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Universality of the GOE Tracy-Widom distribution
for TASEP with arbitrary particle density

Patrik L. Ferrari* Alessandra Occelli†

Abstract

We consider TASEP in continuous time with non-random initial conditions and arbitrary
fixed density of particles ρ ∈ (0, 1). We show GOE Tracy-Widom universality of the
one-point fluctuations of the associated height function. The result phrased in last
passage percolation language is the universality for the point-to-line problem where
the line has an arbitrary slope.
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1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) in continuous
time on Z. It is an interacting particle system with the constraint that there is at most
one particle per site. Particles jump to their right-neighboring site with rate 1, provided
the arrival site is empty. A very natural and important observable is the integrated
current at (for example) the origin, that is,

J(t) = # particles which jumped from site 0 to site 1 during time [0, t]. (1.1)

TASEP is a model in the Kardar-Parisi-Zhang (KPZ) universality class and thus one
expects that for some model-dependent constants, c1, c2,

t 7→ J(t)− c1t

c2t1/3
(1.2)

has in the t → ∞ limit a non-trivial distribution function, say D. It is well-known that for
KPZ models the distribution D depends on classes of initial conditions [9, 8, 37] (see also

*Institute for Applied Mathematics, Bonn University, Endenicher Allee 60, 53115 Bonn, Germany. E-
mail: ferrari@uni-bonn.de

†Institute for Applied Mathematics, Bonn University, Endenicher Allee 60, 53115 Bonn, Germany. E-
mail: occelli@iam.uni-bonn.de

http://www.imstat.org/ejp/
https://doi.org/10.1214/18-EJP172
http://arXiv.org/abs/1704.01291
mailto:ferrari@uni-bonn.de
mailto:occelli@iam.uni-bonn.de


GOE Tracy-Widom universality for TASEP

the reviews [23, 18]). In particular, consider the case of non-random initial condition
with density ρ = 1/2, realized by placing at time 0 particles on every even sites. The joint
distribution of the current at different points has been studied [44, 13]. As a particular
case, the one-point distribution is given by the Fredholm determinant, which is shown to
be equal to the GOE Tracy-Widom distribution in [26],

lim
t→∞

P
(
J(t) ≥ 1

4 t− s2−2/3t1/3
)
= FGOE(2

2/3s), (1.3)

where FGOE denotes the GOE Tracy-Widom distribution function discovered first in
random matrix theory [47]. The analogue result was previously known for discrete
time TASEP with parallel update and for a combinatorial model of longest increasing
subsequences with involutions [9, 8]. This latter model was brought in connection to
the KPZ world in [37], where it was reinterpreted as a stochastic growth model (the
so-called polynuclear growth model).

From [31] we also have the variational formula

FGOE(2
2/3s) = P

(
max
v∈R

{A2(v)− v2} ≤ s
)
, (1.4)

where A2 is called the Airy2 process [38, 30]. There are many more variational formulas
related with the Airy2 process, see e.g. [5] and the review [39].

By universality one expects that the GOE Tracy-Widom distribution describes the
fluctuations of J(t) in the large time limit for any non-random initial condition with
density ρ ∈ (0, 1). Beyond the case of ρ = 1/2, this was proven for densities ρ = 1/d,
d = 2, 3, 4, . . . in [12], and for the low-density limit of reflecting Brownian motions
in [27] (in these works also the joint distribution of the current have been analyzed). In
these papers, the results are achieved by exact formulas for a correlation kernel which
describes the system. However, beyond the d = 2 case, the asymptotic analysis in these
special cases turned out to be quite involved. An exact formula has very recently been
derived for arbitrary initial condition as well [33]. Formulas for the system with periodic
boundary condition are also know only for densities 1/2, 1/3, . . . [6, 7].

In this paper we prove that for any ρ ∈ (0, 1),

lim
t→∞

P
(
J(t) ≥ ρ(1− ρ)t− s(ρ(1− ρ))2/3t1/3

)
= FGOE(2

2/3s); (1.5)

compare this with Corollary 2.8. The proof of our result is in his core probabilistic, where
the only input from exactly solvable cases is the convergence to the Airy2 process for
the so-called step initial condition and bounds on the tails of its one-point distribution.
We prove the convergence to the variational problem (1.4), which does not depend on ρ.
For ρ = 1/2 the limiting distribution function was already known to be given by FGOE.
The method allows for more general, including random initial conditions, we first prove
convergence to a more generic variational process in Theorem 2.7.

To show the convergence to the variational problem, we work in the last passage
percolation (LPP) framework (see Section 2.1 for definitions and details). In that lan-
guage we need to study a “line-to-point” problem with the line having arbitrary slopes.
Using a tightness result for the “point-to-point” problem (see Theorem 2.3) and a
slow-decorrelation result (see Theorem B.1) (which is then extended to a functional
slow-decorrelation theorem (see Theorem 4.1)) we can show, analogously to [22], the
convergence of a restricted “line-to-point” LPP problem to the variational problem (1.4)
with |u| ≤ M . The second step of the proof consists in showing that the original LPP is
localized, which is obtained by obtaining a bound on the probability that the maximizer of
the LPP is not localized on a O(Mt2/3) region. In particular, for the flat initial condition

EJP 23 (2018), paper 51.
Page 2/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP172
http://www.imstat.org/ejp/


GOE Tracy-Widom universality for TASEP

case, we obtain a Gaussian bound in M , see Lemma 4.3 (for an analogue bound on the
limit process, see Proposition 4.4 of [21]).

The strategy to prove the convergence for the restricted was first developed by Cor-
win, Liu and Wang in [22]. In that paper, for generic initial conditions (possibly random)
they obtained universal results showing that the distribution converges to a variational
problem (which depends on how the initial condition scales under diffusive scaling), for
cases which are macroscopically at density 1/2. In the continuous time setting, this was
studied in [17]. In particular, if the initial condition “scales subdiffusively”, then for
ρ = 1/2 one still sees FGOE fluctuations. This fact was predicted in the context of the
KPZ equation in [41].

The main technical novelty of our proof concerns the localization. In particular, unlike
in [22, 17], we do not require any extra input from solvable models beyond the ones
which are used to prove convergence in the restricted LPP problem. All we need is a
good control on the point-to-point process along a horizontal line. The key idea is to
bound the increment of the process by the ones of two stationary initial conditions, with
densities slightly higher/lower than ρ, which are chosen such that the inequality holds on
a set of high probability. This probability is given in terms of some exit point probabilities.
This comparison was used first by Cator and Pimentel in [16] (see also [36]) to show
tightness for the Hammersley process and the point-to-point LPP along a characteristic
direction with ”speed” 0. In Lemma 2.5 we obtain much stronger exit point probabilities
than in [36]. More importantly, we use the inequality in two ways: (a) to extend the
tightness result to any characteristic direction (which is needed to the analysis any
density ρ), and (b) to control the fluctuations of the process over large distances (of
order Mt2/3).

The control of the fluctuations over large distances is indeed a key ingredient to
obtain the localization bound. This reduces the input from exactly solvable models with
respect to [22, 17]. In [22] they introduced a non-intersecting line ensemble and the
bound followed using its Gibbs-Brownian property in a smart way. In [17] the bound was
obtained using an explicit correlation kernel for the so-called ”half-flat” initial condition.
This approach allowed to simplify [22], but it has the drawback that it is restricted to the
case ρ = 1/2.

The main problem in analyzing directly ρ 6∈ {1/2, 1/3, 1/4, . . .} was that an explicit
expression for the correlation kernel was not known. In the recent paper on KPZ fixed
point by Matetski, Quastel and Remenik [33] they found an explicit representation of it
which could be used to obtain our result (and also the convergence to the Airy1 process).
However, the analysis has been made only for ρ = 1/2, since it was enough for answering
the question on the KPZ fixed-point considered in the paper.

Although the method in this paper allows to get convergence only for the one-point
distribution, its strategy could be used also for other models in the KPZ universality
class. For instance, for the partially asymmetric simple exclusion process (PASEP),
where an analogue of the work [33] seems out of reach (an exact formula allowing the
asymptotic analysis for PASEP even with ρ = 1/2 is not known, although heavy efforts
have been made in particular by Ortmann, Quastel and Remenik [34, 35]). On the other
hand, ingredients like slow-decorrelation hold also for PASEP using basic coupling [20].
Furthermore, as shown in [24], the mapping to LPP is actually not needed to analyze
TASEP. This observation is relevant since for PASEP this mapping does not exist anymore.
The main missing ingredient for an extension to PASEP is the convergence to the Airy2
process for step initial condition. This is an open problem, but it looks easier than the
analysis of PASEP with general densities ρ through exact formulas (compare with the
formulas for ρ = 1/2 of [34, 35]).
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Outline. In Section 2 we define TASEP, LPP and present the main results. Sec-
tion 3 contains the proof of tightness and the derivation of a bound needed to control
localization as well. Finally, we prove the main theorem for LPP and TASEP in Section 4.

