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distributions

Claudio Landim*† Michail Loulakis‡§ Mustapha Mourragui†

Abstract

We consider continuous-time Markov chains which display a family of wells at the
same depth. We provide sufficient conditions which entail the convergence of the
finite-dimensional distributions of the order parameter to the ones of a finite state
Markov chain. We also show that the state of the process can be represented as a
time-dependent convex combination of metastable states, each of which is supported
on one well.
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1 Introduction

Several different methods to prove the metastable behavior of Markov chains have
been proposed in the last years [39, 11, 17, 18, 20, 10, 21].

Inspired by the potential theoretic approach to metastability, proposed by Bovier,
Eckhoff, Gayrard and Klein in [12, 13], Beltrán and Landim introduced a general method,
known as the martingale method, to derive the metastable behavior of a Markov process
[3, 6, 7]. The reader will find in [7] a discussion on the similarities and differences
between the martingale approach, the pathwise approach, put forward in [16] and pre-
sented in [39], and the potential theoretic approach, proposed in [12, 13] and reviewed
in [11].
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Metastable Markov chains

To insert the main results of the article in their context, we recall below the martingale
method in the context of condensing zero-range processes [5, 30, 43]. Denote by N the
non-negative integers, N = {0, 1, 2, ...}, by TL, L ≥ 1, the discrete, one-dimensional torus
with L points, and by η the elements of NTL called configurations. The total number of
particles at x ∈ TL for a configuration η ∈ NTL is represented by ηx. Let EN , N ≥ 1, be
the set of configurations with N particles:

EN :=
{
η ∈ NTL :

∑
x∈TL

ηx = N
}
. (1.1)

Fix α > 1, and define g : N→ R+ as

g(0) = 0 , g(1) = 1 and g(n) =
a(n)

a(n− 1)
, n ≥ 2 ,

where a(0) = 1, a(n) = nα, n ≥ 1. In this way,
∏n

i=1 g(i) = a(n), n ≥ 1, and {g(n) : n ≥ 2}
is a strictly decreasing sequence converging to 1 as n ↑ ∞.

Fix 1/2 ≤ p ≤ 1, and denote by p(x) the transition probability given by p(1) = p,
p(−1) = 1 − p, p(x) = 0, otherwise. Let σx,yη be the configuration obtained from η by
moving a particle from x to y:

(σx,yη)z =


ηx − 1 for z = x

ηy + 1 for z = y

ηz otherwise .

(1.2)

The nearest-neighbor, zero-range process associated to the jump rates {g(k) : k ≥ 0}
and the transition probability p(x) is the continuous-time, EN -valued Markov process
{ηN (t) : t ≥ 0} whose generator LN acts on functions f : EN → R as

(LNf)(η) =
∑

x,y∈TL
x 6=y

g(ηx) p(y − x)
{
f(σx,yη)− f(η)

}
.

Hence, if there are k particles at site x, at rate pg(k), resp. (1 − p)g(k), one of them
jumps to the right, resp. left. Since g(k) decreases to 1 as k → ∞, the more particles
there are at some site x the slower they jump, but the rate remains bounded below by 1.

This Markov process is irreducible. The stationary probability measure, denoted by
µN , is given by

µN (η) =
Nα

ZN

∏
x∈TL

1

a(ηx)
,

where ZN is the normalizing constant.
Fix a sequence {`N : N ≥ 1} such that `N → ∞, N/`N → ∞, and let Ex

N , x ∈ TL, be
the set of configurations in which all but `N particles sit at x:

Ex
N :=

{
η ∈ EN : ηx ≥ N − `N

}
.

According to equation (3.2) in [5], for each x ∈ TL, µN (Ex
N ) → 1/L as N ↑ ∞.

By the ergodic theorem, the process stays most of the time in the set tx∈TL
Ex
N . Since

these sets are far apart, one expects the sets Ex
N to behave as wells of the dynamics:

the process remains for a very long time in each of the sets Ex
N at the end of which it

performs a quick transition to another set Ey
N .

If the process evolves as described in the previous paragraph, it is reasonable to call
depth of the well Ex

N the average time the process remains in Ex
N before hitting another

well. The symmetry of the model implies that in the zero-range process introduced above

EJP 23 (2018), paper 95.
Page 2/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP220
http://www.imstat.org/ejp/


Metastable Markov chains

all wells have the same depth. This is an important difference between this dynamics and
the previous ones in which a metastable behavior has been observed. In the latter ones,
cf. [39, 11], the models feature one shallow and one deep well and the problem consists
in describing the transition from the shallow well to the deep one, or in estimating the
mean value of the transition time. In contrast, in the zero-range process, the presence
of many wells of the same depth transforms the problem in the characterization of the
evolution of the process among the wells.

Beltrán and Landim proposed in [3, 6] a mathematical formulation of this phenomenon
which we present below in the context of a sequence of Markov chains, each of which
takes values in a finite set.

Consider a sequence of finite sets (EN : N ≥ 1) whose cardinality tends to infinity
with N . The elements of EN are called configurations and are denoted by the Greek
letters η, ξ, ζ. Let {ηN (t) : t ≥ 0} be a continuous-time, EN -valued, irreducible Markov
chain.

The wells. Consider a partition E1
N , . . . ,En

N , ∆N , n ≥ 2, of the set EN , and let

EN = E1
N t · · · t En

N , Ĕx
N =

⊔
y 6=x

E
y
N . (1.3)

Here and below we use the notation A t B to represent the union of two disjoint sets
A, B: A tB = A ∪B, and A ∩B = ∅. As in the example above, the sets Ex

N have to be
understood as the wells of the dynamics, the sets where the process remains most of the
time, and ∆N as the set which separates the wells.

The time scale. Let (θN : N ≥ 1) be the time-scale at which one observes a transition
from a well Ex

N to the set Ĕx
N which consists of the union of all the other wells. This

time-scale has to be determined in each model. As it can be expressed in terms of
capacities (cf. Lemma 6.8 in [3]), its derivation corresponds to the calculation of the
capacity between Ex

N and Ĕx
N .

Denote by ξN (t) the process ηN (t) speeded-up by θN : ξN (t) = ηN (tθN ). Note that the
transitions between wells occur in time-intervals of order 1 for the process ξN (t). This is
the reason for changing the time scale and introducing ξN (t).

Model reduction. We expect the process to remain for a very long time in each well, a
time much longer than the time it needs to equilibrate inside the well. If this description
is correct, the hitting time of a new well should be asymptotically Markovian due to the
loss of memory entailed by the equilibration.

Let ΦN : EN → {0, 1, . . . , n}, ΨN : EN → {1, . . . , n} be the projections defined by

ΦN (η) =

n∑
x=1

x1{η ∈ Ex
N} , ΨN (η) =

n∑
x=1

x1{η ∈ Ex
N} .

Note that ΦN (η) = 0 for η ∈ ∆N , while ΨN is not defined on the set ∆N . In general,
ΦN (ξN (t)) is not a Markov chain, but only a hidden Markov chain. As the cardinality of
EN increases to ∞ with N , ΦN (ξN (t)) takes values in a much smaller state space than
ξN (t). For this reason it is called the reduced chain.

The argument laid down above on equilibration and loss of memory suggests that
ΦN (ξN (t)) converges to a Markov chain taking values in {0, 1, . . . , n}. However, the
brief sojourns at ∆N create an obstacle to the convergence. Starting from the well
Ex
N , the process ξN (t) makes many unsuccessful attempts before hitting a new well

E
y
N . These attempts correspond to brief visits to ∆N . A typical path of ΦN (ξN (t))

is illustrated in Figure 1. These short sojourns at ∆N , which disappear in the limit,
prevent the convergence (in the usual Skorohod topology) of the process ΦN (ξN (t)) to a
{1, . . . , n}-valued Markov chain.
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Metastable Markov chains
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Figure 1: A typical trajectory of ΦN (ξN (t)). The black rectangles represent jumps from 1 to 0 and
from 0 to 1 in short time intervals when the process reaches the boundary of the well E1

N .

To overcome this difficulty, we perform a small surgery in the trajectories by removing
from them the pieces of the paths in ∆N . This is done by considering the trace of the
process ξN (t) on EN .

Trace process. Fix a proper subset A of EN . The trace of the process ξN (t) on the set
A, denoted by ξA(t), is the process obtained from ξN (t) by stopping its evolution when it
leaves the set A and by restarting it when it returns to the set A. More precisely, denote
by TA(t) the total time spent at A before time t:

TA(t) =

∫ t

0

1{ξN (s) ∈ A} ds ,

where 1{B} represents the indicator of the set B. Note that the function TA is piecewise
differentiable and that its derivative takes only the values 1 and 0. It is equal to 1 when
the process is in A and it is equal to 0 when it is not. Let SA(t) be the generalized inverse
of TA(t):

SA(t) = sup{s ≥ 0 : TA(s) ≤ t} .

The trace process is defined as ξA(t) = ξN (SA(t)). It is shown in [3, Proposition 6.1] that
if ξN (t) is a continuous-time, irreducible Markov chain, then ξA(t) is a continuous-time,
A-valued, irreducible Markov chain whose jump rates can be expressed in terms of the
probabilities of hitting times of the original chain.

Denote by ξEN (t) the trace of the process ξN (t) on EN . By the previous paragraph,
ξEN (t) is an EN -valued Markov process. If the time spent on ∆N is negligible, we only
removed from the original trajectory the short sojourns in ∆N .

Metastability. Denote by XN (t), XT
N (t) the hidden Markov chains given by XN (t) =

ΦN (ξN (t)),XT
N (t) = ΨN (ξEN (t)), respectively. Note thatXN (t) takes values in {0, 1, . . . , n},

while XT
N (t) takes values on the set S := {1, . . . , n}. Moreover, XT

N (t) is the trace on the
set S of the process XN (t).

Let D(R+, EN ) be the space of right-continuous functions ω : R+ → EN with left-
limits endowed with the Skorohod topology. Let Pη = PN

η , η ∈ EN , be the probability
measure on the path space D(R+, EN ) induced by the Markov chain ξN (t) starting from
η. Expectation with respect to Pη is represented by Eη.

In [3, 6, 7], a set of conditions have been introduced which yield that

(H1) The dynamics XT
N (t) = ΨN (ξEN (t)) is asymptotically Markovian: For all x ∈ S, and

sequences ηN ∈ Ex
N , under the measure PηN the process XT

N (t) converges in the
Skorohod topology to a Markov chain denoted by X(t);

(H2) The time spent in ∆N is negligible: For all t > 0

lim
N→∞

max
η∈EN

Eη

[ ∫ t

0

1{XN (s) = 0} ds
]

= 0 .
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Metastable Markov chains

The first condition asserts that the trace on S of the process XN (t) converges to a
Markov chain, while the second one states that the amount of time the process XN (t)

spends outside S vanishes as N ↑ ∞, uniformly over initial configurations in EN .
The second condition can be restated as

lim
N→∞

max
η∈EN

Eη

[ ∫ t

0

1{ξN (s) ∈ ∆N} ds
]

= 0 . (1.4)

Soft topology. It is clear that the convergence of the process XN (t) to X(t) in the
Skorohod topology does not follow from conditions (H1) and (H2). Consider, for example,
a continuous-time, S-valued Markov chain Y (t), and a sequence δN > 0, δN ↓ 0. Fix t0 > 0,
and define the process YN (t) by YN (t) = Y (t)1{t 6∈ [t0 − δN , t0 + δN )}. The sequence of
processes YN (t) fulfills properties (H1) and (H2), but YN (t) does not converge to Y (t) in
the Skorohod topology. Actually, not even the 1-dimensional distributions converge.

This example is artificial, but in almost all models in which a metastable behavior has
been observed (cf. the examples of Section 5), as mentioned in the subsection Model
Reduction, due to the many and very short sojourns of XN (t) in 0, the process XN (t)

can not converge in any of the Skorohod topologies to X(t). To overcome this obstacle
a weaker topology has been proposed in [31], called the soft topology, in which the
convergence takes place.

The soft topology is, however, quite weak. For instance, the function which associates
to a trajectory ω ∈ D([0, T ], S ∪ {0}) the value sup0≤t≤T |ω(t)| is not continuous. For
this reason, we put forward in this article an alternative definition of metastability.
We propose to declare that the sequence of Markov chains ηN (t) is metastable in the
time-scale θN if the finite-dimensional distributions of XN (t) = ΦN (ξN (t)) converge to
the ones of X(t). Moreover, we show that the conditions (H1), (H2) together with an
extra condition on the visits to the set ∆N , stated below in equation (2.1), entail the
metastability of the Markov chains ηN (t) in the FDD sense. This latter result, stated in
Proposition 2.1 below, is the main contribution of this article.

