from Corollary 4.1 are equivalent to the following:

(b.iv) One of the following conditions holds:

(1) Lebesgue almost everywhere β = 0.

(2) (4.9) and (4.10) hold.

(3) (4.7) and (4.12) hold.

(4) (4.9) and (4.12) hold.

Remark 4.4. Let us comment on the first case, which is closely related to the recurrence
of P . It is well-known that P is recurrent if and only if s(+∞) =∞ and s(−∞) =∞, see
[17, Proposition 5.5.22] or [25, Theorem 5.1.1]. Here, we call P recurrent if

P (Xt = y for some t ≥ 0) = 1 for all y ∈ R.

In particular, P is conservative. For recurrent diffusions, we have an ergodic theorem,
i.e. P -a.s. ∫ t

0
f(Xs) ds∫ t

0
g(Xs) ds

t→∞−−−−−−−→
∫
f(y)m(dy)∫
g(y)m(dy)

,

where m is the speed measure of X and f, g : R→ [0,∞) are Borel functions such that∫
f(y)m(dy) <∞ and

∫
g(y)m(dy) > 0. For a proof see [16, Theorem 20.14]. If Q∗ � P ,

all P -a.s. events transfer to Q∗ and, using that m is given as in [17, Equation 5.5.51],
one can deduce that β = 0 Lebesgue almost everywhere.

For explicit examples of all possible situations, we refer to [4]. In summary, we have
seen that Corollary 3.4 is in line with the results proven in [4, 21].
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4.2 Absolute continuity of Itô-jump-diffusions

In this section, we compare Corollary 3.4 to the main result of Cheridito, Filipović
and Yor [3]. The proof in [3] heavily relies on the concept of local uniqueness, which is
in Markovian setups implied by the existence of unique solutions for all deterministic
initial values, see [13, Theorem III.2.40].

Next, we recall a version of the setup of [3]. We stress that [3] includes a killing rate,
which is not included in our case. Moreover, the underlying filtered spaces are different,
such that the uniqueness assumptions are not identical, but very similar.

Let b, β : Rd → Rd and c : Rd → Sd be Borel functions and let K be a Borel transition
kernel from Rd into Rd. Furthermore, let U : Rd × Rd → (0,∞) be Borel. We extend
b, β, c,K and x 7→ U(x, y) for all y ∈ Rd to Rd∆ by setting them zero outside Rd. More
precisely, we mean here the zero vector, the zero matrix, etc. In [3] the following local
boundedness assumptions are imposed:

The functions

b, b+ cβ, c,
∫ (

1 ∧ ‖y‖2
)
K(·,dy) and

∫ (
1 + ‖y‖2

)
U(·, y)K(·,dy)

are locally bounded on Rd.
We set

B ,
∫ ·

0

b(Xs) ds,

B′ ,
∫ ·

0

(b(Xs) + c(Xs)β(Xs)) ds,

C ,
∫ ·

0

c(Xs) ds,

where B and B′ are set to be ∆ and each entry of C is set to be∞ whenever the integrals
diverge, and

ν(dt× dx) , K(Xt,dx) dt,

ν′(dt× dx) , U(Xt, x)K(Xt,dx) dt.

Let ρn and ρ be as in (4.1) and let η be a probability measure on (Rd,B(Rd)).
In the following, P is a solution to the SMP (ρ; η;B,C, ν) with ρ-localizing sequence

(ρn)n∈N and Q∗ is a solution to the SMP (ρ; η;B′, C, ν′).
Define

H∗ ,
1

2

∫ ·∧ρ
0

〈β(Xt), c(Xt)β(Xt)〉dt

+

∫ ·∧ρ
0

∫ (
U(Xt, x) log(U(Xt, x))− U(Xt, x) + 1

)
K(Xt,dx) dt,

see also Proposition 3.3. The main result in [3] can be rephrased as follows:
If Q∗ is the only solution to the SMP (ρ; η;B′, C, ν′) and

EP
[
exp

(
H∗ρn

)]
<∞ for all n ∈ N, (4.13)

then a formula like (3.9) holds for all (Fot )t≥0-stopping times ξ, and Q∗ �loc P holds if
Q∗ is conservative.

