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Noise sensitivity and Voronoi percolation
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Abstract

In this paper we study noise sensitivity and threshold phenomena for Poisson Voronoi
percolation on R2. In the setting of Boolean functions, both threshold phenomena and
noise sensitivity can be understood via the study of randomized algorithms. Together
with a simple discretization argument, such techniques apply also to the continuum
setting. Via the study of a suitable algorithm we show that box-crossing events in
Voronoi percolation are noise sensitive and present a threshold phenomenon with
polynomial window. We also study the effect of other kinds of perturbations, and
emphasize the fact that the techniques we use apply for a broad range of models.
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1 Introduction

The concept of a Boolean function, f : {0, 1}n → {0, 1}, is of fundamental importance
in theoretical computer science. Moreover, many of the most well-studied problems in
the intersection between combinatorics and probability theory may be phrased in terms
of (often monotone) Boolean functions. One is, in this context, interested in the typical
behaviour of a Boolean function for an element in {0, 1}n chosen according to product
measure with marginal density p, henceforth denoted by Pp. The study of Boolean
functions has led to a vast literature on a range of fascinating phenomena, such as the
existence of thresholds and the effect of small perturbations, see e.g. [14, 17].

Threshold phenomena of monotone Boolean functions were first discovered by Erdős
and Rényi [11] in their pioneering study of random graphs. The existence of a sharp
threshold is the essence of Kesten’s celebrated 1980 proof that the critical probability
for the existence of an infinite connected component in bond percolation on Z2 equals
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Noise sensitivity and Voronoi percolation

1/2 [16]. A sequence (fn)n≥1 of monotone1 Boolean functions fn : {0, 1}n → {0, 1} is said
to have a threshold at p ∈ (0, 1) if, for every ε > 0, we have

lim
n→∞

Pp−ε[fn = 1] = 0 and lim
n→∞

Pp+ε[fn = 1] = 1.

The understanding of thresholds has increased with works by Russo [20], Kahn, Kalai
and Linial [15], Friedgut and Kalai [12], and Talagrand [22].

The notion of noise sensitivity was introduced in a seminal paper by Benjamini, Kalai
and Schramm [5]. Given ω ∈ {0, 1}n, chosen according to Pp, we obtain an ε-perturbation
ωε of ω by resampling each bit of ω independently with probability ε. A sequence (fn)n≥1

of functions fn : {0, 1}n → {0, 1} is said to be noise sensitive at level p (NSp for short)
if fn(ω) and fn(ω

ε) are asymptotically uncorrelated, i.e., if

Ep[fn(ω)fn(ω
ε)]− Ep[fn(ω)]

2 → 0, as n → ∞. (1.1)

The study of noise sensitivity has led to a detailed understanding of certain planar
percolation models, both discrete: Benjamini, Kalai and Schramm [5], Schramm and
Steif [21], Garban, Pete and Schramm [13], and in the continuum: Ahlberg, Broman,
Griffiths and Morris [1], and Ahlberg, Griffiths, Morris and Tassion [2].

In this paper we study threshold phenomena and the effect of small perturbations
in the context of Poisson Voronoi percolation on R2. Our contributions in this direction
are two-fold. First, we describe the discretization method developed in [1], by which
we reduce the continuum problem to its discrete counterpart, and emphasize the close
relation between threshold phenomena and noise sensitivity of Boolean functions via the
study of randomized algorithms. Combining the two techniques we derive quantitative
estimates on the width of the threshold window and the rate of decorrelation in (1.1).
Second, we discuss a range of different but related notions of perturbations in the
context of Voronoi percolation. Some of these notions we examine in detail, whereas
other are left as open problems.

We remark that the application of the discretization approach is here somewhat
simpler than as originally developed in [1]. Moreover, the techniques we use apply
to a range of continuum percolation models such as Poisson Boolean percolation and
confetti percolation, as opposed to the approach in [2] that exploits colour-switching
tricks. For self-dual models, such as Voronoi and confetti percolation, our approach
offers an alternative proof that the critical probability for percolation equals 1/2, as
originally proved by Bollobás and Riordan [7]. In addition, the quantitative estimates
that we obtain on the size of the threshold window are new. We have chosen to present
our results in terms of Voronoi percolation as this model offers a range of possibilities
when it comes to different perturbations.

Description of Voronoi percolation Poisson Voronoi percolation is a model for the
study of long-range connections in a two-colouring of R2 based on a tessellation. The
large-scale behaviour in models of this kind is well-known to be governed by its behaviour
in finite regions, and we shall for this reason work with the restriction of the model
to the unit square. Let, hence, S := [0, 1]2 and let Ω denote the space of finite subsets
of S × {0, 1}, equipped with the Borel sigma algebra. Formally we construct a Voronoi
configuration on S based on a Poisson point process η on Ω with intensity measure
nλS ⊗ [pδ1 + (1− p)δ0], where λS denotes Lebesgue measure on S.

Given η ∈ Ω, we define the Voronoi cell associated to (x, u) ∈ η as

V (x) :=
{
y ∈ S : d(y, x) ≤ d(y, x′) for all (x′, u′) ∈ η

}
,

1A Boolean function is monotone if fn(ω′) ≥ fn(ω) whenever ω′ ≥ ω coordinate-wise.
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where d denotes the Euclidean distance. Based on the tessellation we declare a point in
S red or blue depending on whether it is contained in the cell corresponding to a point
in η with u-coordinate 0 or 1, respectively.2 To rule out degenerate cases, we colour all
points in S red in the case that η = ∅. We shall denote the associated measure by Pn,p,
and we will occasionally suppress the subscript to ease the notation.

Given a rectangle R ⊆ S, let HR denote the event defined by the existence of a
continuous blue path crossing R horizontally, and let fR : Ω → {0, 1} denote the indicator
of the event HR. Conditioned on η 6= ∅, at p = 1/2 the model is self-dual, meaning that
the red and blue components are equi-distributed. Since any rectangle R ⊆ S is either
crossed horizontally by a blue path or vertically by a red path, it follows by symmetry
that3

Pn,1/2[fS = 1] → 1/2.

Indeed, the function fR is non-degenerate at p = 1/2 for any rectangle R ⊆ S: There
exists a constant c 1 > 0, depending only on the aspect ratio of R, such that

c 1 ≤ Pn,1/2[fR = 1] ≤ 1− c 1, (1.2)

uniformly in n. This was first proved by Tassion [23] for Voronoi percolation on R2, and
later extended in [2] to subsets of R2 with boundary. The box-crossing property in (1.2)
is a typical critical phenomenon and a suggestive indication that the critical threshold for
the existence of an unbounded connected blue component in Poisson Voronoi percolation
on R2 equals 1/2.

Description of results In the continuum setting, a natural notion of perturbation of
a Voronoi configuration is obtained as follows. For ε ∈ (0, 1) let η(ε) be obtained from
η by first thinning η by a factor 1− ε and then sprinkling an independent density of εn
points to regain the initial density n. The collection of blue points in each η and η(ε) is
distributed as a Poisson point process of intensity pn. We shall say that the function
fR : Ω → {0, 1}, encoding the existence of a horizontal blue crossing of the rectangle R,
is noise sensitive at level p if, for every ε > 0, we have

En,p

[
fR(η)fR(η(ε))

]
− En,p

[
fR(η)

]2 → 0, as n → ∞. (1.3)

Moreover, we say that fR has positive noise sensitivity exponent if (1.3) holds with ε

replaced by εn = n−α for some α > 0.
Notice that in (1.3) we have defined what it means for a single function to be noise

sensitive. The definition is nevertheless analogous to the one in (1.1), where a sequence
of functions was considered.