2 Main results

2.1 LPP and TASEP

A last passage percolation (LPP) model on Z2 with independent random variables
{ωi,j , i, j ∈ Z} is the following. An up-right path π = (π(0), π(1), . . . , π(n)) on Z2 from a
point A to a point E is a sequence of points in Z2 with π(k + 1)− π(k) ∈ {(0, 1), (1, 0)},
with π(0) = A and π(n) = E, and where n is called the length `(π) of π. Now, given a set
of points SA and E, one defines the last passage time LSA→E as

LSA→E = max
π:A→E
A∈SA

∑
1≤k≤`(π)

ωπ(k). (2.1)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E . For

continuous random variables, the maximizer is a.s. unique.
TASEP is an interacting particle system on Z with state space Ω = {0, 1}Z. For a

configuration η ∈ Ω, η = (ηj , j ∈ Z), ηj is the occupation variable at site j, which is 1 if
and only if j is occupied by a particle. TASEP has generator L given by [32]

Lf(η) =
∑
j∈Z

ηj(1− ηj+1)
(
f(ηj,j+1)− f(η)

)
, (2.2)

where f are local functions (depending only on finitely many sites) and ηj,j+1 denotes
the configuration η with the occupations at sites j and j + 1 interchanged. Notice that
for the TASEP the ordering of particles is preserved. That is, if initially one orders from
right to left as

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z.
TASEP can be also though as a growth process by introducing the height function

h(j, t) as

h(j, t) =


2J(t) +

∑j
i=1(1− 2ηi(t)) for j ≥ 1,

2J(t) for j = 0,

2J(t)−
∑0

i=j+1(1− 2ηi(t)) for j ≤ −1,

(2.3)

for j ∈ Z, t ≥ 0, where J(t) counts the number of jumps from site 0 to site 1 during the
time-span [0, t].

The connection between TASEP and LPP is as follows. Take ωi,j to be the waiting
time of particle j to jump from site i− j−1 to site i− j. Then ωi,j are Exp(1) i.i.d. random
variables. Further, setting the set SA = {(u, k) ∈ Z2 : u = k + xk(0), k ∈ Z}, we have that

P
(
LSA→(m,n) ≤ t

)
= P (xn(t) ≥ m− n) = P (h(m− n, t) ≥ m+ n) . (2.4)

2.2 Universality for LPP

For any fixed ρ ∈ (0, 1), we consider the LPP model with SA corresponding to TASEP
with initial condition xflat

k (0) = −bk/ρc, k ∈ Z. We denote this initial set by

Lflat
ρ =

{(
bρ−1

ρ kc, k
)
, k ∈ Z

}
(2.5)

and we are interested in the LPP from Lflat
ρ to EN (w) in the limit N → ∞ illustrated in

Figure 1. However, the approach used in the proof allows to consider more general (also
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random) initial conditions. Thus we consider TASEP with initial condition close to the
flat initial condition with density ρ as well. Denote by

uk = xk(0)− xflat
k (0) (2.6)

the deviation of the particle position with respect to the flat initial condition with density
ρ. In this setting, in the LPP setting, we need to consider the initial set

Lρ =
{(

bρ−1
ρ kc+ uk, k

)
, k ∈ Z

}
. (2.7)

We also denote
χ = ρ(1− ρ). (2.8)

Let
Aflat(v) =

(
−2(1− ρ)χ−1/3vN2/3, 2ρχ−1/3vN2/3

)
(2.9)

and define by A(v) the closest point on Lρ to the characteristic line with direction
eρ = ((1− ρ)2, ρ2) passing by Aflat(v). Then define λ(v) by

A(v) = Aflat(v) + λ(v)eρ (2.10)

To avoid that the randomness in the initial condition dominates the bulk ones, we assume
Assumption A:

lim
N→∞

λ(v)

χ−2/3N1/3
= R(v) =

√
2σB(v), (2.11)

weakly on the space of continuous functions on bounded sets, where B is a two-sided
Brownian motion and σ ≥ 0 a coefficient. The stationary initial condition is σ = 1, while
the flat initial condition is σ = 0.

Furthermore, we assume that globally the starting height function (or particle posi-
tions) are not deviating too much from the flat case, so that the maximization problem is
non-trivially correlated only with the randomness in a N2/3-neighborhood of the origin.
Assumption B: For any given δ > 0 and M > 0, there exists a N0 such that for all
N ≥ N0,

P(λ(v) ≥ −δv2N1/3 for all |v| ≥ M) ≥ 1−Q(M), lim
M→∞

Q(M) = 0, (2.12)

where v are restricted to those such that A(v) is connected to the end-point of the LPP
by an up-right path.

These assumptions clearly holds for LPP corresponding to flat initial conditions, but
also to the case where the deviation of the initial height function scales diffusively like
in the stationary initial conditions. Under these assumptions we show the following
universality result.

Theorem 2.1. Let ρ ∈ (0, 1), χ = ρ(1 − ρ). Set the end-point of the LPP as EN (w) =

(mN (w), nN (w)) with

mN (w) = 1−ρ
ρ N − 2w(1− ρ)χ−1/3N2/3,

nN (w) = ρ
1−ρN + 2wρχ−1/3N2/3,

(2.13)

Under Assumptions A and B, for any s ∈ R,

lim
N→∞

P

(
LLρ→EN (w) ≤

N

χ
+

sN1/3

χ2/3

)
= P

(
max
v∈R

{A2(v)− (v − w)2 +R(v)} ≤ s

)
.

(2.14)
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Figure 1: The last passage percolation setting considered in Theorem 2.1. The maximizer
π from Lρ (red) to EN (w) starts in a O(N2/3)-neighborhood of the origin. The straight
thick line represents Lflat

ρ .

where A2 is the Airy2 process [38]. In particular, for LPP from Lflat
ρ , for which R = 0, we

have

lim
N→∞

P
(
LLflat

ρ →EN (w) ≤ N/χ+ sN1/3/χ2/3
)
= FGOE(2

2/3s), (2.15)

where FGOE is the GOE Tracy-Widom distribution function [47].

In [4] the distribution of the position where the maximum of A2(v)− v2 is attained
has been derived. Due to the quadratic term it is localized and bounds can be found
in [21, 40]. These bounds can be compared with our Lemma 4.3, where we obtain a
Gaussian bound in M of the probability that the maximizers is not in a main region of
order O(MN2/3) (uniformly for all N large enough).

Remark 2.2. From the work on KPZ equation of Remenik and Quastel [41] it is conjec-
tured that for KPZ growth models, if the initial configuration is flat with subdiffusive
scaling, then the limiting distribution is the same as for the flat case (see Theorem 1.5
and subsequent remarks in [41]). In the LPP framework this corresponds to have Lρ

replaced by a (possibly random) down-right line, which at distance X from the origin
has fluctuations at most O(|X|δ) for some δ < 1/2. Theorem 2.1 confirms it for general
densities (since in that case R = 0); compare with [17, 22] for the analogue result at
ρ = 1/2.

The proof of the main theorem (Theorem 2.1) is in his core probabilistic and it is
based on the comparison of the LPP problem from a horizontal line to EN (w), where the
line is around the region where the LPP from Lρ to EN (w) is achieved. If we look the
maximizers from the EN (w) position backwards, this is equivalent to consider the LPP
from (0, 0) to a horizontal line crossing (γ2n, n) for some γ ∈ (0,∞) with n proportional
to N . Therefore consider the following LPP setting: for i, j ≥ 1, let ωi,j be i.i.d. Exp(1)
random variables, ωi,j = 0 for i ≤ 0 or j ≤ 0.

The estimate from law of large numbers for the LPP from the origin to (M,N) is
given by (

√
M +

√
N)2 (as shown by Rost [43] in the TASEP setting). Due to KPZ scaling

we define the rescaled last passage time1

Lresc,h
n (u) :=

L(0,0)→(γ2n+β1un2/3,n) − n(1 +
√
γ2 + β1un−1/3)2

β2n1/3
, (2.16)

where we set β1 = 2(1 + γ)2/3γ4/3 and β2 = (1 + γ)4/3γ−1/3. The coefficient β2 is chosen
to have the one-point distribution given by the GUE Tracy-Widom distribution [46], as
shown by Johansson in Theorem 1.6 of [29]. The coefficient β1 is chosen such that the

1Here and below we will not write the integer parts explicitly in the entries of the LPP.