We also show, in Proposition 2.2, that conditions (H1), (H2) together with slightly
stronger assumptions entail the convergence of the state of the process to a time-
dependent convex combination of metastable states.

2 Notation and results

We present in this section the main results of the article. We adopt the notation
introduced in the previous section: ηN (t) is an EN -valued, irreducible Markov chain,
whose state space can be decomposed as in (1.3).

Convergence of the finite-dimensional distributions. The main result of the article
reads as follows:

Proposition 2.1. Beyond (H1) and (H2), suppose that for all x ∈ S,

lim
δ→0

lim sup
N→∞

max
η∈Ex

N

sup
2δ≤s≤3δ

Pη[ξ
N (s) ∈ ∆N ] = 0 . (2.1)

Then, for all x ∈ S, and all sequences {ηN : N ≥ 1}, ηN ∈ Ex
N , under PηN the finite-

dimensional distributions of XN (t) converge to the finite-dimensional distributions of
the chain X(t).

The proof of this result is presented in Section 3, together with several, easier to
verify, sufficient conditions for (2.1) to hold.

Slow variables. In all models where metastability has been proved the time-scale θN
increases to ∞ with N . Since it follows from the previous paragraphs that the finite-
dimensional distributions of ΦN (ξN (t)) converge to the ones of the Markov chain X(t),
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Metastable Markov chains

we say that ΦN is a slow variable. In this sense, metastability consists in discovering the
slow variables of the system and in deriving their asymptotic dynamics.

Convergence of the states. We have coined properties (H1) and (H2) as the metastable
behavior of the Markov chain ηN (t) in the time-scale θN . However, it has been pointed
out that in mathematical-physics metastability means the convergence of the state of
the process. The second result of this note fills the gap between these two concepts by
establishing that properties (H1), (H2) together with conditions (M1), (M2) below lead to
the convergence of the state of the process to a convex combination of states supported
on the wells Ex

N . The precise statement of this result requires some notation.
Recall that we denote by ξN (t) the Markov chain ηN (t) speeded-up by θN : ξN (t) =

ηN (tθN ). Denote by µN the unique stationary state of the chain ξN (t), and by µy
N , y ∈ S,

the probability measure µN conditioned to E
y
N :

µy
N (ξ) =

µN (ξ)

µN (Ey
N )

1{ξ ∈ E
y
N} , ξ ∈ EN . (2.2)

Note that µy
N is defined on EN and it is supported on E

y
N .

Reflected process. For x ∈ S, denote by {ξNR,x(t) : t ≥ 0} the Markov chain ξN (t)

reflected at Ex
N . This is the Markov chain obtained from ξN (t) by forbidding jumps from

Ex
N to its complement (Ex

N )c. This mechanism produces a new Markov chain whose state
space is Ex

N , which might be reducible.
We assume that for each x ∈ S the reflected chain ξNR,x(t) is irreducible and that µx

N is
its unique stationary state. In the reversible case this latter assumption follows from the
irreducibility. In the non-reversible case, if the Markov chain ηN (t) is a cycle chain (cf.
[22, 35]) it is easy to define the sets Ex

N for the reflected chain on Ex
N to be irreducible.

Let (SR,x
N (t) : t ≥ 0), be the semigroup of the Markov chain ξNR,x(t).

Trace process. Similarly, we denote by ξNT,x(t) the trace on Ex
N of the process ξN (t), and

by (ST,x
N (t) : t ≥ 0) the semigroup of the Markov chain ξNT,x(t).

Mixing times. Denote by ‖µ−ν‖TV the total variation distance between two probability
measures defined on the same denumerable set Ω:

‖µ− ν‖TV =
1

2

∑
η∈Ω

|µ(η)− ν(η)| =
∑
η∈Ω

(
µ(η)− ν(η)

)+
,

where x+ = max{x, 0} denotes the positive part of x ∈ R. Hereafter, the set Ω will be
either the set EN or one of the wells Ex

N , x ∈ S.
Denote by TN,R,x

mix , TN,T,x
mix the ( 1

2e )-mixing time of the reflected, trace processes,
respectively:

TN,R,x
mix = inf

{
t > 0 : max

η∈Ex
N

‖δηSR,x
N (t)− µx

N‖TV ≤ 1

2e

}
,

TN,T,x
mix = inf

{
t > 0 : max

η∈Ex
N

‖δηST,x
N (t)− µx

N‖TV ≤ 1

2e

}
,

(2.3)

where δη stands for the Dirac measure concentrated on the configuration η.

Hitting times. For a subset A of EN , denote by HA, H
+
A the hitting time and the time

of the first return to A:

HA = inf
{
t > 0 : ξN (t) ∈ A

}
, H+

A = inf
{
t > τ1 : ξN (t) ∈ A

}
, (2.4)

where τ1 represents the time of the first jump of the chain ξN (t): τ1 = inf{t > 0 : ξN (t) 6=
ξN (0)}.
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Metastable Markov chains

For two subsets A ⊂ B ⊂ EN , denote by HB
A the hitting time on the set A of the trace

process on B:

HB
A =

∫ HA

0

1{ξN (s) ∈ B} ds . (2.5)

Let (αN : N ≥ 1), (βN : N ≥ 1) be two sequences of positive numbers. The relation
αN � βN means that limN→∞ αN/βN = 0. In the next result, we assume that for each
x ∈ S there exists a set Bx

N ⊂ Ex
N fulfilling the following conditions:

(M1) For every δ > 0 we have

lim
N→∞

max
x∈S

sup
η∈Ex

N

Pη

[
H

Ex
N

Bx
N
> δ

]
= 0 . (2.6)

(M2) There exists a time-scale (εN : N ≥ 1) such that εN � 1,

lim
N→∞

max
x∈S

sup
η∈Bx

N

Pη

[
H∆N

≤ 2 εN
]
= 0 . (2.7)

and

lim
N→∞

max
x∈S

sup
η∈Bx

N

‖δηSR,y
N (εN )− µy

N‖TV = 0 . (2.8)

Condition (M1) requires that the process restricted in Ex
N reaches the set Bx

N quickly.
Additionally, condition (M2) imposes that it takes longer to leave the set Ex

N , when
starting from Bx

N , than it takes to mix in Ex
N . Slightly more precisely, condition (M2)

requests the existence of a time scale εN , longer than the mixing time of the reflected
process and shorter than the exit time from the set Ex

N . Note, however, that in condition
(2.8) the initial configuration belongs to the set Bx

N , while in the definition of the mixing
time the initial configuration may be any element of the set Ex

N . In any case, condition
(2.8) is in force if εN � TN,R,x

mix .
Assume that the chain is reversible. Fix y ∈ S, denote by pR,y

t (ζ, ξ) the transition
probabilities of the reflected process ξNR,y(t), and fix η ∈ B

y
N . By definition,

‖δηSR,y
N (εN )− µy

N‖TV =
1

2

∑
ζ∈E

y
N

| ft(ζ)− 1 |µy
N (ζ) ,

where ft(ζ) = pR,y
t (η, ζ)/µy

N (ζ) and t = εN . By Schwarz inequality and a decomposition
of ft along the eigenfunctions of the generator of the reflected process (cf. equation
(12.5) in [37]), the square of the previous expression is bounded by exp{−2λR,yt}‖f0‖2µy

N
,

where λR,y represents the spectral gap of ξNR,y(t) and ‖f0‖µy
N
the norm of f0 in L2(µy

N ).
Since

‖f0‖2µy
N

=
∑
ζ∈E

y
N

f0(ζ)
2 µy

N (ζ) =
∑
ζ∈E

y
N

δη,ζ
µy
N (ζ)2

µy
N (ζ) =

1

µy
N (η)

,

as t = εN , we conclude that

‖δηSR,y
N (εN )− µy

N‖TV ≤ 1

µy
N (η)1/2

e−λR,yεN .

Therefore, in the reversible case, condition (2.8) of (M2) is fulfilled provided

lim
N→∞

max
y∈S

sup
η∈B

y
N

1

µy
N (η)1/2

e−λR,yεN = 0 . (2.9)
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Proposition 2.2. Assume that conditions (H1), (H2), and (M1), (M2) are in force. Sup-
pose, furthermore, that for all y ∈ S

lim
N→∞

µN (∆N )

µN (Ey
N )

= 0 , (2.10)

and that either of the following three conditions (a), (b) or (c) hold.

(a) The process {ηN (t) : t ≥ 0} is reversible.
(b) There exists a constant 0 < C0 < ∞, such that for all y, z ∈ S, N ≥ 1,

1

C0
≤ µN (Ez

N )

µN (Ey
N )

≤ C0 . (2.11)

(c) The sets Bx
N referred to in (M1) and (M2) further satisfy

lim
N→∞

TN,T,x
mix

εN

1

µx
N (Bx

N )

(
1 + ln

( 1

µx
N (Bx

N )

))
= 0 . (2.12)

For k ∈ N, t1, . . . , tk > 0, let µN,ηN

t1,...,tk
stand for the joint law of

(
ξN (t1), . . . , ξ

N (tk)
)
, with

ξN (0) = ηN . Then, for every x ∈ S and every sequence {ηN : N ≥ 1}, ηN ∈ Ex
N ,

lim
N→∞

∥∥µN,ηN

t1,...,tk
−

∑
y1,...,yk∈S

P x

[
X(t1) = y1, . . . ,X(tk) = yk

]
µy1

N × · · · × µyk

N

∥∥
TV

= 0 .

Remark 2.3 (On the hypotheses of Proposition 2.2). Separation of scales, in the sense
that the process mixes in a well before jumping, is a common feature in metastable
Markov chains and it is usually hidden in the proof of (H1). Conditions (M1)–(M2)
is a mathematically concrete way to elicit this fact in generality. In the proof of the
metastability of zero-range processes in [2], (M1)–(M2) are actually the way (H1) is
established. On the other hand, the “either of three” conditions are not so hard to check.
This is clear for reversibility. Condition (b) can be readily checked when µN is known.
Moreover, it is always satisfied if the rates of the limiting process are the rescaled rates
of jumping between wells (which is an assumption for H1) and the limiting Markov chain
is irreducible. As for (c) there are standard tools to estimate mixing times (cf. [37] in a
general set-up, [2] in the context of metastability and Remark 3.9 below).

The article is organized as follows. Propositions 2.1 and 2.2 are proved in Sections 3,
4, respectively. In Section 5 we show that the assumptions of these propositions are in
force for four different classes of dynamics. In the last section, we present a general
bound for the probability that a hitting time of some set is smaller than a value in terms
of capacities (which can be evaluated by the Dirichlet and the Thomson principles).
Throughout this article, c0 and C0 are finite positive constants, independent of N , whose
values may change from line to line.

3 Convergence of the finite-dimensional distributions

In this section, we prove Proposition 2.1, and we present some sufficient conditions
for (2.1). We will use the shorthand TN (t) for the time TEN

(t) spent by the process ξN (t)

in EN before time t. Likewise, we will denote the generalized inverse of TN (t) by SN (t).
Note that condition (H2) can be stated as

lim
N→∞

max
η∈EN

Eη

[
t− TN (t)

]
= 0 . (3.1)
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Metastable Markov chains

Since {SN (t) ≥ t + δ} = {TN (t + δ) ≤ t} = {t + δ − TN (t + δ) ≥ δ}, it follows from the
previous equation that for all t ≥ 0, δ > 0,

lim
N→∞

max
η∈EN

Pη

[
SN (t) ≥ t+ δ

]
= 0 . (3.2)

The proof of Proposition 2.1 is based on the next technical result, which provides an
estimate for the distribution of the trace process XT

N in terms of the distribution of the
process XN .

Lemma 3.1. Assume conditions (H1) and (H2). Then, for all N ≥ 1, δ > 0, y ∈ S, η ∈ EN ,
and r > 3δ,

Pη[X
T
N (r − 3δ) = y] ≤ Pη[XN (r) = y] + R

(1)
N (y, r, δ) + R

(2)
N (y, δ) ,

where
lim
δ→0

lim sup
N→∞

R
(1)
N (y, r, δ) = 0

for all r > 0, y ∈ S and

R
(2)
N (y, δ) = max

η∈E
y
N

sup
2δ≤s≤3δ

Pη[ξ
N (s) ∈ ∆N ] .