Our first theorem states that box crossings in Poisson Voronoi percolation are noise
sensitive at the critical parameter p = 1/2, and that the associated noise sensitivity
exponent is positive.

Theorem 1.1. For every rectangle R ⊆ S, the function fR is noise sensitive at level
p = 1/2 with a positive noise sensitivity exponent.

Our second result concerns the width of the threshold (or critical) window, as a
function of n, in which the probability of a horizontal blue crossing is bounded away
from zero and one. That the width tends to zero with n is the essence of Bollobás and

2It is not hard to see that, with probability one, every Voronoi cell is a closed bounded convex set. A point on
the boundary of some set may belong to more than one cell, but no point of S can belong to more than three
cells. Besides, if two cells share a vertex, they share an entire edge. We can therefore ignore the fact that
points on the boundary of two cells may be declared both red and blue.

3Equality would here hold would it not be for the possibility that η may be empty.
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Riordan’s proof that the critical probability for Poisson Voronoi percolation on R2 equals
1/2. We show that the width of the critical window tends to zero polynomially in n, and
hence provide an alternative proof of Bollobás and Riordan’s theorem.

Theorem 1.2. For every rectangle R ⊆ S there exists γ > 0 such that

lim
n→∞

Pn,1/2−n−γ [fR = 1] = 0 and lim
n→∞

Pn,1/2+n−γ [fR = 1] = 1.

We remark that the width of the critical window cannot decay faster than order 1/
√
n

due to the well-known fact that no sequence of monotone Boolean functions may have a
smaller threshold window; see e.g. [3]. We mention that in parallel work, Duminil-Copin,
Raoufi and Tassion [9] present yet another proof of the Bollobás-Riordan theorem. We
also mention that the existence of a threshold at p = 1/2, together with Cauchy-Schwarz’
inequality, implies that Voronoi percolation is trivially noise sensitive for p 6= 1/2.

One way to think of the perturbation in (1.3) is as the following dynamical process
evolving in time: Let points appear in S × {0, 1} at rate n, where they remain for an
exponentially distributed time before disappearing. The measure Pn,1/2 is stationary for
this process, and for ε = 1− e−t the pair (η, η(ε)) corresponds to the dynamical process
observed at times 0 and t.

In greater generality we may think of a perturbation as a reversible time-homogeneous
Markov process (η(t))t≥0 on Ω evolving in equilibrium. For each such process, the Markov
property and reversibility together give that

E
[
fR(η(0))fR(η(t))

]
− E

[
fR(η(0))

]2
= E

[
E
[
fR(η(0))

∣∣η(t/2)]E[fR(η(t))∣∣η(t/2)]]− E[fR(η(0))]2
= Var

(
E
[
fR(η(t/2))

∣∣η(0)]).
Hence, for each dynamical process of this kind, the correlation between two points in
time measures the amount of information in some sigma algebra F – the sigma algebra
generated by the glimpse of the process in one of the time points – and being sensitive
with respect to this information is equivalent to

Varn,1/2
(
E[fR(η)|F ]

)
→ 0, as n → ∞. (1.4)

Clearly, the more information contained in F the larger the variance. This indicates, in
particular, that more conservative dynamics tend to affect a system to a lesser extent.
Two natural notions of perturbations that conserve the number of points are

• re-randomize colours of a small proportion of points;

• re-randomize locations of a small proportion of points.

The former of these two notions was studied in [2], where the authors showed that the
existence of crossings in Voronoi percolation are sensitive with respect to resampling a
small proportion of the colours. The latter we study in this paper, and show that Voronoi
crossings are sensitive also with respect to relocation of points within S.

Theorem 1.3. Let η∗ be obtained from η by re-randomizing the location of each point
in η independently and uniformly within S with probability ε > 0. For every ε > 0 and
rectangle R ⊆ S, we have

En,1/2

[
fR(η)fR(η

∗)
]
− En,1/2

[
fR(η)

]2 → 0, as n → ∞.

We remark that the statement of the above theorem remains true for ε replaced by
εn = n−α for some α > 0, which is a direct consequence of fR having a positive noise
sensitive exponent (see Theorem 1.1).
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Open problems The discussion above, in which a perturbation was described in terms
of a reversible Markov process evolving in equilibrium, suggests that there is a whole
range of possible perturbations, apart from those considered above. Different notions
of perturbations are likely to require new ideas and additional techniques than those
explored here. One open problem, for which the techniques of this study are insufficient,
is to determine whether percolation crossings are sensitive with respect to relocation of
(a proportion of) points of a given colour, while points of the other colour are kept fixed.
We believe that this is the case, and motivate our belief with the fact that crossings in
Bernoulli percolation on Z2 are sensitive to resampling of vertical bonds, while horizontal
bonds are kept fixed; see [13].

Another notion of perturbation is obtained by perturbing the location of each point
according to independent Brownian motions run for some time t = t(n). Running the
Brownian motions for time 1/n displaces a typical point on the order 1/

√
n, which is the

typical distance between two neighbouring points. At this time scale the perturbation is
thus much more local than when completely resampling the locations. We conjecture
that for t(n) = ε/n the points are perturbed enough to lose (in the sense of (1.4)) the
information carried by the initial configuration regarding the existence of a horizontal
blue crossing. An analogous statement has been conjectured to hold in the discrete
setting, but remains unproven [8].

The perturbation considered in Theorem 1.3 could of course be made more local by
relocating each point, not uniformly over the whole square, but uniformly over some
smaller square of side length n−α, where α ∈ (0, 1/2]. It is possible that the argument
used to prove Theorem 1.3 could be adapted in the case that α > 0 is sufficiently small,
but coming down to the scale 1/

√
n will presumably require significant new ideas. Again,

see [8] for related work in a discrete setting.
In contrast to these open problems, we mention that Benjamini and Schramm [6]

have proved that Voronoi percolation in two and three dimensions is stable with respect
to a (non-random) conformal perturbation of the underlying Euclidean metric that
defines the tessellation. The result of Benjamini and Schramm is related to conformal
invariance, which is believed to hold for Voronoi percolation, just as for many other
planar percolation models. This is one important missing piece that remains in order
to determine critical exponents by means of SLE technology. With such techniques at
hand, one would be able to determine the width of the critical window and the (optimal)
noise sensitivity exponent precisely. The latter should further have implications for the
existence of exceptional times in certain dynamical versions of the processes considered
here. We refer the reader to [13, 14] for further discussion in this direction.

Proof overview We will follow the approach developed in [1], and revisited in [4], by
which the continuum problem is reduced to its discrete counterpart via a two-stage
construction. The central idea is to consider a Poisson point process ηk on Ω chosen
according to Pkn,p for some k ≥ 1, and obtain a configuration η from ηk via thinning.
Conditional on ηk, we may think of η as an element in, and fR as a function on, {0, 1}ηk .
Conditional on ηk, we will be able to study the behaviour of fR via techniques developed
for the analysis of Boolean functions.

Russo’s approximate 0-1 law says that any sequence of monotone Boolean functions
for which the influence of each bit tends to zero exhibits a threshold behaviour [20].
A more modern approach to threshold phenomena comes from randomized algorithms
via the OSSS inequality [18]. That randomized algorithms can be used to study threshold
phenomena has previously been observed by Gady Kozma (see the appendix of [3]) and
in recent work by Duminil-Copin, Raoufi and Tassion [9, 10]. Randomized algorithms are
also connected to noise sensitivity via the Schramm-Steif revealment theorem [21]. In
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order to prove Theorems 1.1 and 1.2 we shall thus devise an algorithm that, conditional
on ηk, queries points in ηk sequentially until the outcome of fR(η) is determined. If,
with high probability, the algorithm has low revealment, that is, is unlikely to query any
specific point in ηk, then the results will follow.