The condition (4.13) is a Novikov-type condition, which ensures that Zρn is a uni-
formly integrable P -martingale, where Z is defined as in Section 3, see also Standing
Assumption 2.1. In particular, it implies that EP

[
Zρn

]
= 1, see Proposition 3.3 and

Standing Assumption 3.4.
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Next, we compare this statement to Corollary 3.4. Let H be defined as in Section 3,
i.e. in this case

H =

∫ ·∧ρ
0

〈β(Xt), c(Xt)β(Xt)〉dt+

∫ ·∧ρ
0

∫ (
1−

√
U(Xt, x)

)2

K(Xt,dx) dt. (4.14)

We note that H ≤ 2H∗, which follows from the elementary inequality(
1−
√
x
)2 ≤ x log(x)− x+ 1 for all x > 0. (4.15)

Thus, (4.13) implies that P -a.s. Hρn <∞, which yields that P -a.s. ρ ≤ σ. In this setting,
it can be shown that P -a.s. ρn < ρ, see [3, Lemma 3.1] and the paragraph below its proof.
Thus, P -a.s. ρn < σ and, because H is left-continuous (due to the monotone convergence
theorem), Remark 3.1 implies that (a)’ in Standing Assumption 3.4 holds. Consequently,
Corollary 3.4 implies that Q∗ �loc P is true when Q∗ is conservative. Furthermore, the
formula (3.9) holds for all stopping times ξ. In this regard, our result is different from the
main result in [3], which applies for stopping times of the canonical filtration (Fot )t≥0.

5 Absolute continuity of multidimensional diffusions

While the one-dimensional diffusion case is almost fully understood, the literature on
the multidimensional setting is less complete. In this section, we explain how to derive
deterministic equivalent conditions for the (local) absolute continuity of multidimensional
diffusions in a radial case, and deterministic sufficient and necessary conditions for the
absolute continuity for multidimensional diffusions with radial diffusion coefficients. The
underlying idea is to compare the multidimensional diffusions with one-dimensional ones
and then to use results on the finiteness of integral functionals as given in [20]. This
strategy is related to the idea behind Khasminskii’s test for explosion, see [8] for details.

5.1 The general setting

We start by a formal introduction to the setting, which is very close to a multidimen-
sional version of the setup studied in Section 4.1. As in Section 4.1, ν will always be the
zero measure and we will remove it from all notations.

Let b and β be two Borel functions Rd → Rd and c be a Borel function Rd → Sd. We
extend these functions to Rd∆ by setting them to the zero vector and the zero matrix,
respectively. We set

B ,
∫ ·

0

b(Xs) ds,

B′ ,
∫ ·

0

(b(Xs) + (cβ)(Xs)) ds,

C ,
∫ ·

0

c(Xs) ds,

where B and B′ are set to be ∆ and each entry of C is set to be∞ whenever the integrals
diverge. Let ρ be as in (4.1).

Standing Assumption 5.1. The functions b, b+ cβ and 〈β, cβ〉 are locally bounded on
Rd and c is continuous on Rd such that 〈y, c(x)y〉 > 0 for all y ∈ Rd\{0} and x ∈ Rd.

For all x0 ∈ Rd, this standing assumption implies that the SMP (ρ; δx0 ;B,C) has
a solution P and the SMP (ρ; δx0

;B′, C) has a solution Q∗. Furthermore, it follows as
in Section 4.1 that the Standing Assumptions 3.1 and 3.3 are satisfied. In particular,
all solutions to each of these SMPs coincide on F . We define the non-negative local
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P -martingale Z as in Section 3. For all n ∈ N the identity EP
[
Zρn

]
= 1 follows immedi-

ately from Novikov’s condition and the assumption that 〈β, cβ〉 is locally bounded, see
Proposition 3.3. In other words, Standing Assumption 3.4 holds, too. For proofs of the
necessary facts we refer to [25]. Let us stress that the continuity assumption on c is
important for the uniqueness in high dimensional cases, see [22] for an example where c
is uniformly elliptic but the corresponding SMP has more than one solution.

The following version of Corollary 3.4 holds:

Corollary 5.1. (a) The following are equivalent:

(a.i) Q∗-a.s.
∫ ρ

0
〈β(Xs), c(Xs)β(Xs)〉ds <∞ on {ρ <∞}.

(a.ii) Z is a P -martingale.

(a.iii) Q∗ �loc P with dQ∗

dP |Ft = Zt.