Proof. Fix N ≥ 1, δ > 0, y ∈ S, η ∈ EN and r > 3δ. By definition of XT
N , and since

SN (r − 3δ) ≥ r − 3δ,

Pη[X
T
N (r − 3δ) = y] = Pη[XN (SN (r − 3δ)) = y] ≤ Pη[AN (r, δ, y)] + J

(1)
N (η, r, δ) ,

where
AN (r, δ, y) =

{
XN (s) = y for some r − 3δ ≤ s ≤ r − 2δ

}
,

and
J
(1)
N (η, r, δ) = Pη[SN (r − 3δ) ≥ r − 2δ] .

By (3.2) with t = r − 3δ,
lim

N→∞
max
η∈EN

J
(1)
N (η, r, δ) = 0 . (3.3)

On the other hand,

Pη[AN (r, δ, y)] ≤ Pη[XN (r) = y] + Pη

[
AN (r, δ, y) , ξN (r) 6∈ E

y
N

]
.

Denote by H the first time the process XN (s) hits the point y after r − 3δ:

H = inf{s ≥ r − 3δ : XN (s) = y} .

By the strong Markov property, the second term on the right hand side of the penultimate
equation is equal to

Eη

[
1{H ≤ r − 2δ}PξN (H)[ξ

N (r −H) 6∈ E
y
N ]

]
≤ max

η∈E
y
N

sup
2δ≤s≤3δ

Pη[ξ
N (s) 6∈ E

y
N ] .

Recall from (1.3) the definition of Ĕy
N . The previous probability is bounded by

Pη[ξ
N (s) ∈ Ĕ

y
N ] + Pη[ξ

N (s) ∈ ∆N ] .

Since s ≤ 3δ, the first term is bounded by

J
(2)
N (y, δ) := max

η∈E
y
N

Pη

[
XT

N (s′) 6= y for some s′ ≤ 3δ
]
.

By condition (H1), J (2)
N (y, δ) vanishes as N → ∞ and then δ → 0. To complete the proof of

the lemma, it remains to set R(1)
N (y, r, δ) = maxη∈EN

J
(1)
N (η, r, δ) + J

(2)
N (y, δ) and to recall

the estimate (3.3).
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Denote by P x, x ∈ S, the probability measure on D(R+, S) induced by the Markov
chain X(t) starting from x. Since P x[X(t) 6= X(t−)] = 0 for all t ≥ 0, the finite-
dimensional distributions of XT

N converge to the ones of X(t).

Proof of Proposition 2.1. We prove the result for one-dimensional distributions. The
extension to higher order is immediate. Fix x, y ∈ S, r > 0, and a sequence {ηN : N ≥ 1},
ηN ∈ Ex

N . By assumption (H1), by Lemma 3.1, and by (2.1),

P x[X(r) = y] = lim
δ→0

P x[X(r − 3δ) = y] ≤ lim inf
N→∞

PηN [XN (r) = y] .

Since

1 =
∑
y∈S

P x[X(r) = y] and
∑
y∈S

PηN [XN (r) = y] ≤ 1 ,

the inequality in the penultimate formula must be an identity for each y ∈ S, which
completes the proof of the proposition.

3.1 The assumption (2.1)

We conclude this section presenting three sets of sufficient conditions for the bound
(2.1).

Remark 3.2. To prove condition (2.1), one is tempted to argue that for all 2δ ≤ s ≤ 3δ,
η ∈ EN ,

Pη[ξ
N (s) ∈ ∆N ] ≤ Pη[H∆N

≤ 3δ] .

In many examples, however, it is not true that the right hand side vanishes, uniformly
over configurations in EN , as N → ∞ and then δ → 0. In condensing zero ranges
processes or in random walks in a potential field, starting from certain configuration in
a valley Ex

N , in a time interval [0, δ], the chain ξN (s) visits many times the set ∆N and
the right hand side of the previous inequality, for such configurations η, is close to 1.

The next lemma provides sufficient conditions for assumption (2.1) to hold. It is
tailor-made to cover the case where the metastable sets are singletons. This includes
spin models on finite sets [38, 42, 4, 8, 18, 32, 36, 19], inclusion processes [9, 25], and
random walks among random traps [26, 27].

Lemma 3.3. Assume that for each x ∈ S,

lim
N→∞

max
η∈Ex

N

µN (∆N )

µN (η)
= 0 .

Then, (2.1) holds.

Proof. Fix x ∈ S, η ∈ Ex
N and s > 0. Multiplying and dividing the probability Pη[ξ

N (s) ∈
∆N ] by µN (η), we obtain that

Pη[ξ
N (s) ∈ ∆N ] ≤ 1

µN (η)
PµN

[ξN (s) ∈ ∆N ] =
µN (∆N )

µN (η)
·

In particular, condition (2.1) follows from the assumption of the lemma.

The next condition is satisfied by random walks in a potential field [12, 33, 35, 34],
illustrated by Example 5.3. It is instructive to think of the sets Bx

N ⊂ Ex
N below, as the

deep part of the well Ex
N . The first condition requires the process to reach the set Bx

N

quickly, while the second one imposes that it will not attain the set ∆N in a short time
interval when starting from Bx

N .
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Lemma 3.4. Assume that for each x ∈ S there exists a set Bx
N ⊂ Ex

N such that

lim
N→∞

sup
η∈Ex

N

Pη[HBx
N
> δ] = 0 for all δ > 0 ,

lim
δ→0

lim sup
N→∞

sup
δ≤s′≤3δ

sup
η∈Bx

N

Pη[ξ
N (s′) ∈ ∆N ] = 0 .

Then, condition (2.1) is in force.

Proof. Fix x ∈ S, η ∈ Ex
N , δ > 0, s ∈ [2δ, 3δ], and write

Pη[ξ
N (s) ∈ ∆N ] ≤ Pη[HBx

N
≤ δ , ξN (s) ∈ ∆N ] + Pη[HBx

N
> δ] .

On the event {HBx
N
< +∞} let us denote ξNB = ξN (HBx

N
). By the strong Markov property

and since s belongs to the interval [2δ, 3δ], the first term on the right hand side is bounded
by

Eη

[
1{HBx

N
≤ δ}PξN

B
[ξN (s−HBx

N
) ∈ ∆N ]

]
≤ sup

δ≤s′≤3δ
sup

η∈Bx
N

Pη[ξ
N (s′) ∈ ∆N ] ,

which completes the proof of the lemma.

In Lemmata 3.6 and 3.8 below we present some conditions which imply that, for all
δ > 0, supη∈Ex

N
Pη[HBx

N
≥ δ] vanishes as N → ∞.

Recall from (2.2), (2.3) that µx
N represents the stationary measure µN conditioned to

Ex
N , and SR,x

N (t) the semigroup of the reflected process on Ex
N . The third set of conditions

which yield (2.1) relies on the next estimate.

Lemma 3.5. For every 0 < T < δ < s, x ∈ S, and configuration η ∈ Ex
N ,

Pη[ξ
N (s) ∈ ∆N ] ≤ Pη[H(Ex

N )c ≤ T ] + ‖δηSR,x
N (T )− µx

N‖TV +
µN (∆N )

µN (Ex
N )

.

Proof. Fix x ∈ S, η ∈ Ex
N , and 0 < T < δ < s. Clearly,

Pη[ξ
N (s) ∈ ∆N ] ≤ Pη[H(Ex

N )c ≤ T ] + Pη[ξ
N (s) ∈ ∆N , H(Ex

N )c > T ] .

On the set {H(Ex
N )c > T}, up to time T , we may couple the chain ξN (s) with the chain

reflected at the boundary of Ex
N , which has been denoted by ξNR,x(s). By the Markov

property at time T and replacing ξN (s) by ξNR,x(s), the second term of the previous
equation becomes∑

ζ∈Ex
N

Pη

[
ξNR,x(T ) = ζ , H(Ex

N )c > T
]
Pζ [ξ

N (s− T ) ∈ ∆N ]

≤
∑
ζ∈Ex

N

Pη

[
ξNR,x(T ) = ζ

]
Pζ [ξ

N (s− T ) ∈ ∆N ] .

By definition of the total variation distance, and since, by assumption, the stationary
measure of the reflected process is given by µx

N = µN/µN (Ex
N ), this sum is less than or

equal to

‖δηSR,x
N (T )− µx

N‖TV +
1

µN (Ex
N )
PµN

[ξN (s− T ) ∈ ∆N ] .

The second term is equal to µN (∆N )/µN (Ex
N ), which completes the proof of the lemma.

Recall from (2.5) that we denote by HEN

Bx
N
(H

Ex
N

Bx
N
, respectively) the hitting time on the

set Bx
N for the trace process on EN (Ex

N , respectively).
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Lemma 3.6. Under assumptions (H1) and (H2), for every x ∈ S and η ∈ Ex
N ,

lim
N→∞

Pη

[
H

Ex
N

Bx
N
> δ

]
= 0, ∀δ > 0 ⇐⇒ lim

N→∞
Pη

[
HBx

N
> δ

]
= 0, ∀δ > 0. (3.4)

Proof. By definition of HEN

Bx
N
, for any η ∈ Ex

N \Bx
N ,

Pη

[
HBx

N
> δ

]
≤ Pη

[
HEN

Bx
N
> TN (δ)

]
≤ Pη

[
TN (δ) ≤ δ

2

]
+ Pη

[
HEN

Bx
N
> TN (δ), TN (δ) >

δ

2

]
.

The first term on the right hand side of the preceding equation vanishes ,as N → ∞, by
(3.1). The second term is bounded by

Pη

[
HEN

Bx
N
>

δ

2

]
≤ Pη

[
HEN

EN\Ex
N

≤ δ

2

]
+ Pη

[
HEN

(Ex
N\Bx

N )c >
δ

2

]
.

Since the event {HEN

EN\Ex
N

≤ δ/2} can be expressed as {XT
N (s) 6= XT

N (0) for some 0 <

s ≤ δ/2}, by assumption (H1), the first term on the right hand side of the last equation
vanishes as N → ∞. Just as in the proof of Lemma 3.5, on the event {HEN

EN\Ex
N
> δ/2} we

may couple the trace process ξEN with the trace process on the well Ex
N . This permits to

bound the last term in the preceding equation by Pη[H
Ex

N

Bx
N
> δ/2]. Hence,

lim sup
N→∞

sup
η∈Ex

N

Pη

[
HBx

N
> δ

]
≤ lim sup

N→∞
sup
η∈Ex

N

Pη

[
H

Ex
N

Bx
N
>

δ

2

]
. (3.5)

The reverse implication is trivial, since HBx
N
≥ H

Ex
N

Bx
N
, pointwise.

Corollary 3.7. Assume that conditions (H1), (H2), (M1), (M2) and (2.10) are in force.
Then, condition (2.1) is satisfied. In particular, under the assumptions of Proposition 2.2,
the finite-dimensional distributions of the projected chain XN (t) converge, as N → ∞,
to the finite-dimensional distributions of the Markov chain X(t) appearing in condition
(H1).

Proof of Corollary 3.7. The first assertion of the corollary is a straightforward conse-
quence of the assumptions and Lemma 3.4, Lemma 3.5, Lemma 3.6 with η ∈ Bx

N . The
second assertion follows from Proposition 2.1.

Denote by λN (η), η ∈ EN , the holding rates of the Markov chain ξN (t). For two
disjoint subsets A, B of EN , denote by capN (A,B) the capacity between A and B:

capN (A,B) =
∑
η∈A

µN (η)λN (η)Pη[HB < H+
A ] . (3.6)

Similarly, for two disjoint subsets A, B of Ex
N we represent by capN,x(A,B) the capacity

between A and B for the trace process ξNT,x(t):

capN,x(A,B) =
∑
η∈A

µx
N (η)λT,x

N (η)Pη[HB < H+
A ] ,

where λT,x
N (η) stands for the holding rates of the trace process ξNT,x(t).

The following lemma offers sufficient conditions for (M1), in terms of mixing time or
capacity estimates. In view of Lemma 3.6, together with (H1) and (H2) these conditions
also imply that

lim
N→∞

sup
η∈Ex

N

Pη[HBx
N
> δ] = 0, ∀δ > 0. (3.7)
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Lemma 3.8. Let TN,T,x
mix represent the

(
1
2e

)
-mixing time of the trace process on Ex

N . If,
for every x ∈ S either

lim
N→∞

sup
η∈Ex

N\Bx
N

µN (Ex
N \Bx

N )

capN (η,Bx
N )

= 0 , (3.8)

or

lim
N→∞

TN,T,x
mix

µx
N (Bx

N )

(
1 + ln

( 1

µx
N (Bx

N )

))
= 0 (3.9)

are satisfied, then (M1) holds. If {ηN (t) : t ≥ 0} is reversible, the logarithmic term in
(3.9) can be dropped.

