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Abstract

We study the metastable behaviour of a stochastic system of particles with hard-core
interactions in a high-density regime. Particles sit on the vertices of a bipartite graph.
New particles appear subject to a neighbourhood exclusion constraint, while existing
particles disappear, all according to independent Poisson clocks. We consider the
regime in which the appearance rates are much larger than the disappearance rates,
and there is a slight imbalance between the appearance rates on the two parts of
the graph. Starting from the configuration in which the weak part is covered with
particles, the system takes a long time before it reaches the configuration in which the
strong part is covered with particles. We obtain a sharp asymptotic estimate for the
expected transition time, show that the transition time is asymptotically exponentially
distributed, and identify the size and shape of the critical droplet representing the
bottleneck for the crossover. For various types of bipartite graphs the computations
are made explicit. Proofs rely on potential theory for reversible Markov chains, and
on isoperimetric results.
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1 Introduction and main results

1.1 Background

A metastable state in a physical system is a quasi-equilibrium that persists on a short
time scale but relaxes to an equilibrium on a long time scale, called a stable state. Such
behaviour often shows up when the system resides in the vicinity of a configuration
where its energy has a local minimum and is subjected to a small noise: in the short
run the noise is unlikely to have a significant impact on the system, whereas in the
long run the noise pulls the system away from the local minimum and triggers a rapid
transition towards a global minimum. When and how this transition occurs depends
on the depths of the energy valley around the metastable state and the shape of the
bottleneck separating the metastable state from the stable state, called the set of critical
droplets.

Metastability for interacting particle systems on lattices has been studied intensively
in the past three decades. Representative papers — dealing with Glauber, Kawasaki
and parallel dynamics (= probabilistic cellular automata) at low temperature — are [17],
[44], [38], [3], [35], [16], [18], [33], [27], [15], [21], [4]. Various different approaches to
metastability have been proposed, including:

(I) The path-wise approach, summarised in the monograph by Olivieri and Vares [45],
and further developed in [42] , [19], [20], [25], [43], [26].

(II) The potential-theoretic approach, initiated in [11], [12], [13] and summarised in
the monograph by Bovier and den Hollander [14].

Recently, there has been interest in metastability for interacting particle systems on
graphs, which is much more challenging because of lack of periodicity. See Dommers [22],
Jovanovski [36], Dommers, den Hollander, Jovanovski and Nardi [23], den Hollander
and Jovanovski [32], for examples. In these papers the focus is on Ising spins subject
to a Glauber spin-flip dynamics. Particularly challenging are cases where the graph is
random, because the key quantities controlling the metastable crossover depend on the
realisation of the graph.

In the present paper, we study the metastable behaviour of a stochastic system
of particles with hard-core interactions in a high-density regime. Particles sit on the
vertices of a bipartite graph. New particles appear subject to a neighbourhood exclusion
constraint, while existing particles disappear, all according to independent Poisson
clocks. We consider the regime in which the appearance rates are much larger than the
disappearance rates, and there is a slight imbalance between the appearance rates on
the two parts of the graph. Starting from the configuration in which the weak part (with
the smaller appearance rate) is covered with particles (= metastable state), the system
takes a long time before it reaches the configuration in which the strong part (with the
larger appearance rate) is covered with particles (= stable state).

We develop an approach for the hard-core model on general bipartite graphs that
reduces the description of metastability to understanding the isoperimetric properties
of the graph. The Widom-Rowlinson model on a given graph fits into our setting as the
hard-core model on an associated bipartite graph we call the doubled graph. Exploiting
the isoperimetric properties of the graph, we are able to obtain a sharp asymptotic
estimate for the expected transition time, show that the transition time is asymptoti-
cally exponentially distributed, and identify the size and shape of the critical droplet.
Interesting examples include the even torus, the doubled torus, the regular tree-like
graphs (with high girth) and the hypercube. The isoperimetric problem we deal with
is non-standard, but in some cases it can be reduced to certain standard edge/vertex
isoperimetric problems. In the case of the even torus and the doubled torus, we derive
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complete information on the isoperimetric problem and hence obtain a complete descrip-
tion of metastability. In the case of the regular tree-like graphs and the hypercube our
understanding of the isoperimetric problem is less complete, but we are still able to
obtain some relevant information on metastability. Proofs rely on potential theory for
reversible Markov chains and on isoperimetric results.

Earlier work on the same model [43] focused on the case where the appearance
rates are balanced, and lead to results in the high-density regime for the transition
time between the two stable configurations in probability, in expected value and in
distribution for finite lattices. The general framework in [43] was also exploited to derive
results for the balanced hard-core model on non-bipartite graphs (e.g. the triangular
lattice) [49] and for the Widom-Rowlison model [48].

In follow-up work we will use our results to study the performance of random-access
wireless networks. Here, customers arrive at the nodes of the network, but not all
the nodes are able to serve their customers at all times. Each node can be either
active or inactive, and two nodes connected by a bond cannot be active simultaneously.
This situation arises in random-access wireless networks where, due to destructive
interference, stations that are close to each other cannot use the same frequency band at
the same time. The nodes switch themselves on and off at a prescribed rate that depends
on how long they have been inactive, respectively, active. This switching protocol allows
the nodes to share the frequency band among one another. In [10] we analyse what
happens when the switching protocol is externally driven (i.e., given by prescribed
switching rates), in [9] when it is internally driven (i.e., given by the queue lengths). The
general problem is described in [50], where the need to develop mathematical tools to
assess the efficiency of different switching protocols is argued.

The remainder of the paper is organised as follows. In Section 1.2 we define the
model. In Section 1.3 we state and discuss three metastability theorems, which constitute
our main results. In Section 2 we provide a general description of metastable behaviour
of hard-core dynamics on bi-partite graphs, distinguishing between ‘simple examples’
and ‘sophisticated examples’. In Section 3 we make some preparations for the analysis
of the ‘sophisticated examples’. Section 4 gives the proof of the three metastability
theorems. Section 5 is devoted to the study of certain isoperimetric problems that arise
in the identification of the critical droplet. Section 6 describes in more detail what is
implied by the three metastability theorems for various concrete examples.

Along the way we need various tools from potential theory that are basic yet not
entirely standard. These are collected in three appendices in order to smoothen the
presentation. In Appendix A we recall the main ingredients of potential theory for re-
versible Markov chains, including the Nash-Williams inequalities for estimating effective
resistance. In Appendix B we develop a formulation of metastability for a parametrized
family of reversible Markov chains in a relevant asymptotic regime. In Appendix C we
provide proofs of various claims made in Section 5 and Appendices A and B, as well as
an important proposition in Section 1.3 identifying the critical gate for the metastable
crossover.

1.2 Model

We consider a system of particles living on a (finite, simple, undirected) connected
graph G = (V (G), E(G)), where V (G) is the set of vertices and E(G) is the set of
edges between them. We refer to vertices as sites. Each site of the graph can carry
0 or 1 particle, but we impose the constraint that two adjacent sites cannot carry
particles simultaneously. A (valid) configuration of the model is thus an assignment
x : V (G) → {0, 1} such that, for each pair of adjacent sites i, j, either xi = 0 or xj = 0.
Alternatively, a valid configuration can be identified by an independent set of the graph,
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i.e., a subset x ⊆ V (G) of sites having no edges between them. We will use these
two representations interchangeably, and with some abuse of notation use the same
symbol to denote the map x : V (G) → {0, 1} or the subset x ⊆ V (G). The set of valid
configurations is denoted by X ⊆ {0, 1}V (G).

The configuration of the system evolves according to a continuous-time Markov chain.
Particles appear or disappear independently at each site, at fixed rates depending on
the site and subject to the exclusion constraint. Namely, each site k has two associated
Poisson clocks ξbk and ξdk, signalling the (attempted) birth and death of particles:

Birth: Clock ξbk has rate λk > 0. Every time ξbk ticks, an attempt is made to place a
particle at site k. If one of the neighbours of site k carries a particle, or if there is
already a particle at k, then the attempt fails.

Death: Clock ξdk has rate 1. Every time ξdk ticks, an attempt is made to remove a particle
from site k. If the site is already empty, then nothing is changed.

All the clocks are assumed to be independent.
The parameter λk is called the activity or fugacity at site k. We are interested in the

asymptotic regime where λk � 1. It is easy to verify that the distribution

π(x) ,
1

Z

∏
k∈x

λk, (1.1)

(where Z is the appropriate normalising constant) is the unique (reversible) equilibrium
distribution for this Markov chain. Note that when λk � 1, the distribution π is mostly
concentrated at configurations that are close to maximal packing.

We prefer to develop our theory in the discrete-time setting. Therefore, we simulate
the above continuous-time Markov chain by means of a single Poisson clock ξ with rate
γ ,

∑
k∈V (G)(λk + 1) and a discrete-time Markov chain (independent of the clock) in the

standard fashion. In this case, the discrete-time Markov chain becomes a Gibbs sampler
for the distribution π: a transition of the discrete-time chain is made by first picking a
random site I with distribution (i 7→ 1+λi

γ ), and afterwards resampling the state of site I
according to π conditioned on the rest of the current configuration, i.e., according to
(0 7→ 1

1+λI
, 1 7→ λI

1+λI
) if the current configuration has no particle in the neighbourhood

of I, and (0 7→ 1, 1 7→ 0) otherwise. More explicitly, the transition probability from a
configuration x to a configuration y 6= x (both in X ) is given by

K(x, y) =


λi/γ if xi = 0, yi = 1, and xV (G)\{i} = yV (G)\{i},

1/γ if xi = 1, yi = 0, and xV (G)\{i} = yV (G)\{i},

0 otherwise.

(1.2)

The probability K(x, x) is simply chosen so as to make K a stochastic matrix.
In summary, the discrete-time chain (X(n))n∈N (where N , {0, 1, 2, . . .}) and the

continuous-time chain (X̂(t))t∈[0,∞) are connected via the coupling X̂(t) , X(ξ([0, t])),
where ξ is a Poisson process with rate γ independent of (X(n))n∈N. If T is a stopping
time for the discrete-time chain and T̂ is the corresponding stopping time for the
continuous-time chain, then we have the relation E[T ] = γ E[T̂ ].

The above process is the dynamic version of the hard-core gas model. Throughout
this paper, we assume that the underlying graph is bipartite, i.e., the sites of the graph
can be partitioned into two disjoint sets U and V in such a way that every edge of the
graph has one endpoint in U and the other endpoint in V . In the sequel, we will assume
that λk = λ for all k ∈ U and λk = λ̄ for all k ∈ V , where λ, λ̄ ∈ R+. A simple example
of a bipartite graph on which the hard-core dynamics exhibits very strong metastable
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behaviour is the complete bipartite graph (Fig. 3a) in which every site in U is connected
by an edge to every site in V : starting from the configuration u with particles at every
site in U , the system must first remove every single particle from U in order to be able to
place a particle on V and eventually reach the configuration v with particles at every site
in V . A more interesting example is an even torus graph Zm ×Zn (m and n even) with
nearest-neighbour edges, in which case U and V can be chosen to be the sets of sites for
which the sum of the coordinates is even or odd, respectively (Fig. 1a). A further class of
interesting examples arises from the two-species Widom-Rowlinson model, which has an
equivalent representation in our setting.

(a) An even torus (b) A hypercube

Figure 1: More examples of bipartite graphs.

The (dynamic) Widom-Rowlinson model (see e.g. Lebowitz and Gallavotti [39]) is
similar. In this model there are two types of particles, red and blue. Again, each site of
the graph can be occupied by at most one particle, which can be of either type, but the
exclusion constraint acts between opposite types only: two particles of opposite colour
cannot simultaneously sit on two neighbouring sites. The dynamics is governed by three
families of independent Poisson clocks:

Birth of red: Clock ξrbk has rate λr > 0. Every time ξrbk ticks, an attempt is made to place
a red particle at site k. If one of the neighbours of site k carries a blue particle, or
if there is already a particle on k, then the attempt fails.

Birth of blue: Clock ξbbk has rate λb > 0. Every time ξbbk ticks, an attempt is made to place
a blue particle at site k. If one of the neighbours of site k carries a red particle, or
if there is already a particle on k, then the attempt fails.

Death: Clock ξdk has rate 1. Every time ξdk ticks, an attempt is made to remove a particle
from site k. If the site is already empty, then nothing is changed.

The Widom-Rowlinson model on a graph G = (V (G), E(G)) has a faithful representa-
tion in terms of the hard-core process on a bipartite graph G[2] obtained from G, which
we call the doubled version of G (see Fig. 2). The graph G[2] has vertex set V (G[2]) ,
V (G) × {r, b} with two parts U [2] , {(k, r) : k ∈ V (G)} and V [2] , {(k, b) : k ∈ V (G)},
which are the coloured copies of V (G). There is an edge between a red site (i, r) and a
blue site (j, b) if and only if either i = j or (i, j) is an edge in E(G) (Fig. 2). There are
no edges between red sites nor between blue sites. The configurations of the Widom-
Rowlinson model on G are in obvious one-to-one correspondence with the configurations
of the hard-core model on G[2]. Namely, a configuration x of the Widom-Rowlinson model
corresponds to a configuration x[2] of the hard-core model on the doubled graph where
xi = r if and only if x(i,r) = 1 and xi = b if and only if x(i,b) = 1. Furthermore, this
correspondence is respected by the stochastic dynamics of the two models. So in short,
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studying the Widom-Rowlinson model on G amounts to studying the hard-core model on
the doubled graph G[2].

(a) A graph G (b) The doubled graph G[2] (c) A different drawing of G[2]

Figure 2: A graph and its doubled version.

1.3 Three metastability theorems

For the hard-core model on a bipartite graph (U, V,E), we write u for the configuration
that has a particle at every site of U , and v for the configuration that has a particle at
every site of V . For the activity parameters, we choose λk = λ for k ∈ U and λk = λ̄ for
k ∈ V , and we assume that

λ̄ = ϕ(λ) = λ1+α+o(1) as λ→ ∞, (1.3)

for some constant 0 < α < 1. In other words, the activities of the sites in V are slightly
stronger than the sites in U , and in particular λ = o(λ̄). The symmetric scenario in which
α = 0 is treated by Nardi, Zocca and Borst [43]. The assumption α < 1 is not crucial
but will shorten the arguments at the cost of excluding the less interesting cases in
which the critical droplet is trivial. In the present paper, we focus on the case in which
|U | < (1 + α) |V |. This ensures that v has the largest stationary probability among all
configurations. The opposite case can be treated similarly.

When λ → ∞, we expect noticeable metastability when starting from u. Namely,
although the configuration v takes up the overwhelmingly largest portion of the equi-
librium probability mass, the process starting from u remains in the vicinity of u for a
long time before the formation of a ‘critical droplet’ and the eventual transition to v.
The choice λ1+α+o(1) for ϕ(λ) ensures that the size of the critical droplet is non-trivial
(neither going to 0 nor to ∞ as λ→ ∞). With this choice, we may think of

H(x) , − |xU | − (1 + α) |xV | (1.4)

(where xU , x ∩ U and xV , x ∩ V ) as an appropriate notion of energy or height of
configuration x, although we should keep in mind that the probability π(x) and the
height H(x) are related only through the asymptotic equality π(x) = 1

Zλ
−H(x)+o(1). (In

particular, note that the factor λo(1) is allowed to go to ∞ as λ→ ∞.) This interpretation
provides the connection with the usual setting of metastability on which the current
paper is based. As it turns out, the factor λo(1) does not alter the size or shape of
the critical droplet, and only affects the transition time (see also Cirillo, Nardi and
Sohier [20]).

On a typical transition path from u to v, the configurations near the bottleneck (i.e.,
those representing the critical droplet) solve a (non-standard) isoperimetric problem
on the underlying bipartite graph. The isoperimetric cost of a set A ⊆ V is defined
as ∆(A) , |N(A)| − |A|, where N(A) is the neighbourhood of A, i.e., the set of sites
in U with a neighbour in A ⊆ V . The smallest possible isoperimetric cost for a set
of cardinality s is denoted by ∆(s). A set that achieves this minimum is said to be
isoperimetrically optimal. The isoperimetric problem associated with the graph (U, V,E)
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asks for the optimal values ∆(s) and the optimal sets. An isoperimetric numbering is
a sequence a1, a2, . . . , an of distinct elements in V such that for each 1 ≤ i ≤ n, the set
Ai , {a1, a2, . . . , ai} is isoperimetrically optimal. Our main results concern the hard-core
model on a bipartite graph with the above choices of the relevant parameters, and rely
on fairly general (though not necessarily easily verifiable) hypotheses regarding the
isoperimetric properties of the underlying graph. These hypotheses are not the most
general possible and can certainly be relaxed. Our goal is to show how they can be put to
use in a few concrete examples: the torus Zm ×Zn (where m and n are sufficiently large
even numbers), the hypercube Zm

2 , regular tree-like graphs and the doubled versions
of these (see Fig. 1–2). In the case of the torus, where we have a rather complete
understanding of the isoperimetric properties (via reduction to standard isoperimetric
problems), we verify that all the required hypotheses are indeed satisfied. For the other
examples, we are able to verify only some of the hypotheses, thereby obtaining only
partial results. Complete descriptions remain contingent upon a better understanding of
the corresponding isoperimetric problems.

Our first two theorems establish asymptotics for the mean and the distribution of
the crossover time (i.e., the hitting time of v starting from u). Let s∗ be the smallest
positive integer maximising g(s) , ∆(s)− α(s− 1). We call s∗ the critical size. Let s̃ be
the smallest integer larger than s∗ such that ∆(s̃) ≤ αs̃. We call s̃ the resettling size. The
required hypotheses for these two theorems are the following:

H0 |U | < (1 + α) |V |.

H1 There exists an isoperimetric numbering of length at least s̃.

H2 For every a ∈ V , there exists an isoperimetric numbering of length at least s̃
starting with a.

Clearly (H2) implies (H1). In fact, the following theorems require the stronger hypothe-
sis (H2) but we have stated (H1) for future reference. The existence of the resettling
size is ensured by hypothesis (H0).

Let T̂v , {t ≥ 0 : X(t) = v} be the first hitting time of configuration v.

Theorem 1.1 (Mean crossover time: order of magnitude). Suppose that condi-
tions (H0) and (H2) are satisfied. Then

Eu[T̂v] �
λ∆(s∗)+s∗−1

λ̄s∗−1
= λ∆(s∗)−α(s∗−1)+o(1) as λ→ ∞, (1.5)

where f(λ) � g(λ) means that f = O(g) and g = O(f) as λ→ ∞.

Theorem 1.2 (Exponential law for crossover time). Suppose that conditions (H0)
and (H2) are satisfied. Then

lim
λ→∞

Pu

(
T̂v

Eu[T̂v]
> t

)
= e−t uniformly in t ∈ R+. (1.6)

For the next theorem, we need a few extra definitions and hypotheses. Note that
Theorem 1.1 provides only the order of magnitude of the mean crossover time Eu[T̂v]

as λ → ∞. A more accurate asymptotics (the pre-factor) requires a more detailed
description of the bottleneck (the critical droplets), which in turn requires a better
understanding of the isoperimetric properties of the underlying graph. More specifically,
we need an understanding of the evolution of the set of occupied sites in V during the
crossover from u to v. We call a sequence of sets A0, A1, . . . , An ⊆ V a progression
from A0 to An if |Ai4Ai+1| = 1 for each 0 ≤ i < n. A progression A0, A1, . . . , An is
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isoperimetric if Ai is isoperimetrically optimal for each 0 ≤ i ≤ n. An α-bounded
progression is a progression A0, A1, . . . , An such that ∆(Ai) − α |Ai| ≤ ∆(s∗) − αs∗ for
each 0 ≤ i ≤ n.

For our third theorem we need two more hypotheses:

H3 The critical size s∗ is the unique maximiser of g(s) , ∆(s)− α(s− 1) in {0, 1, . . . , s̃}.

H4 There exist two families A,B of subsets of V such that

(a) the elements of A and B are isoperimetrically optimal with |A| = s∗ − 1 for
each A ∈ A and |B| = s∗ for each B ∈ B,

(b) for each A ∈ A, there is an isoperimetric progression from ∅ to A, consisting
only of sets of size at most s∗ − 1.

(c) for each B ∈ B, there is an isoperimetric progression from B to a set of size s̃,
consisting only of sets of size at least s∗,

(d) for every α-bounded progression A0, A1, . . . , An with A0 = ∅ and ∆(An) ≤
α |An|, there is an index 0 ≤ k < n such that Ak ∈ A and Ak+1 ∈ B.

We interpret an element of B as a critical droplet on V . Given two families A and
B satisfying (H4), we define two sets of configurations Q and Q∗ as follows. The set
Q∗ consists of configurations y such that yV = A and yU = U \ N(B) for some A ∈ A

and B ∈ B with |B \A| = 1. A configuration x is in Q if it can be obtained from a
configuration y ∈ Q∗ by adding a particle on U . We denote by [Q,Q∗] the set of possible
transitions x → y where x ∈ Q and y ∈ Q∗. In other words, [Q,Q∗] consists of pairs
(x, y) ∈ Q×Q∗ such that x and y differ by a single particle. The set [Q,Q∗] is an example
of what we call a critical gate (see Section B.5). Observe that

|[Q,Q∗]| ,
∑
A∈A

∑
B∈B

|B\A|=1

|N(B) \N(A)| . (1.7)

Theorem 1.3 (Critical gate). Suppose that conditions (H0), (H2) and (H3) are satisfied.
Suppose further that there are two families A and B of subsets of V satisfying (H4). Let
[Q,Q∗] be the above-mentioned set of transitions associated to A and B. Then

(i) (Mean crossover time: sharp asymptotics)

Eu[T̂v] =
1

|[Q,Q∗]|
λ∆(s∗)+s∗−1

λ̄s∗−1
[1 + o(1)] as λ→ ∞. (1.8)

(ii) (Passage through the gate)

With probability approaching 1 as λ→ ∞, the random trajectory from u to v makes
precisely one transition x → y from [Q,Q∗], every configuration that follows the
transition x→ y has at least s∗ particles on V , and every configuration preceding
x → y has at most s∗ − 1 particles on V . Moreover, the choice of the transition
x→ y is uniform among all possibilities in [Q,Q∗].

Verifying condition (H4) in concrete examples can be quite difficult. However, sacri-
ficing full generality, it is possible to give a rather explicit construction of families A and
B and replace (H4) with two other hypotheses that are more restrictive but much easier
to verify.
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Let 0 ≤ κ < 1/α be an integer (e.g., κ , d1/αe − 1) and define

A , {A ⊆ V : A is isoperimetrically optimal with |A| = s∗ − 1} , (1.9)

C , {C ⊆ V : C is isoperimetrically optimal with |A| = s∗ + κ} , (1.10)

B ,

B ⊆ V :

there exists an isoperimetric progression
B0, B1, . . . , Bn

with B0 ∈ A, Bn ∈ C and B1 = B

such that s∗ − 1 < |Bi| < s∗ + κ for 0 < i < n

 (1.11)

Observe that |B| = s∗ for every B ∈ B. Consider the following hypotheses:

H5 (a) ∆(s∗ + κ) ≥ ∆(s∗ + κ− 1),

(b) ∆(s∗ + i) ≥ ∆(s∗) for 0 ≤ i < κ,

(c) ∆(s∗) = ∆(s∗ − 1) + 1.

H6 (a) For each A ∈ A, there is an isoperimetric progression from ∅ to A, consisting
only of sets of size at most s∗ − 1.

(b) For each C ∈ C, there is an isoperimetric progression from C to a set of size s̃,
consisting only of sets of size at least s∗.

Proposition 1.4 (Identification of critical gate). Suppose that conditions (H0), (H1),
(H3), (H5) and (H6) are satisfied. Then the families A and B described above satisfy
condition (H4).

Theorems 1.1–1.3 are proved in Section 4 after the necessary preparations. In
Sections 2–3 and 6 we study the hard-core dynamics on general bipartite graphs and
look at both ‘simple examples’ and ‘sophisticated examples’, for which we identify s∗,
∆(s∗) and [Q,Q∗]. Section 5 is devoted to the isoperimetric problems associated with
the ‘sophisticated examples’. Appendix A recalls some basic facts from potential theory
for reversible Markov chains. Appendix B provides a characterisation of metastability in
terms of recurrence of metastable states and passage through bottlenecks. Appendix C
collects the proofs of all the propositions and lemmas appearing in Section 5 and
Appendices A and B. Proposition 1.4 is proved in Appendix C.12 via a detailed study of
typical paths near the critical droplet in Section 3.5.

2 Hard-core dynamics on bipartite graphs

In this section, we describe the metastable behaviour of the hard-core process on
bipartite graphs. We use the setting of Section 1, and along the way use some basic
results that are collected in Appendices A–B, adding pointers to the relevant definitions
listed there. After some preparatory observations (Section 2.1), we start by listing a
few ‘simple examples’ for which the above task can be carried out via simple inspection
(Section 2.2). For more ‘sophisticated examples’ the problem of identifying the critical
resistance and the critical gate lead to a (non-standard) combinatorial isoperimetric
problem (Section 2.3).

2.1 Preparatory observations

Recall that the underlying bipartite graph has two parts U and V . Particles are
added to or removed from each site independently with constant rates and subject to the
exclusion constraints prescribed by the graph. The rates of adding particles to empty
sites in U and V are λ and λ̄, respectively, and the rate of removing a particle from a
site is 1. We assume that λ̄ = ϕ(λ) = λ1+α+o(1) as λ→ ∞, where 0 < α < 1. We write u
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and v to denote the fully-packed configurations with particles at every site of U and V ,
respectively.