The proof of Theorem 1.3 will also rely on the reduction to a discrete setting. The
dynamical process studied there is conservative, and in that sense related to the concept
of exclusion sensitivity studied by Broman, Garban and Steif [8]. We shall follow their
approach, and instead of a direct study of the conservative dynamics, we shall show
that there is a coupling between (η, η(ε)) and (η, η∗) such that (fR(η), fR(η(ε))) and
(fR(η), fR(η

∗)) agree with high probability. This will be possible due to a result in [8]
which says that any noise sensitive sequence of Boolean functions (fn)n≥1 is unlikely
to change when resampling up to order

√
n of the variables. The result then follows by

Theorem 1.1 and the observation that∣∣∣En,p

[
fR(η)fR(η(ε))

]
− En,p

[
fR(η)fR(η

∗)
]∣∣∣ ≤ Pn,p

[
fR(η(ε)) 6= fR(η

∗)
]
.

Structure of the paper Tools and techniques from the analysis of Boolean functions
will be central in the remainder of this paper. We shall in Section 2 begin with a brief
review of these, centering on the use of randomized algorithms and their revealment.
In Section 3 we outline the discretization method developed in [1], which will allow for
these techniques to be applied in the setting of Voronoi percolation. In Section 4 we
describe an algorithm that will be used to prove Theorems 1.1 and 1.2, and estimate
its revealment. The proofs of Theorems 1.1 and 1.2 are then given in Section 5, and
Sections 6 and 7 are dedicated to study the effect of alternative perturbations, and to
prove Theorem 1.3.

2 Analysis of Boolean functions

In the analysis of Boolean functions, discrete Fourier techniques have become an
indispensable tool. Although phenomena such as sharp thresholds and noise sensitivity
can be directly linked to the spectrum of the Fourier-Walsh decomposition of a Boolean
function, it is often a very challenging task to obtain precise estimates on the spectrum
itself. A range of techniques have therefore been developed in order to relate such
phenomena to notions such as influence of variables and revealment of algorithms, which
are typically more tractable quantities to estimate.

In this section, we review some results connecting influences and revealment to
threshold behaviour and noise sensitivity. We shall avoid the discussion of Fourier
techniques, that lie behind several of the results we describe, and refer the reader to
the books [14] and [17] for a more extensive treatment.

2.1 Influence of variables

Let [n] := {1, 2, . . . , n} and f : {0, 1}n → {0, 1} be a Boolean function. The influence
of bit k ∈ [n] for f is defined as

Infpk(f) = Infpk(f, [n]) := Pp[f(ω) 6= f(σkω)], (2.1)

where σk is the operator that changes ω at position k from ωk to 1 − ωk. Recall that a
Boolean function is called monotone if f(ω′) ≥ f(ω) whenever ω′

k ≥ ωk for each k ∈ [n].
It is well-known that many monotone Boolean functions exhibit a threshold phenomenon,
where the probability Pp[f = 1] increases from close to 0 to close to 1 in a narrow
window – the threshold window. The central role of influences in the understanding of
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this phenomenon is emphasized by the Margulis-Russo formula. It says that, for any
monotone function f : {0, 1}n → {0, 1},

d

dp
Pp[f = 1] =

n∑
k=1

Infpk(f). (2.2)

Russo’s approximate 0-1 law [20] gives the first general condition for the existence of
a threshold. Russo showed that for every ε > 0, there exists δ > 0 such that, if Infpk(f) ≤ δ

uniformly in k and p, then Pp(f = 1) transitions from below ε to above 1− ε in a window
of width at most ε. Later works [15, 12, 22] have obtained a more precise formulation of
Russo’s theorem that allows one to get a quantitative bound on the width of the threshold
window.

Influences are likewise fundamentally connected to the notion of noise sensitivity. The
BKS Theorem, due to Benjamini, Kalai and Schramm [5], says that a sufficient condition
for a sequence (fn)n≥1 of Boolean functions to be noise sensitive at level p is that

n∑
k=1

Infpk(fn)
2 → 0 as n → ∞. (2.3)

For monotone functions this condition is also necessary.

2.2 Revealment of algorithms

A (randomized) algorithm is a rule which queries a subset of the bits of ω ∈ {0, 1}n in
a random order, which is allowed to depend on what has been seen so far, and outputs
either 0 or 1. An algorithm is said to determine f if its output equals f(ω) for each
ω ∈ {0, 1}n. The revealment of an algorithm A with respect to K ⊆ [n] is defined as

δp(A,K) := max
k∈K

Pp[A queries bit k]. (2.4)

In order to verify the condition in (2.3), Benjamini, Kalai and Schramm [5] devised
a method involving algorithms. This method was developed further in later work by
Schramm and Steif [21]. In essence, this method shows that a sequence of functions is
noise sensitive if there exists (a sequence of) algorithms that determines fn without being
likely to query any specific bit. The next proposition, due to Schramm and Steif [21],
gives an explicit formulation of this last statement.

Proposition 2.1. Let A be an algorithm that determines the function f : {0, 1}n → {0, 1}.
Then, for every p ∈ (0, 1) and m ≥ 1, we have

Ep[f(ω)f(ω
ε)]− Ep[f(ω)]

2 ≤ e−εm +m2δp(A, [n]).

Since the correlation is non-negative, it is immediate from the proposition above that
a sequence (fn)n≥1 is noise sensitive if there exists an algorithm A determining fn with
revealment tending to zero. Moreover, if δp(A, [n]) decays polynomially fast, then the
sequence (fn)n≥1 has positive noise sensitivity exponent.

Randomized algorithms have also been related to influences and threshold phenom-
ena via the following inequality, due to O’Donnell, Saks, Schramm and Servedio [18].

Proposition 2.2. Let f : {0, 1}n → {0, 1} be a Boolean function and A an algorithm that
determines f . Then, for every p ∈ (0, 1), we have

Varp(f) ≤ p(1− p)
∑
k∈[n]

δp(A, k) Infpk(f). (2.5)
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The above inequality implies, in particular, that

Varp(f) ≤
1

4
δp(A, [n])

n∑
k=1

Infpk(f),

and hence, together with the Margulis-Russo formula, one concludes that monotone
Boolean functions satisfy the inequality

d

dp
Pp[f = 1] ≥ 4

Varp(f)

δp(A, [n])
.

As we shall see, we will, via the study of algorithms, be able to obtain polynomial bounds
on the width of the threshold window of certain Boolean functions, where methods based
on influences would give logarithmic bounds, see e.g. [12].

Although we shall not make use of this below, we mention the following upper bound
on the sum of influences in terms of the revealment, due to O’Donnell and Servedio [19]:
For every function f : {0, 1}n → {0, 1} that is monotone in each coordinate we have that∑

k∈[n]

Infpk(f) ≤
√
n

∑
k∈[n]

Infpk(f)
2 ≤ 1

p(1− p)

√
n δp(A, [n]). (2.6)

The former of the two inequalities is immediate from Cauchy-Schwarz’ inequality,
whereas the latter follows from (a variant of) the Schramm-Steif revealment theorem.
(See also [14, Theorem VIII.8] for a direct proof.) This inequality provides a way to
obtain a lower bound, as opposed to the upper bound obtained via the OSSS inequality,
on the width of the threshold window for monotone Boolean functions that is sharper
than the elementary lower bound of order 1/

√
n. We are not aware of any such application

having previously appeared in the literature. However, see [14, Section VIII.5] for an
application showing that the critical four-arm exponent for Bernoulli percolation on Z2

is strictly larger than one.