Proof. To prove the assertion of the lemma under the assumption (3.8), note that by
Proposition A.2 in [6],

Eη

[
H

Ex
N

Bx
N

]
≤ µx

N (Ex
N \Bx

N )

capN,x(η,B
x
N )

=
µN (Ex

N \Bx
N )

µN (Ex
N )capN,x(η,B

x
N )

=
µN (Ex

N \Bx
N )

capN (η,Bx
N )

,

where the last equality follows from identity (A.10) in [6].
Assume, now, that (3.9) is in force. The following argument is inspired by Theorem 6

in [1] and Theorem 1.1 in [40]. We include it here for completeness. Recall from (2.3)
that we denote by ST,x

N (t) the semigroup of the trace process on Ex
N . Pick a time-scale

(ϑN : N ≥ 1) such that

sup
η∈Ex

N

‖δηST,x
N (ϑN )− µx

N‖TV < µx
N (Bx

N )/2.

We may choose, for example,

ϑN =
(
1 + ln

( 1

µx
N (Bx

N )

))
TN,T,x
mix . (3.10)

Recall that we denote by ξNT,x(t) the trace of the Markov chain ξN (t) on Ex
N . For any

η ∈ Ex
N , by definition of ϑN

Pη[H
Ex

N

Bx
N
> ϑN ] ≤ Pη[ξ

N
T,x(ϑN ) /∈ Bx

N ]

≤ ‖δηST,x
N (ϑN )− µx

N‖TV + µx
N (Ex

N \Bx
N ) ≤ 1 − µx

N (Bx
N )

2
·

Since this estimate is uniform in η, we may iterate it, using the Markov property, to get

Pη[H
Ex

N

Bx
N
> δ] ≤

(
1− µx

N (Bx
N )

2

)[
δ

ϑN

]
. (3.11)

This expression vanishes, as N → ∞, if (3.9) is satisfied and if we choose ϑN according
to (3.10).

Finally, if the process is reversible, by Theorem 5 in [1], there exists a finite universal
constant C0 such that

µx
N (Bx

N )Eη

[
H

Ex
N

Bx
N

]
≤ C0 T

N,T,x
mix .

Hence, (3.7) follows from (3.5) by Markov’s inequality.

The preceding lemma evidences the importance of an upper bound for the mixing
time of the trace process. This is the content of Remark 3.9 below.

Denote by RN (η, ξ), η, ξ ∈ EN , the jump rates of the Markov chain ξN (t), and by
RT,x

N (η′, ξ′), η′, ξ′ ∈ Ex
N , the jump rates of the trace process ξNT,x(t). Assume that the
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Markov chain ξN (t) is reversible and denote by DN , DN,T,x the Dirichlet form of the
processes ξN (t), ξNT,x(t), respectively:

DN (f) =
1

2

∑
η,ξ∈EN

µN (η)RN (η, ξ) [f(ξ)− f(η)]2 ,

DN,T,x(g) =
1

2

∑
η,ξ∈Ex

N

µx
N (η)RT,x

N (η, ξ) [g(ξ)− g(η)]2 ,
(3.12)

for functions f : EN → R, g : Ex
N → R. By replacing, in the first line of the previous

formula, the measure µN by the conditioned measure µx
N , and by restricting the sum to

configurations η, ξ ∈ Ex
N , we obtain the Dirichlet form of the reflected process, denoted

by DN,R,x(f).
Denote by TN,T,x

rel , TN,R,x
rel the relaxation times of the trace process ξNT,x(t), the reflected

process ξNR,x(t), respectively:

TN,T,x
rel = sup

g

‖g‖2µx
N

DN,T,x(g)
, TN,R,x

rel = sup
g

‖g‖2µx
N

DN,R,x(g)
,

where the supremum is carried over all functions g : Ex
N → R with mean zero with

respect to µx
N , and ‖g‖µx

N
represents the L2(µx

N ) norm of g: ‖g‖2µx
N
=

∑
η∈Ex

N
µx
N (η) g(η)2.

Remark 3.9. Obtaining estimates for the mixing time TN,T,x
mix of the trace process on the

well Ex
N is often not harder than doing so for the mixing time TN,R,x

mix of the reflected
process on the well. Both processes have the same invariant measure µx

N and the former
has higher jump rates. Indeed, by [3, Corollary 6.2], for any η, ζ ∈ Ex

N , η 6= ζ,

RT,x
N (η, ζ) = RN (η, ζ) +

∑
ξ/∈Ex

N

RN (η, ξ)Pξ

[
ξN

(
HEx

N

)
= ζ

]
≥ RN (η, ζ) .

Hence, the Dirichlet form corresponding to the trace on Ex
N dominates the Dirichlet form

corresponding to the reflected process on Ex
N and, consequently, the relaxation time

TN,T,x
rel of the former is smaller than the relaxation time TR,x

rel of the latter. Then, by the
proof of [37, Theorem 12.3],

TN,T,x
mix ≤ TN,T,x

rel

(
1 + sup

η∈Ex
N

log
( 1

µx
N (η)

))
≤ TN,R,x

rel

(
1 + sup

η∈Ex
N

log
( 1

µx
N (η)

))
. (3.13)

The right hand side of the preceding inequality, which is often used as an upper bound
for the mixing time TN,R,x

mix of the chain ξN (·) restricted in the well Ex
N , is also a bound

for the mixing time of the trace process.

Remark 3.10. In many interesting cases, e.g. random walks on a potential field [12,
33, 35, 34] or condensing zero-range processes [5, 30], the set Bx

N may be taken as a
singleton.

4 Convergence of the state

In this section, we prove Proposition 2.2. From now on, we assume that the number
of valleys is fixed and that the sequence of Markov chains fulfills conditions (H1), (H2),
(M1), (M2) and (2.10).

Proof of Proposition 2.2. We will prove the assertion for k = 1. The general case follows
easily from Corollary 3.7 and the Markov property. The proof is divided in several steps.
At each stage we write the main expression as the sum of a simpler one and a negligible
remainder.
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Fix t > 0, x ∈ S, a sequence {ηN : N ≥ 1}, ηN ∈ Ex
N , and 0 < δ < t. By definition,

[δηNSN (t)](ξ) = PηN [ξN (t) = ξ] can be written as∑
y∈S

∑
η∈E

y
N

PηN [ξN (t− δ) = η , ξN (t) = ξ] + R
(1)
N (t, δ, ξ) , (4.1)

where
R

(1)
N (t, δ, ξ) =

∑
η∈∆N

PηN [ξN (t− δ) = η , ξN (t) = ξ] .

By Corollary 3.7, for every 0 < δ < t,

lim
N→∞

∑
ξ∈EN

R
(1)
N (t, δ, ξ) = lim

N→∞
PηN [XN (t− δ) = 0] = 0 .

By the Markov property, the sum appearing in (4.1) is equal to∑
y∈S

∑
η∈E

y
N

PηN [ξN (t− δ) = η]Pη[ξ
N (δ) = ξ] .

Let p(η) = PηN [ξN (t− δ) = η]. We may rewrite this expression as∑
y∈S

∑
η∈E

y
N

p(η)Pη[HB
y
N
≤ δ

2
, ξN (δ) = ξ] + R

(2)
N (t, δ, ξ) , (4.2)

where ∑
ξ∈EN

R
(2)
N (t, δ, ξ) ≤ max

y∈S
max
η∈E

y
N

Pη

[
HB

y
N
>

δ

2

]
.

By (3.5) and condition (M1),

lim
N→∞

∑
ξ∈EN

R
(2)
N (t, δ, ξ) = 0 .

By the strong Markov property, using the notation ξNB = ξN (HB
y
N
), the first term in

(4.2) is equal to ∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{HB

y
N
≤ δ

2
}PξN

B
[ξN (δ −HB

y
N
) = ξ]

]
.

Let us now define Aξ = {ξN (δ −HB
y
N
) = ξ}, BN = {HB

y
N
≤ δ

2} and recall the definition
of the time-scale εN introduced in condition (M2). Rewrite the previous sum as∑

y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}PξN

B
[H∆N

> εN , Aξ]
]
+ R

(3)
N (t, δ, ξ) , (4.3)

where

0 ≤
∑

ξ∈EN

R
(3)
N (t, δ, ξ) =

∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}PξN

B
[H∆N

≤ εN ]
]

≤ max
y∈S

sup
η∈B

y
N

Pη[H∆N
≤ εN ] .

By (2.7), this latter expression vanishes as N → ∞.
By the Markov property, the sum appearing in (4.3) is equal to∑

y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}EξN

B

[
1{H∆N

> εN}PξN (εN )[A
′
ξ]
] ]

,
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Metastable Markov chains

where A′
ξ = {ξN (δ−HB

y
N
− εN ) = ξ}. On the set {H∆N

> εN}, we may replace the chain

ξN (t) by the reflected chain at Ey
N , denoted by ξNR,y(t). The previous expression is thus

equal to ∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}EξN

B

[
1{H∆N

> εN}PξNR,y(εN )[A
′
ξ]
] ]

.

This sum can be rewritten as∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}EξN

B

[
PξNR,y(εN )[A

′
ξ]
] ]

− R
(4)
N (t, δ, ξ) , (4.4)

where, by (2.7) and a similar argument to the one following (4.3)

lim
N→∞

∑
ξ∈EN

R
(4)
N (t, δ, ξ) = 0 .

Since, for every η ∈ B
y
N , ξ ∈ EN ,

Eη

[
PξNR,y(εN )[A

′
ξ]
]

= Pµy
N
[A′

ξ] +
∑
ζ∈E

y
N

{
Pη

[
ξNR,y(εN ) = ζ

]
− µy

N (ζ)
}
Pζ [A

′
ξ] ,

the first term of (4.4) is equal to∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}Pµy

N
[A′

ξ]
]
+ R

(5)
N (t, δ, ξ) , (4.5)

where the remainder R(5)
N (t, δ, ξ) is given by∑

y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}

∑
ζ∈E

y
N

{
PξN

B

[
ξNR,y(εN ) = ζ

]
− µy

N (ζ)
}
Pζ [A

′
ξ]
]
.

Therefore, ∑
ξ∈EN

∣∣R(5)
N (t, δ, ξ)

∣∣ ≤ 2 max
y∈S

sup
η∈B

y
N

‖δηSR,y
N (εN )− µy

N‖TV ,

so that, by (2.8),

lim
N→∞

∑
ξ∈EN

∣∣R(5)
N (t, δ, ξ)

∣∣ = 0 .

The first term in (4.5) can be written as∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}Pµy

N
[A′

ξ]
]
1{ξ ∈ E

y
N} + R

(6)
N (t, δ, ξ) , (4.6)

where

R
(6)
N (t, δ, ξ) =

∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}Pµy

N
[A′

ξ]
]
1{ξ 6∈ E

y
N} .

Therefore,∑
ξ∈EN

R
(6)
N (t, δ, ξ) ≤

∑
y∈S

∑
η∈E

y
N

p(η)Eη

[
1{BN}Pµy

N
[ξN (δ −HB

y
N
− εN ) 6∈ E

y
N ]

]
.

The probability inside the expectation is less than or equal to

Pµy
N
[ξN (δ −HB

y
N
− εN ) ∈ ∆N ] + Pµy

N
[ξN (δ −HB

y
N
− εN ) ∈ Ĕ

y
N ] ,
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where Ĕ
y
N has been introduced in (1.3). Since µy

N (ζ) = µN (Ey
N )−1µN (ζ ∩ E

y
N ) ≤

µN (Ey
N )−1µN (ζ), the first term is bounded by µN (∆)/µN (Ey

N ). On the other hand, the
second term is less than or equal to

Pµy
N
[ sup
0≤s≤δ

|XT
N (s)− y| ≥ 1] .

Therefore, ∑
ξ∈EN

R
(6)
N (t, δ, ξ) ≤ max

y∈S

{ µN (∆)

µN (Ey
N )

+ Pµy
N
[ sup
0≤s≤δ

|XT
N (s)− y| ≥ 1]

}
,

and, by assumption (H1) and (2.11),

lim
δ→0

lim sup
N→∞

∑
ξ∈EN

R
(6)
N (t, δ, ξ) = 0 .

Lemma 4.1 below shows that the first term in (4.6) is equal to∑
y∈S

∑
η∈E

y
N

p(η)Pη

[
HB

y
N
≤ δ

2

]
µy
N (ξ) + R

(7)
N (t, δ, x) , (4.7)

where

lim
δ→0

lim sup
N→∞

∑
ξ∈EN

|R(7)
N (t, δ, x)| = 0 .