We let K be the transition kernel of the discrete-time version of the Markov chain,
and γ = (1 + λ) |U |+ (1 + λ̄) |V | the Poisson rate for the continuous-time Markov chain.
The stationary distribution of the Markov chain is

π(x) =
1

Z
λ|xU |λ̄|xV |, (2.1)

where xU = x ∩ U and xV = x ∩ V are the restrictions of the configuration x to U and V ,
respectively, and Z is the normalising constant. This has the asymptotic form

π(x) =
1

Z
λ−H(x)+o(1) as λ→ ∞, (2.2)

where H(x) , − |xU | − (1 + α) |xV | is the height or energy of configuration x. The
conductance between two configurations x, y ∈ X is given by

c(x, y) =
1

γ
max{π(x), π(y)} =

1

γZ
λ−min{H(x),H(y)}+o(1) (2.3)

when x and y differ at a single site, and 0 otherwise.
A transition between two distinct configurations x to y occurs by adding or removing

a particle. We denote a transition corresponding to adding a particle by x
+V−−→ y or

x
+U−−→ y, depending on whether the particle is added to V or to U . If we do not want to

emphasise where the new particle is placed, then we simply write x
+−→ y. Transitions

corresponding to removing a particle are denoted accordingly by x
−V−−→ y, x

−U−−→ y or

x
−−→ y.
In the asymptotic regime λ→ ∞, the configuration v is a stable state, in the sense

that it is recurrent on any time scale (see Section B.1), as long as |U | < (1 + α) |V |. Once
the chain reaches the state v, it spends an overwhelming portion of its time at v. In
particular, all the other states are transient on every time scale larger than supx 6=v Ex[Tv],
where Tv is the first hitting time of v (defined in (A.1)). Among the states other than v,
we expect u to be the most stable (absence of traps). This can be verified in concrete
examples but holds more generally under weak assumptions (see Section 3.3 below).
Our aim is to describe the transition from u to v, at least for some characteristic choices
of the underlying graph. Let J(a) and J−(a) denote the set of states whose stationary
probabilities are asymptotically at least as large as, respectively, asymptotically larger
than the stationary probability of a (see (B.1)). We need to

(i) identify Ψ
(
u, J(u)

)
, the critical resistance between u and J(u) (see (A.15)),

(ii) verify that the Markov chain has no trap state, i.e., every configuration x /∈ {u, v}
satisfies π(x)Ψ

(
x, J−(x)

)
≺ π(u)Ψ

(
u, J(u)

)
as λ→ ∞,

(iii) identify a critical gate between u and J(u) (see Section B.5).

Item (ii), together with Corollary B.7, shows the exponentiality of the distribution of
the transition time from u to v on the time scale π(u)Ψ(u, v). Items (i–iii), together with
Corollary B.4 and Propositions B.12–B.13, lead to a sharp asymptotic estimate for the
expected transition time and the identification of the shape of the critical droplets.

2.2 Simple examples

Example 2.1 (Complete bipartite graph). The most pronounced example of metasta-
bility of the hard-core process occurs when the underlying graph is a complete bipartite
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graph Km,n, i.e., |U | = m and |V | = n, and every site in U is connected by an edge to
every site in V (Fig. 3a). The configuration space is X = {0, 1}U ∪ {0, 1}V . We assume
that m ≤ (1 + α)n to make sure that the configuration v is a stable state, in particular,
v ∈ J(u). Note that every path from u to v has a transition from a configuration with a
single particle on U and no particle on V to the empty configuration ∅. Such a transition
has the largest resistance γ

λπ(∅) = γZλ−1. Therefore the critical resistance between u

and v is Ψ(u, v) = γ
λπ(∅) . On the other hand, from any other configuration x /∈ {u, v} it is

possible to add a new particle, which means that Ψ(x, J−(x)) � γ
λπ(x) . Therefore

π(x)Ψ(x, J−(x)) � γλ−1 ≺ γλ−1 π(u)

π(∅)
= π(u)Ψ(u, v), (2.4)

i.e., the chain has no trap. In particular, with R(u↔ v) the effective resistance between
u and v (see Appendix A.1),

Eu[Tv] = π(u)R(u↔ v)[1 + o(1)] as λ→ ∞ (2.5)

(Corollary B.4) with an asymptotic exponential law for Tv and its continuous-time version
T̂v (Corollary B.7), and rapid transition from u to v (Corollary B.5).

The effective resistance can now be accurately estimated by identifying the critical
gate between u and v (Proposition B.12), but for the sake of exposition, let us estimate
it by direct calculation. This is possible because of the high degree of symmetry in
the graph. Let W be the voltage when u is connected to a unit voltage source and v is
connected to the ground. By symmetry, all the configurations with i 6= 0 particles on U
have the same voltage. Therefore, by the short-circuit principle, we can identify them
with a single node, which we call

(
U
i

)
. Similarly, we can contract all the configurations

with j 6= 0 particles on V with a single node
(
V
j

)
. We then obtain a new network with

nodes {(
U
m

)
,
(

U
m−1

)
, . . . ,

(
U
1

)
,∅,

(
V
1

)
,
(
V
2

)
, . . . ,

(
V
n

)}
, (2.6)

where
(
U
i

)
is connected to

(
U
i−1

)
by a resistor with conductance

c∗(
(
U
i

)
,
(

U
i−1

)
) =

∑
x∈
(
U
i

) ∑
y∈
(

U
i−1

)
y∼x

c(x, y) = i

(
m

i

)
λi

Z γ
, (2.7)

and, similarly,
(
V
j

)
is connected to

(
V

j−1

)
by a resistor with conductance

c∗(
(
V
j

)
,
(

V
j−1

)
) = j

(
n

j

)
λ̄j

Z γ
. (2.8)

We now have, by the series law,

R(u↔ v) = R∗(
(
U
m

)
↔
(
V
n

)
) =

m∑
i=1

Z γ

i
(
m
i

)
λi

+

n∑
j=1

Z γ

j
(
n
j

)
λ̄j
. (2.9)

As λ → ∞, the dominant term is i = 1 (corresponding to removal of the last particle
from U ). Hence,

R(u↔ v) =
Z γ

mλ
[1 + o(1)]. (2.10)

EJP 23 (2018), paper 97.
Page 12/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

Alternatively, it is easy to see that if we let Q be the set of all configurations that
have a single particle on U and Q∗ , {∅}, then [Q,Q∗] (the set of probable transitions
between Q and Q∗ defined in (B.9)) is a critical gate between u and v, and we obtain
(Proposition B.12) that

C(u↔ v) = c(Q,Q∗)[1 + o(1)] = m
λ

γ Z
[1 + o(1)], (2.11)

where C(u↔ v) is the effective conductance between u and v (see Appendix A.1).
In conclusion,

Eu[Tv] =
1

m
γ λm−1[1 + o(1)] as λ→ ∞, (2.12)

for the hitting time in the discrete-time setting and Eu[T̂v] =
1
mλ

m−1[1 + o(1)] for the
hitting time in the continuous-time setting. Furthermore, we know that the trajectory
from u to v almost surely involves a transition through exactly one of the m transitions
Q→ Q∗, each occurring with probability 1/m (Proposition B.13). #

(a) A complete bipartite
graph

0

12

2n-2 2n-1

(b) An even cycle

0

1

2 2n-2

2n-1

(c) A path with odd length

0

1

2

2n-1

2n

(d) A path with even length

Figure 3: Some examples of bipartite graphs.

Example 2.2 (Even cycle). Suppose that the underlying graph is an even cycle Z2n

(Fig. 3b) with U = {0, 2, . . . , 2n − 2} and V = {1, 3, . . . , 2n − 1}. The critical transition
when going from u to v in an optimal path is between a configuration with a single
particle missing from a site in U and a configuration with two particles missing from
two consecutive sites in U . After that, the Markov chain can go “downhill” by adding
a particle to the freed site in V and continue alternating between moves −U and +V

until the stable configuration v is reached. Thus, if Q is the set of configurations with a
particle missing from a single site in U and Q∗ is the set of configurations with particles
missing from two consecutive sites in U , the critical gate is [Q,Q∗]. Assuming that there
is no trap state (i.e., π(x)Ψ(x, J−(x)) ≺ π(u)Ψ(u, v) for all x ∈ J(u) \ {v}), we find

R(u↔ v) =
1

2n
γZλ−(n−1)[1 + o(1)] as λ→ ∞, (2.13)

which gives

Eu[Tv] =
1

2n
γλ[1 + o(1)], (2.14)

Eu[T̂v] =
1

2n
λ[1 + o(1)],

in the discrete-time and continuous-time setting, respectively. The hitting times Tv and
T̂v are again asymptotically exponentially distributed, and the Markov chain undergoes
a rapid transition when going from u to v. Furthermore, the chain goes almost surely
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through exactly one of the critical transitions Q → Q∗ when going from u to v, each
chosen with probability 1

2n .

To see that the chain has no trap, we note that any configuration in J(u) must have
at least one particle on V . Thus from a configuration x ∈ J(u) \ {v}, it is either possible
to add a new particle on V or first remove a particle from U and then add a new particle
on V , so that π(x)Ψ(x, J−(x)) � γ as λ→ ∞. #

Example 2.3 (Path with odd length). Consider a path with odd length (Fig. 3c), and
let U = {0, 2, . . . , 2n− 2} and V = {1, 3, . . . , 2n− 1}. Despite its simplicity, this example
illustrates a phenomenon that is not present in the other examples considered in this
paper. Namely, the condition of absence of traps is not satisfied. As a result, the scaled
crossover time from u to v does not converge to an exponential random variable but to
the sum of n independent exponential random variables.

Indeed, consider the continuous-time process and assume that λ is very large. Start-
ing from u, it takes a rate 1 exponential time for each particle on U to be removed.
Once a particle is removed, it is quickly replaced by another particle in a time that is
o(1), so that at an overwhelming majority of times the system is at a maximally packed
configuration. If the particle is removed from any site other than 2n− 2, then the new
particle arrives necessarily at the same position, while if the particle is removed from
site 2n − 2, then the replacing particle arrives with probability 1 − o(1) at site 2n − 1.
In the next stage, after a time with an approximate exponential distribution, a particle
is removed from site 2n− 4 and is replaced with a particle at site 2n− 3. In the same
fashion, after n such replacements, the Markov chain reaches configuration v. Thus, in
the limit λ→ ∞, the crossover time T̂v starting from u becomes a sum of n independent
exponential random variables, each with rate 1.

Let us sketch how this can be made precise using the machinery of Appendices A–B.
For k ∈ {0, . . . , n − 1}, let qk denote the configuration with particles on {2i : i < 2(n −
k)} ∪ {2i+1 : i ≥ 2(n− k)}, and let q∗k be the configuration obtained from qk by removing
a particle from 2(n − k − 1). Observe that q0 = u and set qn , v. We can verify that
Ψ
(
qk, J(qk)

)
= r(qk, q

∗
k) = γ/π(qk) and that ({qk}, {q∗k}) is a critical pair between qk and

J(qk). Therefore, Corollary B.4 and Proposition B.12 imply that Eqk [TJ(qk)] = γ[1 + o(1)],
and Corollary B.7 shows that, starting from qk, the hitting time TJ(qk)/γ is asymptotically
exponentially distributed with rate 1. Proposition B.13 and the fact that K

(
q∗k, qk+1

)
=

λ̄/γ = 1 − o(1) imply that Pqk(TJ(qk) = Tqk+1
) = 1 − o(1). It follows that, as λ → ∞,

the scaled crossover time Tqn/γ converges in distribution to a sum of n independent
exponential random variables with rate 1 corresponding to the segments Tqk+1

− Tqk . #

Example 2.4 (Path with even length and even endpoints). The hard-core process
on a path with even length (Fig. 3d) has quite a different behaviour. Let U = {0, 2, . . . , 2n}
and V = {1, 3, . . . , 2n− 1}, so both endpoints of the path belong to U . In this case, the
trajectory from u to v is closer to the hard-core model on an even cycle (Example 2.2).
We similarly find that

Eu[T̂v] =
1

2n
λ[1 + o(1)] as λ→ ∞, (2.15)

with an asymptotic exponential law for T̂v. #

Example 2.5 (Even cyclic ladder). Let the underlying graph be the cyclic ladder
Z2n×Z2 (Fig. 4a) with U , {(i, j) : i+j = 0 (mod 2)} and V , {(i, j) : i+j = 1 (mod 2)}.
Every site in the graph has three neighbours. Let Q be the set of configurations that are
obtained from u by removing two particles from the neighbourhood of a site k ∈ V , and
Q∗ the set of configurations that are obtained from u by removing three particles from
the neighbourhood of a site k ∈ V . We may verify that [Q,Q∗] is a critical gate, and that
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the Markov chain has no trap. There are 6n possible transitions Q→ Q∗, each having
resistance γZλ−(n−2). It follows that state u undergoes a metastability transition with

Eu[T̂v] =
1

6n
λ2[1 + o(1)] as λ→ ∞, (2.16)

and from u the distribution of T̂v/Eu[T̂v] converges to an exponential random variable
with unit rate. Furthermore, the transition occurs within a shorter period compared to
1
6nλ

2 and goes (with a probability tending to 1) through exactly one of the moves Q→ Q∗,
each with probability 1

6n . #

(a) A cyclic ladder (b) A doubled even cycle

Figure 4: A doubled even cycle is isomorphic to a cyclic ladder.

Example 2.6 (Widom-Rowlinson on an even cycle). As discussed earlier, the Widom-
Rowlinson model on a graph is equivalent to the hard-core model on the doubled version
of that graph. This example reduces to Example 2.5 after we note that the doubled graph
of a cycle Z2n is isomorphic to a cyclic ladder (Fig. 4). #

Note that in each of the above examples, the expected transition time Eu[T̂v] and
the critical gate are independent of the parameter α. This is not consistent with the
physical intuition of a critical droplet as a point of balance between the cost of removing
particles from U and the gain of placing particles on V . Such physical intuition becomes
the key to identifying the critical gate when the underlying graph has a more geometric
structure. We will keep as our guiding example an even torus Zm ×Zn.

2.3 Sophisticated examples

The problem of identifying the critical gate between u and v (or u and J(u)) gives
rise to a combinatorial isoperimetric problem. The reason for the appearance of an
isoperimetric problem can be intuitively understood as follows. When λ is large, the
Markov chain tends to remain at configurations of particles that are close to maximal
packing arrangements. Whenever one or more particles disappear from the graph,
other particles quickly replace them, though potentially on different sites. Since the
disappearance of particles is a much slower process, the typical trajectories tend to
go through configurations that require the removal of the least possible number of
particles. The system thus tends to make the transition from u to v by growing a droplet
of closely-packed particles on V in such a way as to require the removal of less particles
from U . In particular, near the bottleneck between u and v (i.e., close to the largest
necessary deviation), the system typically goes through maximal packing configurations
that are as efficient as possible, playing the role of critical droplet. Near the bottleneck,
the system solves the optimisation problem of maximal packing with a constraint on the
number of particles on V , i.e., the size of the critical droplet.

EJP 23 (2018), paper 97.
Page 15/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

Let us therefore define (recall the notation introduced in Section 1.3)

∆(x) , |U \ xU | − |xV | = |U | − |x| for x ∈ X ,

∆(A) , |N(A)| − |A| for A ⊆ V ,

∆(s) , inf{∆(A) : A ⊆ V and |A| = s}
= inf{∆(x) : x ∈ X and |xV | = s} for s ∈ N. (2.17)

Note that the stationary probability of a configuration x ∈ X with s , |xV | can be
written as

π(x) = π(u)
λ̄|xV |

λ|U\xU | = π(u)λ̄sλ−s−∆(x), (2.18)

which is bounded from above by

π(u)λ̄sλ−s−∆(s) = π(u)λ−∆(s)+αs+o(1) (2.19)

as λ → ∞. We call ∆(A) and ∆(x) the isoperimetric cost of A and x. The (bipartite)
isoperimetric problem asks for the sets A of fixed cardinality that minimise the cost
∆(A). We say that A is (isoperimetrically) optimal if ∆(A) = ∆(|A|). More generally,
we say that A is ε-optimal when ∆(A) ≤ ∆(|A|) + ε. Similarly, we call a configuration x
ε-optimal when ∆(x) ≤ ∆(|xV |) + ε.

Let us also introduce some terminology to describe evolutions of subsets of V .
A sequence of subsets A0, A1, . . . , An ⊆ V is called a progression from A0 to An if
|Ai4Ai+1| = 1 for each 0 ≤ i < n. A progression A0, A1, . . . , An is nested if A0 ⊆
A1 ⊆ · · · ⊆ An and isoperimetric if Ai is isoperimetrically optimal for each 0 ≤ i ≤ n.
A nested isoperimetric progression from A0 = ∅ to An is associated with a sequence
a1, a2, . . . , an of distinct elements in V with Ak , {a1, a2, . . . , ak}. We call such a sequence
an isoperimetric numbering of (some) elements of V .

The relevance of the isoperimetric problem will be further clarified in the following
sections. For now, we mention four non-trivial examples of graphs for which we know
(partial) solutions for the isoperimetric problem.

Example 2.7 (Even torus). Rather than the isoperimetric problem on the torus Zm×Zn,
we describe the solutions of the isoperimetric problem on the infinite lattice Z×Z. These
solutions would be valid for the torus as long as the sets that we are considering are small
enough that they cannot wrap around the torus. The solutions are obtained via reduction
to the standard edge isoperimetric problem whose solutions are well known [29, 2]. The
argument for the reduction is given in Section 5.1.1.

The latticeZ×Zwith the nearest neighbour edges is bipartite with U = {(a, b) : a+b =
0 (mod 2)} and V = {(a, b) : a+ b = 1 (mod 2)}. The isoperimetric function s 7→ ∆(s) on
Z×Z is given by

∆(`2 + i) = 2(`+ 1) for ` > 0 and 0 < i ≤ `, (2.20)

∆(`(`+ 1) + j) = 2(`+ 1) + 1 for ` ≥ 0 and 0 < j ≤ `+ 1, (2.21)

and ∆(0) = 0, which can also be written in a concise algebraic form

∆(s) =
⌈
2
√
s
⌉
+ 1 (2.22)

for s > 0. The optimal sets A realising ∆(|A|) are the following:

• A set A ⊆ V with |A| = `2 is optimal if and only if it consists of a tilted square of
size ` (see Fig. 5a, Eq. (2.21) and Sec. 5.1.1).
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• A set A ⊆ V with |A| = `2 + i with 0 < i ≤ ` is optimal if and only if it consists of a
tilted square of size ` plus a row of i elements along one of the four sides of the
square (see Fig. 5b, Eq. (2.20) and Sec. 5.1.1).

• A set A ⊆ V with |A| = `(`+1)+ j with 0 < j ≤ ` is optimal if and only if it consists
of a tilted `× (`+ 1) rectangle plus a row of j elements along one of the four sides
of the rectangle (see Fig. 5c, Eq. (2.21) and Sec. 5.1.1).

We point out that some of the optimal sets described above can be generated by
suitable isoperimetric numberings. Indeed, if we number the elements of V in an spiral
fashion as in Fig. 6a, then every initial segment of this numbering is an optimal set. Note,
however, that some optimal sets will not be captured by such a numbering. For instance,
the example in Fig. 6b cannot be extended to an optimal set one element larger. #

(a) |A| = `2. (b) |A| = `2 + i. (c) |A| = `(`+ 1) + j.

Figure 5: Solutions of the bipartite isoperimetric problem on the lattice/torus.

21
20 22

19 7 23
18 6 8

17 5 1 9
16 4 2 10

15 3 11
14 12

13

(a) An isoperimetric numbering. (b) A non-extendible optimal set.

Figure 6: The bipartite isoperimetric problem on the lattice/torus via isoperimetric
numberings.

Example 2.8 (Doubled torus). As in the previous example, we concentrate on the
infinite lattice Z×Z rather than the torus Zm ×Zn. The solutions for small cardinalities
will coincide up to translations.

Consider the doubled lattice, which is a bipartite graph with parts U , Z×Z×{r} and
V , Z×Z×{b}. Note that the set of neighbours of a set A×{b} ⊆ V is

(
A∪N(A)

)
×{r},

where N(A) denotes the neighbourhood of A in the original lattice. In particular, the
bipartite isoperimetric cost of a set A × {b} is simply |N(A) \A|, which is the size of
the vertex boundary of A in Z × Z. This is indeed the case for every doubled graph
(Observation 5.3). It follows that the bipartite isoperimetric problem on the doubled
lattice is equivalent to the vertex isoperimetric problem on the lattice.
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The vertex isoperimetric problem on the lattice has been addressed by Wang and
Wang [47], who found optimal sets of every cardinality. Their solutions are given by an
isoperimetric numbering that identifies an infinite nested family of optimal sets. Fig. 7a
illustrates an isoperimetric numbering similar to but somewhat different from that of
Wang and Wang.

The isoperimetric function s 7→ ∆(s) on the doubled lattice can now be given by

∆(`2 + (`− 1)2 + i) =



4` if i = 0,

4`+ 1 if 1 ≤ i < `,

4`+ 2 if ` ≤ i < 2`,

4`+ 3 if 2` ≤ i < 3`,

4`+ 4 if 3` ≤ i < 4`.

(2.23)

and ∆(0) = 0. Note that every positive integer can be written in a unique way as
`2 + (`− 1)2 + i with ` > 0 and 0 ≤ i < 4`.

Characterising all the optimal sets is more complicated. Vainsencher and Bruck-
stein [46] have obtained a characterisation of the optimal sets with certain cardinalities,
namely, those with i ∈ {0, `− 1, 2`− 1, 3`− 1} in (2.23). A characterisation of the optimal
sets of other cardinalities is still missing. See Section 5.2.1 for further details and some
conjectures. #

16

17 7 15 27

18 8 2 6 14 26

19 9 3 1 5 13 25

20 10 4 12 24

21 11 23

22

(a) An isoperimetric numbering. (b) A non-extendible optimal set.

Figure 7: The isoperimetric problem on the doubled lattice/torus via isoperimetric
numberings.

Example 2.9 (Tree-like regular graphs and their doubled graphs). Consider a
d-regular graph G in which every cycle has length at least `, where d ≥ 2 and ` is large.
Such a graph locally looks like a tree, in particular, every ball of radius r < `/2 in G
induces a tree.

First, suppose that G is bipartite with two parts U and V . If G were an infinite
d-regular tree, then every non-empty finite set A ⊆ V would satisfy |N(A)| ≥ (d−1) |A|+1

with equality if and only if A ∪ N(A) is connected. This follows by induction or by a
double counting argument. The same holds for a finite tree-like regular graph as long as
|A| < `/2. In particular, ∆(s) = (d− 2)s+ 1 for 0 < s < `/2. Any sequence a1, a2, . . . , am
with m < `/2, satisfying N(ai) ∩ N({a1, . . . , ai−1}) 6= ∅ for 1 < i ≤ m, would make an
isoperimetric numbering.

Next, let us consider the isoperimetric problem on the doubled graph G[2] with
U , V (G) × {r} and V , V (G) × {b}. In this case, we can easily verify that every
∅ 6= Ā , A×{b} ⊆ V with |A| < `−1 satisfies

∣∣N [2](Ā)
∣∣−∣∣Ā∣∣ = |N(A) \A| ≥ (d−2) |A|+2
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with equality if and only if A is connected in G. In particular, ∆(s) = (d − 2)s + 2

for 0 < s < ` − 1. An isoperimetric numbering of length ` − 2 is obtained by any
sequence (a1, b), (a2, b), . . . , (a`−2, b) ∈ V satisfying the condition that ai is connected to
{a1, . . . , ai−1} for each 1 < i ≤ `− 2. #

Example 2.10 (Hypercube and doubled hypercube). The d-dimensional hypercube
is a graph Hd whose vertices are the binary words w ∈ {0, 1}d and in which two vertices
a and b are connected by an edge if they disagree at exactly one coordinate, i.e., if their
Hamming distance is 1. The bipartite isoperimetric problem on the doubled graph H [2]

d

is equivalent to the vertex isoperimetric problem on Hd (Observation 5.3).
The hypercube Hd itself is bipartite with U , {w : ‖w‖ = 0 (mod 2)} and V , {w :

‖w‖ = 1 (mod 2)}, where ‖w‖ denotes the number of 1s in w. It is interesting to note

that the doubled hypercube H [2]
d is isomorphic to the (d + 1)-dimensional hypercube

Hd+1 (Observation 5.4). Therefore, the solution of the vertex isoperimetric problem
on hypercubes of arbitrary dimension also solves the bipartite isoperimetric problem
on hypercubes. If A ⊆ V (Hd) is an optimal set for the vertex isoperimetric problem
on Hd, then the set Â , {wa : w ∈ A and ‖wa‖ = 1 (mod 2)} is optimal for the bipartite
isoperimetric problem on Hd+1 and vice versa.

For the vertex isoperimetric problem on Hd, Harper [30] provided an isoperimetric
numbering of the entire graph (see also Bezrukov [8], Harper [31]). This numbering is
obtained by ordering the elements of {0, 1}d first according to the number of 1s, and then
according to the reverse lexicographic order among the words with the same number
of 1s. More specifically, the vertices of Hd are numbered according to the total order
�, where w � w′ when ‖w‖ < ‖w′‖, or when ‖w‖ = ‖w′‖ and there is a k ∈ {1, 2, . . . , d}
such that wi = w′

i for i < k and wk = 1 and w′
k = 0. Bezrukov [7] has obtained a

characterisation of the optimal sets of some but not all cardinalities.
For every 0 ≤ r ≤ d, the Hamming balls

B(d)
r (w) , {w′ : w and w′ disagree on at most r coordinates} (2.24)

around vertices w ∈ {0, 1}d are the optimal sets of cardinality
∑r

i=0

(
d
i

)
. In particular,

we have ∆d+1

(∑r
i=0

(
d
i

))
=
(

d
r+1

)
, where ∆d+1 denotes the bipartite isoperimetric cost

in Hd+1, or equivalently, the vertex isoperimetric cost in Hd. In Section 5.2.2, we will
derive a recursive expression for the value of ∆d+1(s) for general s. #

3 Preparation for sophisticated examples

Before we proceed with the ‘sophisticated examples’ of Section 2.3, we need some
further preparation. One advantage of working with bipartite graphs is that there is
a natural ordering on the configuration space (Section 3.1). We exploit this ordering
to identify the critical resistance (Section 3.2), and prove the absence of trap states
(Section 3.3) under certain assumptions on the solutions of the isoperimetric problem.
The identification of the critical gate requires a detailed combinatorial analysis of the
configurations close to the critical droplet (Sections 3.4–3.5). At various places we add
pointers to definitions collected in Appendices A–B.