EJP 23 (2018), paper 51.
Page 6/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP172
http://www.imstat.org/ejp/


GOE Tracy-Widom universality for TASEP

limit process converges to the Airy2 process [38], A2. The finite-dimensional convergence
to the Airy2 process is a special case of [11, 14, 28]. Note that since

n(1 +
√
γ2 + β1un−1/3)2 = (1 + γ)2n+ 2u(1 + γ)5/3γ1/3n2/3 − β2u

2n1/3 +O(1) (2.17)

we can replace in (2.16) also the approximation of the LLN until the order n1/3 only
without any relevant changes.

Theorem 2.3. Fix any M ∈ (0,∞). Then, u 7→ Lresc
n (u) is tight in the space of continuous

functions on [−M,M ], C([−M,M ]).

As a direct consequence of the convergence of finite-dimensional distributions and
tightness we have:

Corollary 2.4. For any given finite M > 0, u 7→ Lresc
n (u) converges weakly to an Airy2

process u 7→ A2(u) in C([−M,M ]).

The next result which is in itself interesting is a bound of the exit point probability
for the stationary situation, which can be achieved (see more details in Section 3.1) if we
consider the LPP as before but with extra random variables if i = 0 or j = 0, namely with

ωi,j =


0 i = 0, j = 0,

Exp(1− ρ) i ≥ 1, j = 0,

Exp(ρ) i = 0, j ≥ 1,

Exp(1) i ≥ 1, j ≥ 1.

(2.18)

Here Exp(a) denotes exponential random variables with parameter a (thus average 1/a).
For the LPP with boundary conditions (2.18) we define the exit point as the last point
of a path π(0,0)→(m,n) on the x-axis or the y-axis. Since we need to distinguish whether
the exit point is on the x- or on the y-axis, we introduce a random variable Zρ(m,n) ∈ Z
such that, if Zρ(m,n) > 0, then the exit point is (Zρ(m,n), 0), as if Zρ(m,n) < 0, then the
exit point is (0,−Zρ(m,n)).

Lemma 2.5 (Exit point probability). Let κ > 0 be given and set

ρ± = ρ0 ± κn−1/3 with ρ0 =
1

γ + 1
. (2.19)

Then there exists a n0 such that for all n ≥ n0,

P(Zρ+(γ2n, n) > 0) ≥ 1− C exp(−cκ2),

P(Zρ−(γ2n, n) < 0) ≥ 1− C exp(−cκ2),
(2.20)

for some constants C, c independent of κ (and which can be taken uniform for γ in a
bounded set).

A simple change of variables gives the following result.

Corollary 2.6. In the settings of Lemma 2.5, for any given M > 0 and κ satisfying

κ̃ = κ−Mγ1/3(1 + γ)−4/3 > 0 (2.21)

it holds

P(Zρ+(γ2n− β1Mn2/3, n) ≥ 0) ≥ 1− C exp(−cκ̃2),

P(Zρ−(γ2n+ β1Mn2/3, n) ≥ 0) ≥ 1− C exp(−cκ̃2).
(2.22)

EJP 23 (2018), paper 51.
Page 7/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP172
http://www.imstat.org/ejp/


GOE Tracy-Widom universality for TASEP

2.3 Universality for TASEP

The LPP with Lflat
ρ as initial set corresponds to TASEP in continuous time with initial

condition xk(0) = −bk/ρc, k ∈ Z. We have the following universality result for the
one-point fluctuations for TASEP with flat initial conditions for any density ρ ∈ (0, 1). For
the more general initial condition, in terms of height Assumptions A and B rewrite as
follows.
Assumption A:

lim
L→∞

h(2vχ1/3L2/3, 0)− 2v(1− 2ρ)χ1/3L2/3

2χ2/3L1/3
= R(v) =

√
2σB(v), (2.23)

weakly on the space of continuous functions on bounded sets, where B is a two-sided
Brownian motion and σ ≥ 0 a coefficient. The stationary initial condition is σ = 1, while
the flat initial condition is σ = 0.
Assumption B: For any given δ > 0 and M > 0, there exists a L0 such that for all
L ≥ L0,

P(h(2vχ1/3L2/3, 0)− 2v(1− 2ρ)χ1/3L2/3 ≥ −δv2L1/3 for all |v| ≥ M) ≥ 1−Q(M), (2.24)

with Q independent on L and limM→∞ Q(M) = 0.

Theorem 2.7. Let ρ ∈ (0, 1) and set χ = ρ(1− ρ). Then, for any s ∈ R,

lim
t→∞

P
(
h((1− 2ρ)t+ 2wχ1/3t2/3, t) ≥ (1− 2χ)t+ 2w(1− 2ρ)χ1/3t2/3 − 2sχ2/3t1/3

)
= P

(
max
v∈R

{A2(v)− (v − w)2 +R(v)} ≤ s

)
.

(2.25)

Proof. The first equality follows from (2.3). The rest is a direct consequence of Theo-
rem 2.1 and the relation (2.4).

The flat TASEP is the special case R = 0 and the result is independent of w since the
Airy2 process is stationary. Thus we have proven the following result, which motivated
the study of this paper.

Corollary 2.8. Consider TASEP with flat initial condition and density ρ ∈ (0, 1), and set
χ = ρ(1− ρ). Then, for any s ∈ R,

lim
t→∞

P
(
J(t) ≥ χt− sχ2/3t1/3

)
= lim

t→∞
P
(
h((1− 2ρ)t, t) ≥ (1− 2χ)t− 2sχ2/3t1/3

)
= P

(
max
v∈R

{A2(v)− v2} ≤ s

)
= FGOE(2

2/3s).
(2.26)

3 Comparison with stationary LPP and proof of Theorem 2.3

In this section we will prove tightness of the process Lresc,h
n . This mainly follows the

approach of Cator and Pimentel [16]. The key observation in [16] is that the increments
of the LPP with end-points on a horizontal line can be bounded by the increments of
the LPP for the stationary case on the set of events where the “exit point” is on the
right or the left of the origin. Then the idea is to consider stationary LPP with slightly
higher/lower density so that the given exit point events are highly probable and at the
same time the increments of the LPP are controlled by the ones in the stationary LPPs.
In [16] the case of the Hammersley process was studied in details and it was stated the
result for the exponential random variable along the diagonal only, i.e. γ = 1. The proof
of the latter is left to the reader as it was mentioned that it is similar to the case of the
Hammersley.
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We have a few reasons to present the details for the result with generic densities:

(a) here we consider the space of continuous functions instead of the càdlàg functions
and there are some minor twists which have to be taken into account for generic density
ρ 6= 1/2;

(b) we get a much stronger bound for the exit point distributions with respect to [16]
(see Lemma 2.5);

(c) we derive an estimate on the increments, which is not only needed for proving
tightness, but it is the key for the control of the probability that the maximizer of the
LPP from Lρ to EN (w) is localized: the derivation of this result is noticeably simplified
with respect to the previous papers [22] (they made use of a Brownian-Gibbs property)
and [17] (an ad-hoc comparison with half-line problem with slope −1 was used).

3.1 Stationary LPP and exit points

Let us now explain what we mean with stationary LPP with density ρ ∈ (0, 1) and
report a result of Balázs, Cator and Seppäläinen [10]. Consider the LPP as given by
(2.18). We denote by Lρ(m,n) the last passage percolation from (0, 0) to (m,n) in this
setting, while we use L(m,n) for the last passage percolation from (0, 0) to (m,n) if we
set ωi,0 = ω0,j = 0.

The boundary conditions (2.18) correspond to a TASEP starting from the stationary
Bernoulli(ρ) measure, conditioned on η0(0) = 0 and η1(0) = 1. Let P0(t) be the position
at time t of the particle which started in 1 at time 0, and H0(t) be the position at time
t of the hole which started in 0 at time 0. It was shown in Corollary 3.2 of [10] (as a
corollary of Burke’s theorem [15]) that P0(t)−1 and −H0(t) are two independent Poisson
processes with jump rates 1 − ρ and ρ. They extended the result to get independent
increments also in the bulk of the system. The result we will use is the following:

Lemma 3.1 (Special case of Lemma 4.2 of [10]). Fix any n ≥ 1. Then the increments

{Lρ(m+ 1, n)− Lρ(m,n),m ≥ 1} (3.1)

are are i.i.d. exponential random variables with parameter 1− ρ.