3 Continuum to discrete

We now begin to set the stage for the proofs of Theorems 1.1 and 1.2. Our approach
will be based on a method developed in [1], and revisited in [4], that allows one to reduce
the continuum problem at hand to its discrete counterpart via a two-stage construction
of the continuum process.

Fix an integer k ≥ 2 and choose ηk ∈ Ω distributed as Pkn,p. Let η be obtained
from ηk by independently including each point of ηk with probability 1/k. Notice that η
is distributed according to Pn,p, and that conditional on ηk, we may consider η as an
element in {0, 1}ηk chosen according to P1/k.

Recall the notation (η, η(ε)) for a pair of configurations in Ω distributed according
to Pn,p, where the latter is an ε-perturbation of the former. The two-stage construction
gives an alternative way to obtain a pair of configurations (η, ηε) where, conditional on
ηk, the latter is obtained by an ε-perturbation of the former seen as elements in {0, 1}ηk .
Using the fact that η and ηk \ η are independent, it is for ε′ ≤ 1− 1/k and ε = ε′/(1− 1/k)

straightforward to verify that (η, η(ε′)) and (η, ηε) are equal in distribution.
The two-stage construction thus leads us to the identity

En,1/2

[
fR(η)fR(η(ε

′))
]
− En,1/2

[
fR(η)

]2
= Varkn,1/2

(
E [fR(η)|ηk]

)
+ Ekn,1/2

[
E[fR(η)fR(η

ε)|ηk]− E[fR(η)|ηk]2
]
.

(3.1)

In order to prove that fR is noise sensitive it will thus suffice to prove that each term
in the right-hand side of (3.1) is small for large n. To prove that the variance term, for
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fixed k, tends to zero as n tends to infinity turns out to be equivalent to the original
problem. To see this, let η′ and η′′ be obtained independently from ηk by keeping each
point with probability 1/k. Then, for ε′ = 1 − 1/k the joint law of (η′, η′′) equals that of
(η, η(ε′)), and hence4

En,1/2

[
fR(η)fR(η(ε

′))
]
− En,1/2

[
fR(η)

]2
= Ekn,1/2

[
E[fR(η

′)fR(η
′′)|ηk]

]
− Ekn,1/2

[
E[fR(η

′)|ηk]
]2

= Varkn,1/2
(
E[fR(η

′)|ηk]
)
.

(3.2)

However, we shall in Lemma 3.1 see that the expression in (3.2) tends to zero as
k → ∞. The goal will then be to show that, for large k, conditional on ηk, the function
fR : {0, 1}ηk → {0, 1} is noise sensitive in the sense of (1.1), with high probability.

In a similar manner we shall rely on the two-stage construction in order to prove
that fR has a sharp threshold at p = 1/2. The construction here will have to be slightly
different, since we now want to vary the colour of certain points and not their presence.
We will thus let ηk denote the projection of ηk to S, and instead aim to show that
P[fR(η) = 1|ηk] grows from 0 to 1 in a narrow interval around p = 1/2, with high
probability. A first step in both these instances is obtained in the following lemma, which
has its origins in [1], although the proof we present here is taken from [4].

Lemma 3.1. For every integer k ≥ 2 and p ∈ (0, 1) we have

Varkn,p
(
E [fR(η)|ηk]

)
≤ 1

k
.

Proof. It all boils down to use a suitable construction for the pair (ηk, η). Consider k

independent copies η(1), η(2), . . . , η(k) of η, and let κ be chosen uniformly in [k]. We then
observe that

Varkn,p (E [fR(η)|ηk]) ≤ Varn,p
(
E
[
fR(η

(κ))|(η(i))ki=1

] )
= Varn,p

(
1

k

k∑
i=1

fR(η
(i))

)
.

The lemma then follows from the independence of the η(i).

As an easy corollary of the lemma above we obtain the following.

Lemma 3.2. For every rectangle R ⊆ S there exists k0, depending only on the aspect
ratio of R, such that if k ≥ k0, then we have, for all large n, that

Pkn,1/2

[
P [fR(η) = 1|ηk] /∈ [c 1/2, 1− c 1/2]

]
≤ 1√

k
,

where c 1 is the constant in (1.2).

Proof. Chebyshev’s inequality and Lemma 3.1 imply that

Pkn,1/2

[
P [fR(η) = 1|ηk] /∈ [c 1/2, 1− c 1/2]

]
≤ P

[∣∣∣P [fR(η) = 1|ηk]− Pn,1/2[fR = 1]
∣∣∣ ≥ c 1

2

]
≤ 4

c21k
≤ 1√

k
,

for k and n large enough.

4Here, k > 1 does not have to be an integer.
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Remark 3.3. Notice that if, for some k ≥ 2, we have

lim
n→∞

Varkn,1/2
(
E[fR(η) | ηk]

)
= 0,

then the conclusion in Lemma 3.2 strengthens to

lim
n→∞

Pkn,1/2

[
P [fR(η) = 1| ηk] /∈ [c 1/2, 1− c 1/2]

]
= 0.

4 An algorithm with low revealment

In this section, we continue to work towards the proofs of Theorems 1.1 and 1.2. We
will adopt the two-stage construction introduced in the previous section, and devise an
algorithm which, conditional on the denser set of points ηk, determines the outcome of
fR(η) by querying points of ηk whether they are contained in the sparser set η. We then
proceed to show that this algorithm has low revealment, which in the next section will
allow us to deduce that fR is noise sensitive and has a threshold at p = 1/2.

4.1 The algorithm

In this subsection we describe the algorithm. Loosely speaking, it will explore the
square S until it has discovered all blue components that touch a randomly selected
vertical line through R. This is achieved by querying points close to the vertical line
first, and then proceeding to points that are close to already explored blue components
connected to the vertical line. Since we cannot tell the Voronoi tessellation of η by just
observing ηk, we will only gain information about the actual tiling locally as we go. To
contour this difficulty, we will split S into boxes on a mesoscopic scale (see Figure 1), so
that by querying all points within such a box we will correctly determine the tiling within
that box with high probability, apart from close to the boundary. That is, by further
dividing each box into nine sub-boxes, the algorithm learns the tiling of η correctly within
the centre box with high probability.

R

Figure 1: The unit square divided into smaller squares at a mesoscopic scale. When all
points of ηk in a sub-square are queried, then the tiling within the center box in a further
division into nine sub-boxes is correctly determined with high probability.

If the algorithm discovers a blue component that touches both left and right sides
of R, then there is a horizontal blue crossing of R. If not, then there is a vertical red
crossing. The reason the algorithm has low revealment is that a given point is both
unlikely to be close to the randomly located vertical line, and unlikely to be connected
far by a blue path.

The rest of this section will be dedicated to confirming these claims. First we give
a more precise description of our algorithm, see Algorithm 4.1. Recall that Ω is the
collection of finite subsets of S × {0, 1}.
Lemma 4.1. Algorithm 4.1 determines the outcome of fR almost surely.
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Algorithm 4.1 (Existence of a horizontal blue crossing)

1: Input: ηk ∈ Ω, η ∈ {0, 1}ηk and R = [a, b]× [c, d] ⊆ S.
2: Choose a point x0 uniformly in the mid third of the interval [a, b].
3: Consider a lattice in S with mesh size m = 1/dn1/4e, and divide each cell in this lattice

into nine equally sized subcells.
4: Query points in all cells of the lattice that intersect R ∩ {x = x0} and their neighbour-

ing cells. Declare the examined cells explored, and each explored cell safe if also the
eight cells that surround it are explored.