3.1 Ordering and correlations

An advantage of working with bipartite graphs is that the space of valid hard-core
configurations on a bipartite graph admits a natural partial ordering. The transition
kernel of the hard-core process is monotone with respect to this ordering and its unique
stationary distribution is positively associated. Furthermore, two hard-core processes
whose parameters satisfy appropriate inequalities can be coupled in such a way as to
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ensure that one always dominates the other. This ordering has earlier been exploited in
the equilibrium setting by van den Berg and Steif [5].

For two configurations x, y ∈ X , we write x v y if xU ⊇ yU and xV ⊆ yV . The relation
v is a partial order and turns X into a lattice. The supremum x ∨ y and infimum x ∧ y of
two configurations x, y ∈ X are given by

(x ∨ y)V , xV ∪ yV and (x ∨ y)U , xU ∩ yU ,
(x ∧ y)V , xV ∩ yV and (x ∧ y)U , xU ∪ yU . (3.1)

For every two finite sets A,B we clearly have

|A ∪B|+ |A ∩B| = |A|+ |B| . (3.2)

It follows that the stationary distribution of the hard-core process satisfies

π(x ∨ y)π(x ∧ y) = π(x)π(y) for all x, y ∈ X . (3.3)

By the theorem of Fortuin, Kasteleyn and Ginibre (see e.g. Grimmett [28, Section 4.2]),
the above condition guarantees that π is positively associated, i.e., π(A ∩B) ≥ π(A)π(B)

for every two increasing events A,B ⊆ X . We will, however, use the condition in (3.3)
directly.

The monotonicity of the transition kernel K can be seen via a direct coupling: given
two configurations x, x′ ∈ X where x v x′, it is easy (e.g. via the construction described
in Section 1.2) to construct two copies of the Markov chain {X(n)}n∈N and {X ′(n)}n∈N
with X(0) = x and X ′(0) = x′ such that almost surely X(n) v X ′(n) for all n ∈ N.

Let us mention an extension of the latter observation that we will need in follow-up
work. Let (λ1, λ̄1) and (λ2, λ̄2) be two choices for the activity parameters of the sites in U
and V , and assume that λ1 ≥ λ2 and λ̄1 ≤ λ̄2. Given x(1), x(2) ∈ X satisfying x(1) v x(2),
we can construct a coupling {(X̂(1)(t), X̂(2)(t))}t∈[0,∞) of the continuous-time hard-core
processes with parameters (λ1, λ̄1) and (λ2, λ̄2), respectively, in such a way that almost
surely X̂(1)(t) v X̂(2)(t) for all t ∈ [0,∞). Namely, we use the same clocks ξdk for the
death of particles in both systems and we couple the birth clocks ξb,1k and ξb,2k used for

X̂(1) and X̂(2) such that ξb,1k ⊇ ξb,2k for k ∈ U and ξb,1k ⊆ ξb,2k for k ∈ V .

3.2 Paths and progressions

Heuristically, we expect the transition from u to v to happen through the formation
and growth of a droplet of particles on V . Such a growth process can be described by a
progression from ∅ to V .

Progressions correspond to paths in the configuration space X in a natural way.
First, if ω , ω(0) → ω(1) → · · · → ω(n) is a path in X , then the sequence A0, A1, . . . , Am

obtained after removing repetitions from ωV (0), ωV (1), . . . , ωV (n) is a progression. We
call this progression the trace of ω on V . Conversely, given a progression A0, A1, . . . , Am,
we can construct a path ω in the following fashion (see Fig. 8). The path ω consists of
segments corresponding to transitions Ai−1 → Ai for i = 1, 2, . . . ,m. At the beginning of
the segment corresponding to Ai−1 → Ai, the path is at the configuration with particles
on Ai−1 and U \N(Ai−1). If Ai−1 ( Ai, the path then proceeds by removing particles one
by one from the neighbours of the unique site ai ∈ Ai \Ai−1 and then placing a particle
at ai. If Ai−1 ) Ai, the path ω does the reverse: it first removes the particle that is on
the unique site ai ∈ Ai−1 \Ai and then places particles on the neighbours of ai, one after
another. Observe that the trace of the path ω thus obtained is precisely the progression
A0, A1, . . . , Am. In particular, there are indices 0 = k0 < k1 < · · · < km = n such that
ωV (ki) = Ai and ωU (ki) = U \ N(Ai). We call the sequence ω(k0), ω(k1), . . . , ω(km) the
backbone of ω.
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ω(k0)

ω(ki)
ω(km)

−U

−U

−U

+V
−U

−U

+V
−V

+U

+U
−U

−U

−U

−U

+V

+V
−U

+V
−U

+V− log π − log π

Figure 8: The path associated to a typical progression. The configurations in the
backbone are marked with squares.

The path associated to a progression is locally optimal, in the sense that the critical
resistance of the segment ω(ki−1) → ω(ki−1 + 1) → · · · → ω(ki) corresponding to
Ai−1 → Ai achieves Ψ

(
ω(ki−1), ω(ki)

)
. When the progression is isoperimetric, the critical

resistance of the associated path has a sharp upper bound in terms of the isoperimetric
function ∆(s).

Lemma 3.1 (Critical resistance of an isoperimetric progression). Let A0, A1, . . . ,

Am be an isoperimetric progression, and set smin , min{|Ai| : 0 ≤ i ≤ m} and smax ,
max{|Ai| : 0 ≤ i ≤ m}. The critical resistance of the associated path ω (defined in (A.16))
satisfies

Ψ(ω) ≤ γ

π(u)

λ∆(s†)+s†−1

λ̄s†−1
=

γ

π(u)
λ∆(s†)−α(s†−1)+o(1) as λ→ ∞, (3.4)

where s† is a maximiser of the function g(s) , ∆(s)−α(s−1) over the set {smin+1, smin+

2, . . . , smax}. Furthermore, the equality holds provided the progression is nested and
N(A1) 6⊆ N(A0).

See Appendix C.9 for the proof.

We say that a path ω = ω(0) → ω(1) → · · · → ω(n) is monotone when ω(i) v ω(i+ 1)

for each i, in other words, when ω consists only of transitions of the type −U (i.e.,
removing of a particle from U ) and +V (i.e., adding a particle to V ). Observe that the
trace of a monotone path is a nested progression. Conversely, the path associated to a
nested progression is monotone. We call the path associated to a nested isoperimetric
progression a standard path. Clearly, the configurations in the backbone of a standard
path are isoperimetrically optimal. Moreover, every configuration x on a standard path
that is not part of the backbone satisfies ∆(s) ≤ ∆(x) ≤ ∆(s+ 1) + 1 where s , |xV |. An
argument for the following lemma can be found in Appendix C.9.

Lemma 3.2 (Optimality of standard paths). Every standard path is optimal.

Assuming the existence of sufficiently long isoperimetric numberings, Lemmas 3.1
and 3.2 can be combined to identify the critical resistance between u and J(u).

Proposition 3.3 (Identification of the critical resistance). Let s̃ > 0 be an integer
such that ∆(s̃) ≤ αs̃, and let s∗ be a maximiser of the function g(s) , ∆(s) − α(s − 1)

over the set {1, . . . , s̃}. Suppose that an isoperimetric numbering of at least s̃ vertices in
V exists. Then the critical resistance between u and J(u) is given by

Ψ
(
u, J(u)

)
=

γ

π(u)

λ∆(s∗)+s∗−1

λ̄s∗−1
=

γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1) as λ→ ∞. (3.5)
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3.3 Absence of traps

In this section we provide a general condition for the absence of traps (i.e.,
π(x)Ψ(x, J−(x)) ≺ π(u)Ψ(u, J(u)) for every x ∈ X \ {u, v}). The argument provided
in Appendix C.10 is an adaptation of the one for Glauber dynamics of the Ising model
(see Bovier and den Hollander [14, Section 17.3.1]), and crucially relies on the presence
of a partial ordering on the configuration space with respect to which the stationary
distribution satisfies the FKG condition (3.3). Although the following proposition does
not cover all the possible cases, it is simple and requires only a simple assumption.

Proposition 3.4 (Absence of traps). Assume that |U | < (1 + α) |V |. Suppose further
that, for every j ∈ V , there is a standard path ω : u ; J(u) such that the first particle
that ω places on V is at j. Then every configuration x /∈ {u, v} satisfies π(x)Ψ

(
x, J−(x)

)
≺

π(u)Ψ
(
u, J(u)

)
as λ→ ∞.

The hypothesis of Proposition 3.4 can be rewritten in terms of isoperimetric number-
ings, hence providing an isoperimetric criterion for the absence of traps.

Corollary 3.5 (Absence of traps via isoperimetric numberings). Suppose that hy-
potheses (H0) and (H2) are satisfied (see Sec. 1.3). Then every configuration x /∈ {u, v}
satisfies π(x)Ψ

(
x, J−(x)

)
≺ π(u)Ψ

(
u, J(u)

)
as λ→ ∞.

3.4 Critical gate and progressions

Once we establish the absence of traps, we can use Corollary B.4 to write the mean
crossover time Eu[Tv] in terms of the effective resistance R(u ↔ J(u)). As we saw
in Proposition B.12, a sharp estimate for the effective resistance R(u ↔ J(u)) can be
obtained if we are able to identify the critical gate between u and J(u).

The purpose of hypothesis (H4) in Section 1.3 was to describe the critical gate
between u and J(u) in terms of the isoperimetric properties of the underlying graph.
The following proposition clarifies this connection and is verified in Appendix C.12.

Proposition 3.6 (Critical gate in terms of progressions). Suppose that hypothe-
ses (H1), (H3) and (H4) (see Sec. 1.3) are satisfied, and let Q and Q∗ be the described
sets of configurations. Then, the pair (Q,Q∗) is a critical pair (in the sense of Sec. B.5)
between u and J(u).

3.5 Optimal paths close to the bottleneck

In order to identify the critical gate between u and J(u), we need an understanding
of the optimal paths from u to J(u) at and around the bottleneck. In this section, we
demonstrate that the configurations close to the bottleneck in every such optimal path
have to be almost isoperimetrically optimal. We state the lemmas in general setting, but
the reader should keep the even torus (Example 2.7) as a guiding example.

We assume that there is a standard path between u and J(u), and we let s∗ be as in
Proposition 3.3. We use the shorthand

d∆(s) , ∆(s)−∆(s∗), ds , s− s∗, (3.6)

for s ∈ N. We verify that, near the bottleneck, every basic step of an optimal path is
through an isoperimetrically optimal configuration.

Let ω = ω(0) → ω(1) → · · · → ω(n) be a path on the configuration space. We call ω(k)
a basic step of ω when ω(k−1) or when ω(k+1) has less particles than ω(k). Note that if
ω(k−1) has less particles than ω(k), then we get r

(
ω(k−1), ω(k)

)
= γ

π(ω(k)) , and similarly,

if ω(k + 1) has less particles than ω(k), then r
(
ω(k), ω(k + 1)

)
= γ

π(ω(k)) . Therefore, in

either case, the critical resistance of ω satisfies Ψ(ω) ≥ γ
π(ω(k)) .
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The following three lemmas indicate the isoperimetric optimality of basic configu-
rations in an optimal path u ; J(u) when it passes the bottleneck. The proofs can be
found in Appendix C.11.

Lemma 3.7 (Optimality close the bottleneck). Let ω : u ; J(u) be an arbitrary
optimal path, and let x be a basic configuration in ω with s particles on V . Suppose that
d∆(s) + ε ≥ α(ds+ 1) for some ε ≥ 0. Then x is isoperimetrically ε-optimal. In particular,
x is optimal when s < s∗ + 1/α − 1 and ∆(s) ≥ ∆(s∗).

Lemma 3.8 (Optimality close the bottleneck). Let ω : u ; J(u) be an arbitrary
optimal path, and let x be the first configuration in ω that has s + 1 particles on V .
Suppose that ∆(s + 1) ≥ ∆(s) and d∆(s) + ε ≥ α(ds + 1) for some ε ≥ 0. Then x

is isoperimetrically ε-optimal. In particular, x is optimal when s < s∗ + 1/α − 1 and
∆(s+ 1) ≥ ∆(s) ≥ ∆(s∗).

Let t∗ , |U | − s∗ −∆(s∗) denote the number of particles on U in an isoperimetrically
optimal configuration that has s∗ particles on V .

Lemma 3.9 (Optimality close the bottleneck). Let ω : u ; J(u) be an arbitrary
optimal path and assume that s∗ ≥ 2 and ∆(s∗) = ∆(s∗ − 1) + δ for some δ ≥ 0. Let ω(q)
be a basic configuration in ω with at least s∗ particles on V . Let ω(p) (with p < q) be the
last basic configuration before ω(q) with less than s∗ − 1 particles on V . Then the next
basic configuration after ω(p) has s∗ − 1 particles on V and at least t∗ + 2 particles on U .
In particular, it is isoperimetrically (δ − 1)-optimal.

The next proposition combines the above three lemmas to describe an isoperimetric
constraint on the optimal paths u ; J(u), which in some cases will help us identify the
critical gate. See Fig. 9 for an illustration.

ω(p) ω(i)

x

y

z

ω(q)

−U

+V
−U

+U
−U

−U
+U

+U
−U

−U

+V
−U

+U

−V
+V

−U

+V
−U

+V
−U

+V
−U

+V
−U

+V

Figure 9: An example of an optimal path near the bottleneck. In this example, |zV | = s∗

and ∆(s∗) = ∆(s∗ − 1) + 1. The circled configurations are isoperimetrically optimal.
There are no basic configurations beyond the dashed line.

Proposition 3.10 (Constraint on optimal paths). Assume that hypotheses (H1) and
(H3) are satisfied. Let κ be an integer satisfying 0 ≤ κ < 1/α. (For instance, we can take
κ , d1/αe − 1.) Suppose that ∆(s∗ + κ) ≥ ∆(s∗ + κ− 1), ∆(s∗ + i) ≥ ∆(s∗) for 0 ≤ i < κ,
and ∆(s∗) = ∆(s∗ − 1) + δ for some δ ≥ 1. Then every optimal path u ; J(u) contains a

segment x
−U−−→ y

+V−−→ z with the following properties:

(a) z is an isoperimetrically optimal configuration with |zV | = s∗,

(b) x is an isoperimetrically δ-optimal configuration and A , xV is an isoperimetrically
(δ − 1)-optimal set,

(c) there is an isoperimetric progression B0, B1, . . . , B` with B0 = zV and |B`| = s∗ + κ

such that |Bi| ≥ s∗ for all i.

See Appendix C.11 for the proof.
As we saw in Proposition 3.6, finding two families A,B satisfying hypothesis (H4) of

Section 1.3 allows us to identify the critical gate between u and J(u). With the help of
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Proposition 3.10, we can replace hypothesis (H4) with hypotheses (H5) and (H6) and
prove Proposition 1.4. See Appendix C.12 for the proof of Proposition 1.4.

4 Proof of the three metastability theorems

4.1 Mean crossover time: order of magnitude

Proof of Theorem 1.1. As discussed in Section 1.2, we chose to work with the discrete-
time version of the Markov chain, so we estimate Eu[Tv] and use the relation Eu[Tv] =

γ Eu[T̂v]. We apply Corollary B.4 with a , u and Z , {v} to get

Eu[Tv] = π(u)R(u↔ J(u))[1 + o(1)] as λ→ ∞. (4.1)

The assumption of absence of traps used in Corollary B.4 follows from Corollary 3.5
and hypotheses (H0) and (H2). From Proposition A.2, we know that R(u ↔ J(u)) �
Ψ
(
u, J(u)

)
as λ→ ∞. Proposition 3.3 together with (H2) gives

Ψ
(
u, J(u)

)
=

γ

π(u)

λ∆(s∗)+s∗−1

λ̄s∗−1
=

γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1) as λ→ ∞. (4.2)

The claim follows.

4.2 Exponential law for crossover time

Proof of Theorem 1.2. Apply Corollary B.7 with a , u and Z , {v}. The assumption of
absence of traps used in Corollary B.7 follows from Corollary 3.5 and hypotheses (H0)
and (H2). To see that the other assumption π(u)Ψ

(
u, J(u)

)
� 1 holds, recall that the

underlying graph is assumed to be connected. Therefore, the first move of every path
ω : u ; J(u) is of the type −U (i.e., removing a particle from U ) and

Ψ
(
u, J(u)

)
� r
(
u, ω(1)

)
=

γ

π(u)
as λ→ ∞, (4.3)

using (2.3). Hence, π(u)Ψ
(
u, J(u)

)
� γ � 1.

4.3 Critical gate

Proof of Theorem 1.3.

(i) As in the proof of Theorem 1.1, we estimate Eu[Tv] and use the relation Eu[Tv] =

γ Eu[T̂v] to get a corresponding estimate for Eu[T̂v]. Hypotheses (H0) and (H2)
imply the absence of traps via Corollary 3.5, so we can apply Corollary B.4 with
a , u and Z , {v}, to get

Eu[Tv] = π(u)R(u↔ J(u))[1 + o(1)] as λ→ ∞. (4.4)

To estimateR(u↔ J(u)), we identify a critical gate between {u} and J(u) and apply
Proposition B.12. Since conditions (H1), (H3) and (H4) are satisfied, Proposition 3.6
implies that the sets Q and Q∗ form a critical pair between {u} and J(u). Therefore

R(u↔ J(u)) =
1 + o(1)

c(Q,Q∗)
, (4.5)

where c(Q,Q∗) ,
∑
x∈Q

∑
y∈Q∗

x∼y

c(x, y). On the other hand, whenever x ∈ Q and y ∈ Q∗

and x ∼ y, the configuration y is obtained from x by removing a particle from U , and
furthermore, yV = A and yU = U \N(B) for some A ∈ A and B ∈ B with |B \A| = 1.
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Therefore, |xV | = |A| = s∗ − 1 and |xU | = |U \N(B)| + 1 = |U | − |N(B)| + 1 =

|U | − s∗ −∆(s∗) + 1. Therefore

c(x, y) =
1

γ
π(x) =

1

γ
π(u)

λ̄|xV |

λ|U\xU | =
1

γ
π(u)

λ̄s
∗−1

λs∗+∆(s∗)−1
. (4.6)

Combining (4.4), (4.5) and (4.6), the result follows.

(ii) We apply Proposition B.13 with a , u and B , {v}. From Proposition 3.6 and
using (H1), (H3) and (H4), we know that (Q,Q∗) is a critical pair between {u}
and J(u). Corollary 3.5 and hypotheses (H0) and (H2) imply the absence of traps.
Observe that in absence of traps, a critical pair between {u} and J(u) is also
a critical pair between {u} and {v}. The result now follows after we observe
from (4.6) that for all pairs x ∈ Q and y ∈ Q∗ with x ∼ y, the conductance c(x, y)
has the same value.

5 Sophisticated examples: the isoperimetric problem

The bipartite isoperimetric problem introduced in Section 2.3 belongs to a general
class of combinatorial isoperimetric problems. An isoperimetric problem on a graph asks
for a set of vertices with a given cardinality that has the smallest boundary. Depending
on how we measure the size of the boundary of a set (called the isoperimetric cost), we
get various versions of the isoperimetric problem. In this section, we study the bipartite
isoperimetric problem for the examples of graphs considered in Section 2.3 by reducing
the problem to classical isoperimetric problems for which more information is available.
In Section 5.1, we derive the solutions of the bipartite isoperimetric problem on the
torus by reducing it to the edge isoperimetric problem. In Section 5.2, we study cases in
which the bipartite isoperimetric problem can be reduced to the vertex isoperimetric
problem.

5.1 Reduction to edge isoperimetry

5.1.1 Even torus

The aim of this section is to derive the solutions of the bipartite isoperimetric problem on
an even torus, which are described in Example 2.7. For simplicity, we first consider the
bipartite isoperimetric problem on the infinite lattice Z×Z. We follow the approach of
den Hollander, Nardi and Troiani [34] to reduce the problem to the standard edge isoperi-
metric problem on the lattice. The edge isoperimetric problem on the two-dimensional
square lattice was solved by Harary and Harborth [29], and later independently (and
more completely) by Alonso and Cerf [2].

Let us start by recalling the edge isoperimetric problem on graphs. Consider a locally
finite graph G. The edge boundary of a set A ⊆ V (G), denoted by ∂A, is the set of
edges between A and its complement. The edge isoperimetric problem on G is the
isoperimetric problem in which |∂A| is counted as the isoperimetric cost of A.

Now, let G be bipartite with parts U and V , and assume that G is r-regular. For a
finite set A ⊆ V , we get the identity

r |N(A)| = r |A|+
∣∣∂(A ∪N(A)

)∣∣ (5.1)

by counting the edges incident to N(A) in two ways (recall that N(A) is the set of
edges in U with a neighbour in A ⊆ V ). As a result, we get the following convenient
representation of the bipartite isoperimetric cost (see Fig. 10a).

Observation 5.1 (Isoperimetric cost in regular graphs). Let G = (U, V,E) be an
r-regular bipartite graph. Then ∆(A) = 1

r

∣∣∂(A ∪N(A)
)∣∣ for every A ⊆ V . In words, the
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bipartite isoperimetric cost of A is the same as the edge isoperimetric cost of A ∪N(A)

up to a constant factor.

(a) Representation in the original lattice.

1 1

2 3 2 2 2 1

1 3 3 2 3 3 1

2 4 3 2 3 2

1 2 3 3 2 2 1

1 1 1 1

(b) Representation in the lattice L.

Figure 10: An example of a set A ⊆ V . The elements of A are represented as solid blue
circles, and the elements of N(A) as red circles. The isoperimetric cost ∆(A) is the
total length of the green contours, which are the dual representation of ∂

(
A ∪N(A)

)
.

The number k represents an element of Nk(A). The lattice L is rotated by 45 degrees
compared to the original lattice to improve visualisation. The centers of the cells in L
(carrying the numbers) are connected to the four corner points, as in the original lattice
(see Fig. 5).

Let us next return to the infinite lattice Z×Z, which is 4-regular and bipartite, with
parts U = {(a, b) : a + b = 0 (mod 2)} and V = {(a, b) : a + b = 1 (mod 2)}. According
to Observation 5.1, minimising the isoperimetric cost ∆(A) for A ⊆ V amounts to
minimising the size of the edge boundary ∂

(
A ∪N(A)

)
. Let us partition N(A) into four

sets N1(A), N2(A), N3(A), N4(A), where Nk(A) consists of those elements in N(A) that
have precisely k neighbours in A. Clearly,∣∣∂(A ∪N(A)

)∣∣ = 3 |N1(A)|+ 2 |N2(A)|+ |N3(A)| . (5.2)

Let us next consider the graph L obtained from the odd sites V by putting an edge
between (a, b) and (a′, b′) if and only if |a′ − a| = |b′ − b| = 1 (see Fig. 10b). Observe that
L is isomorphic to the original lattice Z×Z. Divide the set N2(A) further into two sets
N1100(A) and N1010(A), according to whether the two neighbours in A are connected by
an edge of L or not, i.e.,

N1100 , {p ∈ N2(A) : N(p) ∩A = {i, j} and (i, j) ∈ E(L)} ,
N1010 , {p ∈ N2(A) : N(p) ∩A = {i, j} and (i, j) /∈ E(L)} . (5.3)

Denoting the edge boundary of A ⊆ V = V (L) in L by ∂LA, we have the identity

2 |∂LA| = 2 |N1(A)|+ 2 |N1100(A)|+ 4 |N1010(A)|+ 2 |N3(A)| , (5.4)

which is obtained by counting, in two different ways, the number of triangles (e, e′, e′′),
where e ∈ ∂LA, e′ ∈ ∂

(
A ∪N(A)

)
and e′′ ∈ ∂A.

Recalling (2.17), and combining (5.2) and (5.4), we get

∆(A) =
1

4

∣∣∂(A ∪N(A)
)∣∣ = 1

2
|∂LA|+

1

4

(
|N1(A)| − 2 |N1010(A)| − |N3(A)|

)
(5.5)

for every finite A ⊆ V .
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It can be verified by direct inspection that every non-empty set A ⊆ V that is optimal
with respect to the edge boundary in L satisfies |N1(A)| − 2 |N1010(A)| − |N3(A)| = 4.
We claim that the same equality holds when A is optimal with respect to the bipartite
isoperimetric cost ∆.

Lemma 5.2 (Optimality). Let A ⊆ V be a non-empty finite set that is optimal
with respect to the bipartite isoperimetric cost ∆. Then N1010(A) = ∅ and |N1(A)| −
|N3(A)| = 4.

A proof of the above lemma can be found in Appendix C.13.

In conclusion, we have the equality

∆(A) =
1

2
|∂LA|+ 1 (5.6)

for every non-empty A ⊆ V that is optimal either with respect to the edge boundary in L
or with respect to the bipartite isoperimetric cost ∆. It follows that the solutions of the
bipartite isoperimetric problem on the lattice Z×Z coincide with the solutions of the
edge isoperimetric problem on the lattice L. The edge boundary of an optimal set with s
vertices has size 2d2

√
se and the optimal sets in L are those described in Example 2.7.

Thus, ∆(s) = d2
√
se+ 1 for s > 0 and the optimal sets with respect to ∆ are as described

in Example 2.7.

Finally, we argue that the solutions of the bipartite isoperimetric problem on an even
torus Zm ×Zn are the same (modulo translations) as the solutions for the infinite lattice
Z×Z as long as the size of the set is small compared tom and n. To see why, it is enough
to note that if A has less than 1

4 min{m,n} vertices, then it cannot “sense” the distinction
between Zm × Zn and Z× Z. More precisely, let A be an optimal set in Zm × Zn with
|A| < 1

4 min{m,n}. Then, the pre-image of A under the canonical projection from Z×Z to
Zm×Zn can be partitioned into countably many sets A′

i (for i ∈ Z×Z) such that each A′
i

is a translated copy of A and the sets A′
i∪N(A′

i) are disjoint. In particular, that |A′
i| = |A|

and ∆(A′
i) = ∆(A). Conversely, if A′ is an optimal set in Z× Z with |A| < 1

4 min{m,n},
then A′ ∪ N(A′) is connected (see the proof of Lemma 5.2). It is easy to see that the
canonical projection of Z × Z onto Zm × Zn maps every connected set with less than
min{m,n} elements injectively. In particular, if A denotes the projection of an optimal
set A′, then A is a translated copy of A′ and we have |A| = |A′| and ∆(A) = ∆(A′).