With this definition we have the following lower and upper bounds in the increments
of the process m 7→ L(m,n) that we want to study:

Lemma 3.2 (Lemma 1 of [16]). Let 0 ≤ m1 ≤ m2. Then if Zρ(m1, n) ≥ 0, it holds

L(m2, n)− L(m1, n) ≤ Lρ(m2, n)− Lρ(m1, n), (3.2)

while, if Zρ(m2, n) ≤ 0, then we have

L(m2, n)− L(m1, n) ≥ Lρ(m2, n)− Lρ(m1, n). (3.3)

From the law of large numbers results one easily obtains that Zρ(γ2n, n) is typically
around 0 (it will fluctuates over a n2/3 scale), if one chooses ρ = 1/(γ + 1). Therefore we
set

ρ± = ρ0 ± κn−1/3 with ρ0 =
1

γ + 1
. (3.4)

The choice of n−1/3 is due to the fact that the increments of the scaled process are
just increased/decreased by a finite amount (proportional to κ), but on the other hand
P(Zρ+(γ2n, n) > 0) and P(Zρ−(γ2n, n) < 0) goes to 1 as κ → ∞. The first step is to get
an estimate on these probabilities.
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3.2 Bounds on exit points

Now we want to derive a bound on P(Zρ+(γ2n, n) > 0) and on P(Zρ−(γ2n, n) < 0).
The last passage time Lρ is the maximum between the last passage time from (0, 1) and
the one from (1, 0), since any up-right path from (0, 0) has to go through one of these
points. These LPP are denoted by

Lρ
−(m,n) = L(0,0)→(1,0)→(m,n), Lρ

| (m,n) = L(0,0)→(0,1)→(m,n). (3.5)

In terms of these two random variables, we have

P(Zρ+(γ2n, n) > 0) = P
(
L
ρ+

− (γ2n, n) > L
ρ+

| (γ2n, n)
)
,

P(Zρ−(γ2n, n) < 0) = P
(
L
ρ−
| (γ2n, n) > L

ρ−
− (γ2n, n)

)
.

(3.6)

Now we are ready to prove Lemma 2.5 and Corollary 2.6.

Proof of Lemma 2.5. By symmetry of the problem under the exchanges γ → 1/γ and
ρ → 1 − ρ it is enough to deal with the first estimate. We are going to prove that
P(Zρ+(γ2n, n) < 0) ≤ C exp(−cκ2).

First notice that for any x ∈ R we have

P(Zρ+(γ2n, n) < 0) = P
(
L
ρ+

− (γ2n, n) < L
ρ+

| (γ2n, n)
)

≤ P
(
L
ρ+

− (γ2n, n) ≤ x
)
+ P

(
L
ρ+

| (γ2n, n) > x
)
.

(3.7)

Further, since for κ > 0 we have ρ+ > ρ0, and thus E(ω0,i) = 1/ρ+ < 1/ρ0, implying

P
(
L
ρ+

| (γ2n, n) > x
)
≤ P

(
Lρ0

| (γ2n, n) > x
)
. (3.8)

The bounds of Lemma 3.3 below with x = (1 + γ)2n+ aκ2β2n
1/3 (where we can choose

any value a ∈ (0, (1+γ)8/3γ−2/3)) together with (3.7) and (3.8) give the desired result.

Proof of Corollary 2.6. Setting γ̃2n = γ2n± β1Mn2/3 and 1
1+γ ± κn−1/3 = 1

1+γ̃ ± κ̃n−1/3

we find the value of κ̃. Then the bound follows by Lemma 2.5.

Lemma 3.3. Let x = (1+ γ)2n+ aκ2β2n
1/3 with a ∈ (0, (1+ γ)8/3γ−2/3). Then, uniformly

for n large enough, we have

P
(
Lρ0

| (γ2n, n) > x
)
≤ Ce−cκ2

,

P
(
L
ρ+

− (γ2n, n) ≤ x
)
≤ Ce−cκ3

,
(3.9)

for some κ-independent constants C, c ∈ (0,∞) (c is depending on a).

Proof. Denoting Lρ0,resc :=
L

ρ0
| (γ2n,n)−(1+γ)2n

β2n1/3 , the first inequality becomes an estimate on

1−P(Lρ0,resc ≤ aκ2). The distribution of Lρ0,resc has been studied in [1] in the framework
of sample covariance matrices. One can use the connection of this LPP to a rank-one
problem in sample covariance matrices (see Section 6 of [1]) to recover the result. Let
us explain how it goes.

From (62) of [1] we have that

P(Lρ0,resc ≤ ξ) = det (1−Kn)L2(R+) (3.10)
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where Kn is a trace-class operator acting on L2(R+). The integral kernel of Kn can be
expressed as

Kn(u, v) =

∫
R+

dλHn(u, λ)Jn(λ, v), (3.11)

whereHn(u, v) = H(ξ+u+v) and Jn(u, v) = J (ξ+u+v) withH, J given in (93)-(96) of [1].
Using the triangular inequality and a standard inequality on Fredholm determinants (see
e.g. Theorem 3.4 of [45]) we have

|1− det(1−Kn)| ≤ |1− det(1−K∞)|+ |det(1−K∞)− det(1−Kn)|
≤ (‖K∞‖1 + ‖K∞ −Kn‖1) exp(‖K∞‖1 + ‖Kn‖1 + 1).

(3.12)

The limits of H and J are denoted by H∞ and J∞ and they are given in (120) and
(122) of [1]. For k = 1 H∞(u) = e−εu

∫
R+

Ai(ξ + λ + u)dλ and J∞(u) = eεuAi′(ξ + u)

with ε > 0 being any small constant. Using triangular inequalities and the identity
‖AB‖1 ≤ ‖A‖HS‖B‖HS (see e.g. Theorem VI.22 of [42]) we can bound each of the norms
in (3.12) by a finite sum of product of two of the following Hilbert-Schmidt norms,

‖H∞‖HS, ‖J∞‖HS, ‖H∞ −Hn‖HS, ‖J∞ − Jn‖HS, (3.13)

As a function of ξ, the latter two have exponential bounds (see Proposition 3.1 of [1])
uniformly for n large enough, while the first two have (super-)exponential decay from
the known asymptotics of the Airy functions (e.g., |Ai(x)| ≤ e−x and |Ai′(x)| ≤ e−x, for
all x ∈ R).

To prove the second inequality, it is enough to have a bound on the probability for a
lower bound for L

ρ+

− . For any choice of ξ0 > 0, we have

L
ρ+

− (γ2n, n) ≥ Lρ+(ξ0n
2/3, 0) + L

ρ+

(ξ0n2/3,0)→(γ2n,n)

≥ Lρ+(ξ0n
2/3, 0) + L(ξ0n2/3,0)→(γ2n,n),

(3.14)

where the L without ρ+ means the LPP with all ω’s to be Exp(1). Then

P
(
L
ρ+

− (γ2n, n) ≤ x
)
≤ P

(
Lρ+(ξ0n

2/3, 0) + L(ξ0n2/3,0)→(γ2n,n) ≤ x
)
. (3.15)

Let us see what is a good choice for ξ0. The estimate from the law of large numbers gives

Lρ+(ξ0n
2/3, 0) ' ξ0n

2/3/(1− ρ+) =
1+γ
γ ξ0n

2/3 + (1+γ)2

γ2 ξ0κn
1/3 +O(1) (3.16)

and

L(ξ0n2/3,0)→(γ2n,n) '
(√

n+
√
γ2n− ξ0n2/3

)2

= (1 + γ)2n− 1+γ
γ ξ0n

2/3 − ξ20
4γ3

n1/3 +O(1).

(3.17)
The sum of (3.16) and (3.17) (up to O(n1/3)) is maximal for ξ0 = 2γ(1 + γ)2κ, which is the
value that we choose. Let us define the rescaled LPP by

Lresc
− =

Lρ+(ξ0n
2/3, 0)−

(
1+γ
γ ξ0n

2/3 + (1+γ)2

γ2 ξ0κn
1/3

)
n1/3

,

Lresc
bulk =

L(ξ0n2/3,0)→(γ2n,n) −
(
(1 + γ)2n− 1+γ

γ ξ0n
2/3 − ξ20

4γ3n
1/3

)
n1/3

(3.18)

Since x = (1 + γ)2n+ aκ2β2n
1/3, we have that

(3.15) ≤ P
(
Lresc
− + Lresc

bulk ≤ −s̃
)
≤ P

(
Lresc
− ≤ −s̃/2

)
+ P (Lresc

bulk ≤ −s̃/2) (3.19)
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with s̃ =
(
(1 + γ)4/γ − aβ2

)
κ2.