5: If any of the cells explored so far contains an empty subcell, then query all points
of ηk. Otherwise, proceed and explore all cells that share an edge with a safe cell
and are connected to the line {x = x0} by a blue component inside the safe region.
Explore also any cell neighbouring to these cells and declare an explored cell which
is surrounded by explored cells safe.

6: Repeat Step 5 until all connected blue components inside R that intersect {x = x0}
are discovered. If there is a connected blue component inside R that connects {x = a}
to {x = b}, return 1. Otherwise, return 0.

Proof. Observe that if there exists a horizontal blue crossing of R, then it necessarily
crosses every vertical line through R. Hence, it suffices to verify that given ηk the
algorithm correctly determines all connected blue components of η insideR that intersect
the random vertical line {x = x0}.

If the algorithm queries all points of ηk then this is trivially true. If not, then all we
need to verify is that for each safe cell, i.e., a cell which is explored along with its eight
surrounding neighbours, we have determined the tiling within. This is indeed the case
since if no neighbouring cell has an empty subcell, then no point outside the safe cell
and its eight neighbours can affect the tiling inside the safe cell.

Now that we have an algorithm that determines fR, we need to bound its revealment.
Since the algorithm only reveals the configuration inside cells of a mesoscopic lattice,
we consider each such cell individually and bound the revealment of every point inside it
at once. This is done in the next two subsections.

4.2 One-arm estimates

There are three possibilities for a point in ηk to be queried by the algorithm above.
First of all, there is the case that some subcell of a cell does not contain any point of
η. In this case, all the points of ηk are queried. The second case is when the point is
contained in a cell ‘close’ to the random vertical line through R. Finally, there is the
possibility that the given points is in a cell located ‘far’ from the line, but there exists
a connected blue path in η connecting the vertical line with one of the eight cells that
surround that cell. In this subsection we shall bound the probability of the third of these
possibilities.

Let m = dn1/4e−1 as before, and partition S into squares of side length m. The precise
choice of m is irrelevant as long as n−1/2 � m � 1. Let C ⊆ S be a cell in this lattice,
and let C ′ be the square of side length 3m centered at C. We define Arm(C) as the event
that there exists a blue path that connects C ′ to the boundary of the square of side

√
m

centered at C.

Proposition 4.2. There exists δ > 0 such that, for every γ > 0, we can find k0 ≥ 1 so
that, for k ≥ k0, p ≤ 1/2, and all large n, depending on k, we have

Pkn,p

[
P [η ∈ Arm(C) | ηk] > n−δ

]
< n−γ .
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C

Figure 2: The square C, surrounded by a larger square with side lengthm
1/2. The dashed

annuli represent the sets Aj . Notice that, if there is a blue path from C to the boundary
of the square, none of the annuli can contain a red circuit.

Estimates of this type have previously been obtained in [1, 2, 4], and the proof
presented here will be similar, although different in some details. It will suffice to
consider the critical case p = 1/2 due to monotonicity. As a first step, we prove a lemma
that bounds the probability that a configuration contains a large cell. Let

E :=
{
some cell of η has radius larger than n−1/3

}
. (4.1)

Lemma 4.3. There exists c 2 > 0 such that, for all n ≥ 1, we have

Pn,1/2[E] ≤ exp(−c 2n
1/3). (4.2)

Proof. We split the unit square S into boxes of side length (10dn1/3e)−1. Notice that
for E to occur it is necessary for the intersection of η with at least one of these about
100n2/3 boxes to be empty. For each individual box this occurs with probability at most
exp(−0.01n · n−2/3). Via the union bound we conclude that

Pn,1/2[E] ≤ 100n2/3 exp(−0.01n
1/3),

as required.

Proof of Proposition 4.2. Fix a cell C ⊆ S of side length m = dn1/4e−1. For every integer
j ≥ 0, denote by Aj the square annulus centered around C, with inner side-length 4jm

and outer side-length 3 ·4jm. Let Oj be the event that there is not a blue path connecting
the inner and outer boundary of Aj . That is, Oj is the even that there is a red path in Aj

that disconnects any blue component touching C from the exterior of Aj . Observe that,
in order for the event Arm(C) to occur, Oj cannot occur for integers j in the set

J :=
{
j ∈ N : m ≤ 4jm ≤ m

1/2
}
.

Let E be the event in (4.1), and let A′
j denote the set of points within distance m/3

of Aj . We note that, on Ec, the events Oj are determined by the restriction of η to A′
j ,

which we shall denote η(j). That is, if gj : Ω → {0, 1} denotes the indicator of Oj , then

1Ec · gj(η) = 1Ec · gj(η(j)). (4.3)
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Moreover, since the sets A′
j are disjoint the configurations η(j) are independent. Since

Oj cannot occur for any j ∈ J in case that Arm(C) occurs, it follows that

P[Arm(C) | ηk] ≤ P[E | ηk] + P
[
Ec ∩

⋂
j∈J

Oc
j

∣∣∣ ηk]
≤ P[E | ηk] +

∏
j∈J

P
[
gj(η

(j)) = 0
∣∣ ηk]

≤ P[E | ηk] +
∏
j∈J

(
P[Oc

j | ηk] + P[E | ηk]
)
.

(4.4)

Recall the constant c 1 > 0, from (1.2), and introduce the events

D := {P[E | ηk] ≥ 1/n} and Dj :=
{
P[Oj | ηk] ≤ c41/32− 2/n

}
,

and let D∗ denote the event that Dj occurs for at least half the indices in J . From (4.4)
we conclude that on (D∗ ∪D)c there exists δ > 0 such that

P[Arm(C)|ηk] ≤ 1/n +
[
(1− c41/32) + 3/n

]|J|/2 ≤ n−δ.

It remains to bound the probability that eitherD orD∗ occurs. By Markov’s inequality
and Lemma 4.3,

Pkn,1/2[D] ≤ nPn,1/2[E] ≤ n · exp(−c 2n
1/3). (4.5)

Since nm2 � 1 and the annulus Aj is the union of four rectangles with sides 3 · 4jm and
4jm, it follows from Lemma 3.2 and Harris’ inequality that

Pkn,1/2

[
P[Oj |ηk] ≤ c41/16

]
≤ 4k−

1/2. (4.6)

Here, it is important to observe that the bound is independent of the chosen annulus.
Indeed, if the annulus is not entirely contained in S, then it would only be harder for
blue to reach its outer boundary from within.

We then observe that

Pkn,1/2[D ∪D∗] ≤ Pkn,1/2[D] + 2
|J|/2 sup

I
Pkn,1/2

[
Dc ∩

⋂
j∈I

Dj

]
, (4.7)

where the supremum above is taken over all subsets of J with at least |J |/2 elements.
Repeated use of (4.3) shows that

Pkn,1/2

[
Dc ∩

⋂
j∈I

Dj

]
≤ Pkn,1/2

[ ⋂
j∈I

{
P
[
gj(η

(j)) = 1 | ηk
]
≤ c41

16
− 1/n

}]
≤

∏
j∈I

Pkn,1/2

[
P
[
gj(η

(j)) = 1 | ηk
]
≤ c41

16
− 1/n

]
≤

∏
j∈I

(
Pkn,1/2[D] + Pkn,1/2

[
P[Oj |ηk] ≤

c41
16

])
Hence, combined with the estimates in (4.5)-(4.7) we conclude that

Pkn,1/2[D ∪D∗] ≤ n · exp(−c 2n
1/3) + 2

|J|/2
[
n · exp(−c 2n

1/3) + 4k−
1/2

]|J|/2
.