5.2 Reduction to vertex isoperimetry

In the vertex isoperimetric problem, the size of the boundary of a set A is measured
as |N(A) \A|. The bipartite isoperimetric problem on a doubled graph G[2] is equivalent
to the vertex isoperimetric problem on the original graph G.

Observation 5.3 (Reduction to vertex isoperimetry). Let G be a locally finite graph
and let G[2] be its doubled version. Let U , V (G) × {r} and V , V (G) × {b} be the
two parts of G[2]. Then ∆(A× {b}) = |NG(A) \A| for every A ⊆ V (G), i.e., the bipartite
isoperimetric cost of A × {b} in G[2] coincides with the vertex isoperimetric cost of A
in G.

Observation 5.4 (Doubled version of bipartite graphs). The doubled version of a
bipartite graph G is isomorphic to the Cartesian product G×Z2, where Z2 is the graph
with two vertices and an edge between them.

The doubled version of a non-bipartite graph is similar, except that it has a “Möbius
twist” along each odd cycle (see Fig. 2 and Fig. 4).
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5.2.1 Doubled torus

According to Observation 5.3, the bipartite isoperimetric problem on a doubled torus is
equivalent to the vertex isoperimetric problem on a torus. Since we will be concerned
only with sets that are small in comparison with the dimensions of the torus, we may
consider the infinite lattice Z × Z instead. As mentioned in Example 2.8, Wang and
Wang [47] have produced an isoperimetric numbering for the vertex isoperimetric
problem on Z× Z. Vainsencher and Bruckstein [46] have provided a characterisation
of the optimal sets of certain critical cardinalities. A complete characterisation of the
optimal sets for the remaining cardinalities is beyond the scope of this paper. In this
section, we propose a conjecture that, if true, will allow us to obtain sharp asymptotics
for the metastable transition in the Widom-Rowlinson model on a torus.

Every positive integer s has a unique representation s = `2 + (`− 1)2 + r where ` > 0

and 0 ≤ r < 4`. Note that 4` = (`−1)+`+`+(`+1). We call a number s = `2+(`−1)2+r

critical if r ∈ {0, `− 1, 2`− 1, 3`− 1}. Observe from (2.23) that ∆(s) is non-decreasing
with ∆(s + 1) > ∆(s) if and only if s is a critical cardinality. It follows that an optimal
set A has a critical cardinality if and only if it is also co-optimal, meaning that it has
maximum cardinality among all sets B with ∆(B) = ∆(A). A set that is both optimal and
co-optimal is called Pareto optimal.

For A ⊆ Z× Z and k ≥ 0, let Nk(A) denote the set of sites within graph distance k
from A, i.e., the ball of radius k around A. Vainsencher and Bruckstein [46] have shown
that a non-empty set is Pareto optimal if and only if it has the form Nk(S) for k ≥ 0 and a
set S that is obtained by translation and rotation from one of the basic forms in Fig. 11a.
We call the set S the seed of Nk(S).

I II IIIa IIIb IV

(a) The seeds generating the Pareto optimal sets (up to rotations and translations).

N `−1(S) N `−2(S) N `−1(S) N `−1(S) N `−1(S)︸ ︷︷ ︸
`2 + (` − 1)2 `2 + (` − 1)2 + ` − 1 `2 + (` − 1)2 + 2` − 1 `2 + (` − 1)2 + 3` − 1

(b) Examples of sets generated from the seeds and their cardinalities.

Figure 11: Every Pareto optimal set (i.e., an optimal set with a crtical cardinality) on the
lattice is generated by a seed.

Pareto optimal sets of consecutive types can be connected via nested isoperimetric
progressions.

EJP 23 (2018), paper 97.
Page 28/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

Observation 5.5 (Existence of connecting progressions).

(a) Let S and S′ be seeds of type I and II of Fig. 11a, respectively, and suppose that
N(S) ⊆ S′. Then, for every ` ≥ 2, there is a nested isoperimetric progression from
N `−1(S) to N `−2(S′).

(b) Let S and S′ be seeds of type II and III of Fig. 11a, respectively, and suppose that
S ⊆ N(S′). Then, for every ` ≥ 2, there is a nested isoperimetric progression from
N `−2(S) to N `−1(S′).

(c) Let S and S′ be seeds of type III and IV of Fig. 11a, respectively, and suppose that
S ⊆ S′. Then, for every ` ≥ 1, there is a nested isoperimetric progression from
N `−1(S) to N `−1(S′).

(d) Let S and S′ be seeds of type IV and I of Fig. 11a, respectively, and suppose that
S ⊆ N(S′). Then, for every ` ≥ 1, there is a nested isoperimetric progression from
N `−1(S) to N `(S′).

As an immediate consequence, we find that Pareto optimal sets are achieved via
isoperimetric numberings.

Observation 5.6 (Pareto optimal sets via optimal numberings). Every Pareto opti-
mal set is of the form A = {a1, a2, . . . , an} for some unbounded isoperimetric numbering
a1, a2, . . ..

In order to identify the critical gate for the Widom-Rowlinson model on a torus, we
will also need some information about all isoperimetric progressions connecting Pareto
optimal sets of consecutive types. This requires a better understanding of the optimal
sets with non-critical cardinalities, which we do not have. Nonetheless, we make the
following conjecture.

Conjecture 5.7 (Property of connecting progressions).

(a) Let B0, B1, . . . , Bn be an isoperimetric progression with |B0| = `2 + (`− 1)2 + `− 1

and |Bn| = `2 + (` − 1)2 + 2` − 1 and |B0| < |Bi| < |Bn| for 0 < i < n. Let S0 be
the seed of B0 and Sn the seed of Bn, so that B0 = N `−2(S0) and Bn = N `−1(Sn).
Then, S0 ⊆ N(Sn) and B0 ⊆ B1 ⊆ Bn.

(b) Let B0, B1, . . . , Bn be an isoperimetric progression with |B0| = `2 + (`− 1)2 + 3`− 1

and |Bn| = (`+1)2+`2 and |B0| < |Bi| < |Bn| for 0 < i < n. Let S0 be the seed of B0

and Sn the seed of Bn, so that B0 = N `−1(S0) and Bn = N `(Sn). Then, S0 ⊆ N(Sn)

and B0 ⊆ B1 ⊆ Bn.

5.2.2 Hypercube

According to Observations 5.3 and 5.4, the bipartite isoperimetric problem on the
(d+ 1)-dimensional hypercube Hd+1 is equivalent to the vertex isoperimetric problem on
the d-dimensional hypercube Hd. In this section, we present a recursive expression for
the vertex isoperimetric function on the hypercube.

As mentioned in Example 2.10, from Harper’s isoperimetric numbering [30], we can
immediately see that ∆d+1

(∑r−1
i=0

(
d
i

))
=
(
d
r

)
for 0 < r ≤ d. (Recall: ∆d+1 is the vertex

isoperimetric function of the d-dimensional hypercube Hd.) More generally, we can use
the numbering to obtain a recursive expression for ∆d+1.
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Proposition 5.8 (Isoperimetric function of the hypercube). For 0 ≤ k ≤
(
d
r

)
, we

can write

∆d+1

(
r−1∑
i=0

(
d

i

)
+ k

)
=

(
d

r

)
+ ψd(r, k)− k , (5.7)

where ψd(r, k) satisfies the recursion

ψd(r, k) =


ψd−1(r − 1, k) if 0 < r < d and 0 < k ≤

(
d−1
r−1

)
,(

d−1
r

)
+ ψd−1

(
r, k −

(
d−1
r−1

))
if 0 < r < d and

(
d−1
r−1

)
< k ≤

(
d
r

)
,

0 otherwise.

(5.8)

The proof can be found in Appendix C.13.

6 Sophisticated examples: key results

After having collected in Section 3 the relevant tools, we are now ready to apply
our results to the ‘sophisticated examples’ in Section 2.3: torus, doubled torus, regular
tree-like graph, hypercube. In the case of the torus where a complete solution of
the isoperimetric problem is known, we obtain a complete picture of the metastable
transition from u to v. In the case of the doubled torus, the complete picture relies on
the validity of Conjecture 5.7. In other cases we obtain an incomplete picture that is still
informative.

6.1 Hard-core on an even torus

In this section, we combine our results to give a description of the metastable
transition of the hard-core dynamics on an even torus Zm ×Zn. We assume 0 < α < 1,
2/α /∈ Z and m,n � 1/α. Since we have detailed results about the solution of the
isoperimetric problem, we can use the general theory in Sections 2–3 to obtain a
complete picture of the transition from u to v: exponential distribution for the crossover
time, sharp estimate for the expected crossover time, and a detailed description of the
critical droplet.

As discussed in Example 2.7 (and proved in Section 5.1.1), the isoperimetric function
of Zm ×Zn is given by ∆(s) = d2

√
se+ 1 as long as s� m,n. The proof of the following

lemma can be found in Appendix C.14.

Lemma 6.1 (Critical size: torus). Suppose 0 < α < 1 and 2/α /∈ Z, and let ∆(s) be
the isoperimetric function of a torus Zm ×Zn with even m,n� 1/α. Then, the function
g(s) = ∆(s) − α(s − 1) has a unique maximum on N , {0, 1, . . .} at s∗ , `∗(`∗ − 1) + 1,
where `∗ , d1/αe.

Finding the exact value of resettling size s̃ (i.e., the smallest s for which ∆(s) ≤ αs) is
not necessary. It is sufficient to note that s̃ exists (the inequality is achieved for instance
for s > 8/α2) and is independent of m and n (as long as m,n� 1/α).

Hypothesis (H0) is clearly satisfied. The existence of isoperimetric numberings of
length at least s̃ was demonstrated in Example 2.7 (as long as s̃� m,n). Hence hypoth-
esis (H1) and (by translation symmetry) hypothesis (H2) are both satisfied. Therefore,
Theorems 1.1 and 1.2 establish the asymptotic exponentiality of the crossover time and
provide the estimate

Eu[T̂v] �
λ`

∗(`∗+1)+1

λ̄`∗(`∗−1)
= λ2`

∗+1−α`∗(`∗−1)+o(1) as λ→ ∞, (6.1)

for its mean, where `∗ , d1/αe.
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A more accurate estimate on the mean crossover time as well as a description
of the critical droplet is provided by Theorem 1.3, which relies on hypotheses (H3)
and (H4). Hypothesis (H3) is already verified in Lemma 6.1. Proposition 1.4 reduces
the verification of (H4) to the verification of simpler conditions (H5) and (H6). Choose
κ , d1/αe − 1 = `∗ − 1. Conditions (H5.a) and (H5.b) follow from the monotonicity
of ∆(s) =

⌈
2
√
s
⌉
+ 1, and (H5.c) is evident via direct calculation ∆(s∗) = 2`∗ + 1 and

∆(s∗−1) = 2`∗. In order to verify (H6), observe that s∗−1 = `∗(`∗−1) and s∗+κ = (`∗)2.
From the characterisation of the isoperimetrically optimal sets in Example 2.7, we find
that

• A consists precisely of tilted (`∗ − 1)× `∗ rectangles, and

• C consists precisely of tilted `∗ × `∗ squares

of elements of V . Conditions (H6.a) and (H6.b) follow immediately from the existence of
isoperimetric numberings of length at least s̃ and symmetry.

In order to identify the family B, recall from Example 2.7 that each isoperimetrically
optimal set B with |B| = s∗ = (`∗ − 1)`∗ + 1 consists of an element of A ∈ A (i.e., an
(`∗−1)×`∗ tilted rectangle) and an extra site b along one of the four sides of the rectangle
(see Fig. 5c). Observe that if b is along a longer edge of A, then B can be extended via
a nested isoperimetric progression to an element of C (i.e., an `∗ × `∗ tilted rectangle),
whereas if b is along a shorter edge of A, then every isoperimetric progression from B to
C must pass through A. Therefore,

• B consists precisely of tilted (`∗ − 1)× `∗ rectangles plus an extra element along
one of the two longer sides of the rectangle.

A typical transition through the critical gate [Q,Q∗] is depicted in Figure 12.

−→

Figure 12: A typical transition through the critical gate for the torus. The critical length
`∗ is assumed to be 6. The ‘hole’ is along one of the two long edges of the rectangle.
Once a two-site ‘hole’ is produced, with probability close to 1 a (blue) particle appears
very quickly in the opened-up space.

Counting the number of possible transitions in the critical gate using (1.7), we get

|[Q,Q∗]| = |V | × 2× 2`∗ × 2 = 4mn`∗ . (6.2)

Theorem 1.3 thus gives the sharp estimate

Eu[T̂v] =
1

4mn`∗
λ`

∗(`∗+1)+1

λ̄`∗(`∗−1)
[1 + o(1)] as λ→ ∞, (6.3)

for the expected crossover time.
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6.2 Widom-Rowlinson on a torus

As observed in Section 1.2, the Widom-Rowlinson dynamics on the torus Zm ×Zn is
equivalent to the hard-core dynamics on the doubled torus. We assume that 0 < α < 1,
4/α /∈ Z and m,n � 1/α. The isoperimetric function ∆(s) on the doubled is provided in
Example 2.8, using the equivalence of the bipartite isoperimetric problem on a doubled
torus and the vertex isoperimetric problem on the torus and the known result about
the vertex isoperimetric problem on the torus. We shall obtain the exponentiality of the
distribution of the crossover time and the order of magnitude of its expected value. A
sharp asymptotic for the expected crossover time and a description of the critical droplet
are obtained assuming Conjecture 5.7 regarding the solutions of the vertex isoperimetric
problem on Z×Z is true.

The proof of the following lemma appears in Appendix C.14.

Lemma 6.2 (Critical size: doubled torus). Suppose 0 < α < 1 and 4/α /∈ Z, and
let ∆(s) be the isoperimetric function of the doubled version of a torus Zm × Zn with
m,n� 1/α. Then the function g(s) = ∆(s)− α(s− 1) has a unique maximum on N at

s∗ ,

{
(`∗)2 + (`∗ − 1)2 + `∗ if `∗ > 1/α,

(`∗)2 + (`∗ − 1)2 + 3`∗ if `∗ < 1/α,
(6.4)

where `∗ , [1/α] is the closest integer to 1/α.

As in the previous section, finding the exact value of resettling size s̃ (i.e., the smallest
s for which ∆(s) ≤ αs) is not necessary. It is sufficient to observe that s̃ exists (the
inequality is achieved for instance for s > (2/α+1)2 + (2/α)2 − 1) and is independent of m
and n (as long as m,n� 1/α).

Hypothesis (H0) is clearly satisfied. The existence of isoperimetric numberings
of length at least s̃ was demonstrated in Example 2.8 (as long as s̃ � m,n). As a
result, hypothesis (H1) and (by translation symmetry) hypothesis (H2) are both satisfied.
Theorems 1.1 and 1.2 thus establish the asymptotic exponentiality of the crossover time
and provide the estimate

Eu[T̂v] �


λ(`

∗+1)2+(`∗)2+`∗+1

λ̄(`∗)2+(`∗−1)2+`∗−1
if `∗ > 1/α,

λ(`
∗+1)2+(`∗)2+3`∗+3

λ̄(`∗)2+(`∗−1)2+3`∗−1
if `∗ < 1/α,

as λ→ ∞, (6.5)

for its mean, where `∗ , [1/α] is the closest integer to 1/α.
A more accurate estimate on the mean crossover time as well as a description of the

critical droplet is provided by Theorem 1.3, which relies on hypotheses (H3) and (H4).
Hypothesis (H3) is already verified in Lemma 6.2. Proposition 1.4 reduces the verification
of (H4) to the verification of simpler conditions (H5) and (H6). Choose κ , d1/αe − 1,
which coincides with either `∗ or `∗−1, depending on whether the fractional part of 1/α is
smaller or larger than 1/2. Conditions (H5.a) and (H5.b) follow from the monotonicity of
∆(s). Condition (H5.c) becomes evident once we note that ∆(s) = ∆(s− 1)+ 1 whenever
s = `2 + (`− 1)2 + ` or s = `2 + (`− 1)2 + 3`.

To proceed, let us consider the two cases `∗ > 1/α and `∗ < 1/α separately.

Case 1: `∗ > 1/α. So, s∗ = (`∗)2 + (`∗ − 1)2 + `∗ and κ = `∗ − 1.
In order to verify (H6), observe that s∗ − 1 = (`∗)2 + (`∗ − 1)2 + `∗ − 1 and s∗ + κ =

(`∗)2 + (`∗ − 1)2 + 2`∗ − 1 are critical cardinalities of types II and III (see Fig. 11). From
the characterisation of Pareto optimal sets in Section 5.2.1, we find that

• A consists precisely of sets N `∗−2(S) where S is a seed of type II, and
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• C consists precisely of sets N `∗−1(S′) where S′ is a seed of type III.

Conditions (H6.a) and (H6.b) follow from Observation 5.6.
Assuming Conjecture 5.7 is true, and using Observation 5.5, we obtain a characteri-

sation of B.

• B consists precisely the sets B with |B| = s∗ such that N `∗−2(S) ⊆ B ⊆ N `∗−1(S′)

for some seeds S and S′ of type II and III where S ⊆ N(S′).

A typical transition through the critical gate [Q,Q∗] is depicted in Figure 13a.
Counting the number of possible transitions in the critical gate using (1.7), we get

|[Q,Q∗]| = |V | × 4× 3`∗ × 2 = 24mn`∗ . (6.6)

Theorem 1.3 thus gives the sharp estimate

Eu[T̂v] =
1

24mn`∗
λ(`

∗+1)2+(`∗)2+`∗+1

λ̄(`∗)2+(`∗−1)2+`∗−1
[1 + o(1)] as λ→ ∞, (6.7)

for the expected crossover time.

Case 2: `∗ < 1/α. So, s∗ = (`∗)2 + (`∗ − 1)2 + 3`∗ and κ = `∗.
In order to verify (H6), observe that s∗ − 1 = (`∗)2 + (`∗ − 1)2 + 3`∗ − 1 and s∗ + κ =

(`∗ + 1)2 + (`∗)2 are critical cardinalities of types IV and I (see Fig. 11). From the
characterisation of Pareto optimal sets in Section 5.2.1, we find that

• A consists precisely of sets N `∗−1(S) where S is a seed of type IV, and

• C consists precisely of sets N `∗(S′) where S′ is a seed of type I.

Conditions (H6.a) and (H6.b) follow from Observation 5.6.
Assuming Conjecture 5.7 is true, and using Observation 5.5, we obtain a characteri-

sation of B.

• B consists precisely the sets B with |B| = s∗ such that N `∗−1(S) ⊆ B ⊆ N `∗(S′)

for some seeds S and S′ of type IV and I where S ⊆ N(S′).

A typical transition through the critical gate [Q,Q∗] is depicted in Figure 13b.
Counting the number of possible transitions in the critical gate using (1.7), we get

|[Q,Q∗]| = |V | × 4× (`∗ + 1)× 2 = 8mn(`∗ + 1) . (6.8)

Theorem 1.3 thus gives the sharp estimate

Eu[T̂v] =
1

8mn(`∗ + 1)

λ(`
∗+1)2+(`∗)2+3`∗+3

λ̄(`∗)2+(`∗−1)2+3`∗−1
[1 + o(1)] as λ→ ∞, (6.9)

for the expected crossover time.

6.3 Graph girth and crossover time

In Example 2.9, we noted that the optimal isoperimetric cost in a regular bipartite
graph with large girth grows linearly for small cardinalities. Likewise, the optimal
isoperimetric cost in a doubled version of a bipartite graph with large girth is linear
when restricted to small cardinalities. Since g(s) = ∆(s)− α(s− 1) has no critical point
when ∆(s) is linear, we obtain lower bounds for the order of magnitude of the crossover
time of the hard-core dynamics and Widom-Rowlinson dynamics on a (bipartite) regular
graph in terms of the girth of the graph.
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−→

(a) Case 1: `∗ = d1/αe.

−→

(b) Case 2: `∗ = b1/αc.

Figure 13: Typical transitions through the critical gate for the doubled torus. The critical
length `∗ in both cases is assumed to be 4. The ‘hole’ can be anywhere in the highlighted
region. Once a two-site ‘hole’ is produced, with probability close to 1 a blue particle
appears very quickly in the opened-up space.

First, let us consider a d-regular bipartite graph in which the length of each cycle is
at least `. We know from Example 2.9 that ∆(s) = (d− 2)s+ 1 for 0 < s < /̀2. Therefore,
g(s) = ∆(s)− α(s− 1) = (d− 2− α)s+ 1 + α. If d = 2 (i.e., if the graph is a cycle), the
critical size and the resettling size are s∗ = s̃ = 1. The hypotheses (H0)–(H4) are trivially
satisfied with A = {∅} and B = {{b} : b ∈ V } and |[Q,Q∗]| = 2 |V |. Therefore, in this
case, we recover the result of Example 2.2. If, on the other hand, d > 2, the function
g(s) is increasing for 0 < s < /̀2 and can achieve its maximum only at s ≥ b /̀2c. While
Theorem 1.1 is not applicable (condition (H1) may not be satisfied), direct application of
Proposition B.2 and Lemmas 3.1–3.2 leads to the following lower bound for the expected
crossover time.

Proposition 6.3 (Lower bound for expected crossover time: hard-core). Let G =

(U, V,E) be a d-regular bipartite graph with d > 2 in which the length of each cycle is at
least `. Then the crossover time from u to v on G satisfies

Eu[T̂v] �
λ∆(s`)+s`−1

λ̄s`−1
=
λ(d−2−α)s`+1+α

λ̄s`−1
as λ→ ∞, (6.10)

where s` , b /̀2c.
For the Widom-Rowlinson model on a d-regular graph we get a similar lower bound

on the expected crossover time from the all-red to all-blue configuration in terms of the
graph girth. Recall that the Widom-Rowlinson dynamics on a graph G is equivalent to
the hard-core dynamics on the doubled graph G[2]. In Example 2.9, we saw that ∆(s) =

(d−2)s+2 for 0 < s < `−1. Therefore, g(s) = ∆(s)−α(s−1) = (d−2−α)s+2+α. If d = 2

(i.e., when the graph is a cycle), we again have s∗ = s̃ = 1. The hypotheses (H0)–(H4)
are again trivially satisfied with A = {∅} and B = {{b} : b ∈ V } and |[Q,Q∗]| = 3 |V |.
Therefore, in this case, we recover the result of Example 2.6 even when the cycle is not
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even. If, on the other hand, d > 2, the function g(s) is increasing for 0 < s < `− 1 and
can achieve its maximum only at s ≥ `− 1. Therefore, we get a similar lower bound for
the expected crossover time using Proposition B.2.

Proposition 6.4 (Lower bound for expected crossover time: Widom-Rowlinson).
Let G be a d-regular graph with d > 2 in which the length of each cycle is at least `, and
G[2] = (U, V,E) its doubled version. Then, the crossover time from u to v on G[2] satisfies

Eu[T̂v] �
λ∆(s`)+s`−1

λ̄s`−1
=
λ(d−2−α)s`+2+α

λ̄s`−1
as λ→ ∞, (6.11)

where s` , `− 1.

6.4 Hard-core and Widom-Rowlinson on a hypercube

As we saw in Example 2.10, the doubled version of a d-dimensional hypercube Hd

is isomorphic to a (d + 1)-dimensional hypercube Hd+1, hence the Widom-Rowlinson
dynamics on Hd is essentially the same as the hard-core dynamics on Hd+1. As before,
we assume that 0 < α < 1.

Condition (H0) is satisfied for every doubled graph. From Example 2.10, we know that
the sites of Hd admit a complete (vertex) isoperimetric numbering. By symmetry, every
site in Hd is the starting point of an isoperimetric numbering. Therefore, conditions (H1)
and (H2) are satisfied. The asymptotic exponentiality of the crossover time follows
immediately from Theorem 1.2. The conclusion of Theorem 1.1 is also true, but in
this case, finding the critical size s∗ is more challenging because the function g(s) ,
∆(s)− α(s− 1) is known only implicitly (see Proposition 5.8). We state this is an open
question.

Question 6.5 (Critical size: hypercube). Let ∆(s) denote the (vertex) isoperimetric
function for the hypercube Hd. Which value s maximizes the function g(s) , ∆(s)−α(s−
1)? What is the value of the maximum?

If we further assume that α is irrational, then hypothesis (H3) will also be satisfied.
We do not know the status of conditions (H4) or (H5)–(H6).

Question 6.6 (Critical gate: hypercube). Are conditions (H5) and (H6) satisfied for
the hypercube? If not, how about condition (H4)?

A Reversible Markov chains

A useful tool for studying reversible Markov chains is their analogy with electric
networks and potential theory. This analogy has been exploited in various contexts, most
notably for the recurrence/transience problem. The use of potential theory in the study
of metastability is pioneered by Bovier, Eckhoff, Gayrard and Klein [12] and is developed
in detail in the monograph by Bovier and den Hollander [14]. We start by recalling the
relevant aspects of the connection between electric networks and reversible Markov
chains, while fixing our notation and terminology (see Section A.1). Estimating the
expected hitting time of a target set reduces via the above analogy to estimating the
effective resistance between the starting point and the target as well as the voltage
at different points of the network. Sharp estimates for effective resistance can be
obtained using the machinery of the Nash-Williams inequalities (see Section A.2) or
using the variational principles of Thomson and Dirichlet. A simpler estimate for effective
resistance, capturing its order of magnitude, is given by “critical resistance”, which is
an abstract variant of the more standard notion of “communication height” often used in
metastability theory (see Section A.3). Critical resistance can also be used to provide
rough bounds for voltage (see Section A.4).