We may rewrite the sum in (4.7) as∑
y∈S

∑
η∈E

y
N

p(η)µy
N (ξ) − R

(8)
N (t, δ, ξ) , (4.8)

where

R
(8)
N (t, δ, ξ) =

∑
y∈S

∑
η∈E

y
N

p(η)Pη

[
HB

y
N
>

δ

2

]
µy
N (ξ) .

By (3.5) and condition (M1), for every 0 < δ < t,

lim
N→∞

∑
ξ∈EN

R
(8)
N (t, δ, ξ) ≤ lim

N→∞
max
y∈S

sup
η∈E

y
N

Pη

[
HB

y
N
> δ/2

]
= 0 .

In view of the definition of p(η), the first term in (4.8) can be written as∑
y∈S

PηN [XN (t) = y]µy
N (ξ) + R

(9)
N (t, δ, ξ) ,

where

R
(9)
N (t, δ, ξ) =

∑
y∈S

{
PηN [XN (t− δ) = y]− PηN [XN (t) = y]

}
µy
N (ξ) .

Clearly,
∑

ξ∈EN
|R(9)

N (t, δ, ξ)| is less than or equal to∑
y∈S

{
PηN

[
XN (t− δ) = y , XN (t) 6= y

]
+ PηN

[
XN (t− δ) 6= y , XN (t) = y

]}
≤ 2

∑
y∈S

PηN

[
sup

|s−r|≤δ

|XT
N (r)−XT

N (s)| ≥ 1
]
+

∑
u=t,t−δ

PηN [XN (u) = 0] ,
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where the supremum is carried over real numbers r, s in [0, t]. By assumption (H1) and
Corollary 3.7,

lim
δ→0

lim sup
N→∞

∑
ξ∈EN

|R(9)
N (t, δ, ξ)| = 0 .

Up to this point we proved that

[δηNSN (t)](ξ) =
∑
y∈S

PηN [XN (t) = y]µy
N (ξ) + RN (t, δ, ξ) , (4.9)

where
lim
δ→0

lim sup
N→∞

∑
ξ∈EN

∣∣RN (t, δ, ξ)
∣∣ = 0 . (4.10)

Therefore, in view of (4.9),∥∥δηNSN (t)−
∑
y∈S

P x[X(t) = y]µy
N

∥∥
TV

=
1

2

∑
ξ∈EN

∣∣δηNSN (t)(ξ)−
∑
y∈S

P x[X(t) = y]µy
N (ξ)

∣∣
≤ 1

2

∑
y∈S

∣∣P x[X(t) = y]− PηN [XN (t) = y]
∣∣ +

1

2

∑
ξ∈EN

∣∣RN (t, δ, ξ)
∣∣ ,

which completes the proof of the proposition, in view of (4.10) and Corollary 3.7.

Lemma 4.1. Under (H1), (M1), (M2), (2.10) and any of the assumptions (a), (b) or (c) of
Proposition 2.2, for any y ∈ S, s ∈ (δ/2, δ) we have

lim
δ→0

lim sup
N→∞

∑
ξ∈E

y
N

∣∣∣PN
µy
N

[
ξN (s) = ξ

]
− µy

N (ξ)
∣∣∣ = 0 .

Proof. For all ξ ∈ E
y
N ,

PN
µy
N

[
ξN (s) = ξ

]
=

1

µN (Ey
N )

∑
ζ∈E

y
N

µN (ζ)PN
ζ

[
ξN (s) = ξ

]
=

1

µN (Ey
N )
PN

µN

[
ξN (s) = ξ

]
−

∑
ζ /∈E

y
N

µN (ζ)

µN (Ey
N )
PN

ζ

[
ξN (s) = ξ

]
= µy

N (ξ) −
∑
ζ /∈E

y
N

µN (ζ)

µN (Ey
N )
PN

ζ

[
ξN (s) = ξ

]
.

Hence, ∑
ξ∈E

y
N

∣∣∣PN
µy
N

[
ξN (s) = ξ

]
− µy

N (ξ)
∣∣∣ =

∑
ζ /∈E

y
N

µN (ζ)

µN (Ey
N )
PN

ζ

[
ξN (s) ∈ E

y
N

]
≤ µN (∆N )

µN (Ey
N )

+
1

µN (Ey
N )

∑
ζ∈Ĕ

y
N

µN (ζ)PN
ζ

[
ξN (s) ∈ E

y
N

]
.

(4.11)

By (2.10), the first term of this sum vanishes, as N → ∞. It remains to show that the
second term also vanishes under assumption (a), (b) or (c).

Assume first that (a) holds. Then, by reversibility, the last term in (4.11) is equal to∑
ξ∈E

y
N

µy
N (ξ)PN

ξ

[
ξN (s) ∈ Ĕ

y
N

]
≤ Pµy

N

[
sup

0≤s≤δ
|XT

N (s)− y| ≥ 1
]
.
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This expression vanishes, as N → ∞, by assumption (H1). This completes the proof of
the lemma under the hypothesis (a).

Assume now that condition (b) is in force. In this case, the last term in (4.11) is
bounded by∑

z 6=y

µN (Ez
N )

µN (Ey
N )
Pµz

N

[
sup

0≤s≤δ
|XT

N (s)− z| ≥ 1
]

≤ C0

∑
z 6=y

Pµz
N

[
sup

0≤s≤δ
|XT

N (s)− z| ≥ 1
]
.

Here again, by assumption (H1), this expression vanishes, as N → ∞. This completes
the proof of the lemma under the hypothesis (b).

Assume, finally, that condition (c) is fulfilled. Note that

PN
µy
N

[
TN (s− εN )− TN (s− 2εN ) ≤ 1

2
εN

]
≤ PN

µy
N

[ ∫ s−εN

s−2εN

1{ξN (t) ∈ ∆N} dt ≥ 1

2
εN

]
≤ 2

µN (∆N )

µN (Ey
N )

,

by Markov’s inequality. The last expression vanishes as N → ∞ by (2.10). Define the
stopping time σN as

σN = inf
{
t ≥ s− 2εN : ξN (t) ∈ B

y
N

}
.

By repeating the arguments that led to (3.5) and (3.11) we obtain that

lim
δ→0

lim
N→∞

PN
µy
N

[
σN > s− εN

]
= 0 . (4.12)

Let
R

(10)
N (s, δ, ξ) = PN

µy
N

[
ξN (s) = ξ

]
− µy

N (ξ) .

Conditioning first on σN , and using (2.7), (2.8) and (4.12) yields that

lim
δ→0

lim sup
N→∞

∑
ξ∈E

y
N

|R(10)
N (s, δ, ξ)| = 0 .

This concludes the argument.

5 Examples

We present in this section four examples to evaluate the conditions introduced in
the previous sections. The first example belongs to the class of models in which the
metastable sets are singletons. In the second and third examples the metastable sets are
not singletons, but the process visits all configurations of a metastable set before hitting
a new metastable set. These processes are said to visit points. In the second example
the assumptions of Lemma 3.3 are in force, but not in the third. For this latter class, we
show that the conditions of Corollary 3.7 are fulfilled for an appropriate singleton set
Bx

N . In the last example, the process does not visit all configurations of a metastable set
before reaching a new metastable set. In these models the entropy plays an important
role in the metastable behavior of the system. For this last model, we prove that the
hypotheses of Lemma 3.4 hold.

The purpose of this section is not to show that the conditions of Lemmata 3.3, 3.4
or Corollary 3.7 are in force in great generality. Actually, in some cases, this requires
lengthy arguments and a detailed analysis of the dynamics. We just want to convince
the reader that this is possible. In other words, that one can deduce the convergence of
the finite-dimensional distributions and the convergence of the state of the process from
conditions (H1), (H2) and some reasonable additional conditions.
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In the arguments below we use the Dirichlet and the Thomson principles for the
capacities between two disjoint sets of EN . We do not recall these results here and we
refer to [11, Section 7.3]

Example 5.1 (Inclusion process [25, 9]). The inclusion process describes the evolution
of particles on a countable set. Recall from (1.1) that we denote by TL, L ≥ 1, the
discrete, one-dimensional torus with L points, by EN the set of configurations on TL with
N particles, and by ηx, x ∈ TL, the total number of particles at x for the configuration η.

Fix a sequence (dN : N ≥ 1) of strictly positive numbers. Recall from (1.2) the
definition of the configuration σx,yη. The reversible, nearest-neighbor, inclusion process
associated to the sequence dN is the continuous-time, EN -valued Markov process {ηN (t) :

t ≥ 0} whose generator LN acts on functions f : EN → R as

(LNf)(η) =
∑

x,y∈TL
x 6=y

ηx (dN + ηy) r(y − x)
{
f(σx,yη)− f(η)

}
,

where r(−1) = r(1) = 1, r(x) = 0, otherwise.
The inclusion process is clearly irreducible and it is reversible with respect to the

probability measure µN given by

µN (η) =
1

ZN

∏
x∈TL

wN (ηx) ,

where ZN is the normalizing constant, wN (k) = Γ(k + dN )/k! Γ(dN ), and Γ is the gamma
function.

Assume that dN logN → 0, as N ↑ ∞. Denote by ξx,N the configurations in which all
particles are placed at site x, ξx,Nx = N , ξx,Ny = 0 for y 6= x, and let Ex

N = {ξx,N}. By [9,
Proposition 2.1], µN (Ex

N ) → 1/L as N ↑ ∞.
The metastable behavior of the inclusion process in the sense of conditions (H1), (H2)

has been proved in [9, Theorem 2.3]. The time-scale at which a metastable behavior is
observed is given by θN = 1/dN .

In this model the metastable sets Ex
N are singletons. This phenomenon occurs in

many other models. For instance, in spin systems evolving in large, but fixed, volumes as
the temperature vanishes (cf. the Ising model with an external field under the Glauber
dynamics [38, 42, 4] and the Blume-Capel model with zero chemical potential and a small
magnetic field [18, 32, 19]). It also occurs for random walks evolving among random
traps [26, 27].

We claim that all hypotheses of Propositions 2.1, 2.2 are in force. Actually, with the
exception of (H1) and (H2), all assumptions trivially hold because the metastable sets
are singletons. Set Bx

N = Ex
N = {ξx,N}.

A. Conditions (H1) and (H2). We already mentioned that assumptions (H1) and (H2)
have been proved in [9] with the time-scale θN = 1/dN .

B. Condition (2.1). By [9, Proposition 2.1], µN (ξx,N ) → 1/L. In particular, the inclusion
process satisfies the assumption of Lemma 3.3.

C. Condition (M1). Condition (M1) is empty because the sets Ex
N and Bx

N coincide.

D. Condition (2.7) of (M2). Since Ex
N = {ξx,N}, starting from ξx,N , H∆N

corresponds to
the first jump of the Markov chain ξN (t), denoted hereafter by τ1: PξxN

[H∆N
= τ1] = 1.

Since the process has been speeded-up by θN = 1/dN , τ1 is an exponential random
variable of rate 2N . It is thus enough to choose a sequence εN such that εN � 1/N .

E. Condition (2.8) of (M2). This condition is empty because Ex
N = {ξx,N}. It holds for any

sequence εN > 0.
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F. Condition (2.10) of Proposition 2.2. This is a consequence of [9, Proposition 2.1] which
asserts that µN (ξx,N ) → 1/L.

G. Conditions (a), (b) or (c). Assumption (a) of Proposition 2.2 is in force as the process
is reversible.

Example 5.2 (Condensing zero-range processes [5, 30, 43]). This model has been intro-
duced at the beginning of Section 2. Set θN = N1+α.

The condensing zero-range process is an example of a process which visits points
in the sense that, starting from a well Ex

N , the dynamics visits all configurations of Ex
N

before reaching another well. This property reads as follows. For all x ∈ S = TL,

lim
N→∞

max
η,ξ∈Ex

N

PN
η [H

Ĕx
N
< Hξ] = 0 ,

where Ĕx
N has been introduced in (1.3). Other examples of metastable dynamics which

visit points are random walks in a potential field [16, 12, 33, 35].
We show below that all hypotheses of Propositions 2.1, 2.2 are in force. In certain

cases we impose further assumptions on the dynamics, e.g., that it is reversible or that
|S| = 2, to avoid lengthy arguments. The main tool to prove this assertion is the fact
that the process visit points. Recall from (3.6) that we denote by capN (A,B) the capacity
between two disjoint subsets A and B of EN . Since ξN (t) is the process ηN (t) speeded-up
by θN , by [5, Theorem 2.2] and [43, Theorem 6.3], for any disjoint subsets A, B of S,

lim
N→∞

capN

( ⊔
x∈A

Ex
N ,

⊔
y∈B

E
y
N

)
= C(A,B) ∈ (0,∞) , (5.1)

where C(A,B) is the capacity between A and B for the random walk on S with transition
probabilities p(y−x), for x, y ∈ S.