For any a ∈ (0, (1 + γ)8/3γ−2/3) we have s̃ > 0. Then, uniformly for n large enough, by
Proposition A.1(c) we have2

P (Lresc
bulk ≤ −s̃/2) ≤ Ce−cs̃3/2 = Ce−c̃κ3

(3.20)

for some constants C, c, c̃ ∈ (0,∞).
To bound the distribution of Lresc

− , note that Lρ+(ξ0n
2/3, 0) is a sum of bξ0n2/3c i.i.d.

random variables Exp(1− ρ+). Let Xi i.i.d. Exp(1− ρ+) random variables. Consider the
centered random variables Yi = 1/(1− ρ+)−Xi. Set ŝ = s̃n1/3/2 and N = bξ0n2/3c. Then
by the exponential Tchebishev inequality,

P
(
Lresc
− ≤ −s̃/2

)
= P

( N∑
i=1

Yi ≥ ŝ

)
≤ inf

t≥0
e−ŝt

(
E
(
etY1

))N
. (3.21)

We have E
(
etY1

)
= et/(1−ρ+)/(1 + t/(1 − ρ+)) and thus (3.21) ≤ exp(inft≥0 I(t)) with

I(t) = Nt/(1− ρ+) +N ln((1− ρ+)/(t+ 1− ρ+))− ŝt. A simple computation gives

inf
t≥0

I(t) = ŝ(1− ρ+) +N ln(1− ŝ(1− ρ+)/N)

= − s̃2γ2

8ξ0(1 + γ)2
+O(n−1/3) ≤ −ĉκ3,

(3.22)

for some constant ĉ (which can be taken independent on n ≥ n0, n0 large enough), since
ξ0 ∼ κ and s̃ ∼ κ2 as well.

3.3 Tightness

Now we prove tightness of the rescaled process Lresc,h
n (see (2.16)). Following the

ideas in [16] we prove it using the bounds of Lemma 3.2 together with the estimates of
Lemma 2.5 and of the fluctuations of sums of i.i.d. random variables.

First let us see what Lemma 3.2 becomes for the rescaled processes. This bounds will
be used to show tightness, but also to control the fluctuations beyond the central region
of the maximisation problem (see Lemma 4.3). Let us shortly recall the scaling (2.16)
under which Lresc,h

n converges in the sense of finite-dimensional distributions [11, 14, 28]
to the Airy2 process, A2,

Lresc,h
n (u) :=

L(0,0)→(γ2n+β1un2/3,n) −
(
(1 + γ)2n+ 2u(1 + γ)5/3γ1/3n2/3 − β2u

2n1/3
)

β2n1/3
,

(3.23)
with β1 = 2(1 + γ)2/3γ4/3 and β2 = (1 + γ)4/3γ−1/3.

Lemma 3.4. Let us define

Bρ±
n (u) :=

Lρ±(γ2n+ β1un
2/3, n)− (Lρ±(γ2n, n) + 1

1−ρ±
β1un

2/3)

β2n1/3
. (3.24)

For any fixed constants M1,M2, consider any two points satisfying −M1 ≤ v ≤ u ≤ M2.
Then we have:
(a) If Zρ+(γ2n− β1M1n

2/3, n) ≥ 0, then

Lresc,h
n (u)− Lresc,h

n (v) ≤ Bρ+
n (u)−Bρ+

n (v) + (u2 − v2) + 2β2κ(u− v) +O(n−1/3). (3.25)

2The constant c is not the same as in Proposition A.1(c), due to the 1/2 term and the fact that Lresc
bulk

converges to a GUE Tracy-Widom distribution once divided by β2.
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(b) If Zρ−(γ2n+ β1M2n
2/3, n) ≤ 0, then

Lresc,h
n (u)− Lresc,h

n (v) ≥ Bρ−
n (u)−Bρ−

n (v) + (u2 − v2)− 2β2κ(u− v) +O(n−1/3). (3.26)

Here O(n−1/3) is uniformly for κ and γ in bounded sets of (0,∞).

Proof. We wrote the conditions on the left-most and right-most point, since by monotonic-
ity they imply the conditions needed to apply Lemma 3.2 for the full interval [−M1,M2].
By Lemma 3.2 and the definition of the scalings (3.23) and (3.24) we have

Lresc,h
n (u)− Lresc,h

n (v) ≤ Bρ+
n (u)−Bρ+

n (v) + (u2 − v2)

+

(
β1

1− ρ+
− 2(1 + γ)5/3γ1/3

)
(u− v)

β2
n1/3.

(3.27)

Using the explicit expressions for β1, β2, and ρ+ we get (3.25).
Similarly, we have

Lresc,h
n (u)− Lresc,h

n (v) ≥ Bρ−
n (u)−Bρ−

n (v) + (u2 − v2)

+

(
β1

1− ρ−
− 2(1 + γ)5/3γ1/3

)
(u− v)

β2
n1/3,

(3.28)

giving (3.26).

Let us denote the modulus of continuity for the rescaled process Lresc,h
n in the interval

[−M,M ] by $n(δ):
$n(δ) = sup

|u|,|v|≤M
|u−v|≤δ

|Lresc,h
n (u)− Lresc,h

n (v)|. (3.29)

Proof of Theorem 2.3. First of all, notice that the random variable Lresc,h
n (0) is tight, see

the upper and lower tail estimates in Proposition A.1. Thus to show tightness it remains
to control the modulus of continuity, namely we need to prove that for any ε, ε̃ > 0, there
exists a δ > 0 and a n0 such that

P($n(δ) ≥ ε) ≤ ε̃, (3.30)

for all n ≥ n0.
For any ε > 0, for n large enough, by Lemma 2.5 it holds

P($n(δ) ≥ ε) ≤ 2Ce−cκ2

+ P({$n(δ) ≥ ε} ∩ {Zρ+

M > 0} ∩ {Zρ−
M < 0}), (3.31)

where we shorten Z
ρ+

M = Zρ+(γ2n−β1Mn2/3, n) and Z
ρ−
M = Zρ−(γ2n+β1Mn2/3, n). From

Lemma 3.4, for |u|, |v| ≤ M and |u − v| ≤ δ, if we choose n large enough so that the
O(n−1/3) are smaller than δ, then on the set {Zρ+

M > 0} ∩ {Zρ−
M < 0} we have

|Lresc
n (u)− Lresc

n (v)| ≤ |Bρ+
n (u)−Bρ+

n (v)|+ |Bρ−
n (u)−Bρ−

n (v)|+K(δ,M, κ) (3.32)

with K(δ,M, κ) = (2M +1+2β2κ)δ. Now choose δ small enough so that K(δ,M, κ) < ε/2.
Then, for all n large enough,

P({$n(δ) ≥ ε} ∩ {Zρ+

M > 0} ∩ {Zρ−
M < 0})

≤ P

(
sup

|u|,|v|≤M
|u−v|≤δ

|Bρ+
n (u)−Bρ+

n (v)| ≥ ε/4

)

+ P

(
sup

|u|,|v|≤M
|u−v|≤δ

|Bρ−
n (u)−Bρ−

n (v)| ≥ ε/4

)
.

(3.33)
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Dividing the interval [−M,M ] into pieces of length δ and using stationarity of the
increments of Bρ± (and Bρ±(0) = 0) we readily have

P

(
sup

|u|,|v|≤M
|u−v|≤δ

|Bρ±
n (u)−Bρ±

n (v)| ≥ ε/4

)
≤ 2M

δ
P
(

sup
0≤u≤δ

|Bρ±
n (u)| ≥ ε/12

)
, (3.34)

compare e.g. with sentence around (5.60) in [30]. A short computation and the use of
Donsker’s invariance principle theorem imply that the processes u 7→ B

ρ±
n (u) converges

weakly in C([−M,M ]) to u 7→ σB(u), where B is a standard Brownian motion and
σ = σ(γ) =

√
2γ/(1 + γ). This implies that for n large enough,

r.h.s. of (3.34) ≤ 8M

δ
P
(

sup
0≤u≤δ

|B(u)| ≥ ε/12
)
≤ 8M

δ
exp

(
− ε2

288 δσ2

)
, (3.35)

where we use the bound P
(
supt∈[0,T ] |B(t)| > λ

)
≤ e−λ2/2T .