EJP 23 (2018), paper 97.
Page 35/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

A.1 Connection with electric networks

In this section we fix the general notation and terminology and recall a few relevant
facts about reversible Markov chains and their analogy with electric networks. The
proofs and the background could be found in various sources, e.g. Doyle and Snell [24],
Levin, Peres and Wilmer [40], Grimmett [28], Lyons and Peres [41], Aldous and Fill [1],
Bovier and den Hollander [14].

We let (X(n))n∈N be a discrete-time Markov chain with finite state space X and
transition matrix K : X × X → [0, 1]. We assume that K is irreducible and has a
reversible stationary distribution π. We write Px and Ex to denote probability and
expectation conditioned on the event X(0) = x. The first hitting time of a set A ⊆ X is
denoted by

TA , inf{n ≥ 0 : X(n) ∈ A} . (A.1)

When we disregard the case X(0) ∈ A, we write

T+
A , inf{n > 0 : X(n) ∈ A} . (A.2)

The first passage time through a transition x→ y is likewise denoted by

Txy , inf{n > 0 : X(n− 1) = x and X(n) = y} . (A.3)

An analogy is made between the above reversible Markov chain and an electric
network with nodes labelled by the elements of X in which node x is connected to node
y by a resistor with conductance c(x, y) , π(x)K(x, y) = π(y)K(y, x) (and resistance
r(x, y) = 1/c(x, y) ∈ (0,∞]). We write x ∼ y when c(x, y) > 0. The first basic connection
between the two objects is that the function

h(x) , Px(TA < TB) (A.4)

is the unique harmonic function with boundary conditions h|A ≡ 1 and h|B ≡ 0. Therefore
Px(TA < TB) coincides with the voltage WA,B(x) at node x if all the nodes in B are
connected to the ground and all the nodes in A are connected to a unit voltage source.

The effective resistance and effective conductance between two sets A,B ⊆ X
(which are standard quantities in electric network theory and capture what happens
when all the vertices in A, respectively, B are wired) will be denoted by R(A↔ B) and
C(A↔ B), respectively. An easy consequence of the above connection is the equality

Pa(TB < T+
a ) =

1

π(a)R(a↔ B)
(A.5)

for every state a ∈ X and set B ⊆ X not containing a.
When T is a stopping time, we denote by GT (a, x) the expected number of visits to

state x if the chain is started at state a and stopped at T , i.e.,

GT (a, x) , Ea [# of visits to x before T ] . (A.6)

In case x = a, time 0 is also counted. The function GT is the Green function asso-
ciated with T . The second basic connection between a reversible Markov chain and
its corresponding electric network is an electric interpretation of the Green functions
associated to hitting times. Namely, it can be shown, for a state a ∈ X and a set B ⊆ X
not containing a, that the function h(x) , GTB

(a, x)/π(x) is harmonic with boundary
conditions h|a ≡ R(a ↔ B) and h|B ≡ 0. Therefore GTB

(a, x)/π(x) agrees with the
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voltage at x provided all the nodes in B are connected to the ground and a is connected
to a unit current source. It follows that

GTB
(a, x) = R(a↔ B)π(x)Wa,B(x), (A.7)

where Wa,B(x) = Px(Ta < TB) is the voltage at x when B is connected to the ground
and a is connected to a unit voltage source. As an immediate corollary, we get the useful
equality

Ea[TB ] = R(a↔ B)
∑
x

π(x)Wa,B(x), (A.8)

for every state a ∈ X and set B ⊆ X not containing a.
If t is a non-negative constant, then by reversibility we have the general identity

π(x)Gt(x, y) = π(y)Gt(y, x). (A.9)

This identity remains valid for Green functions associated with hitting times:

π(x)GTZ
(x, y) = π(y)GTZ

(y, x) (A.10)

for every two states x, y ∈ X and every set Z ⊆ X . A similar reciprocity law holds for
hitting order probabilities:

R(x↔ Z)Py(Tx < TZ) = R(y ↔ Z)Px(Ty < TZ) (A.11)

for every two states x, y ∈ X and every set Z ⊆ X .
The notion of projection for electric networks is much more relaxed than the notion

of projection for Markov chains. Namely, identifying two nodes with the same voltage
(i.e., making a short circuit between them) we do not affect the voltage at other nodes.
As a corollary, we have that the effective resistance R(A↔ B) between two disjoint sets
A,B ⊆ X remains unchanged when we contract A into a single node a and B into a
single node b. This simplify some arguments.

A.2 Sharp bounds for effective resistance

The variational principles of Thomson and Dirichlet are the most common tools to
obtain upper and lower bounds for effective resistance. An alternative combinatorial
approach due to Nash-Williams often gives simple and useful estimates.

We consider a graph on the state set X whose edges are the pairs (x, y) with
c(x, y) > 0. Let A,B ⊆ X be disjoint. A cut separating A from B is a set C ⊆ X such
that A ⊆ C ⊆ Bc. Given a cut C, we write ∂C , {(x, y) : x ∈ C, y /∈ C and c(x, y) > 0} for
the set of edges between C and Cc. The simplest form of the Nash-Williams inequality is
the intuitive inequality

C(A↔ B) ≤ C(C ↔ Cc) ≤ |∂C| sup
x∈C,y/∈C

c(x, y) (A.12)

for every cut C separating A from B. A dual (and equally intuitive) inequality

R(A↔ B) ≤ r(ω) ≤ |ω| sup
e∈ω

r(e) (A.13)

holds for every path ω from A to B. These two inequalities are special cases of the more
general Nash-Williams inequalities, but can also be derived from the Dirichlet and the
Thomson variational principles.

While the above upper bound for effective conductance is sufficient for our purpose,
we need a more accurate lower bound. The following extended version of the (dual)
Nash-Williams inequality due to Berman and Konsowa [6] provides a method to obtain
sharp lower bounds.
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Proposition A.1 (Extended dual Nash-Williams inequality). Let A,B ⊆ X . Let
(ωi)i∈N be an arbitrary sequence of simple paths from A to B, with the property that no
two paths ωi and ωj pass through a common edge in opposite directions. For each edge
e, let n(e) denote the number of paths ωk that pass through e. Then

C(A↔ B) ≥
∑
k

1∑
e∈ωk

n(e)r(e)
. (A.14)

The proof is similar to the proof of the standard Nash-Williams inequality, but for
completeness, we include it in Appendix C.1. We note that the latter inequality is sharp:
by allowing repetitions in the sequence (ωi)i∈N we get arbitrarily close lower bounds for
the conductance C(A↔ B).

A.3 Rough estimates for effective resistance

The order of magnitude of effective resistance is captured by the notion of “critical
resistance”, which is much easier to evaluate. We define the critical resistance between
two sets A,B ⊆ X as

Ψ(A,B) , inf
ω:A;B

sup
e∈ω

r(e), (A.15)

where the infimum is taken over all paths (sequences of distinct states) connecting A to
B, and the supremum is over all edges (pairs of consecutive states) on the path. For a
path ω, we refer to

Ψ(ω) , sup
e∈ω

r(e) (A.16)

as the critical resistance of ω.
Critical resistance is closely related to the notion of communication height, which

is often used in the study of metastability in Metropolis dynamics (see Olivieri and
Vares [45], Bovier and den Hollander [14]). The two notions are connected via the
(imprecise) correspondence Ψ(A,B) ≈ eβΦ(A,B), where Φ(A,B) is the communication
height between A and B and β is the inverse temperature. While somewhat less intuitive,
the notion of critical resistance has two advantages. First, it is defined for individual
Markov chains (rather than parametric families of Markov chains), and therefore can
also be used in asymptotic regimes other than β → ∞, in particular, when there is no
clear-cut notion of energy. Second, while the height of a path ω is often defined as the
maximum energy of a state on ω, the maximisation in the critical resistance is taken
over pairs of consecutive states on ω. As noted in Cirillo, Nardi and Sohier [20], this
turns out to be the appropriate definition for general (non-Metropolis) Markov chains.

The effective resistance a, b 7→ R(a ↔ b) defines a metric on X . The critical
resistance, on the other hand, defines an ultra-metric on X :

• Ψ(x, y) ≥ 0 with equality if and only if x = y,

• (symmetry) Ψ(x, y) = Ψ(y, x),

• (strong triangle inequality) Ψ(x, z) ≤ max {Ψ(x, y),Ψ(y, z)}.
The following proposition shows that the two metrics a, b 7→ R(a↔ b) and a, b 7→ Ψ(a, b)

are equivalent up to constants depending only on the graph (and not on the resistances
r). Its proof can be found in Appendix C.2.

Proposition A.2 (Equivalence of metrics). There exist a constant k ≥ 1 such that, for
every two sets A,B ⊆ X ,

1

k
Ψ(A,B) ≤ R(A↔ B) ≤ kΨ(A,B). (A.17)

The constant k can be chosen to be |X |2.
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To understand the geometry of Ψ, let us recall two basic facts. First, every triangle in
a general ultra-metric space is isosceles, with two equal sides and a third side that is
no larger than the other two (i.e., the three sides can be ordered as a ≤ b = c). Second,
suppose that T is a minimal spanning tree on X (where edge e is weighted by its
resistance r(e)). Then, the Ψ-distance between two points a, b ∈ X is simply the maximal
resistance of the unique path between a and b on T . In other words, every path on T is
geodesic with respect to Ψ.

A.4 Rough estimates for voltage

In order to estimate the Green function via (A.7), we will also need rough estimates
for the voltage. The following proposition corresponds to Bovier and den Hollander [14,
Lemma 7.13(iii)]. Its proof can be found in Appendix C.3.

Proposition A.3 (A priori estimate). Let A,B ⊆ X be two disjoint sets. For every
node x ∈ X \ (A ∪B),

1− R(x↔ A)

R(A↔ B)
≤WA,B(x) ≤

R(x↔ B)

R(A↔ B)
, (A.18)

where WA,B(x) = Px(TA < TB) is the voltage at x when B is connected to the ground
and A is connected to a unit voltage source.

Using the inequalities between effective resistance and critical resistance (Proposi-
tion A.2), we obtain the following proposition as a corollary of the above two estimates.

Proposition A.4 (A priori estimate). There is a constant k̄ ≥ 1 such that, for every
two disjoint sets A,B ⊆ X and every node x ∈ X \ (A ∪B),

1− k̄
Ψ(x,A)

Ψ(A,B)
≤WA,B(x) ≤ k̄

Ψ(x,B)

Ψ(A,B)
. (A.19)

The constant k̄ can be chosen to be |X |4.
The following is a generalisation of the latter proposition. It expresses the intuition

that small distance between two nodes implies small difference between their voltages.
Its proof can be found in Appendix C.3.

Proposition A.5 (A priori estimate). There is a constant k̄ ≥ 1 such that, for every
two disjoint sets A,B ⊆ X and every two nodes x, y ∈ X ,

|WA,B(x)−WA,B(y)| ≤ k̄
Ψ(x, y)

Ψ(A,B)
. (A.20)

The constant k̄ can be chosen to be |X |4.

B Metastability in reversible Markov chains

In this section we discuss the metastable behaviour of reversible Markov chains in
a certain asymptotic regime. Our treatment is based on Bovier and den Hollander [14,
Chapters 7, 8 and 16], although our exposition is somewhat different. In Section 2 we
will specialize to hard-core dynamics.

We consider a one-parameter family of discrete-time irreducible Markov chains
{Xλ(t)}t∈N on a finite state space X with transition matrix Kλ and reversible stationary
distribution πλ. The parameter λ is assumed to be a real number. For hard-core dynamics,
λ determines the activity parameter at each site. (For Glauber dynamics of the Ising
model, λ would be the inverse temperature.) For brevity, we drop the subscript λ
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from Xλ(t), Kλ and πλ. We focus on the asymptotic regime λ → ∞, where metastable
phenomena are more prominent.

We will use the following notation for asymptotics:

• f(λ) ≺ g(λ) if f(λ) = o(g(λ)) as λ→ ∞,

• f(λ) � g(λ) if f(λ) = O(g(λ)) as λ→ ∞, and

• f(λ) � g(λ) if f(λ) � g(λ) and g(λ) � f(λ) as λ→ ∞.

For simplicity, we make a smoothness assumption. Namely, we assume that all the
transition probabilities K(x, y) for different pairs (x, y) are asymptotically comparable,
i.e., for every two pairs of states (x, y) and (x′, y′), either K(x, y) ≺ K(x′, y′) or K(x, y) �
K(x′, y′) as λ → ∞, and for every two states x and y, either π(x) ≺ π(y) or π(x) � π(y)

as λ→ ∞. These conditions are trivially satisfied for hard-core dynamics on a bipartite
graph. For convenience, we also assume that the graph of probable transitions of K
remains unchanged for all sufficiently large λ.

In Section B.1 we characterise metastabilty in terms of recurrence of metastable
states. In Section B.2 we link the mean metastable transition time to the effective
resistance of an associated electric network. In Section B.3 we explain the ubiquity
of the exponential limit law for the metastable transition time divided by its mean. In
Section B.4 we look at tail probabilities of the metastable transition time. In Section B.5
we derive a sharp asymptotics for the effective resistance. In Section B.6 we look at the
passage through bottlenecks.

B.1 A characterisation of metastability

One way to formulate metastability (in the asymptotic regime λ → ∞) is in terms
of the recurrence behaviour of individual states. A metastable state behaves as a
recurrent state on short time scales and as a transient state on long time scales. Other
manifestations of metastability include a short transition period on the critical time scale
and approximate exponentiality of the distribution of the transition time.

More specifically, when τ = τ(λ) is a non-negative real-valued function, we say that
a state a ∈ X is transient at time scale τ (or τ -transient, for short) when Gτ (a, a) ≺ τ

as λ → ∞ and recurrent at time scale τ (or τ -recurrent) when Gτ (a, a) � τ as λ → ∞.
In intuitive terms, state a is τ -recurrent if the Markov chain starting from a spends,
on average, a non-negligible fraction of the time interval [0, τ) at a, and is τ -transient
otherwise.

In the reversible setting, there is a more convenient way to characterise recurrence
and transience on a time scale, namely, in terms of escape times. For a ∈ X , define

J(a) , {x 6= a : π(x) � π(a) as λ→ ∞} , (B.1)

J−(a) , {x : π(x) � π(a) as λ→ ∞} .

Thus, J(a) is the set of states whose stationary probabilities are asymptotically not negli-
gible compared to a, and J−(a) consists of those states whose stationary probabilities
are asymptotically larger than the stationary probability of a. Whether a is τ -transient or
not depends on whether the chain has sufficient time to reach J−(a) or not: once the
chain is in J−(a), it will spend only a negligible portion of its time in a. We refer to the
time taken to go from a to J−(a) as the escape time from a. The proof of the following
proposition is given in Appendix C.4.

Proposition B.1 (Charactersation of metastability). Suppose that τ = τ(λ) is a
non-negative real-valued function. For every state a ∈ X , Gτ (a, a) ≺ τ if and only if
Ea[TJ−(a)] ≺ τ as λ→ ∞.
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It follows from Proposition B.1 that τ -transience is monotone in τ : if a state is
transient at a time scale τ , then it is also transient at any time scale τ ′ � τ . In particular,
the recurrence behaviour of every state a undergoes a transition at the time scale
τa , Ea[TJ−(a)]: the state a is recurrent at any time scale τ � τa (a short time scale)
and transient at any time scale τ � τa (a long time scale). We call this the metastability
transition of state a. We refer to a state a as a metastable state when its metastability
transition is non-trivial, i.e., when J−(a) 6= ∅ and τa → ∞ as λ→ ∞. Note that if J−(a)

is empty, then the critical scale τa is ∞ (a is recurrent at any scale). Hence, in this case
we call a a stable state.

Our main objective is to derive a sharp asymptotics for the mean and the distribution
of the escape time TJ−(a), and to provide some information (albeit partial) about the
typical escape trajectories. In case of the hard-core dynamics on a bipartite graph
(satisfying certain conditions) we will provide such a description for the state in which
the weak part of the graph U is covered with particles. This state turns out to be the
“most stable” metastable state, i.e., the metastable state with the largest metastability
scale. The transition from this metastable state to the stable state requires the formation
of critical droplets whose size and shape are characterised by the solutions of an
isoperimetric problem.

B.2 Mean escape time and transition duration

The proofs of the following two propositions are given in Appendix C.5. The mean
escape time from a metastable state has the following rough asymptotics in terms of
critical resistance.

Proposition B.2 (Mean escape time: rough estimate). For every a ∈ X , Ea[TJ−(a)]

� π(a)Ψ(a, J−(a)) as λ→ ∞.

(We use the convention Ψ(x,∅) , ∞.) This estimate gives the order of the magnitude
of the mean escape time, but fails to provide the pre-factor. On the other hand, replacing
J−(a) with J(a), we have the following sharp estimate for the mean passage time from a

to J(a) in terms of effective resistance.

Proposition B.3 (Link between mean escape time and effective resistance). For
every a ∈ X , Ea[TJ(a)] = π(a)R(a↔ J(a))[1 + o(1)] as λ→ ∞.

In conjunction with a good estimate on effective resistance, the above two proposi-
tions can often be used to give a sharp asymptotic estimate (with a precise pre-factor)
for the escape time from a metastable state. Indeed, suppose we know that, for ev-
ery x ∈ J(a) \ J−(a), the critical resistance Ψ(x, J−(x)) is asymptotically smaller than
the critical resistance Ψ(a, J(a)). Then Propositions B.3 and B.2 immediately give
Ea[TJ−(a)] = Ea[TJ(a)][1 + o(1)].

We state this observation as the following corollary, which is proved in Appendix C.5.
We say that a set Z ⊆ X is upward closed if y ∈ Z whenever π(y) � π(x) for some x ∈ Z.
In the following we may for instance set Z = J−(a) or Z = {v}, where v is the unique
stable state.

Corollary B.4 (Mean escape time: sharp estimate). Let a ∈ X , and let Z ⊆ J(a) be
a non-empty upward closed set. Suppose that π(x)Ψ(x, J−(x)) ≺ π(a)Ψ(a, J(a)) for every
x ∈ J(a) \ Z. Then Ea[TZ ] = π(a)R(a↔ J(a))[1 + o(1)] as λ→ ∞.

A typical aspect of metastability is the relatively short duration of the transition on
the critical time scale: while the system spends a long time before leaving a metastable
state and moving to a more stable state, the actual transition occurs on a relatively
shorter time scale. To formulate this, let T (k)

a , inf{t > T
(k−1)
a : X(t) = a} with T (0)

a = 0

be the k-th return time of state a. Given Z 63 a, define NZ , sup{n > 0: T
(n)
a < TZ}. The
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difference TZ − T
(NZ)
a is the duration of the transition from a to Z. Note that, by the

Markov property and time-homogeneity, Pa(TZ − T
(NZ)
a ∈ ·) = Pa(TZ ∈ · |TZ < T+

a ). The
following corollary is proved in Appendix C.6.

Corollary B.5 (Rapid transition). Let a ∈ X , and let Z ⊆ J(a) be a non-empty upward
closed set. Suppose that π(x)Ψ(x, J−(x)) ≺ π(a)Ψ(a, J(a)) for every x ∈ J(a) \ Z. Then
Ea[TZ |TZ < T+

a ] ≺ Ea[TZ ] as λ→ ∞.

B.3 Exponential law for escape times

If a is a metastable state (i.e., J−(a) 6= ∅ and π(a)Ψ(a, J−(a)) is large), then it can
take a long time for the chain to pass from a to J−(a). Starting from a, the chain is much
more likely to return back to a quickly than to pass through the bottleneck between a
and J−(a). Each time the chain returns to a, the process starts afresh. The transition
thus requires many repeated trials, each with a small success probability.

The hitting time of a rare event in a regenerative process approximately follows an
exponential law (Keilson [37, Section 8]). The following proposition formulates a version
of this phenomenon. See Appendix C.7 for its proof.

Proposition B.6 (Exponential law for regenerative processes). Let δT be a positive
random variable with finite mean and B a Bernoulli random variable with success
probability ε > 0. Let (δTk, Bk)k∈Z+ be a sequence of independent copies of the pair
(δT,B). Define the associated renewal process by T0 , 0 and Tk , Tk−1 + δTk for k ≥ 1.
Set N , inf{k : Bk = 1}, µ , E[δT |B = 0], η , E[δT |B = 1] andM , E[TN ]. Take ε,M ,
µ and η to be functions of a parameter λ ∈ R. Then

lim
λ→∞

P

(
TN
E[TN ]

> t

)
= e−t uniformly in t ∈ R+, (B.2)

provided ε = o(1) and ε η
µ = o(1) (or equivalently, ε = o(1) and η

M = o(1)) as λ→ ∞.

An immediate consequence is the approximate exponential distribution for the escape
time from a metastable state, stated in the following corollary. See Appendix C.7 for its
proof.

Corollary B.7 (Exponential escape time). Let a ∈ X , and let Z ⊆ J(a) be a non-empty
upward closed set (see Sec. B.2). Suppose that π(a)Ψ(a, J(a)) � 1, and π(x)Ψ(x, J−(x)) ≺
π(a)Ψ(a, J(a)) for every x ∈ J(a) \ Z. Then

lim
λ→∞

Pa

(
TZ

Ea[TZ ]
> t

)
= e−t uniformly in t ∈ R+. (B.3)

A similar statement holds for the continuous-time version of the process X̂(t) ,
X
(
ξ([0, t])

)
constructed via an independent Poisson process ξ with rate γ.

B.4 Asymptotics for tail probabilities

In the previous section, we saw that the tail probability of the escape time from a
metastable state is asymptotically exponentially small, namely, Pa

(
TZ > tEa[TZ ]

)
=

e−t[1 + o(1)] as λ→ ∞. In this section, we derive similar exponential upper bounds for
the tail probabilities and conditional tail probabilities of more general hitting times using
rougher but more flexible regeneration arguments. Such exponential upper bounds are
one of the ingredients of the path-wise approach to metastability (see e.g. the paper by
Manzo, Nardi, Olivieri and Scoppola [42]). The material of this section is not used in the
rest of the current paper but will be needed in follow-up work.

Recall from Proposition B.2 that Ea[TJ−(a)] � π(a)Ψ(a, J−(a)) for each a ∈ X . For
A ⊆ X , define
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Γ(A) , sup
x∈A

π(x)Ψ
(
x, J−(x)

)
. (B.4)

and note that supx∈AEx[TAc ] � Γ(A) as λ → ∞. (Recall the convention Ψ(x,∅) , ∞.)
The following proposition is a variant of Theorem 3.1 in [42]. Its proof can be found in
Appendix C.7.

Proposition B.8 (Tail probabilities of exit time). Let A ⊆ X be an arbitrary non-
empty set of states. There is a constant α < 1 such that, for every function ρ = ρ(λ) � 1,

sup
x∈A

Px

(
T∂A > ρΓ(A)

)
� αρ as λ→ ∞. (B.5)

Examples of useful choices for ρ are ρ , λδ (for a small constant δ > 0) and ρ , log λ.
The above proposition can be used to bound the tail and expected value of the exit

time of a set A conditioned on hitting a certain subset of ∂A upon exit. Set

κ = κ(λ) , min{K(a, b) : a, b ∈ X ,K(a, b) > 0} . (B.6)

Proposition B.9 (Tail probabilities of conditional exit time). Let A ⊆ X be an
arbitrary set of states. Consider an arbitrary partitioning of ∂A into two non-empty sets
B1 and B2. There is a constant α < 1 (the one in Proposition B.8) such that, for every
function ρ = ρ(λ) � 1,

sup
x∈A

Px

(
TB1

> ρΓ(A)
∣∣TB1

< TB2

)
� αρκ−|A| as λ→ ∞. (B.7)

Proposition B.10 (Conditional mean exit time). Let A ⊆ X be an arbitrary set of
states. Consider an arbitrary partitioning of ∂A into two non-empty sets B1 and B2.
There is a constant α < 1 (the one in Proposition B.8) such that, for every function
ρ = ρ(λ) � 1,

sup
x∈A

Ex

(
TB1

∣∣TB1
< TB2

)
� ρΓ(A) as λ→ ∞, (B.8)

provided αρ κ−|A| → 0 as λ→ ∞.

The proofs can be found in Appendix C.7.

B.5 Sharp asymptotics for effective resistance

As we saw earlier, a sharp estimate on the mean escape time requires a sharp
estimate on effective resistance. Sharp asymptotics for effective resistance between two
sets can be obtained through a detailed understanding of the bottleneck between them.
The bottleneck between two sets is often described by a notion of critical gate, which
pinpoints the critical transitions in a typical passage from one set to another. The notion
of critical gate used below is not as general as it seems. For instance, it is not directly
applicable to Glauber dynamics for the Ising model, but it suffices for our hard-core
model.

Let A,B ⊆ X be two disjoint non-empty sets. We call a pair of disjoint setsQ,Q∗ ⊆ X
a critical pair between A and B when (see Fig. 14)

a) r(x, y) � Ψ(A,B) for every x ∈ Q and y ∈ Q∗ with x ∼ y,

b) Ψ(A, x) ≺ Ψ(A,B) for every x ∈ Q,

c) Ψ(y,B) ≺ Ψ(A,B) for every y ∈ Q∗,

d) every optimal path from A to B passes through a transition x→ y with x ∈ Q and
y ∈ Q∗.
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By an optimal path from A to B, we mean a path whose critical resistance is of the same
order as Ψ(A,B), i.e., a path ω : A ; B with r(ω) � supe∈ω r(e) � Ψ(A,B) as λ → ∞.
Observe that an optimal path A ; Q does not pass through Q∗, and an optimal path
Q∗ ; B does not pass through Q. If (Q,Q∗) is a critical pair between A and B, then we
call the set

[Q,Q∗] , {(x, y) : x ∈ Q, y ∈ Q∗ and x ∼ y} (B.9)

of probable transitions between Q and Q∗ the critical gate between A and B.

A B

Q Q∗

� Ψ(A,B)

≺ Ψ(A,B) ≺ Ψ(A,B)

Figure 14: A critical gate [Q,Q∗] between A and B.