Since |J | = Ω(log n) we may for every γ > 0 choose k large so that the above estimate is
bounded by n−γ for all large n.
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4.3 Revealment of the algorithm

Now that we have the one-arm estimate, we can bound the revealment of our algo-
rithm. We recall that a point in ηk may be queried if the m×m cell in which it belongs
is either ‘close’ to the random vertical line through R, or ‘far’ but connected by a blue
path to that line, or if the algorithm at some point discovers a subcell of some m×m cell
which is empty.

Proposition 4.4. Let A denote Algorithm 4.1. There exist δ > 0 and k0 ≥ 1 such that,
for every k ≥ k0, p ≤ 1/2, and all large n, we have

Pkn,p

[
δ1/k(A, ηk) > n−δ

]
< n−50.

Proof. As before we partition the unit square S into cells of side length m, and split each
cell C into nine further subcells. Let G be the event that each such subcell contains a
point of η, and let

B :=
{
P[Gc|ηk] > 1/n

}
.

Markov’s inequality then gives that, for large n,

Pkn,p[B] ≤ nPn,p[G
c] ≤ n · 9m−2 exp(−9−1nm2) <

1

2
n−50.

Next we fix γ = 100 and let δ > 0 and k0 ≥ 1 be as in Proposition 4.2. Let B′ denote
the event that for some m ×m cell C, we have P[Arm(C)|ηk] > n−δ. The union bound
and Proposition 4.2 then gives that for large n

Pkn,p[B
′] ≤ m−2 max

C⊆S
Pkn,p

[
P[Arm(C)|ηk] > n−δ

]
<

1

2
n−50.

For a given m×m cell C we let DC be the event that C is within distance 2
√
m of the

random line through R. The probability of DC is independent of ηk, and one can obtain
an upper bound of order

√
m, uniformly in C.

For a point of ηk to be queried there has either to exist a subcell of some m × m

cell that is empty, or the point must lie in a cell C within distance 2
√
m of the randomly

chosen vertical line through R, or Arm(C) has to occur. The revealment of A thus has to
satisfy

δ1/k(A, ηk) ≤ max
C⊆S

(
P[Gc|ηk] + P[D|ηk] + P[Arm(C)|ηk]

)
,

which restricted to the event (B ∩B′)c is at most n−1 + n−1/8 + n−δ.

We may analogously to the algorithm A define an algorithm A′ which looks for a
vertical red crossing of R. By symmetry it follows that, for p ≥ 1/2,

Pkn,p

[
δ1/k(A′, ηk) > n−δ

]
< n−50.

5 Noise sensitivity and the threshold window

This section is devoted to the proofs of Theorems 1.1 and 1.2. First, we prove
Theorem 1.1, that Voronoi percolation is noise sensitive, with a positive noise sensitivity
exponent. Then we bound the width of the threshold window, proving Theorem 1.2.
Throughout the section we work with the two-stage construction of the random Voronoi
configuration, as described in Section 3.

Proof of Theorem 1.1. Due to Equation (3.1) and Lemma 3.1 it will suffice, for the first
part of the theorem, to show that for some γ > 0 and all large k we have

Ekn,1/2

[
E[fR(η)fR(η

εn)|ηk]− E[fR(η)|ηk]2
]
→ 0 as n → ∞, (5.1)
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where εn = n−γ .
Let A be the algorithm in Algorithm 4.1. The Schramm-Steif revealment theorem

(Proposition 2.1) gives that, for almost every ηk and m ≥ 1, we have

E[fR(η)fR(η
εn)|ηk]− E[fR(η)|ηk]2 ≤ exp(−εnm) +m2δ1/2(A, ηk).

Let δ > 0 be as in Proposition 4.4, and let Bn denote the event that δ1/k(A, ηk) > n−δ.
Then Pkn,1/2[Bn] < n−50, and consequently

Ekn,1/2

[
E[fR(η)fR(η

εn)|ηk]− E[fR(η)|ηk]2
]

≤ n−50 + exp(−εnm) +m2Ekn,1/2[δ1/k(A, ηk)1Bc
n
]

≤ n−50 + exp(−εnm) +m2n−δ.

Hence, (5.1) holds with γ = δ/3 and nδ/3 � m � nδ/2, which concludes the proof of
Theorem 1.1.

We proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Given ηk ∈ Ω we shall with ηk denote its projection onto S. We
first note that by dominated convergence we have

d

dp
Pn,p[fR = 1] = En,p

[ d

dp
P[fR(η) = 1|ηk]

]
, (5.2)

since the rate at which P[fR(η) = 1|ηk] may increase as p varies is bounded by the
number of variables |ηk| affected by p. Moreover, given ηk, we may think of η as an
element in {0, 1}ηk × {0, 1}ηk , where the first half of the coordinates determine ‘colour’
and the second half determine ‘presence’ in the final configuration. The Margulis-Russo
formula then gives that

d

dp
P[fR(η) = 1 | ηk] =

∑
x∈ηk

P

[
x is present and its colour

is pivotal for fR

∣∣∣∣ ηk]
almost surely. Since a blue point is better than no point, and no point is better than a
red point, it follows that switching presence rather than colour of a point is less likely to
affect the outcome of fR. Consequently, the derivative is bounded from below by the sum∑

x∈ηk

P
[
x is present and its presence is pivotal for fR

∣∣ ηk].
Each term in the above expression can be rewritten as 1

kE[Inf
1/k
x (fR, ηk)|ηk], where the

factor 1/k comes from the probability of being present. Hence, (5.2) and the OSSS
inequality (Proposition 2.2) together give that

d

dp
P[fR(η) = 1] ≥ 1

k
E
[ ∑
x∈ηk

Inf
1/k
x (fR, ηk)

]
≥ 4

k
E

[
Var(fR|ηk)
δ1/k(A, ηk)

]
. (5.3)

Fix ε > 0 and let Iε = Iε(n) denote the set of points p ∈ [0, 1] for which Pn,p[fR = 1] ∈
(ε, 1− ε). By monotonicity Iε is an interval, and for small ε the interval contains the point
1/2. Consequently, to complete the proof it will suffice to show that there exists γ > 0

such that |Iε| ≤ n−γ for all ε > 0.
Let A be the algorithm in Algorithm 4.1, and A′ be the analogously defined algorithm

that looks for a vertical red crossing of R. We introduce the events

A :=
{
P[fR(η) = 1|ηk] ∈ (ε/2, 1− ε/2)

}
,

B :=
{
max{δ1/k(A, ηk), δ1/k(A′, ηk)} < n−δ

}
,
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with which (5.3) reduces to

d

dp
Pn,p[fR = 1] > ε2k−1nδ Pn,p[A ∩B]. (5.4)

Next we fix k ≥ 16/ε2. By Chebyshev’s inequality and Lemma 3.1 we then have, for
all p ∈ Iε, that

Pn,p[A
c] ≤ (2/ε)2 Varn,p

(
P[fR(η) = 1|ηk]

)
≤ 4/(ε2k) ≤ 1/4.

By increasing k if necessary, Proposition 4.4 gives that Pn,p[B
c] ≤ 1/4 for all p ∈ [0, 1] and

n large. Integrating over Iε in (5.4) thus leads to the bound

1 ≥
∫
Iε

d

dp
Pn,p[fR = 1] dp ≥ 1

2
ε2k−1nδ|Iε|,

and hence that |Iε| ≤ 2k/(ε2nδ). Since ε > 0 was arbitrary, the theorem follows with
γ = δ/2.

We can also study the behaviour of fR(η) for fixed values of k.

Proposition 5.1. For every p ∈ [0, 1] and k > 1, not necessarily an integer,

lim
n→∞

Varkn,p
(
E [fR(η)|ηk]

)
= 0.