A. Conditions (H1) and (H2). Assumptions (H1) and (H2) have been proved in [5] in

the reversible case, in [30] in the totally asymmetric case, p = 1, and in [43] in the
asymmetric case 1/2 < p < 1.

B. Condition (2.1). We prove that the assumptions of Lemma 3.4 are in force in the
reversible case for Bx

N = {ξx,N}, where ξx,N represents the configurations in which all
particles are placed at site x.

Fix x ∈ S and η ∈ Ex
N . By the Markov inequality and [3, Proposition 6.10],

Pη

[
HBx

N
> δ

]
≤ 1

δ
Eη

[
HBx

N

]
≤ 1

δ

1

capN (η, ξx,N )

By (H1), page 806 in [5],

lim
N→∞

sup
η∈Ex

N

capN (Ex
N , Ĕx

N )

capN (η, ξx,N )
= 0 .

Therefore, by (5.1), for every δ > 0,

lim
N→∞

max
η∈Ex

N

Pη

[
HBx

N
> δ

]
= 0 . (5.2)

On the other hand, for every s > 0,

Pξx,N

[
ξN (s) ∈ ∆N

]
≤ 1

µN (ξx,N )
PµN

[
ξN (s) ∈ ∆N

]
=

µN (∆N )

µN (ξx,N )
·

By equation (3.2) in [5], µN (∆N ) → 0, and by [5, Proposition 2.1], µN (ξx,N ) → 1/ZS > 0.
This shows that the second assumption of Lemma 3.4 is in force.
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I. Seo extended the previous result to the asymmetric case 1/2 < p < 1 in [43,
Proposition 6.3].

C. Condition (M1). Since H
Ex

N

Bx
N
≤ HBx

N
, condition (M1) follows from (5.2).

D. Condition (2.7) of (M2). Since the exterior boundary of Ex
N is contained in ∆N , under

Pξx,N , H(Ex
N )c = H∆N

. We claim that

Pξx,N [H∆N
≤ 2 εN ] ≤ C0 εN θN

`αN
(5.3)

for some finite constant C0. In particular, condition (2.7) of (M2) is fulfilled provided we
choose εN θN � `αN .

We turn to the proof of (5.3). By Corollary 6.4 we have

Pξx,N [H∆N
≤ 2 εN ] ≤ 2e εN

µN (ξx,N )
capN (ξx,N ,∆N ). (5.4)

On the other hand, by monotonicity of capacities

capN (ξx,N ,∆N ) ≤ capN (Ex
N ,∆N ) =

1

2

∑
η∈Ex

N

∑
ξ∈∆N

µN (η)RN (η, ξ) .

Since the holding rates λN (η) are uniformly bounded by C0θN , if we denote by ∂Ex
N

the interior boundary of the set Ex
N , the previous sum is bounded by C0 θN µN (∂Ex

N ). An
explicit computation shows that the measure of ∂Ex

N is bounded by `−α
N . The proof of this

assertion is similar to the one of [5, Lemma 3.1] and is omitted. Hence, capN (ξx,N ,∆N ) ≤
C0 θN `−α

N . Together with (5.4) and [5, Proposition 2.1], this gives (5.3). (Remark: In the
case |S| = 2, it is possible to compute exactly capN (ξx,N ,∆N ) and one gets that it is of

order θN `
−(1+α)
N . We lost a factor 1/`N at the first estimate in the preceding display.)

E. Condition (2.8) of (M2). The proof relies on an estimate of the spectral gap. We
prove this condition in the case of two sites, the general case can be handled using the
martingale approach developed by Lu and Yau [28, Appendix 2].

Assume that |S| = 2, and denote by λR,1 the spectral gap of the process ξN (t) reflected
at E1

N = {0, . . . , `N}. We claim that

λR,1 ≥ c0 θN
`2N

· (5.5)

On two sites, the zero-range process is a birth and death process, and the reflected
process on E1

N is the continuous-time Markov chain whose generator is given by

(LR,1
N f)(η) = gR,N (η){f(η − 1)− f(η)} + gR,N (N − η){f(η + 1)− f(η)} , η ∈ E1

N ,

where gR,N (ζ) = θN g(ζ) for all ζ 6= N − `N , and gR,N (N − `N ) = 0, due to the reflection
at E1

N . Denote by µ1
N the stationary measure µN conditioned to E1

N .
In order to prove (5.5), we have to show that there exists a finite constant C0 such

that

Eµ1
N

[(
f − Eµ1

N
[f ]

)2] ≤ C0
`2N
θN

〈f, (−LR,1
N )f〉µ1

N
(5.6)

for all N ≥ 1 and all functions f : {0, . . . , `N} → R, where 〈f, g〉µ1
N
represents the scalar

product in L2(µ1
N ).

Fix a function f : {0, . . . , `N} → R. By Schwarz inequality,

Eµ1
N

[(
f − Eµ1

N
[f ]

)2] ≤ Eµ1
N

[(
f − f(0)

)2]
≤

∑
η∈E1

N

µ1
N (η)

η−1∑
ξ=0

[f(ξ + 1)− f(ξ)]2 µ1
N (ξ)

η−1∑
ξ′=0

1

µ1
N (ξ′)

·
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The sum over ξ′ is bounded by C0η
1+α. Hence, since µ1

N (η) ≤ C0η
−α, changing the order

of summations the previous expression is seen to be less than or equal to

C0

`N−1∑
ξ=0

[f(ξ + 1)− f(ξ)]2 µ1
N (ξ)

`N∑
η=ξ+1

η ≤ C0 `
2
N

`N−1∑
ξ=0

[f(ξ + 1)− f(ξ)]2 µ1
N (ξ) .

This expression is bounded by C0 (`
2
N/θN ) 〈f, (−LR,1

N )f〉µ1
N
because g is bounded below

by a positive constant and the process is speeded-up by θN . This proves claim (5.6), and
therefore (5.5).

We turn to condition (2.8) of (M2). We claim that this condition is fulfilled provided
εNθN � `2N . Indeed, since µy

N (ξx,N ) ≥ c0, in view of (2.9), we have to show that

lim
N→∞

λR,1 εN = ∞ , (5.7)

which follows from (5.5) if εNθN � `2N .
For |S| = 2, in view of (D) and (E) above, conditions (2.7) and (2.8) of (M2) are fulfilled

for any sequence εN such that `2N � εNθN � `1+α
N .

F. Condition (2.10) of Proposition 2.2. By [5, Remark 2.5],

lim
N→∞

µN (∆N )

µN (Ex
N )

= 0 .

G. Conditions (a), (b) or (c). Assumption (b) of Proposition 2.2 is in force since µN (Ex
N ) =

µN (Ey
N ) for all x, y ∈ S.

Example 5.3 (Random walk in a potential field). In this example, the sets Bx
N are still

reduced to singletons, Bx
N = {ξx,N}, but µN (ξx,N ) → 0. To simplify the discussion as

much as possible, we assume that the process is reversible and that the potential has
two wells of the same height, but the arguments apply to the more general situations
considered in [12, 33, 35].

Let Ξ be an open, bounded and connected subset of Rd with a smooth boundary ∂ Ξ.
Fix a smooth function F : Ξ ∪ ∂ Ξ → R, with three critical points, satisfying the following
assumptions:

(RW1) There are two local minima, denoted by m1, m2. All the eigenvalues of the Hessian
of F at these points are strictly positive. Moreover, F (m1) = F (m2) =: h.

(RW2) The other critical point of F is denoted by σ. The Hessian of F at σ has one strictly
negative eigenvalue, all the other ones being strictly positive.

(RW3) For every x ∈ ∂ Ξ, (∇F )(x) · n(x) > 0, where n(x) represents the exterior normal
to the boundary of Ξ, and x · y the scalar product of x, y ∈ Rd. This hypothesis
guarantees that F has no local minima at the boundary of Ξ.

Denote by ΞN the discretization of Ξ: ΞN = Ξ ∩ (N−1Z)d, N ≥ 1. Let µN be the
probability measure on ΞN defined by

µN (η) =
1

ZN
e−NF (η) , η ∈ ΞN ,

where ZN is the partition function ZN =
∑

η∈ΞN
exp{−NF (η)}. By equation (2.3) in [33],

lim
N→∞

ZNeNh

(2πN)d/2
=

1√
detHessF (m1)

+
1√

detHessF (m2)
, (5.8)

where HessF (x) represents the Hessian of F calculated at x and detHessF (x) its deter-
minant.
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Let {ηN (t) : t ≥ 0} be the continuous-time Markov chain on ΞN whose generator LN

is given by

(LNf)(η) =
∑
ξ∈ΞN

‖ξ−η‖=1/N

e−(1/2)N [F (ξ)−F (η)] [f(ξ)− f(η)] , (5.9)

where ‖ · ‖ represents the Euclidean norm of Rd.

Recall that mi, i = 1, 2, represent the two local minima of F in Ξ, and σ the saddle
point. Let H := F (σ) > F (m1) = F (m2) = h. Denote by Vi = Bκ(mi), κ > 0, two
balls of radius κ centered at the local minima. Assume that κ is small enough for
supx∈Vi

F (x) < H. Denote by Ei
N the discretization of the sets Vi: Ei

N = ΞN ∩ Vi.
Let θN = 2πN exp{[H − h]N}. It has been proved in [33, 35] that the process XT

N (t)

fulfills conditions (H1) and (H2). We claim that the assumptions of Propositions 2.1 and
2.2 are in force.

We prove condition (2.1) through Corollary 3.7 with Bi
N = {ξi,N}, where ξi,N is a

point in ΞN which approximates the local minima mi.

A. Condition (2.6). Fix η ∈ Ei
N . Since H

Ei
N

Bi
N

≤ HBi
N
, by the Markov inequality, it is enough

to prove that

lim
N→∞

Eη[HBi
N
] = 0 . (5.10)

By [3, Proposition 6.10], the expectation is bounded by 1/capN (η,Bi
N ). Consider a path

(η0 = η, η1, . . . , ηM = ξi,N ) such that M ≤ C0N , ηi ∈ ΞN , ‖ηi−ηi+1‖ = 1/N , F (ηi) ≤ H− ε

for some ε > 0. Let Φ be the unitary flow from η to ξi,N such that Φ(ηi, ηi+1) = 1. By
Thomson’s principle,

1

capN (η, ξi,N )
≤ ZN

θN

M−1∑
j=0

e(N/2) [F (ηi)+F (ηi+1)] .

The factor θN appeared as the process has been speeded-up. This expression vanishes
as N → ∞ in view of (5.8), the definition of θN , and because F (ηi) ≤ H − ε, M ≤ C0N .

B. Condition (2.7). Let hi = infx∈∂Vi
F (x). We claim that this condition is in force

provided

εN θN � N−d eN [hi−h] .

Since, under Pξi,N , H(Ei
N )c = H∆N

, we need to estimate Pξi,N [H∆N
≤ 2εN ]. By

Corollary 6.4,

Pξi,N
[
H∆N

≤ 2εN
]
≤ C0 εN θN

µN (ξi,N )

1

ZN

∑
η∈∂−Ei

N , ζ∈∆N

‖η−ζ‖=1/N

e−(N/2) [F (η)+F (ζ)] ,

where ∂−E
i
N stands for the inner boundary of Ei

N :

∂−E
i
N =

{
η ∈ Ei

N : µ(η)R(η, ξ) > 0 for some ξ 6∈ Ei
N

}
.

By definition of Ei
N , the right-hand side of the penultimate formula is bounded above by

C0 εN θN Nd exp{−N [hi − h]}, which proves the claim.

C. Condition (2.8). We claim that this condition is fulfilled provided

θN εN � Nd+1+b (5.11)

for some b > 0.
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We first estimate the spectral gap of the reflected process ξNR,i(t), denoted by λR,i.