Given a critical gate [Q,Q∗] between A and B, we define a set

S(A,Q,Q∗, B) ,

{
x ∈ X :

there exists a path ω : A ; x not passing Q∗

such that Ψ(ω) � Ψ(A,B)

}
, (B.10)

which we think of as the set of states “behind the critical gate”. We have used the notation
Ψ(ω) , supe∈ω r(e) for the critical resistance of the path ω. Note that Ψ(ω) � r(ω). The
following proposition is proved in Appendix C.8.

Proposition B.11 (Characterisation of critical gate). Let [Q,Q∗] be a critical gate
between two disjoint non-empty sets A,B ⊆ X and S , S(A,Q,Q∗, B). If (x, y) ∈ S × Sc

and x ∼ y, then either r(x, y) � Ψ(A,B) or (x, y) ∈ Q×Q∗.

In general, a critical gate between two sets A and B (as defined above) may or
may not exist. Even when it exists, identifying a critical gate may require painstaking
combinatorial analysis. However, once available, a critical gate provides a sharp estimate
on the effective resistance between A and B. The following proposition is proved in
Appendix C.8.

Proposition B.12 (Effective resistance: sharp estimate using critical gate). Sup-
pose that (Q,Q∗) is a critical pair between A and B. Then

C(A↔ B) = c(Q,Q∗) [1 + o(1)] � 1

Ψ(A,B)
as λ→ ∞, (B.11)

where as usual, c(Q,Q∗) ,
∑
x∈Q

∑
y∈Q∗

x∼y

c(x, y).

B.6 Passage through the bottleneck

Let a be an arbitrary state and B a set not containing a. If a critical gate between
a and B exists, then the passage from a to B is almost surely through the critical gate.
The following proposition is proved in Appendix C.8.
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Proposition B.13 (Critical gate is bottleneck). Suppose that (Q,Q∗) is a critical pair
between a and B, and S , S(a,Q,Q∗, B) the set of states behind the critical gate. As
λ→ ∞,

(i) Pa(Txy ≤ TB) = o(1) for (x, y) ∈ (S × Sc) \ (Q×Q∗) with x ∼ y,

(ii) Pa(Tyx ≤ TB) = o(1) for (x, y) ∈ S × Sc with x ∼ y,

(iii) Pa(Txy ≤ TB) =
c(x, y)

c(Q,Q∗)
[1 + o(1)] for (x, y) ∈ Q×Q∗ with x ∼ y.

C Proofs

C.1 Nash-Williams inequality

Proof of Proposition A.1. The proof is similar to the proof of the (dual) Nash-Williams
inequality. Let W , WA,B be the voltage function when B is connected to the ground
and A is connected to a unit voltage source (i.e., W is harmonic on X \ (A ∪ B) with
boundary condition W |A ≡ 1 and W |B ≡ 0). Let I be the corresponding current flow. By
definition,

C(A↔ B) = (div I)(A) ,
∑
x∈A

(div I)(x). (C.1)

Write dW (x, y) ,W (y)−W (x) for the relative voltage of two nodes. By the conservation
of energy (also known as the adjointness of θ 7→ div θ and f 7→ df ; see e.g. Lyons and
Peres [41], Section 2.4), we have

C(A↔ B) 2 =
1

2

∑
x,y

c(x, y) (dW (x, y))
2 ≥

∑
k

∑
e∈ωk

1

n(e)
c(e) (dW (e))

2
. (C.2)

By the Cauchy-Schwartz inequality, for each k we can write(∑
e∈ωk

1

n(e)
c(e) (dW (e))

2

)(∑
e∈ωk

n(e)r(e)

)
≥

(∑
e∈ωk

√
c(e)

n(e)
dW (e)

√
n(e)r(e)

)2

=

(∑
e∈ωk

dW (e)

)2

= 1. (C.3)

The claim follows.

C.2 Effective resistance versus critical resistance

Proof of Proposition A.2. The right-hand inequality is immediate from the dual Nash-
Williams inequality (A.13) by choosing k to be the length of the longest path on the
graph. The left-hand inequality follows from the simplified Nash-Williams inequality
(A.12). Namely, let

C , {x : Ψ(x,A) < Ψ(A,B)} . (C.4)

Then, by the strong triangle inequality, r(x, y) ≥ Ψ(A,B) for every x ∈ C and y /∈ C.
Therefore,

C(A↔ B) ≤ C(C ↔ Cc) ≤ |∂C| sup
x∈C,y/∈C

c(x, y) ≤ |∂C| 1

Ψ(A,B)
. (C.5)

Therefore, the left inequality in (A.17) holds when k is at least the size of the largest cut
on the graph.
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C.3 Estimates on voltage

Proof of Proposition A.3. By the short-circuit principle, we may assume that A and B
are singletons, i.e., A = {a} and B = {b} for some nodes a and b. We have

WA,B(x) = Px(Ta < Tb) ≤
Px(Ta < Tb)

Pa(Tx < Tb)
=

R(x↔ b)

R(a↔ b)
, (C.6)

where the last equality uses the reciprocity equality in (A.11). The other inequality
follows symmetrically, by noting that WA,B(x) = 1− Px(Tb < Ta).

Proof of Proposition A.5. For brevity, we write W (x) instead of WA,B(x). If x, y ∈ A ∪B,
then the claim is trivial. If x or y is in A ∪ B and the other is not, then the conclusion
follows directly from Proposition A.4. So, assume that x, y ∈ X \ (A ∪B). We verify that

W (x) ≤W (y) + k̄
Ψ(x, y)

Ψ(A,B)
. (C.7)

The opposite inequality follows by symmetry.
By the ultra-metric inequality, we have Ψ(A,B) ≤ max{Ψ(y,A),Ψ(x, y),Ψ(x,B)}. If

Ψ(x, y) ≥ Ψ(A,B), then the claim is trivial. There remain two cases.

Case 1: Ψ(y,A) ≥ Ψ(A,B). By conditioning on the order of the occurrence of TA, TB
and Ty, we can write

W (x) = Px(TA < TB) ≤ Px(Ty < TA < TB) + Px(TA < Ty). (C.8)

The first term can be estimated as

Px(Ty < TA < TB) = Px(Ty < TA∪B)Py(TA < TB) ≤ Py(TA < TB) =W (y). (C.9)

For the second term, by Proposition A.4,

Px(TA < Ty) ≤ k̄
Ψ(x, y)

Ψ(A, y)
≤ k̄

Ψ(x, y)

Ψ(A,B)
. (C.10)

It follows that

W (x) ≤W (y) + k̄
Ψ(x, y)

Ψ(A,B)
. (C.11)

Case 2: Ψ(x,B) ≥ Ψ(A,B). By a symmetric reasoning as in the first case,

1−W (y) = Py(TB < TA) ≤ Py(Tx < TB < TA) + Py(TB < Tx). (C.12)

Again, the first term reduces to

Py(Tx < TB < TA) = Py(Tx < TA∪B)Px(TB < TA) ≤ Px(TB < TA) = 1−W (x). (C.13)

Similarly, for the second term, we get

Py(TB < Tx) ≤ k̄
Ψ(x, y)

Ψ(B, x)
≤ k̄

Ψ(x, y)

Ψ(A,B)
. (C.14)

Therefore

1−W (y) ≤ 1−W (x) + k̄
Ψ(x, y)

Ψ(A,B)
, (C.15)

which again gives

W (x) ≤W (y) + k̄
Ψ(x, y)

Ψ(A,B)
. (C.16)
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C.4 Characterisation of transience

Proof of Proposition B.1. First, suppose that Ea[TJ−(a)] ≺ τ . By conditioning, we have

Gτ (a, a) =
∑
s,b

Pa

(
TJ−(a) = s,X(s) = b

)
Ea

[
# of visits to a

before τ

∣∣∣TJ−(a) = s,X(s) = b
]

≤
∞∑
s=0

∑
b∈J−(a)

Pa

(
TJ−(a) = s,X(s) = b

)
(s+Gτ−s(b, a))

≤
∞∑
s=0

Pa(TJ−(a) = s) s+
∑

b∈J−(a)

Gτ (b, a) (C.17)

as λ → ∞. The first sum on the righthand side is simply Ea[TJ−(a)], which is ≺ τ . For
the second sum, we recall that π(a)Gτ (a, b) = π(b)Gτ (b, a), by reversibility and since
π(a) ≺ π(b) � 1, we again obtain Gτ (b, a) ≺ Gτ (a, b) � τ . Put together, we find that
Gτ (a, a) ≺ τ as λ→ ∞.

Conversely, assume that Gτ (a, a) ≺ τ . Let A ⊆ X be the set of states that can be
reached from a without passing through J−(a). Note that π(b) � π(a) for each b ∈ A.
Therefore, by the reciprocity identify in (A.10), we have that

GTJ−(a)
(a, b) � GTJ−(a)

(b, a) ≤ GTJ−(a)
(a, a). (C.18)

Now we can write

GTJ−(a)
(a, a) =

∞∑
t=0

Pa

(
X(t) = a, TJ−(a) > t

)
=

τ−1∑
t=0

Pa

(
X(t) = a, TJ−(a) > t

)
+

∞∑
t=τ

∑
b∈A

Pa

(
X(τ) = b,X(t) = a, TJ−(a) > t

)
≤ Gτ (a, a) +

∞∑
t=τ

∑
b∈A

Pa

(
X(τ) = b, TJ−(a) > τ

)
×

Pb

(
X(t− τ) = a, TJ−(a) > t− τ

)
≤ Gτ (a, a) + Pa(TJ−(a) > τ)

∑
b∈A

GTJ−(a)
(b, a)

≤ Gτ (a, a) + |A|Pa(TJ−(a) > τ)GTJ−(a)
(a, a), (C.19)

which implies

GTJ−(a)
(a, a) ≤ 1

1− |A|Pa(TJ−(a) > τ)
Gτ (a, a) (C.20)

whenever |A|Pa(TJ−(a) > τ) < 1. On the other hand, we note that

Gτ (a, a) �
∑
b∈A

Gτ (a, b) =

τ−1∑
k=0

Pa(TJ−(a) > k) ≥ τ · Pa(TJ−(a) > τ) , (C.21)

hence,

Pa(TJ−(a) > τ) � 1

τ
Gτ (a, a) ≺ 1. (C.22)

Therefore, as λ→ ∞, we have GTJ−(a)
(a, a) � Gτ (a, a) ≺ τ . Finally,

Ea[TJ−(a)] =
∑
b∈A

GTJ−(a)
(a, b) � Gτ (a, a) ≺ τ. (C.23)
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C.5 Mean escape time

Proof of Proposition B.2. We know from (A.7) that

GTJ−(a)
(a, x) = R(a↔ J−(a))π(x)Px(Ta < TJ−(a))

= π(a)R(a↔ J−(a))
π(x)

π(a)
Px(Ta < TJ−(a)), (C.24)

for every x ∈ X . For x /∈ J(a) ∪ {a}, we have, by definition, that π(x) ≺ π(a) as λ→ ∞,
whereas for x ∈ J(a) \ J−(a), we have π(x) � π(a). Therefore

GTJ−(a)
(a, x) =


π(a)R(a↔ J−(a)), if x = a,

π(a)R(a↔ J−(a)) o(1), if x /∈ J(a) ∪ {a},
π(a)R(a↔ J−(a))O(1), if x ∈ J(a) \ J−(a),

0, if x ∈ J−(a),

(C.25)

which gives

Ea[TJ−(a)] =
∑
x∈X

GTJ−(a)
(a, x) � π(a)Ψ(a, J−(a)) (C.26)

as λ→ ∞.

Proof of Proposition B.3. This is similar to the proof of Proposition B.2. Starting from

GTJ(a)
(a, x) = π(a)R(a↔ J(a))

π(x)

π(a)
Px(Ta < TJ(a)), (C.27)

this time we can write

GTJ(a)
(a, x) =


π(a)R(a↔ J(a)), if x = a,

π(a)R(a↔ J(a)) o(1), if x /∈ J(a) ∪ {a},
0, if x ∈ J(a),

(C.28)

as λ→ ∞. It follows that

Ea[TJ(a)] =
∑
x∈X

GTJ(a)
(a, x) = π(a)R(a↔ J(a))[1 + o(1)] (C.29)

as λ→ ∞.

Proof of Corollary B.4. Let Z0 = J(a), and recursively define

Zk+1 , J−(Zk) , {y : π(y) � π(x) for some x ∈ Zk}. (C.30)

Since the chain is finite, we must have ∅ 6= Zn ⊆ Z for some n. By conditioning, we have

Ea[TZk+1
] = E

[
Ea[TZk+1

|TZk
, X(TZk

)]
]
, (C.31)

where

Ea

[
TZk+1

|TZk
, X(TZk

)
]
= TZk

+ EX(TZk
)[TZk+1

]

≤ TZk
+ EX(TZk

)[TJ−(X(TZk
))] = TZk

+ π(a)Ψ(a, J(a))o(1). (C.32)

Therefore

Ea[TZk+1
] = Ea[TZk

] + π(a)Ψ(a, J(a))o(1) (C.33)

and the claim follows by induction.
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C.6 Rapid transition

Proof of Corollary B.5. Recall from (A.7) that GTZ
(a, a) = π(a)R(a ↔ Z) ≥ π(a)R(a ↔

J(a)). Combined with Corollary B.4, we get

Ea[TZ − T (NZ)
a ] ≤ Ea[TZ ]−GTZ

(a, a) = π(a)R(a↔ Z)o(1) (C.34)

as λ→ ∞.

C.7 Renewal arguments

Proof of Proposition B.6. Replacing δTk with δTk/µ, we may assume that µ = 1. Note
thatM = (1/ε − 1)µ+ η, which gives

1 = (
1

ε
− 1)

µ

M
+

η

M
=

1

ε
(1− ε+ ε

η

µ
)
µ

M
. (C.35)

Letting λ→ ∞, we get εM = 1 + o(1) and η/M = o(1).

Let G(θ) , E[eiθδT |B = 0] and H(θ) , E[eiθδT |B = 1] be the characteristic functions
of δT conditional on B = 0 and B = 1. The characteristic function of TN can be written
as

F (θ) , E[eiθTN ] =
∑
n≥1

(1− ε)n−1εG(θ)n−1H(θ) =
εH(θ)

1− (1− ε)G(θ)
. (C.36)

Therefore the characteristic function of TN/M is

F (θ/M) = E[eiθ
TN
M ] =

εH(θ/M)

1− (1− ε)G(θ/M)
. (C.37)

It remains to show that F (θ/M) → F̃ (θ) as λ→ ∞, where F̃ (θ) , 1
1−iθ is the characteris-

tic function of an exponential random variable with rate 1.

To estimate H(θ/M), we note that, conditional on B = 1, δT/M is a positive random
variable whose expected value η

M tends to 0. Therefore δT/M converges in distribution
to a unit mass at 0, and hence H(θ/M) = 1 + o(1).

For G(θ/M), we need a more accurate estimate. We note that, conditional on
B = 0, δT is a positive random variable with mean 1. Therefore G(θ) is continuously
differentiable with G′(0) = i, and a Taylor approximation gives G(θ) = 1 + iθ + o(θ) as
θ → 0. It follows that, for each θ ∈ R, G(θ/M) = 1 + i 1

M θ + o( 1
M ) = 1 + iεθ + o(ε) as

λ→ ∞.

Altogether, for each θ ∈ R, we get

F (θ/M) =
ε[1 + o(1)]

1− (1− ε) (1 + iεθ + o(ε))
→ 1

1− iθ
(C.38)

as λ→ ∞. Therefore TN/M converges in distribution to an exponential random variable
with rate 1. Finally, since the exponential distribution t → e−t is continuous, the
convergence in (B.2) is uniform.

Proof of Corollary B.7. Let δT , T+
{a}∪Z be the first hitting time of {a} ∪ Z, and choose

B , 1 if TZ < T+
a and B , 0 otherwise. From Corollary B.4, it follows M =

Ea[TZ ] � π(a)Ψ(a, Z) = π(a)Ψ(a, J(a)) → ∞ as λ → ∞. It follows that ε = Pa(TZ <

T+
a ) = 1

π(a)R(a↔Z) � 1
M = o(1). Furthermore, η

M = o(1) by Corollary B.5, where

η = Ea[TZ |TZ < T+
a ]. The claim follows from Proposition B.6.
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To verify the continuous-time statement, we note that

ε′ , Pa(T̂Z < T̂+
a ) = Pa(TZ < T+

a ),

M ′ , Ea[T̂Z ] =
1

γ
Ea[TZ ],

η′ , Ea[T̂Z | T̂Z < T̂+
a ] =

1

γ
Ea[TZ |TZ < T+

a ], (C.39)

the last two equalities following by simple calculations, and apply again Proposition B.6.

Proof of Proposition B.8. Let β > 0 be a constant such that supx∈AEx

[
T∂A

]
≤ βΓ(A) for

all sufficiently large λ. By the Markov inequality, we have

Px

(
T∂A > mΓ(A)

)
≤ β

m
(C.40)

for every x ∈ A and every constant m ≥ 1. Chopping time into intervals of length
mΓ(A) and applying this inequality iteratively we get, via the Markov property and time
homogeneity, that

Px

(
T∂A > nmΓ(A)

)
≤
( β
m

)n
(C.41)

for n = 1, 2, . . .. Setting n =
⌊

1
mρ
⌋
we obtain

Px

(
T∂A > ρΓ(A)

)
≤
( β
m

)⌊ 1
mρ
⌋
�
( β
m

) 1
mρ

. (C.42)

Setting m , βe gives the smallest value for
(
β
m

) 1
m , hence the sharpest inequality (C.42).

The claim follows for α , e−
1
βe .

Proof of Proposition B.9. For x ∈ A, we can write

Px

(
TB1 > ρΓ(A)

∣∣TB1 < TB2

)
=
Px

(
TB2

> TB1
> ρΓ(A)

)
Px(TB1

< TB2
)

≤
Px

(
T∂A > ρΓ(A)

)
Px(TB1

< TB2
)

(C.43)

By Proposition B.8, we have Px

(
T∂A > ρΓ(A)

)
� αρ for some constant α > 0 independent

of ρ. Let w be a simple path from x to B1 that does not pass through ∂A. The length of w
is at most |A| and so Px(TB1

< TB2
) ≥ Px(X follows w) ≥ κ|A|, with X = (X(n))n∈N the

discrete-time chain defined in Section 1.2. The claim therefore follows.

Proof of Proposition B.10. We have

Ex

[
TB1

∣∣TB1
< TB2

]
=
∑
t≥0

Px

(
TB1

> t |TB1
< TB2

)
(C.44)

=

∞∑
i=0

dρΓ(A)e−1∑
j=0

Px

(
TB1 > idρΓ(A)e+ j

∣∣TB1 < TB2

)
. (C.45)

Using the bound in Proposition B.9 iteratively, we get, via the Markov property and time
homogeneity, that

Px

(
TB1 > idρΓ(A)e+ j

∣∣TB1 < TB2

)
�
(
αρ κ−|A|)i , (C.46)

which gives

Ex

[
TB1

∣∣TB1
< TB2

]
� ρΓ(A)

∞∑
i=0

(
αρ κ−|A|)i = ρΓ(A)

1

1− αρ κ−|A| � ρΓ(A) (C.47)

as λ→ ∞.
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C.8 Critical gate

Proof of Proposition B.11. Suppose that r(x, y) � Ψ(A,B). Since x ∈ S, there is a path
A ; x with Ψ(A ; x) � Ψ(A,B) that does not pass Q∗. Continuing this path with the
transition x→ y, we obtain another path A ; x→ y with Ψ(A ; x→ y) � Ψ(A,B) that
does not hit Q∗, except possibly at y. But, since y is assumed to be outside S, it must
be in Q∗. By assumption, Ψ(y,B) ≺ Ψ(A,B), which means that there is a path y ; B

with Ψ(y ; B) ≺ Ψ(A,B). Gluing this path with A ; x → y, we get an optimal path
A ; x→ y ; B, which, by definition, must pass through the critical gate. It follows that
x must be in Q, because A ; x does not pass Q∗ and y ; B does not pass Q.

Proof of Proposition B.12. The upper bound follows from the simplified Nash-Williams
inequality in (A.12). For the lower bound, we use the extended dual Nash-Williams
inequality (Proposituion A.1).

To get the upper bound, let S , S(A,Q,Q∗, B) be the set of states behind the critical
gate. By the simplified Nash-Williams inequality in (A.12) and Proposition B.11, we have

C(A↔ B) ≤ C(S ↔ Sc) = c(S, Sc) = c(Q,Q∗) + o(
1

Ψ(A,B)
) = c(Q,Q∗) [1 + o(1)] (C.48)

as λ→ ∞.
Next we verify the lower bound. For each x ∈ Q and y ∈ Q∗ with x ∼ y, let ωx,y be an

optimal path A ; x→ y ; B whose parts A ; x and y ; B are also optimal. Thus, the
transition x→ y is the unique transition on ωx,y whose resistance has the highest order
of magnitude as λ→ ∞. For each pair (a, b) with a ∼ b, let n(a, b) denote the number of
pairs (x, y) such that ωx,y passes through a → b. By the extended dual Nash-Williams
inequality (Proposition A.1), we have

C(A↔ B) ≥
∑
x∈Q

∑
y∈Q∗

x∼y

1∑
(a,b)∈ωx,y

n(a, b)r(a, b)
. (C.49)

But ∑
(a,b)∈ωx,y

n(a, b)r(a, b) = r(x, y) + o(Ψ(A,B)) (C.50)

as λ→ ∞. Hence

C(A↔ B) ≥
∑
x∈Q

∑
y∈Q∗

x∼y

c(x, y) [1 + o(1)] (C.51)

as λ→ ∞.

Proof of Proposition B.13. Let NTB
(x→ y) denote the number of times the chain moves

through transition x→ y until TB. Using (A.7), we have

Ea[NTB
(x→ y)] = GTB

(a, x)K(x, y) = R(a↔ B)Px(Ta < TB)c(x, y). (C.52)

According to Proposition B.12, we have the estimate R(a ↔ B) = 1+o(1)
c(Q,Q∗) as λ → ∞.

Therefore

Ea[NTB
(x→ y)] = Px(Ta < TB)

c(x, y)

c(Q,Q∗)
[1 + o(1)] (C.53)

as λ→ ∞.
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(i) Suppose that (x, y) ∈ (S × Sc) \ (Q × Q∗) with x ∼ y. Then, according to the
Proposition B.11, we have c(x, y) ≺ 1

Ψ(a,B) � c(Q,Q∗). Therefore Ea[NTB
(x→ y)] =

o(1) as λ→ ∞. That Pa(Txy < TB) = o(1) follows from the Markov inequality.

(ii) Suppose that (x, y) ∈ S × Sc with x ∼ y. Exchanging x and y in (C.53), we have

Ea[NTB
(y → x)] = Py(Ta < TB)

c(x, y)

c(Q,Q∗)
[1 + o(1)]. (C.54)

We consider two cases. If y /∈ Q∗, then we have (by Proposition B.11) that c(x, y) ≺
1

Ψ(a,B) � c(Q,Q∗). Therefore Pa(Tyx < TB) ≤ Ea[NTB
(y → x)] = o(1). If, on

the other hand, y ∈ Q∗, then, by definition, Ψ(y,B) ≺ Ψ(a,B). It follows from
Proposition A.4 that

Py(Ta < TB) ≤ O(1)
Ψ(y,B)

Ψ(a,B)
= o(1) (C.55)

as λ→ ∞. Therefore again Pa(Tyx < TB) ≤ Ea[NTB
(y → x)] = o(1).

(iii) By assumption, Ψ(a, x) ≺ Ψ(a,B). Using Proposition A.4, we get

Px(Ta < TB) ≥ 1−O(1)
Ψ(a, x)

Ψ(a,B)
= 1− o(1). (C.56)

Therefore

Ea[NTB
(x→ y)] =

c(x, y)

c(Q,Q∗)
[1 + o(1)] (C.57)

as λ→ ∞. By the Markov inequality,

Pa(Txy < TB) ≤
c(x, y)

c(Q,Q∗)
[1 + o(1)] (C.58)

as λ → ∞. To see that the equality must hold, we combine the latter inequality
with the result of the first part to write

1 ≤
∑
x̄∈S

∑
ȳ∈Sc

Pa(Tx̄ȳ < TB) ≤ o(1) +
∑
x̄∈Q

∑
ȳ∈Q∗

c(x̄, ȳ)

c(Q,Q∗)
[1 + o(1)] = 1 + o(1). (C.59)

We conclude that

Pa(Txy < TB) =
c(x, y)

c(Q,Q∗)
[1 + o(1)] (C.60)

as λ→ ∞.

C.9 Critical resistance of standard paths

Proof of Lemma 3.1. Let ω(k0), ω(k1), . . . , ω(km) be the backbone of ω. Let us identify
the critical resistance of the segment ω(i) , ω(ki−1) → ω(ki−1 + 1) → · · · → ω(ki)

corresponding to Ai−1 → Ai. Set s , max{|Ai−1| , |Ai|}. By symmetry, we can assume
that Ai ⊇ Ai−1, in which case s = |Ai|.