To resume, we have obtained that for any ε > 0 and n large enough, it holds for
κ̃ = κ−Mγ1/3(1 + γ)−4/3 > 0,

P($n(δ) ≥ ε) ≤ 2Ce−cκ̃2

+
8M

δ
exp

(
− ε2

288 δσ2

)
. (3.36)

For any fixed ε̃ > 0, we choose κ large enough such that 2Ce−cκ̃2 ≤ ε̃/2 and then δ

small enough such that 8M
δ exp(−ε2/(288 δσ2)) ≤ ε̃/2 for any n large enough. This proves

(3.30).

4 Proof of Theorem 2.1

In this section we prove the main theorem of LPP. The proof consists in showing
that the LPP converges to a variational process. One essentially shows that (a) the
LPP from Lρ to EN (w) is with high probability the same as the LPP from a subset of
Lρ of size O(MN2/3), and (b) that in that region the LPP converges to the variational
process of the theorem restricted to |u| ≤ M . The most important novelty of our proof,
with respect to the works in [22, 17], is part (a). In [22] they first needed to prove a
Brownian-Gibbs property for an associated non-intersecting line ensemble. In [17] one
bounded a Fredholm determinant of a half-line problem corresponding to density ρ = 1/2

for TASEP (and this approach can not be extended to the generic ρ ∈ (0, 1) case).

Proof of Theorem 2.1. Let us recall that we study the LPP from Lρ and Lflat
ρ to EN (w).

From the law of large numbers of the point-to-point LPP, see Proposition A.1(a), by
optimizing over the positions on Lflat

ρ we obtain that the maximizer starts around 0 (in a

O(N2/3) neighborhood). Remember the definition of the points Aflat(v) and A(v) given
in (2.9) and (2.10). For a fixed M > 0, define the following LPP problems:

LM = max
|v|≤M

LA(v)→EN (w) and LMc = max
|v|>M

LA(v)→EN (w). (4.1)

According to (2.14) we need to determine the N → ∞ limit of

P (max{LM , LMc} ≤ S(s)) , S(s) = N/χ+ sχ−2/3N1/3. (4.2)

For large M (as we will show) one expects that LM > LMc with high probability. Thus
we define the events

RM = {LMc > S(s)}, GM = {LM ≤ S(s)}. (4.3)
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Figure 2: Zoom of the LPP around the line relevant region of Lρ (red line) where the

maximizers starts. For a given v, Ã±(v), Ã(v), and A(v) are on the same line, the line
parallel to (0, 0), EN (w).

With these definitions we have

(4.2) = P (Rc
M ∩GM ) = P (GM )− P (RM ∩GM ) . (4.4)

In Lemma 4.3 we show that, P(RM ∩GM ) ≤ Ce−cM2

+Q(M) uniformly in N , where the
function Q is the one in Assumption B. This implies that

lim
M→∞

lim
N→∞

P (RM ∩GM ) = 0. (4.5)

Thus it remains to determine limM→∞ limN→∞P(GM ).
The limit is obtained by first considering the last passage percolation problem from

points on the horizontal line crossing (0, 0), see Figure 2, for which the finite-dimensional
distribution is known, and then using the functional slow-decorrelation result of Theo-
rem 4.1 we transport the fluctuations to the line Lρ. We define

Ã(v) = (−α1vN
2/3, 0), α1 = 2

(1− ρ)2/3

ρ4/3
, (4.6)

and

G̃M =
{

max
|v|≤M

LÃ(v)→EN (w) − α2vN
2/3 ≤ S(s)

}
, α2 =

2

ρ4/3(1− ρ)1/3
. (4.7)

In [14] it is shown3 the convergence of finite dimensional distributions of the rescaled
process:

L̃resc
N (v) :=

LÃ(v)→EN (w) − (N/χ+ α2vN
2/3)

χ−2/3N1/3
→ A2(v)− (v − w)2 (4.8)

as N → ∞, with A2 an Airy2 process. In Theorem 2.3 we show that as a process
v 7→ L̃resc

N (v) is tight in the set of continuous functions with supremum norm, C([−M,M ]),
extending the sense of convergence to the weak*-convergence.

The rescaled process we want to study is

Lresc
N (v) :=

LA(v)→EN (w) −N/χ

χ−2/3N1/3
. (4.9)

3 The convergence of finite dimensional distributions can be also obtained from the finite-dimensional
distributions along other lines using slow-decorrelation [20, 23]. For instance it can be obtained starting from
the analogue result for the joint distributions of TASEP particle positions [11]; see [2] for an application of this
technique.
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GOE Tracy-Widom universality for TASEP

In terms of the rescaled process, we indeed have

P(GM ) = P
(

max
|v|≤M

Lresc
N (v) ≤ s

)
. (4.10)

For any realization of initial condition, the random line Lρ passes in a neighborhood of
the origin. Restricted to a MN2/3-neighborood of the origin, by Assumption A we have
that the points on Lρ are given by

A(v) = Aflat(v) + λ(v)eρ, with λ(v) ' χ−2/3N1/3R(v) (4.11)

as N → ∞. Define the set

Fε =
{

max
|v|≤M

|Lresc
N (v)− L̃resc

N (v)| ≤ ε
}
. (4.12)

By Theorem 4.1, for any ε > 0, limN→∞P(Fε) = 1. Thus, for any ε > 0,

lim
M→∞

lim
N→∞

P(GM ) = lim
M→∞

lim
N→∞

P(GM ∩ Fε). (4.13)

The centerings in Lresc
N (v) and L̃resc

N (v) are the law of large number approximation from
Aflat(v) and Ã(v) respectively. Define µ(m,n) = (

√
m+

√
n)2 (see Proposition A.1), then

we define

∆N (v) :=
µ(EN (w)−A(v))− µ(EN (w)−Aflat(v))

χ−2/3N1/3
. (4.14)

Then
P(GM ∩ Fε) ≤ P

({
max
|v|≤M

[L̃resc
N (v) + ∆N (v)] ≤ s+ ε

}
∩ Fε

)
. (4.15)

A lower bound on P(GM ∩ Fε) is obtained with −ε instead of ε.
By Assumption A, limN→∞ ∆N (v) = R(v) =

√
2σB(v) weakly. Together with the weak

convergence of (4.6), we obtain

lim
M→∞

lim
N→∞

P(GM ∩ Fε) ≤ lim
M→∞

P
(

max
|v|≤M

[A2(v)− (v − w)2 +R(v)] ≤ s+ ε
)

= P
(
max
v∈R

[A2(v)− (v − w)2 +R(v)] ≤ s+ ε
)
.

(4.16)

The last inequality holds since both the maximum of the Airy2 minus a parabola and of
R(v) minus a parabola are tight. For the special case of flat initial condition, i.e., when
R = 0,

P
(
max
v∈R

[A2(v)− (v − w)2] ≤ s
) (d)
= P

(
max
v∈R

[A2(v)− v2] ≤ s
)
= FGOE(2

2/3s), (4.17)

where we used the fact that the Airy2 process is stationary, and the last equality was
proven in [30]. This ends the proof of Theorem 2.1.

Theorem 4.1 (Functional slow-decorrelation). Consider any down-right path L passing
a.s. at a finite-distance from the origin. Let Ã(v) be as in (4.6) and let B(v) be the closest
point on L to the line from Ã(v) to EN (w). Consider the rescaled processes (defined for
any v ∈ R through linear interpolation)

Lresc,B
N (v) :=

LB(v)→EN (w) − µ(EN (w)−B(v))

χ−2/3N1/3
, µ(m,n) = (

√
m+

√
n)2 (4.18)

as well as L̃resc
N given in (4.8). Then Lresc,B

N − L̃resc
N converges in probability to 0 in

C([−M,M ]) as N → ∞. More precisely, for any ε, ε̃ > 0 there is a N0 such that for all
N ≥ N0,

P

(
max
|v|≤M

|Lresc,B
N (v)− L̃resc

N (v)| ≥ ε

)
≤ ε̃. (4.19)
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GOE Tracy-Widom universality for TASEP

Proof. The proof is almost identical to the one of Theorem 2.10 in [17], see also The-
orem 2.15 of [22] (which is two pages long) and therefore we do not repeat it. Let us
just mention the strategy and on the way the inputs which are needed. Using Theo-
rem 2.3 one knows that the processes along the horizontal lines L± crossing A(±M)

are tight. One defines the rescaled processes L̃resc,±
N (v) to be the analogues of L̃resc

N (v)

but with starting points on L±, which we call Ã±(v), see Figure 2. Using tightness of
L̃resc
N (see Theorem 2.3) and one-point slow-decorrelation (see Theorem B.1) one bounds

max|v|≤M |L̃resc,±
N (v)− L̃resc

N (v)|. Finally one needs to control for example the increments

of L̃resc,+
N (v) − Lresc

N (v). For this one employs use of the subadditivity property of LPP,
LÃ+(v)→EN (w) ≥ LÃ+(v)→A(v)+LA(v)→EN (w), and the bound on the left tail of LÃ+(v)→A(v)

provided in Proposition A.1.