We claim that λR,i ≥ c0 θN N−(d+1). To prove this assertion, we have to show that

Eµi
N

[(
f − Eµi

N
[f ]

)2] ≤ C0
Nd+1

θN
〈f, (−LR,i

N )f〉µi
N

(5.12)

for all N ≥ 1 and all functions f : Ei
N → R, where 〈f, g〉µi

N
represents the scalar

product in L2(µi
N ). For each η ∈ Ei

N , denote by γ(η) = (η0 = η, . . . , ηM = ξi,N ) a
discrete version of the path from η to ξi,N given by ẋ(t) = −(∇F )(x(t)). This means
that ‖ηj+1 − ηj‖ = 1

N , M ≤ C0N , and ηj is the closest point of the lattice ΞN to x(tj) for
some increasing sequence of times {tj}0≤j≤M . Clearly, |F (ηj)− F

(
x(tj)

)
| ≤ c0

N and since
d
dtF

(
x(t)

)
= −‖(∇F )

(
x(t))‖2 ≤ 0, for all 0 ≤ k ≤ j ≤ M we have

F (ηk)− F (ηj) ≥ F (ηk)− F
(
x(tk)

)
+ F (

(
x(tj)

)
− F (ηj) ≥ −2c0

N
.

In particular,

e−NF (η) ≤ e2c0e−
N
2

(
F (ηj)+F (ηj+1)

)
, j = 0, 1, . . . ,M − 1. (5.13)

Since M ≤ C0N , by Schwarz inequality,

Eµi
N

[(
f − Eµi

N
[f ]

)2] ≤ Eµi
N

[(
f − f(ξi,N )

)2]
≤ C0 N

∑
η∈Ei

N

µi
N (η)

M(η)−1∑
j=0

[f(ηj+1)− f(ηj)]
2

≤ C0 N
∑
η∈Ei

N

M(η)−1∑
j=0

µi
N (ηj)RN (ηj , ηj+1) [f(ηj+1)− f(ηj)]

2,

where the last inequality follows from (5.13). Fix an edge (ζ, ζ ′) and consider all config-
urations η ∈ Ei

N whose path γ(η) contains this pair (that is (ζ, ζ ′) = (ηj , ηj+1) for some
0 ≤ j < M ). Of course, there are at most |Ei

N | ≤ C0N
d such configurations. Hence,

changing the order of summation, the previous sum is seen to be bounded above by

C0 N
d+1

∑
ζ∈Ei

N

∑
ζ′∈Ei

N

‖ζ′−ζ‖=1/N

µi
N (ζ)RN (ζ, ζ ′) [f(ζ ′)− f(ζ)]2 .

This proves claim (5.12) since the double sum is equal to (2/θN )〈f, (−LR,i
N )f〉µi

N
.

We turn to the proof of condition (2.8). Fix a sequence εN satisfying (5.11) for some
b > 0. By (5.8), µN (ξi,N ) ≥ c0N

−d/2. Hence, by (5.12),

1

µi
N (ξi,N )1/2

e−λR,iεN ≤ C0 N
d/4 exp

{
− c0 θN εN N−(d+1)

}
.

By (5.11) this expression vanishes as N → ∞. This proves condition (2.8) in view of
(2.9).

Conditions (2.10) and (2.11) are elementary. Hence, as claimed, all conditions of
Propositions 2.1 and 2.2 are in force. Similar arguments apply in the case of several
wells and critical points, as well as in the non-reversible setting.

Example 5.4 (Random walk on a singular graph). [41, 7] In this example, the metastable
behavior is not due to an energy landscape but to the presence of bottlenecks. After
attaining a well, the system remains there a time long enough to relax inside the well
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N

w2

w1w3

w0

Figure 2: The graph EN of Example 5.4. The square in blue represents the set B2
N and the red

triangles the set ∆N ∩ Q1
N . The figure is misleading because the set B2

N is a square of length
N − 2MN and almost fills the set Q2

N for N large.

before it hits a point from which it can jump to another well. In this example, to fulfil
condition (M1) the set Bx

N can not be taken as a singleton.
In many other models the entropy plays an important role in the metastable behavior.

In the majority of them, the time-scale in which the metastable behavior is observed can
not be computed explicitly and is given in terms of the spectral gap or the expectation
of hitting times. This is the case of polymers in the depinned phase [15, 14, 29], or the
evolution of a droplet in the Ising model with the Kawasaki dynamics [8, 24].

We consider below a random walk on a graph EN which is illustrated in Figure 2 in
the two-dimensional case. For N ≥ 1, d ≥ 2, let IN = {0, . . . , N}, Q+

N = I2N × Id−2
N , Q−

N =

I2N × (−IN )d−2 be d-dimensional cubes of length N . Let wi = wN
i , 0 ≤ i ≤ 3, be the points

in Zd given by w0 = (0, N,0), w1 = (N, 0,0), w2 = (0,−N,0), w3 = (−N, 0,0), where 0 is
the (d− 2)-dimensional vector with all coordinates equal to 0. Set Qi

N = wi +Q+
N , i = 0,

2, Qj
N = wj +Q−

N , j = 1, 3, EN = t0≤i≤3Q
i
N . Note that the sets Qi

N ∩Qi+1
N are singletons

in all dimensions. This explains the rather intricate definition of the sets Qi
N .

Denote by e1, . . . , ed the canonical basis of Rd. Let ηN (t) be the continuous-time
Markov chain on EN which jumps from a configuration η ∈ EN to η± ej ∈ EN at rate 1 if
η ∓ ej ∈ EN and at rate 2 if η ∓ ej 6∈ EN . With these jump rates the Markov chain on the
cube IdN can be thought as the projection on IdN of a simple random walk on Zd.

Denote by n(η) ∈ {0, 1, . . . , d}, η ∈ EN , the number of neighbors of η which do not
belong to EN , and by C the four corners of EN : C = {η ∈ EN : η ∈ Qx

N ∩Qy
N for some x 6=

y}. Let µN be the probability measure on EN given by

µN (η) =
1

ZN

1

2n(η)
, η 6∈ C , µN (ξ) =

1

ZN

1

2d−1
, ξ ∈ C ,

where ZN is the normalizing factor. The measure µN is the unique stationary (actually,
reversible) state. Denote by θN the inverse of the spectral gap of this chain. By [41,
Example 3.2.5], there exist constants 0 < c(d) < C(d) < ∞ such that for all N ≥ 1,

c(2)N2 logN ≤ θN ≤ C(2)N2 logN , d = 2

and
c(d)Nd ≤ θN ≤ C(d)Nd d ≥ 3.
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Fix sequences {`N : N ≥ 1}, {MN : N ≥ 1}, 1 � `N � MN � N , such that

log `N/ logN → 1, d = 2 and N2 `d−2
N � Md

N , d ≥ 3. (5.14)

Recall that we denote by C the four corners of EN . Let ∆N be the points at graph
distance less than `N from one of the corners:

∆N = {η ∈ EN : d(η,C) ≤ `N} ,

where d(η, ξ) stands for the graph distance from η to ξ. Finally, let Ex
N = Qx

N \ ∆N ,

JN = {MN , . . . , N −MN}, and Bx
N = wx + J2

N ×
(
(−1)xJN

)d−2
. Note that Bx

N ⊂ Ex
N . We

refer to Figure 2 for an illustration of these sets.
Assumptions (H1) and (H2) for this model follow from the arguments presented in [7,

Proposition 8.3]. Condition (2.1) follows from Lemma 3.4.

A. First condition of Lemma 3.4. If d ≥ 3, this condition follows easily from Lemma 3.8.
Indeed, since the mixing time of a random walk on a d-dimensional cube of length N is
of order N2, condition (3.9) is an easy consequence of (3.13). The following argument
also works for d = 2.

Fix δ > 0, η ∈ E0
N , and recall that we denote by C the set of corners. Let εN � 1 be a

sequence such that N2 � εN θN . By equation (6.18) in [26],

lim
N→∞

max
ξ∈EN

Pξ

[
HC ≤ εN

]
= 0 . (5.15)

We may therefore assume that the process ξN (t) does not hit C before εN . On this event,
we may couple ξN (t) with a speeded-up random walk ξ̂N (t) on IdN , and ξN (t) hits Bx

N

when ξ̂N (t) hits Jd
N . By Theorem 5 in [1] applied to ξ̂N (t),

µx
N (Bx

N ) sup
ξ∈Ex

N

Eξ

[
HBx

N
; HC > εN

]
≤ C0N

2θ−1
N .

Since µx
N (Bx

N ) ≥ c0 > 0 and θNεN � N2, this proves that

lim
N→∞

sup
ξ∈Ex

N

Pξ

[
HBx

N
> εN

]
= 0,

and in particular the first condition of Lemma 3.4.

B. Second condition of Lemma 3.4. The argument is based on the fact that the process
relaxes to equilibrium inside each cube much before it hits the corners. Fix δ > 0,
δ < s < 3δ, η ∈ E0

N , and let εN be as in A, i.e. N2 � εN θN � θN . By (5.15), we may insert
the event {HC > εN} inside the probability appearing in the second displayed equation in
Lemma 3.4. After this operation, applying the Markov property, the probability becomes

Eη

[
1{HC > εN}PξN (ε)

[
ξN (s− εN ) ∈ ∆N

] ]
.

On the set {HC > εN}, we may couple the process ξN (t) with the speeded-up, random
walk reflected at Q0

N . Denote by P0
N the distribution with respect to this dynamics and

by E0
N the expectation.

Up to this point we proved that

lim sup
N→∞

Pη

[
ξN (s) ∈ ∆N

]
≤ lim sup

N→∞
E0

η

[
PξN (εN )

[
ξN (s− εN ) ∈ ∆N

] ]
.

Since the mixing time of the (speeded-up) random walk on Q0
N is of order N2/θN � εN ,

the previous expression is bounded by

lim sup
N→∞

Pµ0
N

[
ξN (s− εN ) ∈ ∆N

]
,
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where µ0
N is the stationary state of the reflected random walk. As µ0

N (η) ≤ C0µN (η), and
since µN is the stationary state, the previous expression is bounded by

C0 lim sup
N→∞

PµN

[
ξN (s− εN ) ∈ ∆N

]
= C0 lim sup

N→∞
µN [∆N ] = 0 ,

which completes the proof of the second condition of Lemma 3.4.

The convergence of the finite-dimensional distributions has been addressed in [7].
We now turn to the assumptions of Proposition 2.2. Condition (M1) has been proved
above in A. We show below that (M2) is in force in dimension d ≥ 3.

C. Condition (2.7). Recall from (5.14) that N2 � Md
N/`d−2

N . Let εN be a sequence such
that N2 � εN θN � Md

N/`d−2
N .

Fix η ∈ B0
N . Up to the hitting time of the set ∆N the process ξN (t) behaves as the

chain ξ̂N (t) introduced below (5.15). It is therefore enough to prove condition (2.7) for

this latter process. Let ∆(1)
N , ∆(2)

N be the simplexes given by

∆
(1)
N = {x ∈ Zd : xi ≥ 0 ,

∑
i

xi ≤ `N} ,

∆
(2)
N = (N, 0,0) + {(y, x) ∈ Z×Zd−1 : y ≤ 0 , xi ≥ 0 , −y +

∑
i

xi ≤ `N} .

We have to show that for i = 1, 2,

lim
N→∞

max
η∈Jd

N

Pη

[
H

∆
(i)
N

≤ εN
]
= 0 , (5.16)

where Pη stands for the distribution of ξ̂N (t) starting from η. By symmetry, it suffices to
do so for i = 1.

Set γN = ε−1
N , and denote by ζ?N (t) the γN -enlargement of the process ξ̂N (t). We

refer to Section 6 for the definition of the enlargement and the statement of some
properties. Denote by P?

η the distribution of the process ζ?N (t) starting from η, and by

V ? the equilibrium potential between ∆
(1)
N and E?

N : V ?(η) = P?
η

[
H

∆
(1)
N

≤ HE?
N

]
. By (6.5),

(5.16) follows from
lim

N→∞
max
η∈Jd

N

V ?(η) = 0 . (5.17)

To bound the equilibrium potential V ?, we follow a strategy proposed in [7]. We first
claim that

cap?N (∆
(1)
N ,E?

N ) ≤ C0 `
d
N

Nd

{θN
`2N

+ γN

}
, (5.18)

Fix LN = 2`N , and let f : N → R+ the function given by f(k) = 1 for 0 ≤ k < `N ,
f(k) = 0 for k ≥ LN and f(k) = A

∑
k≤j<LN

j−(d−1) for `N ≤ k < LN , where A is chosen
for f(`N ) = 1. Let F : EN → R, F ? : EN t E?

N → R be given by F (x) = f(
∑

1≤i≤d xi),

F ?(η) = F (η), η ∈ EN , F ?(η) = 0, η ∈ E?
N . By the Dirichlet principle, cap?N (∆

(1)
N ,E?

N ) ≤
D?

N (F ?), where D?
N represents the Dirichlet form of the enlarged process ζ?N (t).