Based on whether N(Ai) ⊆ N(Ai−1) or not, we have two possibilities:

ω(ki−1)

ω(ki)

+V

ω(ki−1)

x

y

ω(ki)−U

−U +V

Case 1 Case 2

(C.61)
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When N(Ai) 6⊆ N(Ai−1) (Case 2), we have

Ψ(ω(i)) = r(x, y) =
γ

π(x)
=

γ

π(u)

λ∆(x)+|xV |

λ̄|xV | (C.62)

Observing that |xV | = s− 1 and ∆(x) = ∆
(
ω(ki)

)
= ∆(s), we get

Ψ(ω(i)) = r(x, y) =
γ

π(u)

λ∆(s)+s−1

λ̄s−1
=

γ

π(u)
λ∆(s)−α(s−1)+o(1) . (C.63)

When N(Ai) ⊆ N(Ai−1) (Case 1), we similarly get

Ψ(ω(i)) = r
(
ω(ki−1), ω(ki)

)
=

γ

π(u)

λ∆(s)+s

λ̄s

≺ γ

π(u)

λ∆(s)+s−1

λ̄s−1
=

γ

π(u)
λ∆(s)−α(s−1)+o(1) . (C.64)

Letting i run over {1, 2, . . . , n} and maximizing g(s) = ∆(s)− α(s− 1), we find that

Ψ(ω) = sup
i

Ψ(ω(i)) ≤ γ

π(u)

λ∆(s†)+s†−1

λ̄s†−1
=

γ

π(u)
λ∆(s†)−α(s†−1)+o(1) . (C.65)

Next, suppose that the progression is nested, that is, A0 ( A1 ( · · · ( Am. Observe
that the segment ω(i) that achieves the maximum of Ψ(ω(i)) cannot be of the first type
in (C.61), unless i = 1 and N(A1) ⊆ N(A0). So, assume that N(A1) ⊆ N(A0), and let s†

be a maximiser of g(s) over {|Ai| : 0 < i ≤ m} = {smin + 1, . . . , smax}. Let 0 < i ≤ m be
such that s† = |Ai|. Since |Ai| > |Ai−1|, we find from (C.63) that

Ψ(ω(i)) =
γ

π(u)

λ∆(s†)+s†−1

λ̄s†−1
=

γ

π(u)
λ∆(s†)−α(s†−1)+o(1) . (C.66)

This means that the equality in (C.65) is achieved.

Proof of Lemma 3.2. Let ω , ω(0) → ω(1) → · · · → ω(n) be a standard path and A0 (
A1 ( · · · ( Am the associated nested isoperimetric progression. Let σ : ω(0) ; ω(n) be
an arbitrary path from ω(0) to ω(n). We show that Ψ(σ) � Ψ(ω) as λ→ ∞. It would then
follow that Ψ

(
ω(0), ω(n)

)
� Ψ(ω), that is, ω is optimal.

For 0 < i ≤ m, let ω(i) , ω(ki−1) → ω(ki−1 + 1) → · · · → ω(ki) be the segment of ω
corresponding to Ai−1 → Ai. As observed in the proof of Lemma 3.1, the segment ω(i)

has one of the two forms in (C.61). Let s , |Ai|. We show that Ψ(σ) � Ψ(ω(i)).

When following σ, the number of particles on V goes from |A0| to |Am|, each step
having at most one more particle on V than the previous step. Therefore, there are
configurations on σ that have exactly s particles on V . Let σ(`) be the first configuration
on σ with s particles on V . Since s > |A0|, we have ` ≥ 1 and the transition σ(`−1) → σ(`)

is of the type +V (i.e., adding a particle on V ).

When segment ω(i) satisfies Case 1 of (C.61), the resistance of the transition σ(`−1) →
σ(`) is at least as large as the critical resistance of ω(i), because

r
(
σ(`− 1), σ(`)

)
=

γ

π(σ(`))
� γ

π(ω(ki))
= r
(
ω(ki−1), ω(ki)

)
= Ψ(ω(i)) , (C.67)

where the inequality follows from the isoperimetric optimality of ω(ki).

EJP 23 (2018), paper 97.
Page 53/65

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

On the other hand, when ω(i) satisfies Case 2 of (C.61), we have N(Ai) 6⊆ N(Ai−1),
hence ` ≥ 2. There are two possibilities for the transition σ(`− 2) → σ(`− 1):

σ(`− 2)

σ(`− 1)

σ(`)

+

+V

σ(`− 2)

σ(`− 1)

σ(`)

− +V

Case 1 Case 2

(C.68)

The first case is when σ(`− 1) is obtained from σ(`− 2) by adding a particle. Then
the resistance of the transition σ(`− 2) → σ(`− 1) is strictly larger than Ψ(ω(i)) = r(x, y).
Namely,

r(σ(`− 2), σ(`− 1)) =
γ

π(σ(`− 1))
=

γ

π(σ(`))
λ̄ � γ

π(ω(ki))

λ̄

λ
=

γ

π(x)
= r(x, y) . (C.69)

The second case is when σ(`− 1) is obtained from σ(`− 2) by removing a particle. This
particle must be removed from U , for otherwise σ(`− 2) would already have s particles
on V , which contradicts the choice of σ(`). In this case the resistance of the transition
σ(`− 2) → σ(`− 1) is still no smaller than Ψ(ω(i)) = r(x, y), because

r(σ(`− 2), σ(`− 1)) =
γ

π(σ(`− 2))
=

γ

π(σ(`))

λ̄

λ
� γ

π(ω(ki))

λ̄

λ
=

γ

π(x)
= r(x, y) . (C.70)

Thus, in both cases we get that the critical resistance of σ is at least Ψ(ω(i)) = r(x, y).
In conclusion, Ψ(σ) � Ψ(ω(i)). Running i over {1, 2, . . . ,m}, we find that Ψ(σ) � Ψ(ω).

Since σ was arbitrary, ω is optimal.

Proof of Proposition 3.3. Since the graph is connected and V 6= ∅, the neighbourhood
N(a) of every site a ∈ V is non-empty. The claim thus follows immediately from Lem-
mas 3.1 and 3.2.

C.10 No-trap condition via ordering

Proof of Proposition 3.4. Consider x /∈ {u, v}. Let i ∈ U and j ∈ V be two adjacent sites
that are not occupied in x. Such sites exist. Indeed, N(U \xU ) 6⊆ xV , otherwise the graph
would not be connected. By assumption, there is a standard path u = ω(0) → ω(1) →
· · · → ω(m) ∈ J(u) whose first particle on V is on site j. Note that this path starts by
removing particles from neighbours of j until it is possible to place a particle on site j.
Since re-ordering the removal of these particles from U does not affect the condition of
being a standard path, we may assume that the first particle to be removed is from site i.

We construct a path σ : x ; y from x to a configuration y ∈ J−(x) that verifies
the claim π(x)Ψ

(
x, J−(x)

)
≺ π(u)Ψ

(
u, J(u)

)
. The idea is to follow the moves of the

path ω. Specifically, for k = 0, 1, . . . ,m, define σ′(k) , x ∨ ω(k). The sequence x =

σ′(0), σ′(1), . . . , σ′(m) potentially has repeated elements. For instance, σ′(1) = σ′(0)

because x has no particle on i. Removing the repeated elements from this sequence, we
obtain a path σ(0) → σ(1) → · · · → σ(m̄), which we claim has the right property. Observe
that this indeed makes a path: σ′(k) and σ′(k + 1) differ in at most one position.

We will verify that

(i) π(σ′(m)) � π(x),

(ii) π(x)r(σ′(k), σ′(k+ 1)) ≺ π(u)r
(
ω(k), ω(k+ 1)

)
for each k = 0, 1, . . . ,m− 1 such that

σ′(k) and σ′(k + 1) are not the same.
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Claim (i) means that y , σ′(m) is in J−(x). Claim (ii) implies that

π(x)Ψ
(
x, J−(x)

)
� sup

0≤`<m̄
π(x)r

(
σ(`), σ(`+ 1)

)
≺ sup

0≤k<m
π(u)r

(
ω(k), ω(k + 1)

)
= π(u)Ψ

(
u, J(u)

)
(C.71)

as λ→ ∞, which proves the proposition.
To verify the above claims, we note that

r
(
ω(k), ω(k + 1)

)
=

γ

max
{
π(ω(k)), π(ω(k + 1))

}
=

{
γ

π(ω(k)) , if ω(k)
−U−−→ ω(k + 1),

γ
π(ω(k+1)) , if ω(k)

+V−−→ ω(k + 1),
(C.72)

r
(
σ′(k), σ′(k + 1)

)
=

γ

max
{
π(σ′(k)), π(σ′(k + 1))

}
=

{
γ

π(σ′(k)) if ω(k)
−U−−→ ω(k + 1),

γ
π(σ′(k+1)) if ω(k)

+V−−→ ω(k + 1)
(C.73)

provided σ′(k) and σ′(k + 1) are not the same. Claim (ii) boils down to verifying that

π(u)

π(ω(k))
� π(x)

π(σ′(k))
=

π(x)

π(x ∨ ω(k))
(C.74)

for k = 1, 2, . . . ,m (recall: σ′(0) = σ′(1)). The same inequality for k = m also proves
Claim (i), because π(u)

π(ω(m)) � 1. Finally, using the identity

π(x ∨ ω(k))π(x ∧ ω(k)) = π(x)π(ω(k)) (C.75)

(see Section 3.1), the proof of the inequality in (C.74) reduces to the proof of the following
claim. The configuration x ∧ ω(k) roughly keeps track of the moves that we are “saving”
by starting the path from x rather than u.

Claim. For k = 1, 2, . . . ,m, π(x ∧ ω(k)) ≺ π(u) as λ→ ∞.

Argument. Let s denote the number of particles that x ∧ ω(k) has on V . We consider
three separate cases.

Case 1: s = 0.
The configuration x ∧ ω(k) has no particle on V . Moreover, the choice of ω ensures

that x∧ ω(k) has no particle on site i ∈ U . It immediately follows that π(x∧ ω(k)) ≺ π(u).

Case 2: 0 < s < |ωV (m)|.
Let k1 be the first integer for which ω(k1) has s particles on V . Since ω is a standard

path, ω(k1) is isoperimetrically optimal. Therefore

π(x ∧ ω(k)) = π(u)λ̄sλ−∆(x∧ω(k))−s � π(u)λ̄sλ−∆(s)−s = π(ω(k1)) ≺ π(u). (C.76)

(For the latter inequality, recall that ω(k1) /∈ J(u).)

Case 3: s = |ωV (m)|.
This is impossible. Indeed, every particle that x ∧ ω(k) has on V is also present in

ω(m). But, by the choice ω, ω(m) has a particle on site j ∈ V on which x has no particle.
Therefore x ∧ ω(k) has strictly less particles on V than ω(m). �

This concludes the proof.
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C.11 Passing the bottleneck

Proof of Lemma 3.7. Suppose that x is a basic configuration in ω with |xV | = s particles
on V . By the remark before the lemma, we have

Ψ(ω) ≥ γ

π(x)
=

γ

π(u)

λ|U\xU |

λ̄|xV | =
γ

π(u)
λ∆(x)−α|xV |+o(1). (C.77)

Writing ∆(x) = ∆(s) +∆(x)−∆(s), ∆(s) = ∆(s∗) + d∆(s) and s = s∗ +ds, and using the
assumption we obtain

Ψ(ω) ≥ γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1)λ∆(x)−∆(s)+d∆(s)−α(ds+1)

≥ γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1)λ∆(x)−∆(s)−ε. (C.78)

On the other hand, since ω is optimal, we know by Lemma 3.3 that

Ψ(ω) = Ψ
(
u, J(u)

)
=

γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1). (C.79)

It follows that ∆(x)−∆(s)− ε ≤ 0, i.e., x is ε-optimal. To see the latter claim, note that
any configuration that is ε-optimal for some ε < 1 is, in fact, optimal.

Proof of Lemma 3.8. Suppose that x = ω(k) is the first configuration in ω with |xV | =
s + 1 particles on V . This means that ω(k) has one more particle on V compared to
ω(k − 1). Observe that k must be at least 2 for otherwise we get a contradiction with the
connectedness of the graph. There are two possibilities for ω(k − 2):

ω(k − 2)

ω(k − 1)

ω(k)

+

+V
ω(k − 2)

ω(k − 1)

ω(k)

− +V

Case 1 Case 2

(C.80)

In the first case, ω(k− 2) has one less particle than ω(k− 1). This means that ω(k− 1)

is a basic step on ω. Since ω(k − 1) has s particles on V and d∆(s) + ε ≥ α(ds + 1),
Lemma 3.7 implies that ω(k − 1) is isoperimetrically ε-optimal. Therefore, ∆(ω(k)) =

∆(ω(k − 1)) − 1 ≤ ∆(s) + ε − 1. Using the assumption ∆(s + 1) ≥ ∆(s), we obtain that
x = ω(k) is (ε− 1)-optimal.

In the second case, ω(k − 2) has one more particle than ω(k − 1). By the choice of
x = ω(k), this extra particle is on U . Otherwise ω(k−2) would already have s+1 particles
on V . Now, ω(k − 2) is a basic configuration on ω with s particles on V . Therefore the
assumption d∆(s) + ε ≥ α(ds+1) and Lemma 3.7 imply that ω(k− 2) is isoperimetrically
ε-optimal. Therefore ∆(ω(k)) = ∆(ω(k − 2)) ≤ ∆(s) + ε. By assumption, we also have
∆(s+ 1) ≥ ∆(s). Hence ∆(ω(k)) ≤ ∆(s+ 1) + ε, which means that ω(k) is ε-optimal.

Proof of Lemma 3.9. Let ω(i) be the next basic configuration after ω(p). Since ω(p) is
the last basic configuration before ω(q) having less than s∗ − 1 particles on V , ω(i) must
have s∗ − 1 particles on V . We have either of the following two possibilities when going
from ω(p) to ω(i) on ω:

ω(p)

ω(i)

+V
ω(p) ω(i)

− +V

Case 1 Case 2
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Suppose that ω(i) has t = t∗ + dt particles on U . Then ω(p) has at most t + 1 particles
on U .

By the remark before Lemma 3.7, the critical resistance of ω satisfies

Ψ(ω) ≥ γ

π(ω(p))
=

γ

π(u)

λ|U\ωU (p)|

λ̄|ωV (p)| =
γ

π(u)
λ∆(ω(p))−α|ωV (p)|+o(1) (C.81)

as λ → ∞. Substituting ∆(ω(p)) ≥ |U | − (t∗ + dt + 1) − (s∗ − 2) = ∆(s∗) − dt + 1 and
|ωV (p)| = s∗ − 2, we get

Ψ(ω) ≥ γ

π(u)
λ∆(s∗)−α(s∗−1)+1+α−dt+o(1) (C.82)

as λ→ ∞. But, since ω is optimal, we know from Lemma 3.3 that

Ψ(ω) = Ψ
(
u, J(u)

)
=

γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1). (C.83)

Combining (C.82) and (C.83), it follows that dt ≥ 1 + α > 1. Since dt is an integer, we
find that in fact dt ≥ 2, hence proving the first claim. In particular,

∆(ω(i)) = |U | − (t∗ + dt)− (s∗ − 1) = ∆(s∗) + 1− dt

≤ ∆(s∗)− 1 = ∆(s∗ − 1) + δ − 1 , (C.84)

which means ω(i) is (δ − 1)-optimal.

Proof of Proposition 3.10. Let ω be an optimal path from u to J(u). By definition, s∗ ≥ 1.
Let us first assume that s∗ ≥ 2. Let ω(q) be the first basic configuration in ω that has
s∗ + κ particles on V . Let ω(p) (with p < q) be the last basic configuration before ω(q)
with s∗ − 2 particles on V . Finally, let ω(r) (with p < r < q) be the last (not necessarily
basic) configuration before ω(q) having s∗ − 1 particles on V . Set y , ω(r), x , ω(r − 1)

and z , ω(r + 1).

Clearly, z is a basic configuration with s∗ particles on V and y
+V−−→ z. By Lemmas 3.7

and 3.8, every basic configuration in the segment ω(r + 1) → ω(r + 2) → · · · → ω(q)

is isoperimetrically optimal. Let ω(k0), ω(k1), . . . , ω(k`) be the subsequence of these
basic configurations obtained after removing the repetitions, and set Bi , ωV (ki). The
sequence B0, B1, . . . , B` satisfies the required properties in part (c).

Let ω(t) (with p < t ≤ r < q) be the first basic configuration after ω(p). Then ω(t) has
s∗ − 1 particles on V and, according to Lemma 3.9, is isoperimetrically (δ − 1)-optimal.
Note that every configuration ω(i) with t ≤ i ≤ r has exactly s∗ − 1 particles on V .
Therefore ωV (i) = ωV (t) is an isoperimetrically (δ − 1)-optimal set. In particular, xV is

isoperimetrically (δ − 1)-optimal. We argue that x
−U−−→ y. Indeed, otherwise, we would

have x
+−→ y, which means that y is a basic configuration with ∆(y) = ∆(s∗)+ 1. It would

then follow that

Ψ(ω) ≥ r(x, y) =
γ

π(y)
=

γ

π(u)
λ∆(y)−α|yV |+o(1)

=
γ

π(u)
λ∆(s∗)+1−α(s∗−1)+o(1) � Ψ

(
u, J(u)

)
, (C.85)

where the latter inequality follows from Proposition 3.3. This contradicts the optimality

of ω. Since x
−U−−→ y

+V−−→ z and z is isoperimetrically optimal, we also get ∆(x) = ∆(z) =

∆(s∗) = ∆(s∗ − 1) + δ, which means x is isoperimetrically δ-optimal.
If s∗ = 1, we set t , 0 and choose r (t ≤ r < q) to be the last configuration before ω(q)

having no particle on V . Note that r > t for otherwise the graph will not be connected.
In this case, ω(t) = u is optimal and the rest of the argument goes without change.
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C.12 Identification of critical gate

Proof of Proposition 3.6. Using Hypothesis (H1) and Proposition 3.3, we have

Ψ
(
u, J(u)

)
=

γ

π(u)

λ∆(s∗)+s∗−1

λ̄s∗−1
=

γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1) as λ→ ∞. (C.86)

We verify that the pair (Q,Q∗) satisfies the four conditions for being a critical pair
(Sec. B.5) between A , {u} and B , J(u).

First, observe that for every x ∈ Q and y ∈ Q∗ with x ∼ y, we have

r(x, y) =
γ

π(x)
=

γ

π(u)

λ∆(s∗)+s∗−1

λ̄s∗−1
= Ψ

(
u, J(u)

)
, (C.87)

hence the first condition is satisfied.

Let x ∈ Q and y ∈ Q∗ be such that x
−U−−→ y. By definition, there exist A ∈ A and

B ∈ B such that yV = A and yU = U \ N(B). Let i be the unique element of B \ A.
Then, xV = yV and xU = yU ∪ {j0} for some j0 ∈ N(i) \ N(A). (Note that N(i) \ N(A)

is non-empty. Otherwise, ∆(B) = ∆(A) − 1, which gives g(s∗ − 1) > g(s∗). The latter
inequality clearly cannot happen if s∗ > 1. On the other hand, when s∗ = 1, the set
N(i) \N(A) = N(i) cannot be empty, because the graph is assumed to be connected.)
Let j1, j2, . . . , jd be an enumeration of N(i) \ {j0}.

According to (H4.b), there is an isoperimetric progression from ∅ to A, consisting
only of sets of size at most s∗ − 1. Let ω be the path associated to such a progression.
Then, by Lemma 3.1,

Ψ(ω) ≤ γ

π(u)

λ∆(s†)+s†−1

λ̄s†−1
=

γ

π(u)
λ∆(s†)−α(s†−1)+o(1) as λ→ ∞, (C.88)

where s† is the maximiser of g(s) over {1, 2, . . . , s∗ − 1}. Since g(s†) < g(s∗), we find that
Ψ(ω) ≺ Ψ

(
u, J(u)

)
. Let ω′ be the path from u to x, obtained by first following ω and

then removing particles from j1, j2, . . . , jd one after another. The resistance of the new
transitions are all smaller than r(x, y). Therefore, Ψ(u, x) � Ψ(ω′) ≺ Ψ

(
u, J(u)

)
.

Showing that Ψ
(
y, J(u)

)
≺ Ψ

(
u, J(u)

)
is similar. According to (H4.c), there is an

isoperimetric progression from B to a set of size s̃, consisting only of sets of size at
least s∗. Let ω be the path associated to such a progression. Then, by Lemma 3.1,

Ψ(ω) ≤ γ

π(u)

λ∆(s†)+s†−1

λ̄s†−1
=

γ

π(u)
λ∆(s†)−α(s†−1)+o(1) as λ→ ∞, (C.89)

where s† is the maximiser of g(s) over {s∗ + 1, s∗ + 2, . . . , s̃}. Using (H3) we know that
g(s†) < g(s∗), from which it follows that Ψ(ω) ≺ Ψ

(
u, J(u)

)
. Let ω′ be the path from y to

J(u), obtained by first placing a particle on i and then following ω. Note that

r
(
ω′(0), ω′(1)

)
=

γ

π
(
ω(0)

) =
γ

π(u)

λ∆(s∗)+s∗

λ̄s∗
=

γ

π(u)
λ∆(s∗)−αs∗+o(1) ≺ r(x, y) . (C.90)

Therefore, Ψ(u, x) � Ψ(ω′) ≺ Ψ
(
u, J(u)

)
.

Lastly, let ω be an optimal path from u to J(u). The trace of ω on V (see Section 3.2)
is a progression A0, A1, . . . , Am with A0 = ∅ and ∆(Am) ≤ α |Am|. Let us verify that
this progression is α-bounded in the sense that ∆(Ai) − α |Ai| ≤ ∆(s∗) − αs∗ for each
0 ≤ i ≤ m. Indeed, suppose that ∆(Ai)−α(|Ai| − 1) > ∆(s∗)−α(s∗ − 1) = g(s∗) for some
0 ≤ i ≤ m. From (H3), we know that i ≥ 1. Let ω(k) be the first configuration in ω such
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that ωV (k) = Ai. Since i ≥ 1 and the graph is connected, we have k ≥ 2. There are two
possibilities for the two transitions leading to ω(k):

ω(k − 2)

ω(k − 1)

ω(k)

+

+V

ω(k − 2)

ω(k − 1)

ω(k)

− +V

Case 1 Case 2

(C.91)

As in the proof of Lemma 3.2, we can verify that in either case,

r(ω(k − 2), ω(k − 1)) � γ

π(u)
λ∆(Ai)−α(|Ai|−1)+o(1)

� γ

π(u)
λ∆(s∗)−α(s∗−1)+o(1) � Ψ

(
u, J(u)

)
, (C.92)

which is a contradiction. Since A0, A1, . . . , Am is α-bounded, according to (H4.d), there
exists an index 0 < i ≤ m such that Ai−1 ∈ A and Ai ∈ B. Let ω(k) be the first
configuration in ω such that ωV = Ai. Then, the two transitions leading to ω(k) are of
the second type in (C.91), where x , ω(k − 2) ∈ Q and y , ω(k − 1) ∈ Q∗.

We conclude that (Q,Q∗) is a critical pair between u and J(u).

Proof of Proposition 1.4. Condition (H4.a) is clearly satisfied. Condition (H4.b) is the
same as (H6.a). Condition (H4.c) follows from (H6.b) and the definition of B.

Condition (H4.d) follows from Proposition 3.10. Namely, let A0, A1, . . . , An be an
α-bounded progression (i.e., a progression satisfying ∆(Ai)− α |Ai| ≤ ∆(s∗)− αs∗) with
A0 = ∅ and ∆(An) ≤ α |An|. Let ω be the path associated to this progression (see
Section 3.2).

Since ∆(An) ≤ α |An|, the path ends at a configuration ω(N) ∈ J(u). Furthermore, as
in the proof of Lemma 3.1 (and using Proposition 3.3), we can verify that ω is optimal (in
the sense of Section B.5). Proposition 3.10 and (H5) now ensure that there is a 0 ≤ k < n

such that Ak ∈ A and Ak+1 ∈ B.

C.13 Isoperimetric problems

Proof of Lemma 5.2. The proof follows Cirillo and Nardi [19, Lemma 6.16]. Let us refer
to the two principal directions of the lattice L as horizontal and vertical. We say that A is
convex when its intersection with every horizontal or vertical line induces a (connected)
path in L. We first show that A is convex and connected in L. We afterwards verify that
every finite convex and connected set satisfies N1010(A) = ∅ and |N1(A)| − |N3(A)| = 4.

First, let us verify that A ∪N(A) is connected in the original lattice. If not, then A
can be partitioned into two sets A1 and A2 such that A1 ∪ N(A1) and A2 ∪ N(A2) are
disjoint. We can then shift A2 to obtain a set A′

2 that is still disjoint from A1, but satisfies
N(A′

2)∩N(A1) 6= ∅. It follows that ∆(A1 ∪A′
2) < ∆(A), which contradicts the optimality

of A.
Next, let A ⊆ V be the smallest rectangular region in L having horizontal and vertical

sides that contains A. Consider the following construction that enlarges A (Fig. 15).
Set B0 , A. To construct Bt from Bt−1, find a vertex kt ∈ V \ Bt−1 that is adjacent in
L to at least two elements of Bt−1 and set Bt , Bt−1 ∪ {kt}. It is easy to see that this
construction stops precisely when Bt = A. Furthermore, ∆(Bt−1) ≥ ∆(Bt) with equality
if and only if NL(kt) ∩ Bt−1 = {i, j} where N(i) ∩ N(j) 6= ∅ (i.e., Bt−1 has exactly two
elements adjacent in L to kt, and those two elements form a right triangle with kt). The
latter happens for every t precisely when A is convex. It follows that ∆(A) ≥ ∆(A) with
equality if and only if A is convex.
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7→ 7→ 7→ 7→

B0 = A B1 B2 B3 B4 = A

∆ = 8 ∆ = 7 ∆ = 7 ∆ = 7 ∆ = 7

Figure 15: Enlarging a set A ⊆ V into the encompassing rectangle.

We next argue that A is in fact connected in L. Indeed, suppose that A is not
connected. Let A1, A2, . . . , Ak be the connected components of A. Since A is convex and
A ∪N(A) is connected in the original lattice, we can re-order the sets A1, A2, . . . , Ak in
such a way that the two sets N(A1 ∪ · · · ∪ Ak−1) and N(k) share exactly one element
(Fig. 16). However, since A is convex, we can shift Ak to obtain a set A′

k disjoint from
A1 ∪ · · · ∪Ak−1 such that N(A′

k) and N(A1 ∪ · · · ∪Ak−1) share at least two elements. It
follows that ∆(A1 ∪ · · · ∪Ak−1 ∪A′

2) < ∆(A), which is a contradiction.

(a) A = A1 ∪A2, ∆ = 11. (b) A1 ∪A′
2, ∆ = 10.

Figure 16: Optimal sets are connected in L. The isoperimetric cost of a convex discon-
nected set can be decreased by shifting one of the components.

11
31 22 31 22 22 13 11

3
1

2
2

1
3

1122312222132211

3
1

1
3

1
3

Figure 17: The labeling of the vertices of c(A).