A direct consequence of tightness of L̃resc
N and the functional slow-decorrelation result

(Theorem 4.1) is the following.

Corollary 4.2. Fix any M ∈ (0,∞). Then the rescaled LPP process from Lρ to EN (w),
v 7→ Lresc

N (v) defined in (4.18), is tight in the space of continuous functions on [−M,M ],
C([−M,M ]). It converges weakly to an Airy2 process u 7→ A2(u).

Lemma 4.3. Define GM = {max|v|≤M LA(v)→EN (w) ≤ a0N + a1sN
1/3} and

RM = {max|v|>M LA(v)→EN (w) > a0N + a1sN
1/3}, with a0 = 1/χ and a1 = 1/χ2/3. Under

Assumption B, there exists a finite M0 such that for any given M ≥ M0,

P (GM ∩RM ) ≤ Ce−cM2

+Q(M) (4.20)

for some constants C, c > 0which are uniform inN . In particular, for flat initial conditions
(where Q = 0),

P(the LPP maximizer starts from Aflat(v) with |v| ≤ M) ≥ 1− 2Ce−cM2

. (4.21)

Proof. For s ≤ − 1
4M

2, we have

P(GM ∩RM ) ≤ P(GM ) ≤ P(L(0,0)→EN (w) ≤ a0N + a1sN
1/3)

≤ Ce−c|s|3/2 ≤ Ce−cM2/8,
(4.22)

where we used the lower tail estimate of the point-to-point LPP from Proposition A.1.
Thus we consider below any s ≥ − 1

4M
2. Let us define a set of points L̂ and we say

that L̂ ≺ Lρ if each point in Lρ ∩ {A(v), |v| > M} can be reached by an up-right paths

from a point in L̂. Then

P(GM ∩RM ) ≤ P(RM ) ≤ P
(
max
|v|>M

LA(v)→EN (w) > a0N − 1
4a1M

2N1/3
)

≤ P(LL̂→EN (w) > a0N − 1
4a1M

2N1/3) + P(L̂ 6≺ Lρ).
(4.23)

Our choice for L̂ will be such that P(L̂ 6≺ Lρ) ≤ Q(M) for all N large enough. To realize

it, it is enough to take any L̂ such that it stays to the left of a parabola close enough to
Lflat
ρ . In Figure 3 we illustrate L̂. For a δ > 0, we define the points

Â(v) = Aflat(v)− δv2N1/3eρ, eρ = ((1− ρ)2, ρ2), (4.24)

the segments Dk = Â(kM)Â((k + 1)M) and D̃` = Â(−`M)Â(−(`+ 1)M), and the points
C+ = (−(1 + 1−ρ

16 ), ρ
1−ρ (1−

ρ
16 ))N and C− = ( 1−ρ

ρ (1− 1−ρ
16 ),−(1− ρ

16 ))N . Then, we define

L̂ = C+ ∪ C−
⋃

|v|≥Nν/3

Â(v)

Nν/3⋃
k=1

Dk

Nν/3⋃
`=1

D̃`, (4.25)
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GOE Tracy-Widom universality for TASEP

Figure 3: The setting used to control the LPP outside the central part. The thick black
line is L̂.

with ν ∈ (0, 1/2) (ν < 1/2 is needed only in the last estimate of this lemma), and the
union A(v) is for v up to the v such that A(v) is reachable by an up-right path from C+ or
C− (there are O(N1/3) of such v). The constant δ is now chosen small enough such that

taking v+ = χ1/3

2(1−ρ)N
1/3, which corresponds to Aflat(v+) = (−N, ρ

1−ρN), then C+ ≺ Â(v+),
and similarly for side close to C−.

With the L̂ defined as above, we can apply Assumption B to bound P(L̂ 6≺ Lρ). It thus
remains to get a bound for P(LL̂→EN (w) > a0N − 1

4a1M
2N1/3). This can be bounded by

P(LC+→EN (w) > a0N − a1M
2

4 N1/3) +

Nν/3∑
k=1

P(LDk→EN (w) > a0N − a1M
2

4 N1/3)

+ P(LC−→EN (w) > a0N − a1M
2

4 N1/3) +

Nν/3∑
`=1

P(LD̃`→EN (w) > a0N − a1M
2

4 N1/3)

+
∑

Nν/3≤|v|≤O(N1/3)

P(LÂ(v)→EN (w) > a0N − a1M
2

4 N1/3).

(4.26)

For the point-to-point estimates we can use the bounds of Proposition A.1, which are
uniform for the slopes η in a bounded set of (0,∞). To avoid slopes which are close to 0

or ∞, we need to restrict the use of the point-to-point estimates for the LPP from Â(v)

and add the LPP from the starting points C± as well.

1st bound. The points C± are chosen such that from the law of large numbers
approximation of LC±→EN (w) is less then a0N −N/2 for any ρ ∈ (0, 1). This means that

a deviation of −a1M
2

4 N1/3 from a0N of LC+→EN (w) corresponds to look at the right tail
at a value at least N/2 − O(M2N1/3). Thus for any given M , for all N large enough,
Proposition A.1 implies

P(LC+→EN (w) > a0N − a1M
2

4 N1/3) ≤ Ce−cN2/3

(4.27)

for some constants C, c which depend only on ρ. Similarly one has the estimate for
P(LC−→EN (w) > a0N − 1

4a1M
2N1/3).
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2nd bound. In a similar way, using the bound of Proposition A.1, for any N large
enough,

P(LÂ(v)→EN (w) > a0N − 1
4a1M

2N1/3) ≤ Ce−cN2ν/3

(4.28)

for any v ∈ [Nν/3,O(N1/3)], and thus∑
Nν/3≤|v|≤O(N1/3)

P(LÂ(v)→EN (w) > a0N − 1
4a1M

2N1/3) ≤ CN1/3e−cN2ν/3

≤ Ce−
1
2 cN

2ν/3

(4.29)
for N � 1.

3rd bound. Finally we need a bound for P(LDk→EN (w) > a0N − 1
4a1M

2N1/3) uniform
inN , which is summable in k and such that its sum is going to zero asM → ∞. The bound
for P(LD̃`→EN (w) > a0N − 1

4a1M
2N1/3) is completely analogue and thus we present in

details only the first one.
For a given v, we define the point D̂(v) such that its second coordinate equals the

one of Â(kM) and the segment D̂(v), Â(v) has direction eρ. We have

D̂(v) = Aflat(v)− θeρ, θ = δ(kM)2N1/3 +
2(v − kM)N2/3

ρχ1/3
. (4.30)

Then, for any k ≥ 1 and M ,

P
(
LDk→EN (w) > a0N − a1M

2

4 N1/3
)
≤ P

(
LÂ(kM)→EN (w) > a0N − 3a1k

2M2

4 N1/3
)

+ P

(
max

kM≤v≤(k+1)M
{LÂ(v)→EN (w) − LD̂(v)→EN (w) + βN2/3} ≥ a1k

2M2

4 N1/3

)
+ P

(
max

kM≤v≤(k+1)M
{LD̂(v)→EN (w) − LÂ(kM)→EN (w) − βN2/3} ≥ a1k

2M2

4 N1/3

)
,

(4.31)

where β = 2(v−kM)
ρχ1/3 − δ(v2 − (kM)2)N−1/3 (which is positive for all N large enough, since

v ∈ [kM, (k + 1)M ] with k ∈ [1,O(Nν/3)]).

Bound on first term of (4.31). The law of large numbers estimate of LÂ(kM)→EN (w) is

a0N +N1/3(δ(kM)2 − a1(kM − w)2). Thus for any δ < χ2/3/8 and M large enough, we
can use again the point-to-point estimate and obtain

P
(
LÂ(kM)→EN (w) > a0N − 3

4a1k
2M2N1/3

)
≤ Ce−ck2M2/8. (4.32)

Bound on second term of (4.31). Using LD̂(v)→EN (w) ≥ LD̂(v)→Â(v) + LÂ(v)→EN (w) we
have

P

(
max

kM≤v≤(k+1)M
{LÂ(v)→EN (w) − LD̂(v)→EN (w) + βN2/3} ≥ a1k

2M2

4 N1/3

)
≤

∑
kM≤v≤(k+1)M

P
(
LÂ(v)→EN (w) − LD̂(v)→EN (w) + βN2/3 ≥ a1k

2M2

4 N1/3
)

≤
∑

kM≤v≤(k+1)M

P
(
LD̂(v)→Â(v) − βN2/3 ≤ −a1k

2M2

4 N1/3
)
.

(4.33)

Since LD̂(v)→Â(v) centered by βN2/3 and scaled by O(N2/9) converges to a FGUE dis-
tributed random variable, by the lower tail estimate of Proposition A.1 we get

P(LD̂(v)→Â(v) − βN2/3 ≤ −a1kMN1/3) ≤ Ce−ck2M2N1/9

(4.34)
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GOE Tracy-Widom universality for TASEP

for some constants C, c which can be taken independent of v ∈ [kM, (k+ 1)M ]. Since the
sum in (4.33) is over a number of terms O(N2/3) we get

(4.33) ≤ Ce−
1
2 ck

2M2N1/9

(4.35)

for all N large enough.