There are two contributions to the Dirichlet form D?
N (F ?). The first one corresponds

to edges whose vertices belong to the set ΛN = {x ∈ EN : `N ≤
∑

i xi ≤ LN}. This
contribution is bounded by

C0 θN
Nd

LN∑
j=`N

jd−1
[
f(j + 1)− f(j)

]2 ≤
C0 θN `d−2

N

Nd
.

The other contribution, is due to the edges between the sets ΛN and Λ?
N . Since F ?

is bounded by 1, this contribution is bounded by 1
4γNµN (ΛN ) ≤ C0γN `dN/Nd. This

completes the proof of (5.18).
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We turn to (5.17). Let ≺ be the partial order on Jd
N defined by η ≺ ξ if ηi ≤ ξi for

1 ≤ i ≤ d. We may couple two copies of the process ξ̂N (t), denoted by ζηN (t), ζξN (t),

starting from η ≺ ξ, respectively, in such a way that ζηN (t) ≺ ζξN (t) for all t ≥ 0. In

particular, ζηN (t) hits ∆(1)
N before ζξN (t), so that

V ?(η) = P?
η

[
H

∆
(1)
N

≤ HE?
N

]
≥ P?

ξ

[
H

∆
(1)
N

≤ HE?
N

]
= V ?(ξ) .

Suppose that (5.17) does not hold. There exists, therefore, δ > 0, a subsequence Nj ,
still denoted by N , and a configuration ηN ∈ Jd

N such that V ?(ηN ) ≥ δ. By the previous
inequality and by definition of Jd

N , V
?(ξ) ≥ δ for all ξ such that maxi ξi ≤ MN . In

particular,

cap?N (∆
(1)
N ,E?

N ) = D?
N (V ?) ≥ c0 M

d
N

γN
Nd

δ2 .

Comparing this bound with (5.18) we deduce that δ2 γN Md
N ≤ C0`

d−2
N θN , which is a

contradiction since γN = ε−1
N and εN θN � Md

N/`d−2
N .

D. Condition (2.8). It is well known that the mixing time of a random walk on a
d-dimensional cube of length N is of order N2, which proves that condition (2.8) is
fulfilled since εN θN � N2.

E. Last conditions of Proposition 2.2. Condition (2.10) is clearly in force by definition of
∆N . On the other hand the chain is reversible.

6 Appendix

We present in this section a general estimate for the hitting time of a set in Markovian
dynamics. Fix a finite set E and let {η(t) : t ≥ 0} be a continuous-time, irreducible,
E-valued Markov chain. Denote by π the unique stationary state of the process, by
R(η, ξ), η, ξ ∈ E its jump rates, and by Pη its distribution starting from η.

We start with an elementary lemma.

Lemma 6.1. LetX, Tγ be two independent random variables defined on some probability
space (Ω,F , P ). Assume that Tγ has an exponential distribution of parameter γ > 0.
Then, for all b > 0,

P
[
X ≤ b

]
≤ eγb P

[
X ≤ Tγ

]
.

Proof. Since X and Tγ are independent, for every b > 0,

P
[
X ≤ Tγ

]
≥

∫ ∞

b

P
[
X ≤ t

]
γ e−γt dt ≥ P

[
X ≤ b

] ∫ ∞

b

γ e−γt dt .

The last term is equal to e−γb P
[
X ≤ b

]
, which completes the proof of the lemma.

Note that if X is an exponential random variable of parameter θ, the inequality
reduces to

1 − e−θb ≤ eγb
θ

θ + γ
·

Hence, choosing γ = 1/b, if θb is small, the inequality is sharp in the sense that the
left-hand side is equal to θ b+O([θ b]2), while the right-hand side is equal to e θ b+O([θ b]2).

Enlargement of a chain [10, 7]. Let E? be a copy of E and denote by η? ∈ E? the
copy of η ∈ E. Denote by ξγ(t), γ > 0, the Markov process on E t E? whose jump rates
Rγ(η, ξ) are given by

Rγ(η, ξ) =


R(η, ξ) if η and ξ ∈ E,

γ if ξ = η? or η = ξ?,

0 otherwise.
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Hence, being at some state ξ? in E?, the process may only jump to ξ and this happens
at rate γ. In contrast, being at some state ξ in E, the process ξγ(t) jumps with rate
R(ξ, ξ′) to some state ξ′ ∈ E, and jumps with rate γ to ξ?. We call the process ξγ(t) the
γ-enlargement of the process ξ(t). Note that the trace of the enlargement ξγ(t) on E

coincides with the original process ξ(t).

The chain ξγ(t) is clearly irreducible and its invariant probability measure, denoted
by π?, is given by

π?(ξ) = (1/2)π(ξ) , ξ ∈ E , π?(ξ?) = π?(ξ) , ξ? ∈ E? . (6.1)

The process ξγ(t) reversed in time is the Markov chain, denoted by ξγ,∗(t), whose jump
rates Rγ,∗ are given by

Rγ,∗(η, ξ) =


R∗(η, ξ) if η and ξ ∈ E,

γ if ξ = η? or η = ξ?,

0 otherwise,

where R∗(η, ξ) represents the jump rates of the process ξ(t) reversed in time.

Denote by P?
η the distribution of the chain ξγ(t) starting from η, and by cap?(C,D) the

capacity between two disjoint subsets C, D of E t E?.

Lemma 6.2. Fix two disjoint subsets A, B of E. Then

cap?(A,B) = (1/2) cap(A,B) . (6.2)

and

cap?(A,B t E?) ≥ (1/2)
(
π(A)γ + cap(A,B)

)
. (6.3)

Proof. By equation (2.6) in [23],

cap?(A,B) = D?(V ?
A,B) =

1

2

∑
η,ξ∈EtE?

π?(η)R?(η, ξ) [V ?
A,B(ξ)− V ?

A,B(η)]
2 ,

where D?(f) represents the Dirichlet form of a function f : E tE? → R for the enlarged
process, and V ?

C,D the equilibrium potential between two disjoints subsets C, D of
E t E?: V ?

C,D(η) = P?
η[HC < HD]. On the one hand, by definition of the enlargement,

for every η ∈ E, V ?
A,B(η

?) = V ?
A,B(η). Hence, the contribution to the Dirichlet form

D?(V ?
A,B) of the edges between E and E? vanishes. On the other hand, since the trace

of the enlargement ξγ(t) on E coincides with the original process ξ(t), for all η ∈ E,
V ?
A,B(η) = P

?
η[HA < HB] = Pη[HA < HB] = VA,B(η). Hence, the sum appearing on the

right-hand side of the previous displayed equation is equal to

1

2

∑
η,ξ∈E

π?(η)R?(η, ξ)[VA,B(ξ)− VA,B(η)]
2 .

Since, for η, ξ ∈ E, R?(η, ξ) = R(η, ξ), π?(η) = (1/2)π(η), the previous sum is equal to

1

4

∑
η,ξ∈E

π(η)R(η, ξ)[VA,B(ξ)− VA,B(η)]
2 =

1

2
D(VA,B) =

1

2
cap(A,B) ,

as claimed in (6.2).
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Let A? = {ξ? ∈ E? : ξ ∈ A} and λ?(η) stand for the holding rate of ξγ(t) at η. We have

cap?(A,B tA?) =
∑
η∈A

π?(η)λ?(η)P?
η

[
HBtA? < H+

A

]
=

1

2

∑
η∈A

π(η)
∑

ξ∈EtE?

Rγ(η, ξ)P?
ξ

[
HBtA? < HA

]
=

1

2
γπ(A) +

1

2

∑
η∈A

π(η)
∑
ξ∈E

R(η, ξ)P?
ξ

[
HBtA? < HA

]
,

where in the last equality we have split the inner sum over ξ ∈ A? and ξ ∈ E. Taking into
account that for every ξ ∈ E we have P?

ξ

[
HA? > HA

]
= 1 because points η? ∈ A? are

only accessible from η ∈ A, the preceding computation gives

cap?(A,B tA?) =
1

2
γπ(A) +

1

2

∑
η∈A

π(η)
∑
ξ∈E

R(η, ξ)P?
ξ

[
HB < HA

]
=

1

2
γπ(A) +

1

2

∑
η∈A

π(η)
∑
ξ∈E

R(η, ξ)Pξ

[
HB < HA

]
=

1

2
γπ(A) +

1

2
cap(A,B).

Inequality (6.3) now follows by monotonicity of capacities.

Denote by ν?A,B the equilibrium measure between A, B for the chain ξγ(t), which is
concentrated on the set A and is given by

ν?A,B(η) =
1

cap?(A,B)
π?(η)λ?(η)P?

η

[
HB < H+

A

]
. (6.4)

If A is a set with small measure with respect to the stationary measure, it is expected
that, for most configurations η ∈ E, HA is approximately exponentially distributed under
Pη. Let λ−1 be its expectation, so that Pη

[
HA ≤ b

]
≈ 1 − exp{−bλ} ≈ bλ, provided

bλ � 1. On the one hand, by [6, Proposition A.2],

λ−1 ≈ Eη

[
HA

]
=

〈V ∗
η,A〉π

cap(η,A)
,

where V ∗
η,A is the equilibrium potential between η and A for the time-reversed dynamics,

and cap(η,A) the capacity between η and A. If 〈V ∗
η,A〉π ≈ 1 (for instance, because

π(η) ≈ 1), we conclude that λ ≈ cap(η,A). On the other hand, choosing γ = b−1 as the
parameter for the enlarged process, for every η ∈ E,

b = γ−1 = E?
η

[
HE?

]
=

〈V ?,∗
η,E?〉π?

cap?(η,E?)
·

Once more, if 〈V ?,∗
η,E?〉π? ≈ 1, we conclude that b−1 ≈ cap?(η,E?), so that

Pη

[
HA ≤ b

]
≈ bλ ≈ cap(η,A)

cap?(η,E?)
.

The next lemma establishes this estimate.

Lemma 6.3. Fix a proper subset A of E. For every b > 0 and η ∈ E \A,

Pη

[
HA ≤ b

]
≤ 1

2
eγb

cap(η,A)

cap?(η,A t E?)
,

and

Pη

[
HA ≤ b

]
≤ eγb

1

γ π?(η)
cap?(A, E?) .
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Proof. Fix a proper subset A of E, b > 0 and η ∈ E \ A. Fix γ > 0, and consider the
γ-enlarged process. Denote by HE? the hitting time of the set E?. By definition of
the enlargement, under P?

η, HE? has an exponential distribution of parameter γ and is
independent of HA. Hence, by Lemma 6.1,

Pη

[
HA ≤ b

]
≤ eγbP?

η

[
HA ≤ HE?

]
. (6.5)

The previous probability is the value of the equilibrium potential between A and E?

computed at the configuration η, denoted hereafter by V ?
A,E? . By equation (3.3) in [32]

and by (6.2), the previous expression is bounded by

eγb
cap?(η,A)

cap?(η,A t E?)
=

1

2
eγb

cap(η,A)

cap?(η,A t E?)
·

This proves the first assertion of the lemma.

We may also rewrite the right-hand side of (6.5) as

eγb
1

π?(η)

∑
ζ∈EtE?

V ?
A,E?(ζ)1{η}(ζ)π?(ζ) ,

where 1{η} represents the indicator of the set {η}. By [6, Proposition A.2], the previous
sum is equal to

cap?(A, E?)E?,∗
νA,E?

[ ∫ HE?

0

1{η}(ξ∗(t)) dt
]
,

where P?,∗ represents the distribution of the process ξγ(t) reversed in time, and νA,E?

the equilibrium measure given by (6.4). By definition of the enlarged process, for
every initial condition η ∈ E, HE? has an exponential distribution of parameter γ. The
penultimate displayed equation is thus bounded by γ−1cap?(A, E?), which completes the
proof of the lemma.

Denote by ∂+A the exterior boundary of a set A:

∂+A =
{
η ∈ E \A : π(ξ)R(ξ, η) > 0 for some ξ ∈ A

}
.

Corollary 6.4. Fix a proper subset A of E. For every b > 0 and η ∈ E \A,

Pη

[
HA ≤ b

]
≤ e b

π(η)
cap(η,A) ≤ e b

2π(η)

∑
ξ∈∂+A

π(ξ)R(ξ,A) ,

where R(ξ,A) =
∑

ζ∈A R(ξ, ζ).

Proof. In view of (6.3), the first result of the preceding lemma gives

Pη

[
HA ≤ b

]
≤ eγb

cap(η,A)

π(η)γ + cap(η,A)
.

It suffices now to pick γ = b−1. For the second inequality note that

cap(η,A) ≤ cap(E \A,A) =
1

2

∑
ξ∈∂+A

π(ξ)R(ξ,A).
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