Besides, there exists δ > 0 such that for all p ∈ [0, 1], k > 1 and all large n

Pkn,p

[
δ1/k(A, ηk) > n−δ

]
< n−50.

Proof. For p = 1/2 the first statement of the proposition is immediate from (3.2) and
Theorem 1.1. For p 6= 1/2 it is a trivial consequence of Theorem 1.2.

As for the second statement, it is necessary to go through the arguments in Section 4
again, and notice that the only place where k needs to be large is in (4.6). Due to the
first part of this proposition, we may modify Lemma 3.2, as pointed out in Remark 3.3,
to obtain that the probability in (4.6) is small for every k > 1 and n large.

6 Square-root stability

In Section 5, we concluded the proof of Theorem 1.1, and the remainder of this paper
will aim to establish Theorem 1.3. The first step in this direction is to establish a result
that roughly states that fR is stable with respect to perturbations that act independently
and uniformly on each of the two colours and change at most order square-root of the
points.

Throughout this section we shall use the notation ξ := {x ∈ S : (x, 0) ∈ η} and
ζ := {x ∈ S : (x, 1) ∈ η} to denote the set of red and blue points respectively, and identify
η with the pair (ξ, ζ) when appropriate.

Proposition 6.1. Let η′ = (ξ′, ζ ′) and η = (ξ, ζ) be a pair of configurations in Ω, chosen
according to Pn,1/2, and whose joint law satisfies the following properties, stated only for
the ξ-coordinates:

(i) Given ξ, the distribution of ξ∩ξ′ is invariant by permutations of ξ, and, conditioned
on its size, the set ξ′ \ ξ is formed by independently and uniformly distributed
points in S.
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(ii) For every δ > 0, there exists a constant C such that, for all large n,

Pn,1/2

[
|ξ′ 4 ξ| > C

√
n
]
< δ, (6.1)

where ξ′ 4 ξ is the symmetric difference between the two sets.

If, in addition, the pairs (ζ, ζ ′) and (ξ, ξ′) are independent, then, for any rectangle R ⊆ S,
we have

Pn,1/2

[
fR(ζ, ξ) 6= fR(ζ

′, ξ′)
]
→ 0 as n → ∞.

The square-root scale that figures in the theorem is meaningful in the sense that√
n is an upper bound on the derivative of a monotone Boolean function on n bits.

Consequently, the threshold window cannot have a width smaller than 1/
√
n, and noise

sensitive monotone functions have a window that is strictly wider (cf. (2.6)). Hence,
a uniform perturbation that involve order

√
n bits is therefore too small to affect the

outcome of the function.
The above heuristic has been made precise in the setting of Boolean functions in a

paper by Broman, Garban and Steif [8, Lemma 6.1]. We shall prove Proposition 6.1 via a
suitable two-stage construction in which a version of the result from [8] can be applied.

Lemma 6.2. Let A1, A2, . . . , Ak be a partition of [n], and let (ω, ω∗) be a pair of configu-
rations in {0, 1}n with law P satisfying the following properties:

(i) there exists c > 0 such that |Ai| ≥ cn, for all i = 1, 2, . . . , k;

(ii) ω and ω∗ are under P uniformly distributed in {0, 1}n;
(iii) P is invariant under all permutations π of [n] such that π(Ai) = Ai, for all

i = 1, 2, . . . , k;

(iv) for every δ > 0 there exists a constant C such that, for all large n and all
i = 1, 2, . . . , k;

P
[
dAi

(ω, ω∗) > C
√
|Ai|

]
< δ,

where dAi
(ω, ω∗) :=

∑
j∈Ai

|ω(j)− ω∗(j)|.

Then, for every ε > 0, there exists a constant C̃ such that, for all large n and any function
f : {0, 1}n → {0, 1}, we have

P
[
f(ω) 6= f(ω∗)

]
< ε+

C̃√
n

∑
k∈[n]

Inf
1/2
k (f). (6.2)

Combined with (2.6) the bound in (6.2) may be expressed in terms of the sum of
influences squared or the revealment of algorithms.

Proof. The case k = 1 is the statement of Lemma 6.1 in [8] (with the additional hypothesis
that ω∗ is uniform in {0, 1}n). The remaining cases follows from induction on k.

Fix some k ≥ 2, assume the result is true for all j ≤ k and fix a partition A1, A2, . . . ,

Ak+1. Denote by Ã = [n] \Ak+1 and ω = (ωÃ, ωAk+1
) for the restrictions of ω to the sets

Ã and Ak+1. Observe that

P
[
f(ωÃ, ωAk+1

) 6= fR(ω
∗
Ã
, ω∗

Ak+1
)
]
≤ P

[
f(ωÃ, ωAk+1

) 6= fR(ω
∗
Ã
, ωAk+1

)
]

+ P
[
f(ω∗

Ã
, ωAk+1

) 6= fR(ω
∗
Ã
, ω∗

Ak+1
)
]
.

(6.3)

To bound the first probability in the last expression above, we apply the induction
hypothesis conditioned on ωAk+1

and use that ωAk+1
is uniformly distributed in {0, 1}Ak+1

to obtain

P
[
f(ωÃ, ωAk+1

) 6= fR(ω
∗
Ã
, ωAk+1

)
]
≤ ε+

C̃√
|Ã|

∑
k∈Ã

Inf
1/2
k (f). (6.4)

Analogous computations for the last term in (6.3) concludes the proof.
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We now focus on the proof of Proposition 6.1.

Proof of Proposition 6.1. The first step of the proof is to find a suitable construction of
the pairs (ζ, ζ ′) and (ξ, ξ′). Since the perturbation acts independently on the two colours,
this construction can be done separately.

For this purpose, let M = |ξ′ ∩ ξ| and N = |ξ′ \ ξ|. Let ξ2 be a Poisson point process
on S with intensity measure nλS , and let ξ and ξ̄ be uniformly chosen subsets of ξ2.
Given |ξ|, sample the pair (M,N) according to the right conditional law. Next, choose
uniformly a subset ξA ⊆ ξ of size M and let ξB be a uniformly chosen subset of ξ2 \ ξ
of size min{N, |ξ2 \ ξ|}. Besides, let ξC be a collection of N independent and uniformly
chosen points of the square S. Now set

ξ′′ :=

{
ξA ∪ ξB , if N ≤ |ξ2 \ ξ|,
ξ̄, if N > |ξ2 \ ξ|,

and

ξ′′′ :=

{
ξA ∪ ξB , if N ≤ |ξ2 \ ξ|,
ξA ∪ ξC , if N > |ξ2 \ ξ|.

Construct the collection (ζ, ζ ′′, ζ ′′′) analogously, and note that (ζ, ζ ′′′) and (ξ, ξ′′′) have
the correct joint distribution.

In the next step, we note that ξ′′′ = ξ′′ with probability tending to 1. To see this, fix
ε > 0 and notice that N and |ξ2 \ ξ| are independent, and that the latter is Poisson with
parameter n/2. Then, by assumption (ii) we have

P
[
N > |ξ2 \ ξ|

]
≤ P[N > n/4] + P

[
|ξ2 \ ξ| ≤ n/4

]
≤ ε

for all large n. The above construction thus gives, for large n, that

Pn,p

[
fR(ξ, ζ) 6= fR(ξ

′, ζ ′)
]
≤ 2ε+ P

[
fR(ξ, ζ) 6= fR(ξ

′′, ζ ′′)
]
. (6.5)

Conditional on (ζ2, ξ2) the pairs (ζ, ζ ′′) and (ξ, ξ′′) can be thought of as pairs of
elements in {0, 1}ζ2 and {0, 1}ξ2 respectively. The last step of the proof will thus be
to apply Lemma 6.2 to bound the last probability above. In preparation for this, set
δm := ε2−2m and let Cm be the constant in hypothesis (ii) that corresponds to δm. Let

B1 :=
{
P
[
|ξ 4 ξ′′| > Cm

√
n
∣∣ ξ2] ≥ 2−m for some m ≥ 1

}
.