A convex and connected set in L is easily seen to satisfy N1010(A) = ∅. Let L′ be
the graph with vertex set U and with an edge between (a, b) and (a′, b′) if and only if
|a′ − a| = |b′ − b| = 1. This is the lattice dual to L. Since A is connected and convex, the
elements of N1(A) ∪ N2(A) ∪ N3(A) induce a simple cycle in L′, which is the contour
encompassing A. We denote this cycle by c(A). Since A is convex and connected, there
is a natural one-to-one correspondence between the edges of c(A) and the edges of the
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contour c(A) encompassing the rectangle A. Let us label the vertices of c(A) with pairs
in {1, 2, 3}2 as follows (see Fig. 17). Let x be a vertex of c(A), and let (y, x) and (x, z) be
two two edges incident to x. Let (y′, x′) and (x′′, z′′) be the edges of c(A) corresponding
to (y, x) and (x, z), respectively. If x′ ∈ Ni(A) and x′′ ∈ Nj(A), then we label x with
(i, j). Note that the only possible labels are (1, 1), (2, 2), (3, 1) and (1, 3), and that the
four corners of c(A) are precisely the vertices with label (1, 1). Counting reveals that
|N1(A)| − |N3(A)| = 4.

Proof of Proposition 5.8. Let S(d,m) ⊆ {0, 1}d denote the set consisting of them first ele-
ments of Harper’s isoperimetric ordering of the vertices of Hd. Observe that
S
(
d,
∑r−1

i=0

(
d
i

))
consists precisely of the words w ∈ {0, 1}d with ‖w‖ < r. For 0 ≤ k ≤

(
d
r

)
,

we have

S

(
d,

r−1∑
i=0

(
d

i

)
+ k

)
= S

(
d,

r−1∑
i=0

(
d

i

))
∪ L(d, r, k) (C.93)

where L(d, r, k) consists of the first k elements of the set {w ∈ {0, 1}d : ‖w‖ = r}
according to the reverse lexicographic ordering.

The sets L(d, r, k) satisfy the recursion

L(d, r, k)

=

1L(d− 1, r − 1, k) if 0 < k ≤
(
d−1
r−1

)
,

1L
(
d− 1, r − 1,

(
d−1
r−1

))
∪ 0L

(
d− 1, r, k −

(
d−1
r−1

))
if
(
d−1
r−1

)
< k ≤

(
d
r

)
,

(C.94)

whenever 0 < r ≤ d.

Observe that for 0 < r ≤ d, the vertex boundary of S
(
d,
∑r−1

i=0

(
d
i

))
is simply the set

L
(
d, r,

(
d
r

))
= {w ∈ {0, 1}d : ‖w‖ = r} which has cardinality

(
d
r

)
. Hence, ∆d+1

(∑r−1
i=0

(
d
i

))
=
(
d
r

)
. For 0 ≤ k ≤

(
d
r

)
, the boundary of S

(
d,
∑r−1

i=0

(
d
i

))
can be divided into those

elements w with ‖w‖ = r and those with ‖w‖ = r + 1. The first part is simply the set
B1(d, r, k) , {w ∈ {0, 1}d : ‖w‖ = r} \ L(d, r, k) and has cardinality

(
d
r

)
− k. The second

part is B2(d, r, k) , N(L(d, r, k)) ∩ {w ∈ {0, 1}d : ‖w‖ = r + 1}. The elements of B2(d, r, k)

are the words obtained from the elements of L(d, r, k) by turning a 0 into a 1. Denoting
the cardinality of B2(d, r, k) by ψd(r, k), the recursion (5.8) follows easily from (C.94).

C.14 Calculation of the critical size

Proof of Lemma 6.1. Using the explicit expressions (2.20) and (2.21) for ∆(s), for s > 1

we have

g(s)− g(s− 1) =

{
1− α if s = `2 + 1 or s = `(`+ 1) + 1 for some ` > 0,

−α otherwise.
(C.95)

Since −α < 0 < 1 − α, it follows that every maximiser of g(s) must be of the form
s = `2 + 1 or s = `(` + 1) + 1 for some ` > 0. Let g1(`) , g(`2 + 1) = 2(` + 1) − α`2 and
g2(`) , g(`(` + 1) + 1) = 2(` + 1) + 1 − α`(` + 1). These are quadratic functions. Since
2/α /∈ Z, the function g1 has a unique maximiser at `1 , [1/α], i.e., the closest integer to
1/α. Similarly, since 1/α /∈ Z, the function g2 has a unique maximiser at `2 , b1/αc, which
is the closest integer to 1/α − 1/2. Note that either `1 = `2 or `1 = `2 + 1. In either case,
it is straightforward to verify that g1(`1) < g2(`2). We find that s∗ , `2(`2 + 1) + 1 is the
unique maximiser of g(s). Finally, observe that `∗ = d1/αe = b1/αc+ 1 = `2 + 1.
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Proof of Lemma 6.2. Using the expression (2.23) for ∆(s), for s > 1 we have

g(s)− g(s− 1) =

{
1− α if s = `2 + (`− 1)2 + r with r ∈ {1, `, 2`, 3`},
−α otherwise.

(C.96)

since −α < 0 < 1 − α, it follows that every maximiser of g(s) must be of the form
s = `2+(`−1)2+ r for some ` > 0 and r ∈ {1, `, 2`, 3`}. Let us thus consider the functions

g1(`) , g(`2 + (`− 1)2 + 1) = 4`+ 1− α(`2 + (`− 1)2) , (C.97)

g1+k(`) , g(`2 + (`− 1)2 + k`) = 4`+ 1 + k − α(`2 + (`− 1)2 + k`− 1) , (C.98)

for k = 1, 2, 3. The maximum of a concave quadratic function over integers is achieved at
the closest integer to its critical point. Since 4/α /∈ Z, the maximisers of g1, g2, g3 and g4
are unique: the maximums are respectively achieved at

`∗1 ,

[
1

α
+

1

2

]
, `∗2 ,

[
1

α
+

1

4

]
, `∗3 ,

[
1

α

]
, `∗4 ,

[
1

α
− 1

4

]
, (C.99)

where [a] denotes the closest integer to a. Let {1/α} denote the fractional part of 1/α. We
consider four cases:

Case 1: 0 < {1/α} < 1/4. In this case, `∗2 = `∗3 = `∗4 = b1/αc < d1/αe = `∗1.
Observe that `∗ = b1/αc. We have

g1(`
∗
1) = g

(
(`∗ + 1)2 + (`∗)2 + 1

)
= 4(`∗ + 1) + 1− α

(
(`∗ + 1)2 + (`∗)2

)
, (C.100)

g2(`
∗
2) = g

(
(`∗)2 + (`∗ − 1)2 + `∗

)
= 4`∗ + 2− α

(
(`∗)2 + (`∗ − 1)2 + `∗ − 1

)
, (C.101)

g3(`
∗
3) = g

(
(`∗)2 + (`∗ − 1)2 + 2`∗

)
= 4`∗ + 3− α

(
(`∗)2 + (`∗ − 1)2 + 2`∗ − 1

)
, (C.102)

g4(`
∗
4) = g

(
(`∗)2 + (`∗ − 1)2 + 3`∗

)
= 4`∗ + 4− α

(
(`∗)2 + (`∗ − 1)2 + 3`∗ − 1

)
. (C.103)

A straightforward calculation shows that

g1(`
∗
1) < g2(`

∗
2) < g3(`

∗
3) < g4(`

∗
4) , (C.104)

where for the first inequality, we have used 3 − α(3`∗ + 1) < 0, and for the others,
we have used 1 − α`∗ > 0. Hence, in this case g(s) has a unique maximiser at s∗ =

(`∗)2 + (`∗ − 1)2 + 3`∗.

Case 2: 1/4 < {1/α} < 1/2. In this case, `∗3 = `∗4 = b1/αc < d1/αe = `∗1 = `∗2.
Observe that again `∗ = b1/αc. We have

g1(`
∗
1) = g

(
(`∗ + 1)2 + (`∗)2 + 1

)
= 4(`∗ + 1) + 1− α

(
(`∗ + 1)2 + (`∗)2

)
, (C.105)

g2(`
∗
2) = g

(
(`∗ + 1)2 + (`∗)2 + `∗ + 1

)
= 4(`∗ + 1) + 2−

α
(
(`∗ + 1)2 + (`∗)2 + `∗

)
,

(C.106)

g3(`
∗
3) = g

(
(`∗)2 + (`∗ − 1)2 + 2`∗

)
= 4`∗ + 3− α

(
(`∗)2 + (`∗ − 1)2 + 2`∗ − 1

)
, (C.107)

g4(`
∗
4) = g

(
(`∗)2 + (`∗ − 1)2 + 3`∗

)
= 4`∗ + 4− α

(
(`∗)2 + (`∗ − 1)2 + 3`∗ − 1

)
. (C.108)

In this case, we have

g1(`
∗
1) < g2(`

∗
2) , g3(`

∗
3) < g4(`

∗
4) , g1(`

∗
1) < g3(`

∗
3) , g2(`

∗
2) < g4(`

∗
4) , (C.109)

where the first two inequalities follow from 1−α`∗ > 0 and the last two inequalities from
2−α(2`∗+1) < 0. Hence, g(s) again has a unique maximiser at s∗ = (`∗)2+(`∗−1)2+3`∗.
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Case 3: 1/2 < {1/α} < 3/4. In this case, `∗4 = b1/αc < d1/αe = `∗1 = `∗2 = `∗3.
In this case, `∗ = d1/αe. Therefore, we have

g1(`
∗
1) = g

(
(`∗)2 + (`∗ − 1)2 + 1

)
= 4`∗ + 1− α

(
(`∗)2 + (`∗ − 1)2

)
, (C.110)

g2(`
∗
2) = g

(
(`∗)2 + (`∗ − 1)2 + `∗

)
= 4`∗ + 2− α

(
(`∗)2 + (`∗ − 1)2 + `∗ − 1

)
, (C.111)

g3(`
∗
3) = g

(
(`∗)2 + (`∗ − 1)2 + 2`∗

)
= 4`∗ + 3− α

(
(`∗)2 + (`∗ − 1)2 + 2`∗ − 1

)
, (C.112)

g4(`
∗
4) = g

(
(`∗ − 1)2 + (`∗ − 2)2 + 3(`∗ − 1)

)
= 4`∗ − α

(
(`∗ − 1)2 +

(`∗ − 2)2 + 3`∗ − 4
)
.

(C.113)

With straightforward calculation we obtain

g1(`
∗
1) < g2(`

∗
2) , g3(`

∗
3) < g2(`

∗
2) , g4(`

∗
4) < g2(`

∗
2) , (C.114)

where the first inequality follows from 1 − α(`∗ − 1) > 0, the second from 1 − α`∗ < 0,
and the third from 2− α(2`∗ − 1) > 0. Hence, in this case, the unique maximiser of g(s)
is s∗ = (`∗)2 + (`∗ − 1)2 + `∗.

Case 4: 3/4 < {1/α} < 1. In this case, b1/αc < d1/αe = `∗1 = `∗2 = `∗3 = `∗4.
In this case, we again have `∗ = d1/αe. Therefore,

g1(`
∗
1) = g

(
(`∗)2 + (`∗ − 1)2 + 1

)
= 4`∗ + 1− α

(
(`∗)2 + (`∗ − 1)2

)
, (C.115)

g2(`
∗
2) = g

(
(`∗)2 + (`∗ − 1)2 + `∗

)
= 4`∗ + 2− α

(
(`∗)2 + (`∗ − 1)2 + `∗ − 1

)
, (C.116)

g3(`
∗
3) = g

(
(`∗)2 + (`∗ − 1)2 + 2`∗

)
= 4`∗ + 3− α

(
(`∗)2 + (`∗ − 1)2 + 2`∗ − 1

)
, (C.117)

g4(`
∗
4) = g

(
(`∗)2 + (`∗ − 1)2 + 3`∗

)
= 4`∗ + 4− α

(
(`∗)2 + (`∗ − 1)2 + 3`∗ − 1

)
. (C.118)

Similar calculation leads to

g1(`
∗
1) < g2(`

∗
2) , g4(`

∗
4) < g3(`

∗
3) < g2(`

∗
2) , (C.119)

where the first inequality follows from 1− α(`∗ − 1) > 0, the other two from 1− α`∗ < 0.
Hence, the unique maximiser of g(s) in this case is s∗ = (`∗)2 + (`∗ − 1)2 + `∗.

References

[1] D. Aldous and J. A. Fill, Reversible Markov chains and random walks on graphs, Unfinished
monograph, 2002 (recompiled 2014). [http://www.stat.berkeley.edu/~aldous/RWG/book.
html]

[2] L. Alonso and R. Cerf, The three dimensional polyominoes of minimal area, The Electronic
Journal of Combinatorics 3 (1996), no. 1, #R27. MR-1410882

[3] G. Ben Arous and R. Cerf, Metastability of the three-dimensional Ising model on a torus at
very low temperatures, Electronic Journal of Probability 1 (1996), no. 10. MR-1423463

[4] J. Beltrán and C. Landim, Tunneling and metastability of continuous time Markov chains,
Journal of Statistical Physics 140 (2010), no. 6, 1065–1114. MR-2684500

[5] J. van den Berg and J. E. Steif, Percolation and the hard-core lattice gas model, Stochastic
Processes and their Applications 49 (1994), 179–197. MR-1260188

[6] K. A. Berman and M. H. Konsowa, Random paths and cuts, electrical networks, and reversible
Markov chains, SIAM Journal of Discrete Mathematics 3 (1990), no. 3, 311–319. MR-1061971

[7] S. L. Bezrukov, On the construction of solutions of a discrete isoperimetric problem in
Hamming space, Mathematics of the USSR-Sbornik 63 (1989), no. 1. MR-0933486

[8] S. L. Bezrukov, Isoperimetric problems in discrete spaces, Extremal Problems in Finite Sets,
Bolyai Society Mathematical Studies, vol. 3, 1994, pp. 59–91. MR-1319157

[9] S. Borst, F. den Hollander, F. R. Nardi, and M. Sfragara, Transition time asymptotics of queue-
based activation protocols in random-access networks, Preprint (2018). arXiv:1807.05851

EJP 23 (2018), paper 97.
Page 63/65

http://www.imstat.org/ejp/

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.ams.org/mathscinet-getitem?mr=1410882
http://www.ams.org/mathscinet-getitem?mr=1423463
http://www.ams.org/mathscinet-getitem?mr=2684500
http://www.ams.org/mathscinet-getitem?mr=1260188
http://www.ams.org/mathscinet-getitem?mr=1061971
http://www.ams.org/mathscinet-getitem?mr=0933486
http://www.ams.org/mathscinet-getitem?mr=1319157
http://arXiv.org/abs/1807.05851
http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

[10] S. Borst, F. den Hollander, F. R. Nardi, and S. Taati, Hitting-time asymptotics in bipartite
hard-core interaction models with time-varying rates, In preparation (2018).

[11] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and small eigenvalues in
Markov chains, Journal of Physics A: Mathematical and General 33 (2000), no. 46, L447–
L451. MR-1804034

[12] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in stochastic dynamics of
disordered mean-field models, Probability Theory and Related Fields 119 (2001), no. 1,
99–161. MR-1813041

[13] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and low lying spectra in
reversible Markov chains, Communications in Mathematical Physics 228 (2002), no. 2,
219–255. MR-1911735

[14] A. Bovier and F. den Hollander, Metastability: A potential-theoretic approach, Springer, 2015.
MR-3445787

[15] A. Bovier, F. den Hollander, and F. R. Nardi, Sharp asymptotics for Kawasaki dynamics on
a finite box with open boundary, Probability Theory and Related Fields 135 (2006), no. 2,
265–310. MR-2218873

[16] A. Bovier and F. Manzo, Metastability in Glauber dynamics in the low temperature limit:
beyond exponential asymptotics, Journal of Statistical Physics 107 (2002), no. 3–4, 757–779.
MR-1898856

[17] M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behavior of stochastic
dynamics: A pathwise approach, Journal of Statistical Physics 35 (1984), no. 5–6, 603–634.
MR-0749840

[18] E. N. M. Cirillo and F. R. Nardi, Metastability for a stochastic dynamics with a parallel heat
bath updating rule, Journal of Statistical Physics 110 (2003), no. 1–2, 183–217. MR-1966327

[19] E. N. M. Cirillo and F. R. Nardi, Relaxation height in energy landscapes: An application to
multiple metastable states, Journal of Statistical Physics 150 (2013), 1080–1114. MR-3038678

[20] E. N. M. Cirillo, F. R. Nardi, and J. Sohier, Metastability for general dynamics with rare
transitions: Escape time and critical configurations, Journal of Statistical Physics 161 (2015),
365–403. MR-3401022

[21] E. N. M. Cirillo, F. R. Nardi, and C. Spitoni, Metastability for reversible probabilistic cellular
automata with self-interaction, Journal of Statistical Physics 132 (2008), no. 3, 431–471.
MR-2415112

[22] S. Dommers, Metastability of the Ising model on random regular graphs at zero temperature,
Probability Theory and Related Fields 167 (2017), no. 1, 305–324. MR-3602847

[23] S. Dommers, F. den Hollander, O. Jovanovski, and F. R. Nardi, Metastability for Glauber
dynamics on random graphs, Annals of Applied Probability 27 (2016), no. 4, 2130–2158.
MR-3693522

[24] P. G. Doyle and J. L. Snell, Random walks and electric networks, The Mathematical Association
of America, 1984. MR-0920811

[25] R. Fernandez, F. Manzo, F. R. Nardi, and E. Scoppola, Asymptotically exponential hitting
times and metastability: a pathwise approach without reversibility, Eletronic Journal of
Probability 20 (2015), no. 122. MR-3425542

[26] R. Fernandez, F. Manzo, F. R. Nardi, E. Scoppola, and J. Sohier, Conditioned, quasi-stationary,
restricted measures and escape from metastable states, The Annals of Applied Probability
26 (2016), no. 2, 760–793. MR-3476624

[27] A. Gaudillière, E. Olivieri, and E. Scoppola, Nucleation pattern at low temperature for local
Kawasaki dynamics in two dimensions, Markov Processes and Related Fields 11 (2005), no. 4,
553–628. MR-2191966

[28] G. Grimmett, Probability on graphs, Cambridge University Press, 2010. MR-2723356

[29] F. Harary and F. Harborth, Extremal animals, Journal of Combinatorics, Information and
System 1 (1976), 1–8. MR-0457263

[30] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, Journal of Combi-
natorial Theory 1 (1966), 385–393. MR-0200192

EJP 23 (2018), paper 97.
Page 64/65

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1804034
http://www.ams.org/mathscinet-getitem?mr=1813041
http://www.ams.org/mathscinet-getitem?mr=1911735
http://www.ams.org/mathscinet-getitem?mr=3445787
http://www.ams.org/mathscinet-getitem?mr=2218873
http://www.ams.org/mathscinet-getitem?mr=1898856
http://www.ams.org/mathscinet-getitem?mr=0749840
http://www.ams.org/mathscinet-getitem?mr=1966327
http://www.ams.org/mathscinet-getitem?mr=3038678
http://www.ams.org/mathscinet-getitem?mr=3401022
http://www.ams.org/mathscinet-getitem?mr=2415112
http://www.ams.org/mathscinet-getitem?mr=3602847
http://www.ams.org/mathscinet-getitem?mr=3693522
http://www.ams.org/mathscinet-getitem?mr=0920811
http://www.ams.org/mathscinet-getitem?mr=3425542
http://www.ams.org/mathscinet-getitem?mr=3476624
http://www.ams.org/mathscinet-getitem?mr=2191966
http://www.ams.org/mathscinet-getitem?mr=2723356
http://www.ams.org/mathscinet-getitem?mr=0457263
http://www.ams.org/mathscinet-getitem?mr=0200192
http://dx.doi.org/10.1214/18-EJP210
http://www.imstat.org/ejp/


Metastability of hard-core dynamics on bipartite graphs

[31] L. H. Harper, Global methods for combinatorial isoperimetric problems, Cambridge University
Press, 2004. MR-2035509

[32] F. den Hollander and O. Jovanovski, Metastability on the hierarchical lattice, Journal of
Physics A: Theoretical and Mathematical 50 (2017), 305001. MR-3673462

[33] F. den Hollander, F. R. Nardi, E. Olivieri, and E. Scoppola, Droplet growth for three-
dimensional Kawasaki dynamics, Probability Theory and Related Fields 125 (2003), no. 2,
153–194. MR-1961341

[34] F. den Hollander, F. R. Nardi, and A. Troiani, Kawasaki dynamics with two types of particles:
Stable/metastable configurations and communication heights, Journal of Statistical Physics
145 (2011), 1423–1457. MR-2863713

[35] F. den Hollander, E. Olivieri, and E. Scoppola, Metastability and nucleation for conservative
dynamics, Journal of Mathematical Physics 41 (2000), no. 3, 1424–1498. MR-1757966

[36] O. Jovanovski, Metastability for the Ising model on the hypercube, Journal of Statistical
Physics 167 (2017), no. 1, 135–159. MR-3619543

[37] J. Keilson, Markov chain models — rarity and exponentiality, Springer-Verlag, 1979.
MR-0528293

[38] R. Kotecký and E. Olivieri, Shapes of growing droplets—a model of escape from a metastable
phase, Journal of Statistical Physics 75 (1994), no. 3–4, 409–506. MR-1279759

[39] J. L. Lebowitz and G. Gallavotti, Phase transitions in binary lattice gases, Journal of Mathe-
matical Physics 12 (1971), no. 7, 1129–1133.

[40] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American Mathe-
matical Society, 2008. MR-3726904

[41] R. Lyons and Y. Peres, Probability on trees and networks, Cambridge University Press, 2016.
MR-3616205

[42] F. Manzo, F. R. Nardi, E. Olivieri, and E. Scoppola, On the essential features of metastability:
Tunnelling time and critical configurations, Journal of Statistical Physics 115 (2004), no. 1/2,
591–642. MR-2070109

[43] F. R. Nardi, A. Zocca, and S. C. Borst, Hitting times asymptotics for hard-core interactions on
grids, Journal of Statistical Physics 162 (2015), no. 2, 522–576. MR-3441372

[44] E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics
at very low temperatures, Communications in Mathematical Physics 137 (1991), no. 2,
209–230. MR-1101685

[45] E. Olivieri and M. E. Vares, Large deviations and metastability, Cambridge University Press,
2004. MR-2123364

[46] D. Vainsencher and A. M. Bruckstein, On isoperimetrically optimal polyforms, Theoretical
Computer Science 406 (2008), 146–159. MR-2453884

[47] D.-L. Wang and P. Wang, Discrete isoperimetric problems, SIAM Journal on Applied Mathe-
matics 32 (1977), no. 4, 860–870. MR-0434880

[48] A. Zocca, Low-temperature behavior of the multicomponent Widom–Rowlison model on finite
square lattices, Journal of Statistical Physics 171 (2018), no. 1, 1–37. MR-3773850

[49] A. Zocca, Tunneling of the hard-core model on finite triangular lattices, Random Structures
& Algorithms (To appear). arXiv:1701.07004

[50] A. Zocca, S. C. Borst, J. S. H. van Leeuwaarden, and F. R. Nardi, Delay performance in
random-access grid networks, Performance Evaluation 70 (2013), no. 10, 900–915.

EJP 23 (2018), paper 97.
Page 65/65

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2035509
http://www.ams.org/mathscinet-getitem?mr=3673462
http://www.ams.org/mathscinet-getitem?mr=1961341
http://www.ams.org/mathscinet-getitem?mr=2863713
http://www.ams.org/mathscinet-getitem?mr=1757966
http://www.ams.org/mathscinet-getitem?mr=3619543
http://www.ams.org/mathscinet-getitem?mr=0528293
http://www.ams.org/mathscinet-getitem?mr=1279759
http://www.ams.org/mathscinet-getitem?mr=3726904
http://www.ams.org/mathscinet-getitem?mr=3616205
http://www.ams.org/mathscinet-getitem?mr=2070109
http://www.ams.org/mathscinet-getitem?mr=3441372
http://www.ams.org/mathscinet-getitem?mr=1101685
http://www.ams.org/mathscinet-getitem?mr=2123364
http://www.ams.org/mathscinet-getitem?mr=2453884
http://www.ams.org/mathscinet-getitem?mr=0434880
http://www.ams.org/mathscinet-getitem?mr=3773850
http://arXiv.org/abs/1701.07004
http://dx.doi.org/10.1063/1.1665708
http://www.imstat.org/ejp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction and main results
	Background
	Model
	Three metastability theorems

	Hard-core dynamics on bipartite graphs
	Preparatory observations
	Simple examples
	Sophisticated examples

	Preparation for sophisticated examples
	Ordering and correlations
	Paths and progressions
	Absence of traps
	Critical gate and progressions
	Optimal paths close to the bottleneck

	Proof of the three metastability theorems
	Mean crossover time: order of magnitude
	Exponential law for crossover time
	Critical gate

	Sophisticated examples: the isoperimetric problem
	Reduction to edge isoperimetry
	Even torus

	Reduction to vertex isoperimetry
	Doubled torus
	Hypercube


	Sophisticated examples: key results
	Hard-core on an even torus
	Widom-Rowlinson on a torus
	Graph girth and crossover time
	Hard-core and Widom-Rowlinson on a hypercube

	Reversible Markov chains
	Connection with electric networks
	Sharp bounds for effective resistance
	Rough estimates for effective resistance
	Rough estimates for voltage

	Metastability in reversible Markov chains
	A characterisation of metastability
	Mean escape time and transition duration
	Exponential law for escape times
	Asymptotics for tail probabilities
	Sharp asymptotics for effective resistance
	Passage through the bottleneck

	Proofs
	Nash-Williams inequality
	Effective resistance versus critical resistance
	Estimates on voltage
	Characterisation of transience
	Mean escape time
	Rapid transition
	Renewal arguments
	Critical gate
	Critical resistance of standard paths
	No-trap condition via ordering
	Passing the bottleneck
	Identification of critical gate
	Isoperimetric problems
	Calculation of the critical size

	References