Bound on third term of (4.31). For this bound we will employ, between other results,
Lemma 3.4. Let us first reformulate what we need to prove in terms of Lresc,h

n . One looks
the picture from the point EN (w), which becomes the origin. The point Â(kM) as seen
from EN (w) becomes the point (γ2n, n) and the point D̂(v) is (γ2n+ β1u(v)n

2/3, n). This
means that we need to take

n =
ρ

1− ρ
N − 2ρ(kM − w)

χ1/3
N2/3 + δρ2(kM)2N1/3,

γ =
1− ρ

ρ

(
1 +

kM − w

χ1/3
N−1/3 +

(kM − w)2(3− 4ρ)

2χ2/3
N−2/3 +O(N−1)

)
,

u(v) = (v − kM)(1 +O(N−2/3)).

(4.36)

We have, in distribution,

LD̂(v)→EN (w)

d
= L(0,0)→(γ2n+β1u(v)n2/3,n). (4.37)

Recall that D̂(kM) = Â(kM). Furthermore, the difference between the laws of large
numbers of LD̂(v)→EN (w) and LÂ(kM)→EN (w) is given by

βN2/3 − χ−2/3N1/3
[
(v − kM)2(1 + δχ2/3) + (v − kM)(2w + 2kM(1 + δχ2/3))

]
≤βN2/3 − χ−2/3N1/3u(v)2(1 +O(N−2/3)),

(4.38)

for all M large enough.
As a consequence, the third term of (4.31) can be rewritten as

P

(
max

kM≤v≤(k+1)M
{Lresc,h

n (u(v))− Lresc,h
n (0)− u(v)2 +O(n−2/3)} ≥ 1

4k
2M2

)
. (4.39)

Applying the upper bound of Lemma 3.4 we obtain

(4.39) ≤ P(Zρ+(γ2n, n) < 0)

+ P

(
max
u∈IM

{Bρ+
n (u(v)) + 2β2κu(v) +O(n−2/3)} ≥ 1

4k
2M2

)
,

(4.40)

where IM = [0,M(1+O(n−2/3))]. With the choice κ = ε0kM and, taking M large enough
so that we get to use Lemma 2.5, we have

(4.40) = Ce−cε20k
2M2

+ P

(
max
u∈IM

{Bρ+
n (u) + 2β2κu+O(n−2/3)} ≥ 1

4k
2M2

)
(4.41)

We choose ε0 small enough such that for any M,k ≥ 1, maxu∈IM 2β2κu + O(n−2/3) is
bounded by 1

8k
2M2 (uniformly for large n). Then

(4.41) ≤ Ce−cε20k
2M2

+ P

(
max
u∈IM

Bρ+
n (u) ≥ 1

8k
2M2

)
. (4.42)

In the stationary setting, recall that we defined ρ0 = ρ0(γ) := 1/(1 + γ). By stationarity

Bρ+
n (u) =

1

β2n1/3

β1un
2/3∑

m=1

(Xm − (1− ρ+)
−1), (4.43)
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where X1, X2, . . . are i.i.d. random variables Exp(1 − ρ+) with ρ+ = ρ0 + ε0kMn−1/3.
Denote by Ym = Xm − (1 − ρ+)

−1. Then T 7→ ZT =
∑T

m=1 Ym is a martingale. Using

the generic maximal inequality for martingale P(max1≤t≤T Zt ≥ S) ≤ E(f(ZT ))
f(S)) with

f(x) = eλx, λ > 0, we have

P

(
max
u∈IM

Bρ+
n (u) ≥ 1

8k
2M2

)
≤ min

λ>0

(E(eλY1))T

eλS
= e−S(1−ρ+)+T ln[1+(1−ρ+)S/T ], (4.44)

with S = 1
8k

2M2β2n
1/3 and T = β1u(M)n2/3 = 2Mβ1n

2/3(1 +O(n−1/3)). A computation
then leads to

(4.44) = exp

(
−k4M3

512
(1 +O(k2n−1/3))

)
. (4.45)

Remember that the range of k is from 1 to O(nν/3). Thus the error term is in the worst
case O(n(2ν−1)/3). Therefore we can now set the value of ν to be any number in (0, 1/2),
e.g., ν = 1/3. With this choice, for n large enough, the error term is not larger than 1

and thus for any k,M ,
(4.45) ≤ exp(−ck2M2). (4.46)

Summing up the estimates we have∑
k≥1

P
(
LDk→EN (w) > a0N − a1M

2

4 N1/3
)
≤

∑
k≥1

(
(4.32)+(4.35)+(4.46)

)
≤ Ce−cM2

(4.47)

for all N large enough. Here the constants C, c are uniform in N and M .
Finally we need to prove (4.21). Notice that for flat initial condition we have Q = 0

and thus
P(the LPP maximizer starts from Aflat(v) with |v| ≤ M)

=P
(

max
|v|≤M

LA(v)→EN (w) > max
|v|>M

LA(v)→EN (w)

)
≥ P(Gc

M ∩Rc
M )

≥1− P(GM )− P(RM ),

(4.48)

for any choice of s. With the choice s = −M2/4, the bounds obtained above lead to the
claimed result.

A Bounds on point-to-point LPP

In the proof we use known results for the point-to-point LPP with exponential random
variables, which we recall here.

Proposition A.1. For η ∈ (0,∞) define µ = (
√
η`+

√
`)2, σ = η−1/6(1 +

√
η)4/3, and the

rescaled random variable

Lres
` :=

L(0,0)→(η`,`) − µ

σ`1/3
. (A.1)

(a) Limit law
lim
`→∞

P(Lres
` ≤ s) = FGUE(s), (A.2)

with FGUE the GUE Tracy-Widom distribution function.
(b) Bound on upper tail: there exist constants s0, `0, C, c such that

P(Lres
` ≥ s) ≤ Ce−cs (A.3)

for all ` ≥ `0 and s ≥ s0.
(c) Bound on lower tail: there exist constants s0, `0, C, c such that

P(Lres
` ≤ s) ≤ Ce−c|s|3/2 (A.4)

for all ` ≥ `0 and s ≤ −s0.
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The constants C, c can be chosen uniformly for η in a bounded set. (a) was proven in
Theorem 1.6 of[29]. Using the relation with the Laguerre ensemble of random matrices
(Proposition 6.1 of [1]), or to TASEP described above, the distribution is given by a
Fredholm determinant. An exponential decay of its kernel leads directly to (b). See
e.g. Proposition 4.2 of [25] or Lemma 1 of [3] for an explicit statement. (c) was proven
in [3] (Proposition 3 together with (56)). In the present language it is reported in
Proposition 4.3 of [25] as well.

B One-point slow-decorrelation theorem

Here we state one-point slow-decorrelation theorem in the setting of point-to-point
LPP with homogeneous waiting times, since it is what we employ in our paper. The
statement of Theorem 2.1 in [20] is for more generic LPP problems. The application to
finitely many points is straightforward using union bound and it was already used for
instance in [19, 2].

Theorem B.1 (One-point slow-decorrelation). Let p ∈ R2
+ be a direction. Assume that

there exist constants is a µ = µ(p), a distribution D, an α ∈ (0, 1) and ν ∈ (0, 1), such that

L(0,0)→[p`] − µ`

`α
⇒ D, as t goes to infinity. (B.1)

Then, for any ε > 0,

lim
`→∞

P
(
|L(0,0)→[p(`+`ν)] − L(0,0)→[p`] − µ`ν | ≥ ε`α

)
= 0. (B.2)

The assumptions for the model considered in this paper are satisfied with p = (η, 1),
µ = (1 +

√
η)2, α = 1/3, and D is FGUE (up to a scaling), see Proposition A.1.
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