(b) The following are equivalent:

(b.i) Q∗-a.s.
∫ ρ

0
〈β(Xs), c(Xs)β(Xs)〉ds <∞.

(b.ii) Z is a uniformly integrable P -martingale.

(b.iii) Q∗ � P with dQ∗

dP = Z∞.

Versions of the equivalences (a.i)⇔ (a.ii) and (b.i)⇔ (b.ii) have been derived in [27].
In the next two sections, we use this result to deduce deterministic criteria.

5.2 The radial case

In this subsection we will consider the radial case. We will still assume that Standing
Assumption 5.1 holds and that x0 6= 0. In addition, we impose the following standing
assumption.

Standing Assumption 5.2. There are Borel functions ĉ : [0,∞)→ [0,∞) and b̂ : [0,∞)→
R such that ĉ > 0 on (0,∞) and for all x ∈ Rd

ĉ

(
‖x‖2

2

)
= 〈x, c(x)x〉,

b̂

(
‖x‖2

2

)
= 〈x, (b+ cβ)(x)〉+

trace c(x)

2
.

Furthermore, there exists a Borel function f̂ : (0,∞)→ [0,∞) such that for all x ∈ Rd\{0}

f̂

(
‖x‖2

2

)
= 〈β(x), c(x)β(x)〉.

We stress that Standing Assumption 5.1 implies that

1 + |̂b|+ f̂

ĉ
∈ L1

loc((0,∞)). (5.1)

Define

W ,
∫ ·

0

〈Xt,dX
c
t 〉

ĉ
1
2

(
‖Xt‖2

2

)
on the random set [[0, ρ[[. For t < ρ, we deduce from Standing Assumption 5.2 that

〈〈W 〉〉t = t.

Thus, by [10, Corollary 5.10], we may extend W to continuous local P -martingale and by
similar arguments as used in the proof of [26, Theorem V.1.7] we find a one-dimensional

EJP 23 (2018), paper 125.
Page 21/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP238
http://www.imstat.org/ejp/


Absolute continuity of semimartingales

Brownian motion, possibly defined on an extension of our filtered probability space,
which coincides with W on [[0, ρ[[. We denote this Brownian motion again by W . An
application of Itô’s formula yields that on [[0, ρ[[

d

(
‖Xt‖2

2

)
= 〈Xt,dX

c
t 〉+ b̂

(
‖Xt‖2

2

)
dt

= ĉ
1
2

(
‖Xt‖2

2

)
dWt + b̂

(
‖Xt‖2

2

)
dt.

Because the Engelbert-Schmidt conditions (5.1) are satisfied, there exists a [0,∞]-valued
diffusion Y up to explosion with dynamics

dYt = ĉ
1
2 (Yt) dW̃t + b̂(Yt) dt, Y0 =

‖x0‖2

2
6= 0, (5.2)

where W̃ is a one-dimensional Brownian motion, see [17] for more details. Here,
explosion means exiting the interval (0,∞) and the explosion time of the diffusion Y is
denoted by θ. Furthermore, the stochastic differential equation (5.2) satisfies uniqueness
in law. If solutions to (5.2) cannot explode to the origin, the law of 1

2‖X‖
2 coincides with

the law of Y . In particular, we have

θ
d
= ρ,

∫ ρ

0

〈β(Xt), c(Xt)β(Xt)〉dt
d
=

∫ θ

0

f̂(Yt) dt,

where
d
= indicates equality in law. Now, we can deduce deterministic equivalent condi-

tions for (a.i) and (b.i) of Corollary 5.1 as in Section 4.1.
For completeness, we state them formally: Set

p(x) , exp

(
−
∫ x

1

2b̂(y)

ĉ(y)
dy

)
, x ∈ (0,∞),

s(x) ,
∫ x

1

p(y) dy, x ∈ (0,∞),

s(+∞) , lim
x↗+∞

s(x),

s(0+) , lim
x↘0

s(x).