Clearly |ξ 4 ξ′′| is equal to |ξ 4 ξ′′′| on the event where N ≤ |ξ2 \ ξ|. Hence, the union
bound and Markov’s inequality give, for large n, that

P[B1] ≤ P[B1, N > |ξ2 \ ξ|] + P[B1, N ≤ |ξ2 \ ξ|]

≤ P[N > |ξ2 \ ξ|] + P
[
P[|ξ 4 ξ′′′| > Cm

√
n
∣∣ ξ2] ≥ 2−m

for some m ≥ 1 and N ≤ |ξ2 \ ξ|

]
≤ ε+

∑
m≥1

2mP
[
|ξ 4 ξ′′′| > Cm

√
n
]
≤ ε+

∑
m≥1

ε2−m ≤ 2ε.

(6.6)

Let also B2 := {|ξ2| /∈ [n/2, 2n]} and define the analogous events B̃1 and B̃2 to the
collection ζ2. On the event G := (B1 ∪ B2 ∪ B̃1 ∪ B̃2)

c, Lemma 6.2 combined with (6.2)
can be applied and it gives that, for large n,

P
[
fR(ξ, ζ) 6= fR(ξ

′′, ζ ′′)
]
≤ 6ε+ E

[
P
[
fR(ξ, ζ) 6= fR(ξ

′′, ζ ′′)
∣∣ζ2, ξ2]1G

]
≤ 6ε+ C E

[
1√
|η2|

∑
x∈η2

Inf
1/2
x (fR, η2)

]
.
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By combining the last equation above with (6.5) and (2.6) we obtain

Pn,1/2

[
fR(ξ, ζ) 6= fR(ξ

′, ζ ′)
]
≤ 8ε+ C En,1/2

[√
δ1/k(A, η2)

]
,

which by Proposition 5.1 is no larger than 9ε when n is large.
Since ε > 0 was arbitrary, the proof is complete.

7 Conservative dynamics and related topics

This final section is devoted to different perturbations in our model.

Thinning and sprinkling We begin with a comment on nonconservative and time
dependent dynamics. We saw in Section 5 that sensitivity with respect to thinning a
configuration uniformly is equivalent to the usual concept of noise sensitivity. We here
complement that observation by showing that the same is true for sprinkling.

Let η ∈ Ω be chosen according to P(1−ε)n,1/2, and let η′ and η′′ be independent
configurations chosen according to Pεn,1/2. Then the joint law of (η ∪ η′, η ∪ η′′) equals
that of (η, η(ε)), and

En,1/2

[
fR(η)fR(η(ε))

]
− En,1/2

[
fR(η)

]2
= E

[
E
[
fR(η ∪ η′)fR(η ∪ η′′)

∣∣η]]− E[E[fR(η ∪ η′)
∣∣η]]2

= Var
(
E
[
fR(η ∪ η′)

∣∣η]).
Hence, being sensitive with respect to an ε-sprinkling is equivalent to being noise
sensitive, and thus follows from Theorem 1.1. That the same holds for an ε-thinning was
seen already in Section 5.

Perturbing the colours We shall briefly describe the results in [2], and explain how
they imply that the crossing function is sensitive with respect to re-randomizing a
small proportion of the colours of the points. That is, if η′ is obtained from η ∈ Ω by
resampling the second coordinate of each point (x, u) ∈ η independently and uniformly
with probability ε > 0, then

En,1/2

[
fR(η)fR(η

′)
]
− En,1/2

[
fR(η)

]2 → 0 as n → ∞. (7.1)

Given η ∈ Ω, let η denote the projection onto S. Then,

En,1/2

[
fR(η)fR(η

′)
]
− En,1/2

[
fR(η)

]2
= En,1/2

[
E
[
fR(η)fR(η

′)
∣∣η]− E[fR(η)∣∣η]]

+Varn,1/2

(
E
[
fR(η)

∣∣η]).
In [2], the authors show that both expressions in the above right-hand side vanish
as n → ∞, and hence prove (7.1). That the variance term tends to zero shows that
observing the tiling but not the colouring of a Voronoi configuration usually gives very
little information about whether a colouring will typically produce a horizontal blue
crossing or not, and confirms a conjecture of Benjamini, Kalai and Schramm [5]. The
latter is essentially a statement of noise sensitivity of the crossing function in a quenched
sense. One may show that noise sensitivity in the sense of (1.3) follows from that
statement. However, we emphasize that the techniques used there are more restrictive
than the techniques used here, as they are based on a colour-switching trick. It is
therefore motivated to present an alternative proof, as we have done here, that applies
in a wide range of settings.
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Perturbing the positions We now turn to the proof of Theorem 1.3. The proof will be
based on Proposition 6.1, which emphasizes a close relation to the exclusion sensitivity
studied in [8].

Proof of Theorem 1.3. We shall show that the crossing function fR is sensitive with
respect to re-randomizing the positions of a small proportion of the points. This type
of perturbation is conservative in the sense that the number of points of each colour is
kept constant. Our goal will be to construct the process in a suitable manner, and then
apply Proposition 6.1.

As before we shall identify a configuration η ∈ Ω with a pair of configurations
(ξ, ζ). Let (Xi)i≥1 and (Yi)i≥1 be independent collections of independent and uniformly
distributed points in S. In addition, let L, M and N be independent Poisson distributed
random variables with parameters (1−ε)n/2, εn/2 and εn/2, respectively. Next we define
a triple (ξ′, ξ′′, ξ′′′) as

ξ′ := {X1, X2, . . . , XL+M},
ξ′′ := {X1, X2, . . . , XL} ∪ {Y1, Y2, . . . , YN},
ξ′′′ := {X1, X2, . . . , XL} ∪ {Y1, Y2, . . . , YM}.

(7.2)

These will be the collection of red points. Finally, we let (ζ ′, ζ ′′, ζ ′′′) be an independent
copy of (ξ′, ξ′′, ξ′′′), that represents the blue points. We consider the three coloured
tessellations η′ = (ξ′, ζ ′), η′′ = (ξ′′, ζ ′′) and η′′′ = (ξ′′′, ζ ′′′).

Notice that the pair (η′, η′′) is distributed as the pair (η, η(ε)) in (1.3), while the pair
(η′, η′′′) is distributed as the pair (η, η∗) in Theorem 1.3. We also notice that the pair
(η′′, η′′′) satisfy the conditions of Proposition 6.1. In particular, Chebyshev’s inequality
shows that for every δ > 0 there exists C such that

P
[
|ξ′′ 4 ξ′′′| > C

√
n
]
= P

[
|M −N | > C

√
n
]
≤ Var(M −N)

C2n
≤ ε

C2
≤ δ.

Consequently, Proposition 6.1 implies that

Pn,1/2

[
fR(η(ε)) 6= fR(η

∗)
]
= P

[
fR(η

′′) 6= fR(η
′′′)

]
→ 0. (7.3)

Finally, we obtain that∣∣∣En,1/2 [fR(η)fR(η
∗)]− En,1/2 [fR(η)]

2
∣∣∣ ≤ Pn,1/2

[
fR(η(ε)) 6= fR(η

∗)
]

+
∣∣∣En,1/2 [fR(η)fR(η(ε))]− En,1/2 [fR(η)]

2
∣∣∣ ,

which by Theorem 1.1 and (7.3) tends to zero as n → ∞.
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