(5.3)

We define the following conditions:

s(+∞) = +∞, (5.4)

s(+∞) <∞ and
s(+∞)− s

pĉ
6∈ L1

loc(+∞), (5.5)

s(+∞) <∞ and
(s(+∞)− s)f̂

pĉ
∈ L1

loc(+∞), (5.6)

and similarly

s(0+) = −∞, (5.7)

s(0+) > −∞ and
s− s(0+)

pĉ
6∈ L1

loc(−0), (5.8)

s(0+) > −∞ and
(s− s(0+))f̂

pĉ
∈ L1

loc(−0). (5.9)

Recall that, due to Feller’s test for explosion, see [20, Propositions 2.4, 2.5, 2.12], Y
does not explode to the origin if and only if either (5.7) or (5.8) holds. Now, Corollary 3.4
and [20, Proposition 2.4, Theorems 2.10, 2.11] imply the following result.
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Corollary 5.2. Suppose that either (5.7) or (5.8) holds.

1. (a.i), (a.ii) and (a.ii) from Corollary 5.1 are equivalent to the following:

(a.iv) One of the conditions (5.4), (5.5) and (5.6) holds.

2. (b.i), (b.ii) and (b.iii) from Corollary 5.1 are equivalent to the following:

(b.iv) One of the following conditions holds:

(1) Lebesgue almost everywhere f̂ = 0.
(2) (5.6) and (5.7) hold.
(3) (5.4) and (5.9) hold.
(4) (5.6) and (5.9) hold.

5.3 The partial radial case

Next, we derive a Khasminskii-type test for the absolute continuity of two multidi-
mensional diffusions. We still assume that Standing Assumption 5.1 holds. Furthermore,
we impose the following standing assumption.

Standing Assumption 5.3. There is a locally Lipschitz continuous function c̃ : [0,∞)→
[0,∞) such that c̃ > 0 on (0,∞),

〈x, c(x)x〉 = c̃

(
‖x‖2

2

)
, x ∈ Rd, (5.10)

and x0 6= 0.

Let us formulate two conditions:

Condition 5.3. There exist a locally Lipschitz continuous functions v : [0,∞)→ R such
that for all x ∈ Rd

v

(
‖x‖2

2

)
≥ trace c(x)

2
+ 〈x, b(x) + c(x)β(x)〉,

and a decreasing Borel function w : [0,∞)→ [0,∞) such that for all x ∈ Rd

〈β(x), c(x)β(x)〉 ≥ w
(
‖x‖2

2

)
. (5.11)

Condition 5.4. There exist a locally Lipschitz continuous functions v : [0,∞)→ R such
that for all x ∈ Rd

v

(
‖x‖2

2

)
≤ trace c(x)

2
+ 〈x, b(x) + c(x)β(x)〉,

and an increasing Borel function w : [0,∞)→ [0,∞) such that for all x ∈ Rd

〈β(x), c(x)β(x)〉 ≤ w
(
‖x‖2

2

)
.

Let us discuss our strategy in the case where Condition 5.3 holds. We find a [0,∞]-
valued diffusion Y whose paths are above those of 1

2‖X‖
2 till one of them explodes. We

have θ ≤ ρ, where θ is the explosion time of Y . Thus, using (5.11), we obtain that∫ ρ

0

〈β(Xs), c(Xs)β(Xs)〉ds ≥
∫ θ

0

〈β(Xs), c(Xs)β(Xs)〉ds

≥
∫ θ

0

w

(
‖Xs‖2

2

)
ds

≥
∫ θ

0

w (Ys) ds.

(5.12)
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In other words, ∫ θ

0

w (Ys) ds =∞

implies ∫ ρ

0

〈β(Xs), c(Xs)β(Xs)〉ds =∞.

By a similar argument, Condition 5.4 can be used to obtain conditions for the finite-
ness of the integral

∫ ρ
0
〈β(Xs), c(Xs)β(Xs)〉ds.

The remaining program of this section is to formulate these deterministic conditions,
state the result and fill in the remaining details.

Define

p(x) , exp

(
−
∫ x

1

2v(y)

c̃(y)
dy

)
, x ∈ (0,∞),

and let s, s(+∞) and s(0+) be as in (5.3).
Furthermore, we define the following conditions:

s(+∞) = +∞, (5.13)

s(+∞) <∞ and
(s(+∞)− s)w

pc̃
∈ L1

loc(+∞), (5.14)

and similarly

s(0+) = −∞, (5.15)

s(0+) > −∞ and
s− s(0+)

pc̃
6∈ L1

loc(−0), (5.16)

s(0+) > −∞ and
(s− s(0+))w

pc̃
∈ L1

loc(−0). (5.17)

We obtain a deterministic test for two multidimensional diffusions to be absolutely
continuous.

Proposition 5.5. (i) Suppose that Condition 5.3 holds and that none of the following
conditions holds:

(i.a) Lebesgue almost everywhere w = 0.

(i.b) (5.14) and (5.15) hold.

(i.c) (5.13) and (5.17) hold.

(i.d) (5.14) and (5.17) hold.

Then, Q∗ 6� P .

(ii) Suppose that Condition 5.4 holds and that one of the following conditions holds:

(ii.a) (5.14) and (5.15) hold.

(ii.b) (5.13), (5.16) and (5.17) hold.

(ii.c) (5.14), (5.16) and (5.17) hold.

Then, Q∗ � P with dQ
dP = Z∞.

Proof. By Itô’s formula, we obtain on [[0, ρ[[

d

(
‖Xt‖2

2

)
= 〈Xt,dX

c
t 〉+

(
〈Xt, (b+ cβ)(Xt)〉+

trace c(Xt)

2

)
dt,

‖X0‖2

2
=
‖x0‖2

2
.

EJP 23 (2018), paper 125.
Page 24/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP238
http://www.imstat.org/ejp/


Absolute continuity of semimartingales

Define

W ,
∫ ·

0

〈Xt,dX
c
s〉

c̃
1
2

(
‖Xt‖2

2

)
on the random set [[0, ρ[[. For t < ρ, we deduce from our radial assumption (5.10) that

〈〈W 〉〉t = t.

Thus, by [10, Corollary 5.10], we may extend W to a continuous local P -martingale and
using similar argument as in the proof of [26, Theorem V.1.7] we find a one-dimensional
Brownian motion, possibly defined on an extension of our filtered probability space,
which coincides with W on [[0, ρ[[. We denote this Brownian motion again by W . Because
we might work on an extension, we will drop P from our notation. We have on [[0, ρ[[

d

(
‖Xt‖2

2

)
= c̃

1
2

(
‖Xt‖2

2

)
dWt +

(
〈Xt, (b+ cβ)(Xt)〉+

trace c(Xt)

2

)
dt,

‖X0‖2

2
=
‖x0‖2

2
.

Since stochastic differential equations with locally Lipschitz continuous coefficients
satisfy pathwise uniqueness and pathwise uniqueness together with weak-existence
implies strong existence, there exists a [0,∞]-valued process Y with dynamics

dYt = c̃
1
2 (Yt) dWt + v(Yt) dt, Y0 =

‖x0‖2

2
6= 0,

up to explosion, see [17, Theorem 5.2.5, Corollaries 5.3.23, 5.5.16] for details. Here,
explosion has to be understood as exiting the interval (0,∞) and the explosion time
of the diffusion Y is denoted by θ. We stress that W is the same Brownian motion as
defined above. In the following, we turn to the individual cases (i) and (ii).

(i) It follows from the classical comparison result of Ikeda and Watanabe, see [26,
Theorem IX.3.7], that a.s.

‖X‖2

2
≤ Y on [[0, ρ ∧ θ[[. (5.18)

This yields that a.s. θ ≤ ρ. Now, recalling (5.12) and Corollary 5.1, it suffices to
verify that the conditions (i.a) – (i.d) are equivalent to a.s.∫ θ

0

w(Ys) ds <∞.

This follows as in Section 4.1.

(ii) Using once again the comparison result of Ikeda and Watanabe, we obtain a.s.

Y ≤ ‖X‖
2

2
on [[0, ρ ∧ θ[[.

Since in all cases (ii.a) – (ii.c) either (5.15) or (5.16) holds, Feller’s test for explosion
yields that Y can only explode to +∞, i.e. up to a null set

θ = inf(t ≥ 0: Yt =∞).
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Therefore, a.s. ρ ≤ θ. We obtain that∫ ρ

0

〈β(Xs), c(Xs)β(Xs)〉ds ≤
∫ ρ

0

w

(
‖Xs‖2

2

)
ds

≤
∫ ρ

0

w (Ys) ds

≤
∫ θ

0

w (Ys) ds,

and the claim follows from Corollary 5.1 and [20, Propositions 2.3, 2.4, Theorems
2.10, 2.11].

The proof is complete.

In the following section we present an application of Theorem 2.4 without any
uniqueness assumption.

6 Martingale property of stochastic exponentials

In the previous sections we have seen applications of Theorem 2.4 under a uniqueness
assumption. In this section, we show that also without such an assumption Theorem 2.4
has interesting consequences.

We illustrate this by deriving a generalization of the classical linear growth condition
of Benes̆ [1] to general continuous Itô-processes. Let us shortly explain the idea. If a
local martingale has a localizing sequence, which is also a localizing sequence for a
modified SMP, then the local martingale is a true martingale. In the following, we will
formulate conditions which imply the existence of such a localizing sequence for any
solution of the modified SMP. Thus, no uniqueness assumption is required.

We recall the result of Benes̆ [1]: Assume that W is a d-dimensional Brownian motion
and µ is an Rd-valued predictable process on the Wiener space. Then, the stochastic
exponential

exp

(∫ ·
0

〈µs(W ),dWs〉 −
1

2

∫ ·
0

‖µs(W )‖2 ds

)
is a martingale if µ is at most of linear growth. We refer to [17, Corollary 3.5.16] for a
precise statement.

In the following we generalize this result to cases where W is a continuous Itô-
process. Of course, it is possible to allow additionally jumps. However, we think that
focusing on the less technical continuous setup suffices to explain the main idea. For
similar conditions in an Itô-jump-diffusion setup we refer to [19].

Since ν will always be the zero measure we remove it from all notations. Let b and β be
Rd-valued predictable processes and c be a predictable process with values in Sd. We set

B ,
∫ ·

0

bs ds,

B′ ,
∫ ·

0

(bs + csβs) ds,

C ,
∫ ·

0

cs ds,

where B and B′ are set to be ∆ and each entry of C is set to be∞ whenever the integrals
diverge. Let ρn and ρ be as in (4.1) and let η be a probability measure on (Rd,B(Rd)).

Standing Assumption 6.1. Let P be a solution to the SMP (ρ; η;B,C) with (ρn)n∈N
as in (4.1) as ρ-localizing sequence. Let σ be as in (3.3) and define Z as in Section 3.
Furthermore, P -a.s. ρn < σ and EP

[
Zρn

]
= 1 for all n ∈ N, and

∫
‖x‖2η(dx) <∞.
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Corollary 6.1. Suppose there exists a Borel function γ : [0,∞) → [0,∞) such that∫ T
0
γ(s) ds < ∞ for all T ≥ 0 and for all continuous functions ω : [0,∞) → Rd and

all t ≥ 0 it holds that

‖bt(ω) + βt(ω)ct(ω)‖2 ≤ γ(t)

(
1 + sup

s∈[0,t]

‖ω(s)‖2
)
,

trace ct(ω) ≤ γ(t)

(
1 + sup

s∈[0,t]

‖ω(s)‖2
)
.

Then, Z is a P -martingale.

Proof. By Theorem 2.4, it suffices to show that for all solutions Q to the SMP (ρ; η;B′, C)

we have Q(ρ =∞) = 1.
It is not difficult to see that, due to our linear growth conditions, we find a constant

k(t), which only depends on t, such that

EQ
[

sup
s∈[0,t∧ρn]

‖Xs‖2
]
≤ k(t)

(
1 + EQ

[∫ t

0

γ(s) sup
r∈[0,s∧ρn]

‖Xr‖2 ds

])
.

Now, we deduce from Gronwall’s lemma, see [2, Lemma A.2.35], that

EQ
[

sup
s∈[0,t∧ρn]

‖Xs‖2
]
≤ const. independent of n.

Using Chebyshev’s inequality, we obtain that

Q(ρn ≤ t) ≤ Q

(
sup

s∈[0,t∧ρn]

‖Xs‖ ≥ n

)
≤ const. independent of n

n2
→ 0

as n→∞. Since this holds for all t ≥ 0, we conclude that Q(ρ =∞) = 1 and the proof is
complete.

Under the Engelbert-Schmidt conditions we have already seen equivalent conditions
for the martingale property of Z, see Section 4.1 or [21]. The linear growth condition pre-
sented in Corollary 6.1 is not necessary. However, it applies in multidimensional setups,
in non-Markovian cases and does not require any uniqueness assumption. Furthermore,
it is typically easy to verify.
Acknowledgments. The authors thank Jean Jacod for fruitful discussions. Furthermore,
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